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Abstract. In this paper, we consider Väisälä’s problem and obtain that a homeomorphism

which is both semi-local M -QH and semi-local η-QS between two suitable metric spaces is an M1-QH

map.

1. Introduction

During the past few decades, modern geometric function theory of quasisymmet-
ric mappings has been studied from several points of view. Quasisymmetric mappings
on the real line were first introduced by Beurling and Ahlfors [1]. They found a way
to extend each quasisymmetric self-mapping of the real line to a quasiconformal self-
mapping of the upper half-plane. This concept was later promoted by Tukia and
Väisälä [8], who introduced and studied quasisymmetric mappings between arbitrary
metric spaces. In 1990, based on the idea of quasisymmetry, Väisälä developed a
“dimension-free” theory of quasiconformal mappings in infinite-dimensional Banach
spaces and obtained many beautiful results. See also [15, 16, 17, 18, 19]. In 1998,
Heinonen and Koskela [3] showed that these concepts, quasiconformality and qua-
sisymmetry, are quantitatively equivalent in a large class of metric spaces, which
includes Euclidean spaces. Since these two concepts are equivalent, mathematicians
show much interest in the research of quasisymmetric mappings between suitable
metric spaces.

Following analogous notations and terminologies of [2, 3, 9, 19], we now give the
necessary definitions.

Definition 1.1. Let X, Y be two metric spaces. A homeomorphism f : X →
Y is called η-quasisymmetric (or briefly η-QS) if there exists a homeomorphism
η : [0,∞) → [0,∞), η(0) = 0, such that

|x− a| ≤ t|x− b| implies |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|

for each t > 0 and for each triple x, a, b of points in X.

Note that here and hereafter we use the distance notation |x − y| in any metric
space.
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Definition 1.2. Let X, Y be metric spaces and G  X,G′  Y be two domains,
that is, open connected nonempty sets. Suppose that f : G → G′ is a homeomor-
phism. We say that f is M-quasihyperbolic (or briefly M-QH) if f is M-bilipschitz
in quasihyperbolic metrics:

kG(x, y)

M
≤ kG′(f(x), f(y)) ≤ M kG(x, y)

for all x, y ∈ G. For the definition of quasihyperbolic metric, see Section 2.

A map f : X → Y is locally M-bilipschitz, M ≥ 1, if each point x ∈ X has a
neighborhood U such that the restriction f |U is M-bilipschitz between the quasihy-
perbolic metrics of U and f(U). In [19], Väisälä proved that such a map is M ′-QH
in all Banach spaces.

Theorem 1.3. [19, Theorem 5.16] Let E and E ′ be two Banach spaces and G  
E be a domain. Suppose that f : G → G′ is a locally M-bilipschitz homeomorphism.

Then G′ 6= E ′ and f is M2-QH.

Therefore, Väisälä proposed the following problem.

Problem 1.4. [19, Open problem 13] Suppose that f : G → G′ is a homeo-
morphism, and there exists M > 1 such that, for each point x ∈ G, there exists a
neighborhood D(x) ⊂ G such that the restriction map f |D(x) : D(x) → f(D(x)) is
M-QH. Is f globally M ′-QH with M ′ = M ′(M)?

In this paper we shall discuss Väisälä’s open problem between two suitable metric
spaces. In order to state our result, we give some definitions.

Definition 1.5. Let X be a metric space and G  X be a non-empty open set.
For any x ∈ G, we denote by δG(x) the distance dist(x,X\G).

Remark 1.6. From the above definition, it follows that

B(x, δG(x)) ⊆ G,

where B(x, δG(x)) = {y ∈ X : |y − x| < δG(x)}.

Definition 1.7. A metric space X is said to be dense, if for any two points
x, y ∈ X and two positive real number r1, r2 with |x−y| < r1+r2, we have B(x, r1)∩
B(y, r2) 6= ∅.

Definition 1.8. Let X, Y be two metric spaces and G  X, G′  Y be two do-
mains. Let η : [0,∞) → [0,∞), η(0) = 0, be a homeomorphism. A homeomorphism
f : G → G′ is said to be semi-local M-QH (resp. semi-local η-QS), if for each points
x ∈ G, the map f |Bx

: Bx → f(Bx) is M-QH (resp. η-QS). Here Bx = B(x, δG(x)).

Definition 1.9. A metric space X is said to be proper if every closed ball in X
is compact.

Under suitable geometric conditions (see Section 2), we study Väisälä’s open
problem and obtain an analogous result for metric spaces.

Theorem 1.10. Let X be a c1-quasiconvex and dense metric space and let Y
be a c2-quasiconvex, dense and proper metric space. Let G  X and G′  Y be two

domains. Suppose that a homeomorphism f : G → G′ is both semi-local M-QH and

semi-local η-QS map, where M > 1 is a constant and η : [0,∞) → [0,∞), η(0) = 0,
is a homeomorphism. Then f is an M1-QH map on G with M1 = M1(M, η, c1, c2).
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Example 1.11. Let X =
{

⋃

r∈Q{r} ×R

}

∪
{

⋃

t∈Q R× {t}
}

be a subset of R2

and the metric d of X be the restriction of Euclidean metric of R2 on X. Then (X, d)
is a 3-quasiconvex, dense and proper metric space.

We leave the following

Problem 1.12. Can one strengthen the above Theorem 1.10? That is, can one
deduce that a homeomorphism f : G → G′ which is locally M-QH is a global M1-QH
map in some suitable metric spaces?

