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Abstract. It is proved that sense preserving continuous mappings f : D → R
n of a domain D

in R
n, n > 2, satisfying some general inequalities for p-modulus of families of curves are open and

discrete.

1. Preliminaries

The paper is devoted to the study of quasiregular mappings and their natural
generalizations investigated long time, see e.g. [AC, Cr1, Cr2, Gol1, Gol2, GRSY, HK,
IM, KO, MRV, MRSY, Re, Ri, UV] and further references therein.

Let us give some definitions. Everywhere further D is a domain in R
n, n ≥ 2,

m is the Lebesgue measure in R
n, m(A) the Lebesgue measure of a set A ⊂ R

n.
A mapping f : D → R

n is called discrete if f−1(y) consists of isolated points for
each y ∈ R

n, and f is said to be open if it maps open sets onto open sets. The
notation f : D → R

n assumes that f is continuous. A mapping f is said to be sense-

preserving if the topological index µ(y, f, G) > 0 for an arbitrary domain G ⊂ D such
that G ⊂ D and y ∈ f(G) \ f(∂G), see e.g. [Re, II.2]. Given a mapping f : D → R

n,
a set E ⊂ D and a point y ∈ R

n, we define the multiplicity function N(y, f, E) as
the number of pre-images of y in E, i.e.,

N(y, f, E) = card {x ∈ E : f(x) = y}

and
N(f, E) = sup

y∈Rn

N(y, f, E).

A set H ⊂ Rn is called totally disconnected if its every component degenerates to
a point; in this case we write dimH = 0 where dim denotes the topological dimension

of H (see [HW, Section 1, Ch. II]). A mapping f : D → Rn is said to be light if
dim {f −1(y)} = 0 for every y ∈ Rn. Set

B(x0, r) = {x ∈ R
n : |x− x0| < r}, B

n := B(0, 1), S
n−1 := S(0, 1),

Ωn is a volume of the unit ball Bn in R
n, and ωn−1 is an area of the unit sphere S

n−1

in R
n.
A curve γ in R

n is a continuous mapping γ : ∆ → R
n where ∆ is an interval in

R. Its locus γ(∆) is denoted by |γ|. Given a family Γ of curves γ in R
n, a Borel

function ρ : Rn → [0,∞] is called admissible for Γ, abbr. ρ ∈ admΓ, if
ˆ

γ

ρ(x)|dx| ≥ 1
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for each (locally rectifiable) γ ∈ Γ. Given p ≥ 1, the p-modulus of Γ is defined by

Mp(Γ) := inf
ρ∈admΓ

ˆ

Rn

ρp(x) dm(x)

interpreted as +∞ if admΓ = ∅. Note that Mp(∅) = 0;Mp(Γ1) ≤Mp(Γ2) whenever
Γ1 ⊂ Γ2, and Mp (

⋃∞
i=1 Γi) ≤

∑∞
i=1Mp(Γi), see [Va, Theorem 6.2].

Denote Γ(E, F,D) a family of all paths γ : [a, b] → Rn, which join sets E and F
in D, i.e., γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b).

The following fact has been established in [Sev]. Let f be a sense-preserving
mapping of a domain D ⊂ R

n, n > 2, into R
n obeying a condition

(1.1) M(Γ) 6

ˆ

f(D)

Q(y) · ρn∗ (y) dm(y)

for every ρ∗ ∈ adm f(Γ) with respect to the conformal modulus M(Γ) :=Mn(Γ) and
a given function Q : Rn → [0,∞]. Then f is open and discrete whenever Q satisfies
some conditions. Given y0 ∈ f(D) and numbers 0 < r1 < r2 <∞, we denote

(1.2) A(r1, r2, y0) = {y ∈ R
n : r1 < |y − y0| < r2}.

The goal of the present paper is to prove a similar result for n − 1 < p 6 n.
Namely, given y0 ∈ f(D) and 0 < r1 < r2 < ∞, let Γ(y0, r1, r2) be the family of all
paths γ in D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(r1, r2, y0)). Instead of (1.1),
assume that f satisfies the inequality

(1.3) Mp(Γ(y0, r1, r2)) 6

ˆ

f(D)

Q(y) · ηp(|y − y0|)dm(y)

for some p ∈ (n− 1, n], every y0 ∈ f(D), any 0 < r1 < r2 <∞, and any nonnegative
Lebesgue measurable function η : (r1, r2) → [0,∞] with

(1.4)

ˆ r2

r1

η(r) dr > 1.

