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ON OPEN AND DISCRETE MAPPINGS
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Abstract. It is proved that sense preserving continuous mappings f: D — R"™ of a domain D
in R™, n > 2, satisfying some general inequalities for p-modulus of families of curves are open and
discrete.

1. Preliminaries

The paper is devoted to the study of quasiregular mappings and their natural
generalizations investigated long time, see e.g. [AC, Cry, Cry, Goly, Goly, GRSY, HK,
IM, KO, MRV, MRSY, Re, Ri, UV] and further references therein.

Let us give some definitions. Everywhere further D is a domain in R", n > 2,
m is the Lebesgue measure in R"”, m(A) the Lebesgue measure of a set A C R".
A mapping f: D — R" is called discrete if f~1(y) consists of isolated points for
each y € R", and f is said to be open if it maps open sets onto open sets. The
notation f: D — R™ assumes that f is continuous. A mapping f is said to be sense-
preserving if the topological index u(y, f, G) > 0 for an arbitrary domain G C D such
that G € D and y € f(G)\ f(0G), see e.g. [Re, 11.2]. Given a mapping f: D — R",
aset £ C D and a point y € R", we define the multiplicity function N(y, f, E) as
the number of pre-images of y in F| i.e.,

Ny, f,E) =card{zx € E: f(x) =y}

and
N(f,E) = sup N(y, f,E).
yeR™
A set H C R" is called totally disconnected if its every component degenerates to
a point; in this case we write dim H = 0 where dim denotes the topological dimension
of H (see [HW, Section 1, Ch. II]). A mapping f: D — R is said to be light if
dim {f ~'(y)} = 0 for every y € R™. Set

B(zg,r) ={z € R": |zt — x| <7}, B":=B(0,1), S"':=5(0,1),

Q,, is a volume of the unit ball B” in R", and w,,_; is an area of the unit sphere S**
in R™.

A curve v in R" is a continuous mapping 7v: A — R” where A is an interval in
R. Its locus vy(A) is denoted by |y|. Given a family I' of curves v in R"™, a Borel
function p: R™ — [0, 00] is called admissible for I', abbr. p € adm T, if
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for each (locally rectifiable) v € T'. Given p > 1, the p-modulus of T" is defined by

M) = int [ ) dma)
interpreted as +o0 if adm ' = @. Note that M,(@) = 0; M,(I';) < M,(I'y) whenever
I'y €Ty, and M, (U2, T) < 3002, M,y,(T;), see [Va, Theorem 6.2].

Denote I'(E, F, D) a family of all paths v: [a,b] — R™, which join sets E and F
in D, ie., v(a) € E,v(b) € F and v(t) € D for t € (a,b).

The following fact has been established in [Sev|. Let f be a sense-preserving
mapping of a domain D C R", n > 2, into R" obeying a condition

(1.1) M(T) < Q(y) - pi(y) dm(y)

f(D)
for every p. € adm f(I') with respect to the conformal modulus M (I") := M, (I") and
a given function : R™ — [0, 00]. Then f is open and discrete whenever @) satisfies
some conditions. Given yy € f(D) and numbers 0 < r; < 19 < 00, we denote

(1.2) A(r1,7r9,90) = {y € R": 11 < |y — yo| < 12}

The goal of the present paper is to prove a similar result for n — 1 < p < n.
Namely, given yo € f(D) and 0 < 1 < 19 < 00, let I'(yg, 71, 72) be the family of all
paths v in D such that f(y) € I'(S(yo, 1), S(vo,72), A(r1,72,y0)). Instead of (1.1),
assume that f satisfies the inequality

(1.3) M,(T(yo, r1,72)) < ( )Q(y) “1”(ly — yol)dm(y)

f(D
for some p € (n—1,n], every yo € f(D), any 0 < r; < ry < oo, and any nonnegative
Lebesgue measurable function 7 : (r1,72) — [0, co] with

T2
(1.4) / n(r)dr > 1.
T1
Observe that the inequality (1.3) is much weaker than (1.1) even for p = n.
In fact, let p. € adm f(I'), and assume that the relation (1.1) holds. We show
that the inequality (1.3) is true. To this end, pick arbitrary y, € f(D) and set
p«(y) == n(ly — vo|), where n satisfies (1.4). Note that p, € I'(Sy,S2, A) because
Lo p-@)ldyl = [77 n(t)dt = 1 for every v € (S, Ss, A) (cf. [Va, theorem 5.7]).
Thus, the inequality (1.1) becomes (1.3).
The present paper is devoted to the study of the following question:

What are the properties of the majorant () which ensure for mappings f obeying
(1.3) for some n — 1 < p < n to be discrete and open?