2. Quasihyperbolic metric

Let X be a metric space and let

B(x, r) = {y ∈ X : |y − x| < r}, B(x, r) = {y ∈ X : |y − x| ≤ r}

be the open and close balls with center x ∈ X and radius r > 0. Denote

S(x, r) = {y : |y − x| = r}.

By a curve we mean any continuous mapping γ : [a, b] → X. The length of γ is
defined by

l(γ) = sup

{

n
∑

i=1

|γ(ti)− γ(ti−1)|

}

,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b. The
curve is rectifiable if l(γ) < ∞.

The length function associated with a rectifiable curve γ : [a, b] → X is sγ : [a, b] →
[0, l(γ)], given by sγ(t) = l(γ|[a,t]). For any rectifiable curve γ : [a, b] → X, there exists
a unique curve γs : [0, l(γ)] → X such that γ = γs ◦ sγ. Moreover, l(γs|[0,t]) = t for
every t ∈ [0, l(γ)]. The curve γs is called the arc length parametrization of γ.

If γ is a rectifiable curve in X, then the line integral over γ of each nonnegative
Borel function ̺ : X → [0,∞] is given by

ˆ

γ

̺ ds =

ˆ l(γ)

0

̺ ◦ γs(t) dt.

Definition 2.1. Let γ be a rectifiable curve in a domain G  X. The quasihy-

perbolic length of γ in G is

lqh(γ) =

ˆ

γ

ds

δG(x)
.

The quasihyperbolic distance between x, y ∈ G is defined by

kG(x, y) = inf
γ
lqh(γ),

where γ runs over all rectifiable curves in G joining x and y. If there is no rectifiable
curve in G joining x and y, then we define

kG(x, y) = +∞.

Definition 2.2. Let X be a metric space. An open set D of X is said to be
rectifiably connected if, for any two points x, y ∈ D, there exists a rectifiable curve in
D joining x and y.

If G  X is a rectifiably connected open set, it is clear that kG(x, y) < ∞ for
any two points x, y ∈ G. Thus kG is a metric in G, and we call it the quasihyperbolic

metric of G.
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Definition 2.3. For c ≥ 1, a metric space X is c-quasiconvex if each pair of
points x, y ∈ X can be joined by a curve γ with length l(γ) ≤ c|x− y|.

Observation 2.4. If X is a c-quasiconvex metric space, then any domain G  X
is rectifiably connected.

Proof. Choose x0 ∈ G and define

Ox0
= {y ∈ G : there exists a rectifiable curve in G joining x0 and y}.

It is clear that x0 ∈ Ox0
.

We claim that Ox0
and G\Ox0

are both open in G. Noticing that G is open, for
any y0 ∈ Ox0

, there exists a r > 0 such that B(y0, r) ⊆ G. For any z ∈ B(y0, r/c), by
using the definition of quasiconvexity, it follows that there exists a rectifiably curve
γ joining y0 and z with

l(γ) ≤ c |y0 − z| < r,

which implies γ ⊆ G. Thus,

B(y0, r/c) ⊆ Ox0
,

which shows that Ox0
is open in G.

With a similar argument, we can deduce that G\Ox0
is also open in G. Since G

is connected, we have Ox0
= G. Hence G is rectifiably connected. �

Theorem 2.5. Let X be a c-quasiconvex metric space and let G  X be a

domain. Then

(i) for each x, y ∈ G,

(1) |x− y| ≤
(

ekG(x,y) − 1
)

δG(x);

(ii) if z ∈ G, 0 < t < 1, and x, y ∈ B
(

z, t δG(z)
4c

)

, then

(2)
1

1 + 2t

|x− y|

δG(z)
≤ kG(x, y) ≤

c

1− t

|x− y|

δG(z)
.

Proof. (i) By Observation 2.4, we know that G is rectifiably connected. For any
rectifiable curve γ joining x, y ∈ G, let γs : [0, L] → G be the arc length parametriza-
tion of γ with γs(0) = x. We have, for each t ∈ [0, L],

δG(γs(t)) ≤ δG(x) + |γs(t)− x| ≤ δG(x) + l(γs|[0,t]) = δG(x) + t.

Hence

lqh(γ) ≥

ˆ L

0

dt

δG(x) + t
≥ ln

(

1 +
|x− y|

δG(x)

)

.

The inequality (1) is a consequence of the definition of kG(x, y) and the above in-
equality.

(ii) Suppose that x, y ∈ B(z, t δG(z)
4c

). Since X is a c-quasiconvex metric space,
there exists a rectifiable curve γ in X joining x to y with l(γ) ≤ c|x− y|.

For any u ∈ γ, it is clear that

|u− z| ≤ |u− x| + |x− z| ≤ l(γ) + tδG(z)/(4c)

≤ c|x− y|+ tδG(z)/(4c) ≤ ((2c+ 1)/(4c)) · t · δG(z) (since c ≥ 1)

< t δG(z),

which implies that

γ ⊆ B(z, t δG(z)) ⊆ B(z, δG(z)) ⊆ G.
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Furthermore, for each u ∈ γ, we have

δG(u) ≥ δG(z)− |u− z| ≥ (1− t)δG(z).