Observe that the inequality (1.3) is much weaker than (1.1) even for p = n.
In fact, let ρ∗ ∈ adm f(Γ), and assume that the relation (1.1) holds. We show
that the inequality (1.3) is true. To this end, pick arbitrary y0 ∈ f(D) and set
ρ∗(y) := η(|y − y0|), where η satisfies (1.4). Note that ρ∗ ∈ Γ(S1, S2, A) because
´

γ
ρ∗(y) |dy| >

´ r2
r1
η(t) dt > 1 for every γ ∈ Γ(S1, S2, A) (cf. [Va, theorem 5.7]).

Thus, the inequality (1.1) becomes (1.3).
The present paper is devoted to the study of the following question:

What are the properties of the majorant Q which ensure for mappings f obeying
(1.3) for some n− 1 < p 6 n to be discrete and open?

Following [IR], we say that a function ϕ : Rn → R has a finite mean oscillation

at a point x0 ∈ R
n, write ϕ ∈ FMO(x0), if

lim
ε→0

1

Ωnεn

ˆ

B(x0,ε)

|ϕ(x)− ϕε| dm(x) <∞,

where Ωn is the volume of the unit ball in R
n and

ϕε =
1

Ωnεn

ˆ

B(x0,ε)

ϕ(x) dm(x).
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Given a Lebesgue measurable function Q : Rn → [0,∞], qx0(r) denotes the inte-
gral average of Q(x) over the sphere S(x0, r), i.e.

(1.5) qx0(r) :=
1

ωn−1rn−1

ˆ

|x−x0|=r

Q(x) dS,

where dS is an area element of S.
The main result of the present paper is the following

Theorem 1.1. Let p ∈ (n−1, n], andQ : Rn → (0,∞) be a Lebesgue measurable
function. Assume that f : D → R

n is a sense-preserving mapping satisfying (1.3) for
every y0 ∈ f(D), any 0 < r1 < r2 < ∞, and any nonnegative Lebesgue measurable
function η : (r1, r2) → [0,∞] obeying (1.4). Then f is discrete and open whenever
the function Q satisfies at least one of the following conditions:

1) Q ∈ FMO(y0) for every y0 ∈ f(D),

2) qy0(r) = O
([

log 1
r

]n−1
)

as r → 0 for every y0 ∈ f(D),

3) for every y0 ∈ f(D) there exists δ(y0) > 0 such that for every sufficiently
small ε > 0

(1.6)

ˆ δ(y0)

ε

dt

t
n−1

p−1 q
1

p−1

y0 (t)
<∞,

ˆ δ(y0)

0

dt

t
n−1

p−1 q
1

p−1

y0 (t)
= ∞.

Remark 1.1. Theorem 1.1 can be extended to the mappings f : D → Rn. In
this case, for y = ∞, we must require that the conditions 1)–3) hold for Q̃ = Q ◦ ϕ
at 0, where ϕ(y) = y

|y|2
, ϕ(0) := ∞.

2. Main lemma

A connected compactum C ⊂ Rn is called a continuum. We say that a family of
paths Γ1 is minorized by a family Γ2, write Γ1 > Γ2, if for every γ ∈ Γ1 there exists a
subpath which belongs to Γ2. In this case, Mp(Γ1) 6Mp(Γ2) (see [Va, Theorem 6.4]).

Let (X, µ) be a metric space with measure µ. For each real number n ≥ 1, we
define the Loewner function φn : (0,∞) → [0,∞) on X as

φn(t) = inf{Mn(Γ(E, F,X)) : ∆(E, F ) 6 t},

where the infimum is taken over all disjoint nondegenerate continua E and F in X
and

∆(E, F ) :=
dist (E, F )

min{diamE, diamF}
.