Following [IR|, we say that a function ¢: R™ — R has a finite mean oscillation
at a point zy € R", write ¢ € FMO(xy), if

lim

— d < 00,
o [, lele) — e dmie) <o

where 2, is the volume of the unit ball in R™ and

=,
Ve = p(x)dm(x).
R (x) dm(z)
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Given a Lebesgue measurable function @: R™ — [0, 00|, g.,(r) denotes the inte-
gral average of Q(x) over the sphere S(zo,7), i.c.

1
5 w0 () = ———— x)dS,
(1.5 o (7) [ aw

wn_lr”

where dS' is an area element of S.
The main result of the present paper is the following

Theorem 1.1. Letp € (n—1,n], and@Q: R™ — (0, 00) be a Lebesgue measurable
function. Assume that f: D — R" is a sense-preserving mapping satisfying (1.3) for
every yo € f(D), any 0 < r; < ry < 0o, and any nonnegative Lebesgue measurable
function n: (r1,79) — [0,00] obeying (1.4). Then f is discrete and open whenever
the function () satisfies at least one of the following conditions:

1) Q € FMO(y) for every yo € f(D),
2) qy(r) = O <[log ﬂn_l) asr — 0 for every yo € f(D),

3) for every yo € f(D) there exists §(yo) > 0 such that for every sufficiently
small € > 0

3(yo) d 3(yo)
(1.6) / — < 00, / = 00.
€ tr 1 gl 1 t)

P 1q Yo to- lq
Remark 1.1. Theorem 1.1 can be extended to the mappings f: D — R". In
this case, for y = 0o, we must require that the conditions 1)-3) hold for @ = Q o ¢
y

at 0, where ¢(y) = el ©(0) := oo.

2. Main lemma

A connected compactum C' C R" is called a continuum. We say that a family of
paths I'y is minorized by a family I's, write I'y > 'y, if for every v € I'; there exists a
subpath which belongs to I's. In this case, M,(I';) < M,(I'2) (see [Va, Theorem 6.4]).

Let (X, ) be a metric space with measure p. For each real number n > 1, we
define the Loewner function ¢, : (0,00) — [0,00) on X as

én(t) = inf{M,(D(E, F, X)): A(E, F) < t,

where the infimum is taken over all disjoint nondegenerate continua E and F in X
and
dist (E, F)

min{diam F, diam F'}

A pathwise connected metric measure space (X, p) is said to be a Loewner space of
exponent n, or an n-Loewner space, if the Loewner function ¢, (t) is positive for all
t > 0 (see [MRSY, Section 2.5| or [He, Ch. 8]). Observe that R™ and B® C R" are
Loewner spaces (see [He, Theorem 8.2 and Example 8.24(a)|). As known, a condition
pu(B(zg,7)) = C - r™ holds in Loewner spaces X for a constant C' > 0, every point
x9g € X and all r < diam X. A space X is called geodesic if every pair of points
in X can be joined by a curve whose length is equal to the distance between the
points. In particular, B™ is a geodesic space. A following definition can be found
in |[He, Section 1.4, Ch. I] or [AS, Section 1]. A measure p in a metric space is
called doubling if all balls have finite and positive measure and there is a constant
C' > 1 such that p(B(zo,2r)) < C - u(B(zg,r)) for every zp € X and all » > 0.
We also call a metric measure space (X, u) doubling if u is a doubling measure.
Following [He, Section 7.22|, given a real-valued function u in a metric space X, a