Let L = l(γ) and let γs : [0, L] → γ be the arc length parametrization of γ. Hence

kG(x, y) ≤

ˆ L

0

dr

δG(γs(r))
≤

L

(1− t)δG(z)
≤

c

1− t

|x− y|

δG(z)
,

which shows that the right-hand side inequality of (2) is true.
Now we are ready to verify the left-hand side inequality of (2). Since G is recti-

fiably connected, the set of rectifiable curves joining x and y is not empty. Assume
that γ : [0, L] → G is any rectifiable curve joining x, y ∈ G which is parametrized by
its arc length. Then we divide the proof into two parts:

Case 1. γ ⊆ B(z, 2tδG(z)). In this case, for all u ∈ γ,

δG(u) ≤ |u− z| + δG(z) ≤ (1 + 2t)δG(z).

Therefore, it follows that

(3) lqh(γ) =

ˆ L

0

dr

δG(γs(r))
≥

l(γ)

1 + 2t

1

δG(z)
≥

|x− y|

(1 + 2t)δG(z)
.

Case 2. γ * B(z, 2tδG(z)). From the connectedness of γ, it follows that γ has a

sub-curve γ1 ⊆ B(z, 2tδG(z)) joining the spheres S(z, tδG(z)) and S(z, 2tδG(z)) which
implies

l(γ1) ≥ tδG(z).

Since |x− y| ≤ t δG(x)
2c

, it follows that

l(γ1) ≥ 2c|x− y|.

For any u ∈ γ1, we have δG(u) ≤ (1 + 2t)δG(z). Thus, we again obtain (3).
Hence, the inequality (2) is obtained. �

Theorem 2.6. Let X be a c-quasiconvex metric space and G  X be a domain.

Suppose that x, y ∈ G and either |x− y| ≤ δG(x)
8c

or kG(x, y) ≤
1
4
. Then

(4)
1

2

|x− y|

δG(x)
≤ kG(x, y) ≤ 2c

|x− y|

δG(x)
.

Proof. If |x − y| ≤ δG(x)/(8c), then (4) is a consequence of Theorem 2.5 with

t = 1/2. Thus we may assume that |x − y| > δG(x)
8c

and kG(x, y) ≤ 1
4
. From this

assumption, it is easily be seen that

kG(x, y) ≤ 2c
|x− y|

δG(x)
,

that is, the right-hand side inequality of (4) holds.
We are now to prove the left-hand side inequality of (4). Since er − 1 ≤ 2r for

r ∈ (0, 1/4], it follows from the inequality (1) in Theorem 2.5 that

|x− y|

δG(x)
≤ ekG(x,y) − 1 ≤ 2 kG(x, y),

which implies the left-hand side inequality of (4) is also true. Hence, Theorem 2.6 is
proved. �
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Theorem 2.7. Let X be a c-quasiconvex metric space and G  X be a domain.

Let γ be a rectifiable path in G and let lkG(γ) denote the length of γ in the metric

space (G, kG). Then

(i) lkG(γ) = lqh(γ);
(ii) the metric space (G, kG) is a 2-quasiconvex metric space.

Proof. (i) Let γs be the arc length parametrization of γ and L be the length of
γ. Let 0 = t0 < t1 < · · · < tn = L be a partition of [0, L]. Then

n
∑

j=1

kG(γs(tj−1), γs(tj)) ≤
n
∑

j=1

lqh(γs|[tj−1,tj ]) ≤ lqh(γ).

Hence lkG(γ) ≤ lqh(γ).
Now we are turn to prove lkG(γ) ≥ lqh(γ). By definition of lqh(γ), it follows that

lqh(γ) =

ˆ L

0

g(t)dt,

where g(t) = 1/δG(γs(t)). Choose 0 < ǫ < 1/2. By definition of Riemann integral
´ L

0
g(t) dt and the compact proposition of γ, we can obtain the following fact:

Fact. There exists a partition P : 0 = t0 < t1 < · · · < tn = L of [0, L] such that,
for xi = γs(ti), γi = γs|[ti−1,ti] and 1 ≤ i ≤ n, we have

lqh(γ) ≤
n
∑

i=1

g(ti)(ti − ti−1) + ǫ and γi ⊆ B

(

xi,
ǫ · δG(xi)

8 c

)

.

The verification of this fact is left to the reader.
For each 1 ≤ i ≤ n, we choose successive points xi−1 = xi,0, xi,1, · · · , xi,ni

= xi

of γi such that

l(γi) ≤
ni
∑

j=1

|xi,j−1 − xi,j |+ ǫ/n.

With the aid of the estimate (2) in Theorem 2.5, we get that, for all 1 ≤ i ≤ n and
1 ≤ j ≤ ni,

|xi,j−1 − xi,j |

δG(xi)
≤ (1 + 2ǫ) · kG(xi,j−1, xi,j).

Since ti − ti−1 = l(γi) and g(ti) = 1/δG(xi), the above estimates imply

lqh(γ) ≤ (1 + 2ǫ)
∑

i

∑

j

kG(xi,j−1, xi,j) + 2ǫ.

Notice that the double sum is at most lkG(γ). Since ǫ is arbitrary, this yields the
desired inequality.

(ii) Obviously, we have nothing to do if the cardinal number |G| of G is less than
2. So we suppose that |G| ≥ 2. Let a 6= b be two points in G.

According to Observation 2.4 and the definition of kG(a, b), it follows that there
exists a path γ joining a and b with lqh(γ) < 2kG(a, b). By (i), we get lkG(γ) <
2kG(a, b), which implies that (G, kG) is 2-quasiconvex. �
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3. Quasihyperbolic and fully quasihyperbolic maps

Definition 3.1. Let f : X → Y be a map between metric spaces and let x be a
non-isolated point of X. We write

L(x, f) = lim sup
y→x

|f(y)− f(x)|

|y − x|
, l(x, f) = lim inf

y→x

|f(y)− f(x)|

|y − x|
.