A pathwise connected metric measure space (X, µ) is said to be a Loewner space of
exponent n, or an n-Loewner space, if the Loewner function φn(t) is positive for all
t > 0 (see [MRSY, Section 2.5] or [He, Ch. 8]). Observe that R

n and B
n ⊂ R

n are
Loewner spaces (see [He, Theorem 8.2 and Example 8.24(a)]). As known, a condition
µ(B(x0, r)) > C · rn holds in Loewner spaces X for a constant C > 0, every point
x0 ∈ X and all r < diamX. A space X is called geodesic if every pair of points
in X can be joined by a curve whose length is equal to the distance between the
points. In particular, Bn is a geodesic space. A following definition can be found
in [He, Section 1.4, Ch. I] or [AS, Section 1]. A measure µ in a metric space is
called doubling if all balls have finite and positive measure and there is a constant
C > 1 such that µ(B(x0, 2r)) ≤ C · µ(B(x0, r)) for every x0 ∈ X and all r > 0.
We also call a metric measure space (X, µ) doubling if µ is a doubling measure.
Following [He, Section 7.22], given a real-valued function u in a metric space X, a
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Borel function ρ : X → [0,∞] is said to be an upper gradient of a function u : X → R

if |u(x) − u(y)| 6
´

γ
ρ |dx| for each rectifiable curve γ joining x and y in X. Let

(X, µ) be a metric measure space and let 1 6 p < ∞. We say that X admits a

(1; p)-Poincare inequality if there is a constant C > 1 such that

1

µ(B)

ˆ

B

|u− uB| dµ(x) 6 C · (diamB)

(
1

µ(B)

ˆ

B

ρp dµ(x)

)1/p

for all balls B in X, for all bounded continuous functions u on B, and for all upper
gradients ρ of u. Metric measure spaces where the inequalities

1

C
Rn 6 µ(B(x0, R)) 6 CRn

hold for a constant C > 1, every x0 ∈ X and all R < diamX, are called Ahlfors

n-regular.
We need the following statement.

Proposition 2.1. The unit ball Bn is an Ahlfors n-regular metric space in which
(1; p)-Poincare inequality holds. Moreover, the estimate

(2.1) Mp(Γ(E, F,B
n)) > 0

holds for any continua E, F ⊂ B
n and every p ∈ (n− 1, n].

Proof. By comments given above, the unit ball Bn is Ahlfors n-regular, more-
over, the space B

n is geodesic and and also a Loewner space. By [He, Theorems 9.8
and 9.5], the (1; p)-Poincare inequality holds in B

n. Thus, (2.1) holds by [AS, Corol-
lary 4.8]. �

Let A(ε, ε0, y0) be defined by (1.2) with r1 = ε and r2 = ε0. The following lemma
provides the main tool for establishing openness and discreteness in the most general
situation.

Lemma 2.1. Let p ∈ (n−1, n], and Q : Rn → (0,∞) be a Lebesgue measurable
function. Assume that f : D → R

n is a sense-preserving mapping satisfying (1.3) for
every y0 ∈ f(D), any 0 < r1 < r2 < ∞, and any nonnegative Lebesgue measurable
function η : (r1, r2) → [0,∞] obeying (1.4). Suppose that, in addition, for every
y0 ∈ f(D) and some ε0 > 0,

(2.2)

ˆ

A(ε,ε0,y0)

Q(y) · ψp(|y − y0|) dm(y) = o (Ip(ε, ε0)) as ε→ 0,

where ψ(t) : (0,∞) → [0,∞] is a nonnegative Lebesgue measurable function such
that

(2.3) 0 < I(ε, ε0) :=

ˆ ε0

ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0).

Then f is open and discrete.

Remark 2.1. In Lemma 2.1, we may assume only that
´ ε0
ε
ψ(t) dt > 0 for some

ε and ε∗ ∈ (0, ε0) instead of the condition I(ε, ε0) > 0 for all ε ∈ (0, ε0). Note
also that the integral (2.2) is increasing under decreasing ε. Thus, since Q(x) > 0,
I(ε, ε0) → ∞ as ε→ 0 follows from (2.2) and (2.3).

Proof of Lemma 2.1. Without any loss of generality, we may asssume that
D = B

n. Since every light sense-preserving mapping f : D → R
n is open and discrete

in D, see e.g., [TY, Corollary, p. 333], it is sufficient to prove that f is light. Let us
assume the contrary. Then there exists y0 ∈ R

n such that the set {f −1(y0)} is not
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totally disconnected, i.e., there exists a nondegenerate continuum C ⊆ {f−1(y0)}.
Since f is sense-preserving, f 6≡ y0. Then by the continuity of f there exist x0 ∈ D
and δ0 > 0 such that B(x0, δ0) ⊂ D and

(2.4) f(x) 6= y0 ∀ x ∈ B(x0, δ0).