A(E,F) :=
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Borel function p: X — [0, 0o] is said to be an upper gradient of a function u: X — R
if |u(z) — u(y)| < fyp |dx| for each rectifiable curve 7 joining z and y in X. Let
(X, 1) be a metric measure space and let 1 < p < oco. We say that X admits a
(1; p)-Poincare inequality if there is a constant C' > 1 such that

ﬁ /B fu=usldule) < € (diam B) (ﬁ /Bﬁpdu(:c)) "’

for all balls B in X, for all bounded continuous functions u on B, and for all upper
gradients p of u. Metric measure spaces where the inequalities

1
SR < pu(Blao, R)) < CR"

hold for a constant C' > 1, every zp € X and all R < diam X, are called Ahlfors
n-reqular.
We need the following statement.

Proposition 2.1. The unit ball B" is an Ahlfors n-regular metric space in which
(1; p)-Poincare inequality holds. Moreover, the estimate

(2.1) M,(I'(E,F,B")) >0
holds for any continua E, F C B" and every p € (n — 1,n].

Proof. By comments given above, the unit ball B” is Ahlfors n-regular, more-
over, the space B" is geodesic and and also a Loewner space. By [He, Theorems 9.8
and 9.5], the (1; p)-Poincare inequality holds in B". Thus, (2.1) holds by [AS, Corol-
lary 4.8]. O

Let A(e, €0, yo) be defined by (1.2) with r; = ¢ and r9 = &¢. The following lemma
provides the main tool for establishing openness and discreteness in the most general
situation.

Lemma 2.1. Let p € (n—1,n|, and @Q: R™ — (0, 00) be a Lebesgue measurable
function. Assume that f: D — R" is a sense-preserving mapping satisfying (1.3) for
every yo € f(D), any 0 < r; < ry < 0o, and any nonnegative Lebesgue measurable
function n: (r1,r2) — [0,00] obeying (1.4). Suppose that, in addition, for every
Yo € f(D) and some gy > 0,

(2.2) /A QW) (i) = o (Pleg) ase 0,

where ¥(t): (0,00) — [0,00] is a nonnegative Lebesgue measurable function such
that

(2.3) 0 < I(g &) := /60 Y(t)dt <oo Ve € (0,¢e).

Then f is open and discrete.

Remark 2.1. In Lemma 2.1, we may assume only that f;o Y(t) dt > 0 for some
e and e, € (0,e0) instead of the condition I(g,9) > 0 for all ¢ € (0,e09). Note
also that the integral (2.2) is increasing under decreasing . Thus, since Q(z) > 0,
I(g,e0) — oo as € — 0 follows from (2.2) and (2.3).

Proof of Lemma 2.1.  Without any loss of generality, we may asssume that
D = B". Since every light sense-preserving mapping f: D — R" is open and discrete
in D, see e.g., [TY, Corollary, p. 333], it is sufficient to prove that f is light. Let us
assume the contrary. Then there exists yo € R™ such that the set {f ~!(yo)} is not
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totally disconnected, i.e., there exists a nondegenerate continuum C' C {f~!(yo)}.
Since f is sense-preserving, f Z yo. Then by the continuity of f there exist zy € D
and 0y > 0 such that B(zg,dy) C D and

(2.4) f(z) #yo Va € B(xo, ).

By [Na, Lemma 1.15] for p = n, and Proposition 2.1 for p € (n — 1,n),

(2.5) M, (r (0, B(wo,00), B")) > 0.

By (2.4), since f(C) = {yo}, every path of A = f(I'(C, B(xo, ), B")) does not
degenerate to a point. On the other hand, one of the endpoints of every path of A

is yo. Let I'; be a family of all paths al(t): [0,1] — R™ such that «;(0) = yo and
a;(1) € S(yo,1i), i € (0,80), 7= 1,2,..., 7, — 0 as i — oo. Note that

(2.6) (C B(wo,00), B ) UF

where I'f is the family of all paths v in I'(C, B(xg,dp), B") such that f(y) has a
subpath in I';. Observe that
(27) P;k > F(Ea Ti>y0)

for every ¢ € (0,7;) where I'(e,7;,y0) is the family of all paths v in D such that
f(’}/) € F(S(yOa E)a S(?JOJ’:’)a A(Ea Ti??/O))' Set

¢(t)/[(5> Ti)a te (Ea Ti)a
0, t ¢ (67 Ti)v

t)dt. Observe that [7 n;.(t) dt = 1. Now we can apply (1.3).