Then 0 ≤ l(x, f) ≤ L(x, f) ≤ ∞. The number L(x, f) is the maximal stretching of
f at x, and l(x, f) is the minimal stretching. In the case when X = G and Y = G′

with the QH metrics, we always use the notations Lk(x, f), lk(x, f).

Fact 3.2. (i) Suppose that f : X → Y is a homeomorphism and x is a non-

isolated point of X. Then

L(x, f) =
1

l(f(x), f−1)
, l(x, f) =

1

L(f(x), f−1)
,

where we use the convention that 1/0 = ∞, 1/∞ = 0.
(ii) Suppose that f : X → Y and g : Y → Z are continuous, and that the points

x and f(x) are non-isolated points of X and Y , respectively. Then

L(x, g ◦ f) ≤ L(x, f) · L(f(x), g), l(x, g ◦ f) ≥ l(x, f) · l(f(x), g),

provided that the products are not of the form 0 · ∞ or ∞ · 0.

Theorem 3.3. Let X be a c1-quasiconvex metric space and Y be a c2-quasiconvex

metric space, and let G  X and G′  Y be two domains. If f : G → G′ is a home-

omorphism, then

1

c1

L(x, f) · δG(x)

δG′(f(x))
≤ Lk(x, f) ≤

c2 L(x, f) · δG(x)

δG′(f(x))
(5)

and

1

c1

l(x, f) · δG(x)

δG′(f(x))
≤ lk(x, f) ≤

c2 l(x, f) · δG(x)

δG′(f(x))
(6)

for all x ∈ G.

Proof. Let dG (resp. dG′) denote the metric of G (resp. G′) be the restric-
tion of Euclidean metric of X (resp. Y ) on G (resp. G′), and kG (resp. kG′) de-
note the quasihyperbolic metric of G (resp. G′), and let i : (G, kG) → (G, dG) and
j : (G′, kG′) → (G′, dG′) be the identity maps. By Theorem 2.5 it follows that

1

c1
δG(x) ≤ L(x, i) ≤ δG(x), δG(x)

−1 ≤ L(x, i−1) ≤ c1δG(x)
−1,

and

1

c2
δG′(f(x)) ≤ L(f(x), j) ≤ δG′(f(x)),

δG′(f(x))−1 ≤ L(f(x), j−1) ≤ c2δG′(f(x))−1.
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Consider f as a map f : (G, dG) → (G′, dG′), and let fk : (G, kG) → (G′, kG′) be the
map with the same values of f . Since fk = j−1 ◦ f ◦ i and f = j ◦ fk ◦ i

−1, we have

Lk(x, f) = L(x, fk) ≤ L(x, i) · L(x, f) · L(f(x), j−1) ≤
c2 L(x, f)δG(x)

δG′(f(x))
,

L(x, f) = L(x, j ◦ fk ◦ i
−1) ≤ L(x, i−1) · L(x, fk) · L(f(x), j)

≤
c1 L(x, fk) · δG′(f(x))

δG(x)
=

c1 Lk(x, f) · δG′(f(x))

δG(x)
.

Therefore, (5) holds. The proof of (6) is similar. �

Lemma 3.4. [15, Lemma 4.4] Let f : X → Y be a homeomorphism. If f is

M-Lipschitz, then L(x, f) ≤ M for all non-isolated points x ∈ X. Conversely, if X
is c-quasiconvex and if L(x, f) ≤ M for all x ∈ X, then f is cM-Lipschitz.

Theorem 3.5. Let X be a c1-quasiconvex metric space and let Y be a c2-
quasiconvex metric space. Suppose that G  X and G′  Y are two domains,

and that f : G → G′ is a homeomorphism.

(i) If f is M-QH, then, for all x ∈ G,

L(x, f) · δG(x) ≤ c1M · δG′(f(x)), L(f(x), f−1) · δG′(f(x)) ≤ c2M · δG(x).

(ii) Conversely, if, for all x ∈ G,

L(x, f) · δG(x) ≤ c1M · δG′(f(x)), L(f(x), f−1) · δG′(f(x)) ≤ c2M · δG(x),

then f is 2c1c2M-QH.

Proof. We first prove (i). By symmetry it suffices to prove that

L(x, f) · δG(x) ≤ c1M · δG′(f(x))

for all x, y ∈ G. Since f is M-QH, it follows immediately from Lemma 3.4 that

Lk(x, f) ≤ M.

Thus, by combing Theorem 3.3, we get

1

c1

L(x, f) · δG(x)

δG′(f(x))
≤ Lk(x, f) ≤ M.

Hence the proof of (i) is complete.
Now we are ready to prove (ii). By Theorem 2.7, we can deduce that both (G, kG)

and (G′, kG′) are 2-quasiconvex metric spaces. Since

L(x, f) · δG(x) ≤ c1M · δG′(f(x)),

it follows from the Theorem 3.3 that

Lk(x, f) ≤ c1c2M.(7)

Therefore, according to (7) and Lemma 3.4, we obtain that f is 2c1c2M-Lipschitz in
the QH metric. By using the same argument, we deduce that f−1 is 2c1c2M-Lipschitz
in the QH metric.

Hence, f is 2c1c2M-bilipschitz in the QH metric. �
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Definition 3.6. Let X, Y be two metric spaces and G  X, G′  Y be two
domains. A homeomorphism f : G → G′ is called fully M ′-QH, if for any sub-domain
D ⊆ G, the map f |D : D → D′ = f(D) is M ′-QH with respect to the QH metric of
D. That is,

1

M ′
kD(x, y) ≤ kD′(f(x), f(y)) ≤ M ′kD(x, y).