By [Na, Lemma 1.15] for p = n, and Proposition 2.1 for p ∈ (n− 1, n),

(2.5) Mp

(
Γ
(
C,B(x0, δ0),B

n
))

> 0.

By (2.4), since f(C) = {y0}, every path of ∆ = f(Γ(C,B(x0, δ0),B
n)) does not

degenerate to a point. On the other hand, one of the endpoints of every path of ∆
is y0. Let Γi be a family of all paths αi(t) : [0, 1] → R

n such that αi(0) = y0 and
αi(1) ∈ S(y0, ri), ri ∈ (0, ε0), i = 1, 2, . . ., ri → 0 as i→ ∞. Note that

(2.6) Γ
(
C,B(x0, δ0),B

n
)
=

∞⋃

i=1

Γ∗
i ,

where Γ∗
i is the family of all paths γ in Γ(C,B(x0, δ0),B

n) such that f(γ) has a
subpath in Γi. Observe that

(2.7) Γ∗
i > Γ(ε, ri, y0)

for every ε ∈ (0, ri) where Γ(ε, ri, y0) is the family of all paths γ in D such that
f(γ) ∈ Γ(S(y0, ε), S(y0, ri), A(ε, ri, y0)). Set

ηi,ε(t) =

{
ψ(t)/I(ε, ri), t ∈ (ε, ri),

0, t 6∈ (ε, ri),

where I(ε, ri) =
´ ri
ε
ψ(t) dt. Observe that

´ ri
ε
ηi,ε(t) dt = 1. Now we can apply (1.3).

By (1.3) and (2.7),

(2.8) Mp(Γ
∗
i ) 6Mp(Γ(ri, ε, y0)) 6

ˆ

A(ε,ε0,y0)

Q(y) · ηpi,ε(|y − y0|) dm(y) 6 Fi(ε)

where Fi(ε) =
1

I(ε,ri)
p

´

A(ε,ε0,y0)
Q(y)ψp(|y − y0|) dm(y) and I(ε, ri) =

´ ri
ε
ψ(t) dt. By

(2.2),
ˆ

A(ε,ε0,y0)

Q(y)ψp(|y − y0|) dm(y) = G(ε) ·

(
ˆ ε0

ε

ψ(t) dt

)p

,

where G(ε) → 0 as ε → 0 by the assumptions of the lemma. Note that Fi(ε) =

G(ε)·

(
1 +

´ ε0
ri
ψ(t) dt

´ ri
ε
ψ(t) dt

)p

, where
´ ε0
ri
ψ(t) dt <∞ and

´ ri
ε
ψ(t) dt→ ∞ as ε→ 0, because

the left-hand side in (2.2) is increasing under decreasing ε. Thus, Fi(ε) → 0 as ε → 0,
and by (2.8) Mp(Γ

∗
i ) = 0 for all i. Finally, by (2.6) and the inequality Mp (

⋃∞
i=1 Γ

∗
i ) 6∑∞

i=1Mp(Γ
∗
i ) [Va, Theorem 6.2], we obtain that Mp

(
Γ
(
C,B(x0, δ0),B

n
))

= 0,

which contradicts to (2.5). Thus, f is light and, therefore, f is open and discrete (see
[TY, Corollary, p. 333]). �
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3. Proof of the main result

In this section we show that the assertion of Theorem 1.1 follows from Lemma 2.1.
For this goal, given Q ∈ FMO(y0), we may apply the function ψ(t) =

(
t log 1

t

)−n/p
.

Indeed, by [IR, Corollary 2.3], see also [MRSY, Corollary 6.3, Ch. 6], we obtain

(3.1)

ˆ

ε<|y−y0|<ε0

Q(y) · ψp(|y − y0|) dm(y) = O

(
log log

1

ε

)
as ε → 0

and

(3.2) I(ε, ε0) =

ˆ ε0

ε

ψ(t) dt > log
log 1

ε

log 1
ε0

> log log
1

ε

for sufficiently small ε0 > 0, and hence

1

Ip(ε, ε0)

ˆ

ε<|y−y0|<ε0

Q(y) · ψp(|y − y0|) dm(y) 6 C

(
log log

1

ε

)1−p

→ 0 as ε→ 0.