Nie (t) =

where I(e,r;) =

S
By (1.3) and (2.7),

(2.8)  My(T7) < My(I'(ri, €, 90)) < /A( )Q(y) ey = wol) dm(y) < Jie)

where §;(g) = W fA(e’myo) Q) Y (ly — yol) dm(y) and I(e,r;) = [I*(t) dt. By

(22),
/ QW= wl)dmiy) (/ e dt),

where G(¢) — 0 as €= 0 by the assumptions of the lemma. Note that §;(e) =

20 (1) dt
G(e)- (1+ oo @

the left-hand side in (2.2) is increasing under decreasing €. Thus, F;(¢) - 0ase — 0,
and by (2.8) M,(I'f) = 0 for all 7. Finally, by (2.6) and the inequality M, (U;=, I'}) <

o2  M,(T%) [Va, Theorem 6.2], we obtain that M, (F <C,B(x0,50),B")> =0,

which contradicts to (2.5). Thus, f is light and, therefore, f is open and discrete (see
[TY, Corollary, p. 333]). O

, where f t) dt < oo and f” t)dt — oo ase — 0, because
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3. Proof of the main result

In this section we show that the assertion of Theorem 1.1 follows from Lemma 2.1.
For this goal, given Q € FMO(yo), we may apply the function 1(t) = (¢ log %)_n/p.
Indeed, by [IR, Corollary 2.3|, see also [MRSY, Corollary 6.3, Ch. 6], we obtain

sy [ @(y)-wuy—yondm(y)=0(loglog1) as = = 0
e<|y—yol<eo €

and

€o log 1 1
(3.2) I(e,e0) = / W(t) dt > logl + > log logg

€0

0g
for sufficiently small ¢y > 0, and hence

1 / 1\ 7
Qy) - Y"(ly — wol) dm(y <C’(loglog—) —0 ase—0.
17z 20) Jocty s (y) - P(| ol) dm(y) .

The latter yields the desired conclusion for the case 1) because (2.2)—(2.3) hold.
Note that the case 2) is a consequence of case 3) and therefore, we may restrict
ourselves by checking the condition 3). For this case we pick the function

3.3 o [T @), te (ee0),
( ) w() {O> t¢(5>50),

in Lemma 2.1 and thus,

£o dr
(3.4) I(e,20) =/ P
c Tﬁ(]zﬁ)071 (T)

Applying the Fubini theorem (|Sa, Theorem 8.1, Ch. III]), we obtain
[ Wy - s dm(y) = Tez) = o Pez)) as =0,
e<|y—yol<eo

where w,,_; denotes the area of the unit sphere S*~! in R". O

4. Corollaries
The following statements can be derived from Lemma 2.1.

Corollary 4.1. Let p € (n — 1,n], and @Q: R™ — (0,00) be a Lebesgue mea-
surable function. Assume that f: D — R" is a sense-preserving mapping satisfying
(1.3) for every yo € f(D), any 0 < r; < ry < oo, and any nonnegative Lebesgue
measurable function n: (ry,re) — [0,00] obeying (1.4). Then f is discrete and open
whenever the function () satisfies the both conditions:

o dt
1) / —— < oo for every yo € f(D), some &y = do(yo) and sufficiently
= tay, (1)
small € > 0,
o dt
2) / - = oo for every yo € f(D) and some &y = do(Yo)-
0 tqy (1)
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Proof. Arguing similarly to the proof of the case 3) in Theorem 1.1 and choosing

n/p
n—1
oy =1 (1/16701) T te s
07 t ¢ (57 50)7
in Lemma 2.1, we obtain the desired conclusion. O]

Corollary 4.2. Let p € (n — 1,n), and Q: R" — (0,00) be a Lebesgue mea-
surable function. Assume that f: D — R" is a sense-preserving mapping satisfying
(1.3) for every yo € f(D), any 0 < r; < ry < 00, and any nonnegative Lebesgue
measurable function n: (rq, 7"2) [0, 00] obeying (1.4). Then f is discrete and open
whenever () € Li, . for some s > n/(n —p).