In what follows, we get the following result which will be used later in this paper.

Theorem 3.7. Let X be a c1-quasiconvex metric space and let Y be a c2-
quasiconvex metric space. Suppose that G  X and G′  Y are two domains

and f : G → G′ is M-QH. Then f is fully M1-QH with M1 = 16c1c2M
2 ·max{c1, c2}.

Proof. Let D ⊂ G be any sub-domain of G and D′ = f(D). For any given point
x ∈ D, we claim that

1

8c1M

δG(x)

δG′(f(x))
≤

δD(x)

δD′(f(x))
≤ 8c2M

δG(x)

δG′(f(x))
.(8)

In what follows, we only prove the right-hand side inequality of (8). The proof of the
left-hand side inequality of (8) uses the same argument for f−1.

Denote by

α =
δD(x)

δD′(f(x))
.

We consider two cases:

Case 1. δD′(f(x)) ≥ δG′(f(x))/(8c2M). Then

α ≤ 8c2M ·
δD(x)

δG′(f(x))
≤ 8c2M ·

δG(x)

δG′(f(x))
.

Thus, the right-hand side inequality of (8) is obtained.

Case 2. δD′(f(x)) < δG′(f(x))/(8c2M). Choose a sufficiently small number ε
with

0 < ε <
δG′(f(x))

8c2M
− δD′(f(x)).

The definition of δD′(f(x)) allows us to choose a point y′ ∈ Y \D′ such that

|f(x)− y′| < δD′(f(x)) + ε <
δG′(f(x))

8c2M
.(9)

Thus, we have

δG′(y′) ≥ δG′(f(x))− |f(x)− y′| >

(

1−
1

8c2M

)

δG′(f(x)) > 0.

Hence, it follows that y′ ∈ G′.
Setting y = f−1(y′). It is clear that

y ∈ G\D.

From (9) we know that

|f(x)− y′|

δG′(f(x))
<

1

8c2M
<

1

8c2
,(10)

and by use of Theorem 2.6 we obtain from (10) that

kG′(f(x), y′) ≤ 2c2 ·
|f(x)− y′|

δG′(f(x))
<

1

4M
.(11)
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Since f is M-QH, then

kG(x, y) ≤ MkG′(f(x), y′) <
1

4
.

Applying Theorem 2.6, we get that

δD(x) ≤ |x− y| (since y 6∈ D)

≤ 2kG(x, y) · δG(x)

≤ 2M · kG′(f(x), y′) · δG(x) (since f is M-QH)

≤ 4c2M ·
δG(x)

δG′(f(x))
· |f(x)− y′| (by (11))

< 4c2M ·
δG(x)

δG′(f(x))
(δD′(f(x)) + ε) . (by (9))

(12)

As ε → 0, (12) implies that

α ≤ 4c2M ·
δG(x)

δG′(f(x))
.

Therefore, the right-hand side inequality of (8) holds.
Since f is M-QH, from (i) of Theorem 3.5, we deduce that

(13) L(x, f) ·
δG(x)

δG′(f(x))
≤ c1M.

Thus, by combing (8) with (13), we get that

L(x, f) ·
δD(x)

δD′(f(x))
≤ 8c2M · L(x, f) ·

δG(x)

δG′(f(x))
≤ 8c1c2M

2.

Therefore, by the inequality (ii) of Theorem 3.5, we deduce that f |D : D → D′ is
M1-QH with respect to QH metric of D. Here

M1 = 16c1c2M
2 ·max{c1, c2}. �

4. Main lemmas

Lemma 4.1. Let X be a c-quasiconvex metric space, and let G  X be a

domain. Suppose that x ∈ G and 0 < s < 1/c. If |x− y| ≤ s δG(x), then

kBx
(x, y) ≤

c

1− sc
ln

(

1 +
|x− y|

δG(x)

)

,

where Bx = B(x, δG(x)).

Proof. From the definition of quasiconvexity, it follows that there exists a recti-
fiable arc γ joining x and y in X with length l(γ) ≤ c|x− y|. Let γs : [0, l(γ)] → γ
be the arc length parametrization of γ with γs(0) = x. For each t ∈ [0, l(γ)], we have
|γs(t)− x| ≤ l(γ) and

l(γ) ≤ c · |x− y| ≤ s · c · δG(x) < δG(x).(14)

Hence, by the definition of δG(x), we get

(15) γ ⊆ Bx ⊆ G.

Since X\Bx = {y ∈ X : |y − x| ≥ δG(x)}, it follows that

dist(x,X\Bx) ≥ δG(x).
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Thus,

δG(x) ≤ dist(x,X\Bx) ≤ dist(x,X\G) (since Bx ⊆ G)

= δG(x).

Therefore, since δBx
(x) = dist(x,X\Bx), we obtain

δBx
(x) = δG(x).

Furthermore,

δG(x) = δBx
(x) = dist(x,X\Bx) ≤ |γs(t)− x|+ dist(γs(t), X\Bx)

= |γs(t)− γs(0)|+ dist(γs(t), X\Bx) ≤ t+ δBx
(γs(t)).

(16)

For t ∈ [0, l(γ)], noticing that γs is an arc length parametrization, we have

t = l(γs|[0,t]) ≤ l(γ) < δG(x). (because of the inequality (14))

Thus, by (16), it follows that

(17)
1

δBx
(γs(t))

≤
1

δG(x)− t
.