The latter yields the desired conclusion for the case 1) because (2.2)–(2.3) hold.
Note that the case 2) is a consequence of case 3) and therefore, we may restrict

ourselves by checking the condition 3). For this case we pick the function

(3.3) ψ(t) =

{
1/[t

n−1

p−1 q
1

p−1

y0 (t)], t ∈ (ε, ε0),

0, t /∈ (ε, ε0),

in Lemma 2.1 and thus,

(3.4) I(ε, ε0) =

ˆ ε0

ε

dr

r
n−1

p−1 q
1

p−1

y0 (r)
.

Applying the Fubini theorem ([Sa, Theorem 8.1, Ch. III]), we obtain
ˆ

ε<|y−y0|<ε0

Q(y) · ψp(|y − y0|) dm(y) = ωn−1 · I(ε, ε0) = o(Ip(ε, ε0)) as ε → 0,

where ωn−1 denotes the area of the unit sphere S
n−1 in R

n. �

4. Corollaries

The following statements can be derived from Lemma 2.1.

Corollary 4.1. Let p ∈ (n − 1, n], and Q : Rn → (0,∞) be a Lebesgue mea-
surable function. Assume that f : D → R

n is a sense-preserving mapping satisfying
(1.3) for every y0 ∈ f(D), any 0 < r1 < r2 < ∞, and any nonnegative Lebesgue
measurable function η : (r1, r2) → [0,∞] obeying (1.4). Then f is discrete and open
whenever the function Q satisfies the both conditions:

1)

ˆ δ0

ε

dt

tq
1

n−1

y0 (t)
< ∞ for every y0 ∈ f(D), some δ0 = δ0(y0) and sufficiently

small ε > 0,

2)

ˆ δ0

0

dt

tq
1

n−1

y0 (t)
= ∞ for every y0 ∈ f(D) and some δ0 = δ0(y0).
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Proof. Arguing similarly to the proof of the case 3) in Theorem 1.1 and choosing

ψ(t) =






(
1/[tq

1

n−1

y0 (t)]

)n/p

, t ∈ (ε, ε0),

0, t /∈ (ε, ε0),

in Lemma 2.1, we obtain the desired conclusion. �

Corollary 4.2. Let p ∈ (n − 1, n), and Q : Rn → (0,∞) be a Lebesgue mea-
surable function. Assume that f : D → R

n is a sense-preserving mapping satisfying
(1.3) for every y0 ∈ f(D), any 0 < r1 < r2 < ∞, and any nonnegative Lebesgue
measurable function η : (r1, r2) → [0,∞] obeying (1.4). Then f is discrete and open
whenever Q ∈ Ls

loc
for some s > n/(n− p).

Proof. Given ε0 ∈ (0,∞) and x0 ∈ D, set G := B(x0, ε0). Note that the function
ψ(t) := 1/t satisfies (2.3). Thus, in order to apply Lemma 2.1 it remains to verify
(2.2). Indeed, by the Hölder inequality we obtain

ˆ

ε<|x−x0|<ε0

Q(x)

|x− x0|p
dm(x)

6

(
ˆ

ε<|x−x0|<ε0

1

|x− x0|pq
dm(x)

) 1

q
(
ˆ

G

Qq′(x) dm(x)

) 1

q′
(4.1)

where q = n/p, 1/q + 1/q ′ = 1, i.e., q ′ = n/(n − p). Observe that the first integral
in the right-hand side of (4.1) can be implicitly calculated. Namely, by the Fubini
theorem

ˆ

ε<|x−x0|<ε0

1

|x− x0|pq
dm(x) = ωn−1

ˆ ε0

ε

dt

t
= ωn−1 log

ε0
ε
.