Proof. Given ¢ € (0,00) and xy € D, set G := B(x¢,¢0). Note that the function
(t) := 1/t satisfies (2.3). Thus, in order to apply Lemma 2.1 it remains to verify
(2.2). Indeed, by the Holder inequality we obtain

oW
/e<|:c—xo|<ao |$ - x0|p dm( )
(4.1) ,

<</|| g ) </ Q" ) dm(s )

where ¢ =n/p, 1/qg+1/q" =1, i.e., ¢/ = n/(n — p). Observe that the first integral
in the right-hand side of (4.1) can be implicitly calculated. Namely, by the Fubini

theorem
1 0 dt £
/ ——dm(x) = wn_l/ = wp1log —0
e<|z—zo|<eo ‘ZL’ - xo‘pq € t

Following notation of Lemma 2.1, we have

1 L -p+&
/ QD) < wi @l o (1082) T =0 ase =0
€<\x "Eo‘<€0 |l’ €

[p(E,E()) —ZL'Q|p

that implies (2.2). Thus, the desired conclusion follows from Lemma 2.1. O

5. Examples

First of all, let us give some examples of mappings obeying (1.1) and (1.3). It is
known that, for an arbitrary quasiregular mapping f: D — R", one has

(5.1) M(T) < N(f, A)Ko(f)M(f(I))

for a constant Ko(f) > 1, for any Borel set A in the domain D such that N(f, A) < oo
and any family I' of curves 7 in A (see [MRV, Theorem 3.2| or |Ri, Theorem 6.7,
Chap. II]). Thus, for any such quasiregular mapping, the inequalities (1.1) and (1.3)
hold.

Let us give other examples. Set at points z € D of differentiability of f

"(x)h
7@l =, e LM e ) = det ),
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and define for any x € D and p > 1

I @)
e @) #0,
Kovp(‘% f) = 1a f/(l') - Oa

00, otherwise.

We say that a property P holds for p-almost every (p-a.e.) curves v in a family I' if
the subfamily of all curves in I', for which P fails, has p-modulus zero. Recall that a
mapping f: D — R is said to have N-property (by Luzin) if m (f (S)) = 0 whenever
m(S) =0 for S € R™. Similarly, f has the N~'-property if m (f~(S)) = 0 whenever
m(S) = 0.

If v: A — R"is a locally rectifiable curve, then there is the unique nondecreasing
length function [, of A onto a length interval A, C R with a prescribed normalization
l,(to) =0 € A, to € A, such that [,(t) is equal to the length of the subcurve |, 4
of yif t > ty, t € A, and [,() is equal to minus length of v|; ) if t < to, t € A. Let
g: |7] = R™ be a continuous mapping, and suppose that the curve ¥ = g oy is also
locally rectifiable. Then there is a unique non-decreasing function L, : A, — Ay
such that L., (l,(t)) = l5(t) for all t € A. We say that a mapping f: D — R”"
is absolutely continuous on paths with respect to p-modulus, write f € ACP,, if for
p-a.e. curve v: A — D the function L, ¢ is locally absolutely continuous on A.

The following result is a generalization of the above classical inequality (5.1)
for quasiregular mappings and provides an example of the inequality (1.3) (see [Ri,

Theorem 2.4, Ch. II]).

Theorem 5.1. Let a mapping f: D — R"™ be differentiable a.e. in D, have N-
and N~ '-properties and possess ACP,-property for some p > 1. Let A be a Borel
set in D, and let I' be a family of paths in A. Suppose that Ko ,(z, f) < a(f(z))
a.e. for a Borel function o: R™ — [0, 00]. Then

M) < [ PPN S Al dmly) Vo€ adim (D).