Hence, from (15), (17) and the definition of kBx
(x, y), it follows that

kBx
(x, y) ≤

ˆ l(γ)

0

dt

δBx
(γs(t))

≤

ˆ l(γ)

0

dt

δG(x)− t
= ln

(

1 +
l(γ)

δG(x)− l(γ)

)

≤ ln

(

1 +
c|x− y|

δG(x)− c|x− y|

)

≤ ln

(

1 +
c

1− sc
·
|x− y|

δG(x)

)

≤
c

1− sc
ln

(

1 +
|x− y|

δG(x)

)

. (by Bernoulli’s inequality)

Here, the statement of Bernoulli’s inequality please refer to Appendix. This completes
the proof of Lemma 4.1. �

Lemma 4.2. Let X be a c1-quasiconvex and dense metric space and let Y be

a c2-quasiconvex, dense and proper metric space. Suppose that G  X,G′  Y are

two domains, x ∈ G is a given point and f : G → G′ is a homeomorphism. Denote

by D the open ball B(x, δG(x)) and D′ the image of D under the homeomorphism

f . If f |D : D → D′ is η-QS, then

δD′(f(x)) ≥ q · δG′(f(x)).

Here q = min{1/2, 2/(3η2(2))}.

Figure 1. The set D and the set f(D).

To prove the lemma, we need several propositions. The proofs given here depend
on a simple geometric intuition as in Figure 1.
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Proposition 4.1. Let X, Y,G,G′, f, D,D′ be as in Lemma 4.2. Let 0 < τ < 1.
Then the image of D under a homeomorphism f can not be contained in a ball, with

the center f(x), whose radius is less than δG′(f(x)), that is

D′ * B (f(x), τ · δG′(f(x))) .

Proof. If the statement was false, then

(18) D′ ⊆ B (f(x), τ · δG′(f(x))) .

First, we need to verify that there exist a sequences {xn} in D which has an accu-
mulation point in X\G.

By definition of δG(x), it is clear that there exists a sequence of points {yn} ⊆
X\G such that

δG(x) ≤ |yn − x| < δG(x) + 1/n.

Thanks to the metric space X being dense and the above inequality, it follows that

B

(

yn,
1

n

)

∩B(x, δG(x)) 6= ∅.

Choosing the points {xn} with

xn ∈ B

(

yn,
1

n

)

∩ B(x, δG(x)),

it is evident that

(19) lim
n→∞

dist(xn, X\G) = 0.

The next thing to do in the proof is to show that the sequence of points {xn}
has a cluster point in G. Due to (18) and xn ∈ D, it is obvious that

f(xn) ∈ D′ ⊆ B (f(x), τ · δG′(f(x))) .

Noting Y being proper, it follows that the close ball B (f(x), τ · δG′(f(x))) is compact.
This fact implies that the sequence of points {f(xn)} has an accumulation point in
B (f(x), τ · δG′(f(x))).

Without loss of generality, we may assume that f(xn) → y′0 with y′0 ∈ G′ since

B (f(x), τ · δG′(f(x))) ⊆ G′.

Now that f is a homeomorphism, it follows that xn → f−1(y′0) with f−1(y′0) ∈ G.
This is contrary to (19) because of G being open.

Hence the statement in Proposition 4.1 is proved. �

Proposition 4.2. Let X, Y,G,G′, f, D,D′ be as in Lemma 4.2. Then there

exists a point ω0 ∈ D such that

|f(ω0)− f(x)| > p · δG′(f(x)).

Here p = 2/(3η(2)).

Proof. If the assertion would not hold, then

|f(y)− f(x)| ≤ p · δG′(f(x))

for all y ∈ D. Since the metric space X is a dense space, it follows that the ring do-
main {z ∈ X : δG(x)/2 < |z−x| < δG(x)} is not a empty set, i.e., {z ∈ X : δG(x)/2 <
|z − x| < δG(x)} 6= ∅. Choosing a point ω1 with δG(x)/2 < |ω1 − x| < δG(x)}, it is
evident to see that

(20) |f(ω1)− f(x)| ≤ p · δG′(f(x)).
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Taking τ = 2/3 in Proposition 4.1, it follows that there exists a point ω2 ∈ B(x, δG(x))
such that

(21) |f(ω2)− f(x)| ≥ (2/3) · δG′(f(x)).

Thus, combining (20) and (21), we see that

(22)
|f(ω2)− f(x)|

|f(ω1)− f(x)|
≥

(2/3) · δG′(f(x))

p · δG′(f(x))
=

2

3p
.

Moreover, noting that f |D is a η-QS and

|ω2 − x|

|ω1 − x|
< 2,

we have

(23)
|f(ω2)− f(x)|

|f(ω1)− f(x)|
≤ η

(

|ω2 − x|

|ω1 − x|

)

< η(2).

By comparing (22) with (23), we obtain

p >
2

3η(2)
.

This inequality leads to a contradiction, which completes the proof of Proposition 4.2.
�

For convenience, we denote by B∗ an open ball centered at f(x) of radius
δD′(f(x)), i.e.,

B∗ = B (f(x), δD′(f(x))) .

Proposition 4.3. Let X, Y,G,G′, f, D,D′ be as in Lemma 4.2. If δD′(f(x)) <
(1/2) · δG′(f(x)), then

f−1(B∗) * B

(

x,
δG(x)

2

)

.

Proof. If the conclusion was false, then

(24) f−1(B∗) ⊆ B

(

x,
δG(x)

2

)

.