Following notation of Lemma 2.1, we have

1

Ip(ε, ε0)

ˆ

ε<|x−x0|<ε0

Q(x)

|x− x0|p
dm(x) 6 ω

p

n

n−1‖Q‖L
n

n−p (G)

(
log

ε0
ε

)−p+ p

n

→ 0 as ε→ 0

that implies (2.2). Thus, the desired conclusion follows from Lemma 2.1. �

5. Examples

First of all, let us give some examples of mappings obeying (1.1) and (1.3). It is
known that, for an arbitrary quasiregular mapping f : D → R

n, one has

(5.1) M(Γ) ≤ N(f, A)KO(f)M(f(Γ))

for a constantKO(f) > 1, for any Borel set A in the domainD such thatN(f, A) <∞
and any family Γ of curves γ in A (see [MRV, Theorem 3.2] or [Ri, Theorem 6.7,
Chap. II]). Thus, for any such quasiregular mapping, the inequalities (1.1) and (1.3)
hold.

Let us give other examples. Set at points x ∈ D of differentiability of f

‖f ′(x)‖ = max
h∈Rn\{0}

|f ′(x)h|

|h|
, J(x, f) = det f ′(x),
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and define for any x ∈ D and p > 1

KO,p(x, f) =





‖f ′(x)‖p

|J(x,f)|
, J(x, f) 6= 0,

1, f ′(x) = 0,

∞, otherwise.

We say that a property P holds for p-almost every (p-a.e.) curves γ in a family Γ if
the subfamily of all curves in Γ, for which P fails, has p-modulus zero. Recall that a
mapping f : D → R

n is said to have N-property (by Luzin) if m (f (S)) = 0 whenever
m(S) = 0 for S ⊂ R

n. Similarly, f has the N−1-property if m (f−1(S)) = 0 whenever
m(S) = 0.

If γ : ∆ → R
n is a locally rectifiable curve, then there is the unique nondecreasing

length function lγ of ∆ onto a length interval ∆γ ⊂ R with a prescribed normalization
lγ(t0) = 0 ∈ ∆γ , t0 ∈ ∆, such that lγ(t) is equal to the length of the subcurve γ|[t0,t]
of γ if t > t0, t ∈ ∆, and lγ(t) is equal to minus length of γ|[t,t0] if t < t0, t ∈ ∆. Let
g : |γ| → R

n be a continuous mapping, and suppose that the curve γ̃ = g ◦ γ is also
locally rectifiable. Then there is a unique non–decreasing function Lγ,g : ∆γ → ∆γ̃

such that Lγ,g (lγ(t)) = lγ̃(t) for all t ∈ ∆. We say that a mapping f : D → R
n

is absolutely continuous on paths with respect to p-modulus, write f ∈ ACPp, if for
p-a.e. curve γ : ∆ → D the function Lγ,f is locally absolutely continuous on ∆.

The following result is a generalization of the above classical inequality (5.1)
for quasiregular mappings and provides an example of the inequality (1.3) (see [Ri,
Theorem 2.4, Ch. II]).

Theorem 5.1. Let a mapping f : D → R
n be differentiable a.e. in D, have N -

and N−1-properties and possess ACPp-property for some p > 1. Let A be a Borel
set in D, and let Γ be a family of paths in A. Suppose that KO,p(x, f) 6 α(f(x))
a.e. for a Borel function α : Rn → [0,∞]. Then

Mp(Γ) ≤

ˆ

Rn

ρ′p(y)N(y, f, A)α(y) dm(y) ∀ ρ′ ∈ adm f(Γ).

Recall that N(y, f, A) is Lebesgue measurable for any Borel measurable set A
(see [RR, Theorem of Section IV.1.2]).

Proof. Let ρ ′ ∈ adm f(Γ). Set ρ(x) = ρ′(f(x))‖f ′(x)‖ for x ∈ A and ρ(x) = 0
otherwise. Let Γ0 be a family of all locally rectifiable curves of Γ where f is locally
absolutely continuous. Since f ∈ ACPp, Mp(Γ) =Mp(Γ0). Now, by [Ri, Lemma 2.2,
Ch. II],

´

γ
ρ(x)|dx| =

´

γ
ρ ′(f(x))‖f ′(x)‖|dx| ≥

´

f◦γ
ρ′(y)|dy| ≥ 1, and, consequently,

ρ ∈ admΓ0. By the change of variables formula

Mp(Γ) =Mp(Γ0) ≤

ˆ

Rn

ρp(x) dm(x) =

ˆ

A

ρ′ p(f(x))‖f ′(x)‖p|J(x, f)|

|J(x, f)|
dm(x)