Recall that N(y, f, A) is Lebesgue measurable for any Borel measurable set A
(see [RR, Theorem of Section IV.1.2]).

Proof. Let p' € adm f(I'). Set p(z) = p'(f(x))]|f'(x)| for z € A and p(z) =0
otherwise. Let 'y be a family of all locally rectifiable curves of I' where f is locally
absolutely continuous. Since f e ACP,, M,(I") = M, (FO) Now, by [Ri, Lemma 2.2,
Ch. I0], [0 p(x)|dz| = [ p"(f(2))]If'( )||\dx\ > [, P'(y)ldy] > 1, and, consequently,
p € admTy. By the Change of variables formula

SAp’p(f(ﬁ))a(f(x))\J(x,f)ldm(x)=/ PPNy, f, A)aly) dm(y),

n

see [MRSY, Proposition 8.3]. Here we take into account, that J(z, f) # 0 a.e., see
[IMRSY, Proposition 8.3]. The theorem is proved. O

By Theorem 5.1 we obtain the following

Corollary 5.1. Let f: D — R" be differentiable a.e. in D, have N- and N~1-
properties, and f € VVllp for some p > 1. Let A in D be a Borel set and I' be a
family of paths in A. Suppose that Ko ,(z, f) < a(f(z)) a.e. for a Borel function
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a: R" — [0,00]. Then
M) < / P WIN(, f, Aaly) dm(y) for all f € adm f(T).

Indeed, as known, W,2” = ACLP (see [Maz, Theorems 1 and 2, section 1.1.3]).
On the other hand, ACLP C ACP, by the Fuglede lemma (see [Va, Theorem 28.2|).
Thus, by Theorem 5.1 we obtain the inequality of type (1.3). OJ

The next statement follows from Theorems 1.1 and 5.1, Corollaries 4.1 and 4.2.

Corollary 5.2. Let p € (n—1,n], f: D — R" be differentiable a.e. in D, have
N- and N~ '-properties, AC P,-property for some p > 1 and Ko ,(z, f) < a(f(x))
a.e. for a Borel function a: R" — [0,00]. Let I' be a family of paths in a Borel
set A C D and let Q(y) = N(y, f, D) - max{a(y),1}. Then f is open and discrete
whenever () satisfies at least one of the following conditions:

1) Q € FMO(yo) for every yg € f(D);
2) for every yo € f(D) gy, (r) = O ([log Hn_l) asr — 0, where gy, (r) is defined

in (1.5); S
3) for all yo € f(D) there exists 6 > 0: for all € € (0,0): / Hdil < 00
5 < ()
dt
and / T = o0y
0 trTgy (t)

5
4) for all yo € f(D) there exists § > 0: for all ¢ € (0,9): / Cllt < 0o and

tag, (1)
S dt
1 =9
0ty (1)

5) pe (n—1,n) and Q € L (R"™) for some s > "

loc n—p°

In particular, the assertion of Corollary 5.2 holds if f € VVl(ljf instead of f € ACP,.

Note that the preserving orientation is essential condition for mappings f in all
statements given above. An example of a mapping f with finite length distortion
that does not preserve orientation and such that M(f(I")) = M(T), i.e., @ = 1, but
is neither discrete nor open, was given in [MRSY, Section 8.10].

We also give another simple example which shows that the preserving orientation
can not be dropped. Let x = (z1,...,x,). We define f as the identical mapping in
the closed domain {z,, > 0} and set f(x) = (z1,..., —x,) for z, < 0. Note that the
mapping f preserves the lengths of paths. Therefore, f satisfies the inequality (1.3)
with ) = 1. This mapping is discrete but not open. In fact, under the mapping f
the ball B" is mapped onto the set {y = (y1,...,yn) € R": |y| < 1,y, > 0} which is
not open in R".

Remark 5.1. Results obtained in the paper can be applied to various classes of
plane and space mappings (see e.g. [GRSY] and [MRSY]).

Note that we discuss the case while p ranges between n — 1 and n. The question
on discreteness and openness of the mappings obeying the same modulus conditions
for 1 < p <n — 1 remains open.
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