Our first goal is to show that there exists a sequence {vn} in Y \D′ which has an
accumulation point in G′.

By definition of δD′(f(x)), it is clear that there exists a sequence of points {vn} ⊆
Y \D′ such that

δD′(f(x)) ≤ |vn − f(x)| < δD′(f(x)) +
1

n
.

Noting the assumption δD′(f(x)) < (1/2) · δG′(f(x)), it is trivial to see that

|vn − f(x)| < δD′(f(x)) +
1

n
<

δG′(f(x))

2
+

1

n
<

3

4
δG′(f(x))(25)

for sufficiently large n (i.e., n > 4/δG′(f(x))).
The inequality (25) and the fact {vn} ⊆ Y \D′ imply that

(26) vn ∈ G′\D′

for sufficiently large n. Recall that Y is proper, we know that the sequence {vn} has
a cluster point in Y . For simplicity, we may assume that

vn → y∗
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for some y∗ ∈ Y as n goes to infinity. According to (26) and D′ being open, we have

(27) y∗ 6∈ D′.

Furthermore, from the inequality (25), we deduce that

(28) |y∗ − f(x)| < δG′(f(x)),

which implies that

(29) y∗ ∈ G′.

The next thing to do in the proof is to construct a sequence {zm} in B∗ which
converges to the point y∗. Due to the metric space Y being dense and the inequality
(28), it is easy to see that

B

(

y∗,
1

m

)

∩ B (f(x), δD′(f(x))) 6= ∅

for each positive integer m ∈ N. Choosing the points

(30) zm ∈ B

(

y∗,
1

m

)

∩ B∗,

it is obvious that
zm → y∗ as m → ∞.

Since f is a homoeomorphism from G onto G′ and the conclusion (29) holds, we have

(31) f−1(zm) → f−1(y∗) ∈ G as m → ∞.

We are now in a position to get a contradiction. Combining (24) and (30), it is
not difficult to verify that

|f−1(zm)− x| <
δG(x)

2
for each m ∈ N. Thus, by the above inequality and (31), we get

|f−1(y∗)− x| < δG(x).

According to the definition of the domain D as in Lemma 4.2, the above inequality
implies that

f−1(y∗) ∈ D.

Consequently, we infer that
y∗ ∈ D′ = f(D),

which contradicts to (27). This completes the proof of Proposition 4.3. �

With the help of the preceding three propositions we can now prove Lemma 4.2.

Proof of Lemma 4.2. Evidently, the lemma will be proved if we can show that

δD′(f(x)) ≥ 2/(3η2(2)) · δG′(f(x))

provided that δD′(f(x)) < (1/2) · δG′(f(x)). Now, we suppose that

δD′(f(x)) < (1/2) · δG′(f(x)).

In what follows, we will verify that

δD′(f(x)) ≥ 2/(3η2(2)) · δG′(f(x))

By Proposition 4.2, there exists a point ω0 ∈ D such that |ω0 − x| < δG(x) and

(32) |f(ω0)− f(x)| > p · δG′(f(x)).

Here p = 2/(3η(2)).
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According to Proposition 4.3, there exists a point ω3 ∈ D satisfying

(33) |f(ω3)− f(x)| < δD′(f(x)) and |ω3 − x| ≥ δG(x)/2.

Therefore, from the above statements, it is evident that

|ω0 − x|

|ω3 − x|
≤

δG(x)

δG(x)/2
= 2.

Noting that f |D is a η-QS mapping, {x, ω0, ω3} ⊆ D, and (32) and (33) hold, we
obtain that

p · δG′(f(x))

δD′(f(x))
≤

|f(ω0)− f(x)|

|f(ω3)− f(x)|
≤ η

(

|ω0 − x|

|ω3 − x|

)

≤ η(2).

Thus we have derived that

δD′(f(x)) ≥
p

η(2)
δG′(f(x)) =

2

3 · η2(2)
δG′(f(x)),

which completes the proof of Lemma 4.2. �

5. Proof of the main result

Proof of Theorem 1.10. Let x, y ∈ G. Denote

Bx = B(x, δG(x)).

In order to prove Theorem 1.10, we need only to show that

kG(x, y)

M1
≤ kG′(f(x), f(y)) ≤ M1kG(x, y) for all x, y ∈ G.(34)

We divide the proof into two cases:

Case 1. |x − y| ≤ 1/(2c1) · δG(x). From the definition of δG(x), it follows that
x, y ∈ Bx. Since f |Bx

is M-QH, then we have

kBx
(x, y)

M
≤ kf(Bx)(f(x), f(y)) ≤ MkBx

(x, y).

Hence, it gives

kG′(f(x), f(y)) ≤ kf(Bx)(f(x), f(y)) (since f(Bx) ⊆ G′)

≤ M · kBx
(x, y) ≤ 2Mc1 ln

(

1 +
|x− y|

δG(x)

)

(by Lemma 4.1)

≤ 2Mc1 · kG(x, y), (because of the inequality (1))

which implies the right-hand side inequality of (34).
To prove the left-hand side inequality of (34), we consider two subcases:

Subcase 1.1. |f(x) − f(y)| ≤ 1/(2 c2) · δB′

x
(f(x)). From Theorem 3.7, it follows

that the map

f−1 : D′ = B
(

f(x), δB′

x
(f(x))

)

→ f−1(D′) = D

is M2-Lipschitz in the quasihyperbolic metric, where M2 = 16c1c2M
2 · max{c1, c2}.