≤

ˆ

A

ρ′p(f(x))α(f(x))|J(x, f)| dm(x) =

ˆ

Rn

ρ′p(y)N(y, f, A)α(y) dm(y),

see [MRSY, Proposition 8.3]. Here we take into account, that J(x, f) 6= 0 a.e., see
[MRSY, Proposition 8.3]. The theorem is proved. �

By Theorem 5.1 we obtain the following

Corollary 5.1. Let f : D → R
n be differentiable a.e. in D, have N - and N−1-

properties, and f ∈ W 1,p
loc

for some p > 1. Let A in D be a Borel set and Γ be a
family of paths in A. Suppose that KO,p(x, f) 6 α(f(x)) a.e. for a Borel function
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α : Rn → [0,∞]. Then

Mp(Γ) ≤

ˆ

Rn

ρ′p(y)N(y, f, A)α(y) dm(y) for all ρ′ ∈ adm f(Γ).

Indeed, as known, W 1,p
loc

= ACLp (see [Maz, Theorems 1 and 2, section 1.1.3]).
On the other hand, ACLp ⊂ ACPp by the Fuglede lemma (see [Va, Theorem 28.2]).
Thus, by Theorem 5.1 we obtain the inequality of type (1.3). �

The next statement follows from Theorems 1.1 and 5.1, Corollaries 4.1 and 4.2.

Corollary 5.2. Let p ∈ (n− 1, n], f : D → R
n be differentiable a.e. in D, have

N - and N−1-properties, ACPp-property for some p > 1 and KO,p(x, f) 6 α(f(x))
a.e. for a Borel function α : Rn → [0,∞]. Let Γ be a family of paths in a Borel
set A ⊆ D and let Q(y) = N(y, f,D) · max{α(y), 1}. Then f is open and discrete
whenever Q satisfies at least one of the following conditions:

1) Q ∈ FMO(y0) for every y0 ∈ f(D);

2) for every y0 ∈ f(D) qy0(r) = O
([

log 1
r

]n−1
)

as r → 0, where qy0(r) is defined

in (1.5);

3) for all y0 ∈ f(D) there exists δ > 0: for all ε ∈ (0, δ):

ˆ δ

ε

dt

t
n−1

p−1 q
1

p−1

y0 (t)
< ∞

and

ˆ δ

0

dt

t
n−1

p−1 q
1

p−1

y0 (t)
= ∞;

4) for all y0 ∈ f(D) there exists δ > 0: for all ε ∈ (0, δ):

ˆ δ

ε

dt

tq
1

n−1

y0 (t)
< ∞ and

ˆ δ

0

dt

tq
1

n−1

y0 (t)
= ∞;

5) p ∈ (n− 1, n) and Q ∈ Ls
loc
(Rn) for some s > n

n−p
.

In particular, the assertion of Corollary 5.2 holds if f ∈ W 1,p
loc

instead of f ∈ ACPp.
Note that the preserving orientation is essential condition for mappings f in all

statements given above. An example of a mapping f with finite length distortion
that does not preserve orientation and such that M(f(Γ)) = M(Γ), i.e., Q ≡ 1, but
is neither discrete nor open, was given in [MRSY, Section 8.10].

We also give another simple example which shows that the preserving orientation
can not be dropped. Let x = (x1, . . . , xn). We define f as the identical mapping in
the closed domain {xn > 0} and set f(x) = (x1, . . . ,−xn) for xn < 0. Note that the
mapping f preserves the lengths of paths. Therefore, f satisfies the inequality (1.3)
with Q ≡ 1. This mapping is discrete but not open. In fact, under the mapping f
the ball Bn is mapped onto the set {y = (y1, . . . , yn) ∈ R

n : |y| < 1, yn > 0} which is
not open in R

n.

Remark 5.1. Results obtained in the paper can be applied to various classes of
plane and space mappings (see e.g. [GRSY] and [MRSY]).

Note that we discuss the case while p ranges between n− 1 and n. The question
on discreteness and openness of the mappings obeying the same modulus conditions
for 1 ≤ p ≤ n− 1 remains open.
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