Since Y is a c2-quasiconvex metric space, from Lemma 4.1 and Lemma 4.2, it follows
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that

kG(x, y) ≤ kD(x, y) (since D ⊆ G)

≤ M2 · kD′(f(x), f(y)) (since f−1|D′ is M2-QH)

≤ 2M2 c2 ln

(

1 +
|f(x)− f(y)|

δB′

x
(f(x))

)

(by Lemma 4.1)

≤ 2M2 c2 ln

(

1 +
|f(x)− f(y)|

q · δG′(f(x))

)

(by Lemma 4.2)

≤
2M2 c2

q
ln

(

1 +
|f(x)− f(y)|

δG′(f(x))

)

(by Bernoulli’s inequality)

≤
2M2 c2

q
kG′(f(x), f(y)). (because of the inequality (1))

Subcase 1.2. |f(x) − f(y)| > 1/(2 c2) · δB′

x
(f(x)). By the inequality (1) and

Lemma 4.2, we have

kG′(f(x), f(y)) ≥ ln

(

1 +
|f(x)− f(y)|

δG′(f(x))

)

≥ ln

(

1 +
q

2 c2

)

.(35)

Since X is a c1-quasiconvex metric space, it follows that there exists a rectifiable arc
γ joining x and y in X with length l(γ) ≤ c1|x− y|.

Let γs : [0, l(γ)] → γ be the arc length parametrization of γ with γs(0) = x. For
each t ∈ [0, l(γ)], we have |γs(t)− x| ≤ l(γ) and

δG(x) = dist(x,X \G) ≤ |γs(t)− x|+ dist(γs(t), X \G) ≤ t + δG(γs(t)).(36)

Hence, remembering that |x− y| ≤ 1
2c1

δG(x), (36) implies that

kG(x, y) ≤

ˆ l(γ)

0

dt

δG(γs(t))
≤

ˆ l(γ)

0

dt

δG(x)− t
= ln

(

1 +
l(γ)

δG(x)− l(γ)

)

≤ ln

(

1 +
c1|x− y|

δG(x)− c1|x− y|

)

≤ ln 2.

Combing the above with (35), we have

kG(x, y) ≤
ln 2

ln(1 + q/(2 c2))
kG′(f(x), f(y)).

Denote

M0 = max

{

2Mc1,
2M2c2

q
,

ln 2

ln(1 + q/(2c2))

}

.

Hence, we get that

kG(x, y)

M0

≤ kG′(f(x), f(y)) ≤ M0kG(x, y) for |x− y| ≤
1

2c1
δG(x).

Case 2. |x − y| > 1/(2c1) · δG(x). From Theorem 2.7 we know that the metric
space (G, kG) is a 2-quasiconvex metric space. Thus there exists a curve γ : [a, b] → G
joining x and y with quasihyperbolic length

lkG(γ) ≤ 2 kG(x, y).



Local properties of quasihyperbolic mappings in metric spaces 39

Define inductively successive points x = z0, z1, · · · , zn−1, zn = y of γ as follows:
Let t0 = a,

tj = sup
t

{

t ∈ [a, b] : |γ(t)− zj−1| ≤
δG(zj−1)

2c1
, 1 ≤ j ≤ n

}

and zj = γ(tj), 0 ≤ j ≤ n. Furthermore, since |x−y| > (1/(2c1))δG(x), we have n ≥
2, |zj−1−zj | = (1/(2c1))δG(zj−1) for 1 ≤ j ≤ n−1 and |zn−1−zn| ≤ (1/(2c1))δG(zn−1).

Hence, by Case 1, we have

kG′(f(x), f(y)) ≤
n−1
∑

j=1

kG′(f(zj−1), f(zj)) + kG′(f(zn−1), f(y))

≤ M0

(

n−1
∑

j=1

kG(zj−1, zj) + kG(zn−1, y)

)

≤ M0 · lkG(γ) ≤ 2M0 · kG(x, y).

Similarly, by using Theorem 2.7, there exists a curve β ′ : [c, d] → G′ joining f(x) and
f(y) with quasihyperbolic length

lkG′
(β ′) ≤ 2kG′(f(x), f(y)).

Let β = f−1◦β ′ : [c, d] → G. Define inductively successive points x = p0, p1, · · · , pk−1,
pm = y of β as follows: Let t0 = c,

tj = sup
t

{

t ∈ [c, d] : |β(t)− pj−1| ≤
δG(pj−1)

2c1
, 1 ≤ j ≤ m

}

and pj = β(tj), 0 ≤ j ≤ m. Moreover, since |x − y| > (1/(2c1)) δG(x), we have
m ≥ 2, |pj−1 − pj| = (1/(2c1)) δG(pj−1) for 1 ≤ j ≤ m − 1 and |pm−1 − pm| ≤
(1/(2c1))δG(pm−1).

Hence, Case 1 gives

kG(x, y) ≤
m−1
∑

j=1

kG(pj−1, pj) + kG(pm−1, y)

≤ M0

(

m−1
∑

j=1

kG′(f(pj−1), f(pj)) + kG′(f(pm−1), f(y))

)

≤ M0 · lkG′
(β ′) ≤ 2M0 · kG′(f(x), f(y)).

This completes the proof of Theorem 1.10 with M1 = 2M0. �

6. Appendix

In this Section, we give the following generalization of Bernoulli’s inequality (see
[7, p. 34]).

Bernoulli’s inequality. Suppose that α > 1. If x > −1, then

(1 + x)α ≥ 1 + αx.
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