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Abstract. We deal with the regularity problem for linear, second order parabolic equations and

systems in divergence form with measurable data over non-smooth domains, related to variational

problems arising in the modeling of composite materials and in the mechanics of membranes and

films of simple non-homogeneous materials which form a linear laminated medium. Assuming

partial BMO smallness of the coefficients and Reifenberg flatness of the boundary of the underlying

domain, we develop a Calderón–Zygmund type theory for such parabolic operators in the settings

of the weighted Lebesgue spaces. As consequence of the main result, we get regularity in parabolic

Morrey scales for the spatial gradient of the weak solutions to the problems considered.

1. Introduction

The general aim of the present article is to develop a weighted Lp-Calderón–
Zygmund type theory for divergence form, linear parabolic systems with discontinu-
ous coefficients over domains with rough boundary. More precisely, we characterize
the regularity of the weak solutions to such systems by deriving global estimates for
the spatial gradient in the framework of the weighted Lebesgue spaces, generaliz-
ing this way the recent unweighted Lp-results of Byun [1, 2], Byun, Palagachev and
Wang [5], Byun and Wang [6], Dong [11], Dong and Kim [12], and Palagachev and
Softova [24]

Let Ω ⊂ R
n be a bounded domain, n ≥ 2, and set Q = Ω× (0, T ] for the cylinder

in R
n+1 with base Ω and of height T . We consider the following Cauchy–Dirichlet

problem

(1.1)

{

ut − Dα(a
αβ(x, t)Dβu) = Dαf

α(x, t) in Q,

u(x, t) = 0 on ∂PQ,

where ∂PQ = ∂Ω × [0, T ] ∪ Ω × {t = 0} stands for the parabolic boundary of Q

and the summation convention over the repeated indices, running from 1 to n, is
understood.

Suppose that the coefficient matrix a(x, t) = {aαβ(x, t)}nα,β=1 : R
n+1 → M

n×n is
measurable, uniformly bounded and uniformly parabolic, that is, there exist positive
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constants L and ν such that

(1.2)

{

‖aαβ‖L∞(Rn+1) ≤ L,

aαβ(x, t)ξαξβ ≥ ν|ξ|2 ∀ ξ ∈ R
n, for almost all (x, t) ∈ R

n+1.

Denote the non-homogeneous term in (1.1) by F(x, t) =
(

f 1(x, t), . . . , fn(x, t)
)

. It is
well known (cf. [2, 6] and the references therein) that if F ∈ L2(Q) then the problem
(1.1) has a unique weak solution. Recall that a weak solution of this problem is a
function

u ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω))

that satisfies
ˆ

Q

uϕt dx dt−
ˆ

Q

aαβDβuDαϕdx dt =

ˆ

Q

fαDαϕdx dt

for all ϕ ∈ C∞
0 (Q) with ϕ(x, T ) = 0. Moreover, the following L2-estimate holds

(1.3)

ˆ

Q

|Du|2 dx dt ≤ c

ˆ

Q

|F|2 dx dt,

where the constant c depends only on n, L, ν and T .
A natural extension of (1.3) would be the estimate

ˆ

Q

|Du|p dx dt ≤ c

ˆ

Q

|F|p dx dt

with p > 1 or, more generally,

(1.4)

ˆ

Q

|Du|pω(x, t) dx dt ≤ c

ˆ

Q

|F|pω(x, t) dx dt,

with suitable conditions imposed on the exponent p and the weight ω(x, t).
Indeed, the sole parabolicity of the differential operator considered and bound-

edness of the underlying domain Ω are not enough to ensure the validity of (1.4)
in general. In order to have (1.4) for the weak solution to any system (1.1), one
has to impose some regularity requirements on the coefficient matrix a, some finer
geometric assumption on ∂Ω and suitable conditions on the weight function ω.

What is our main concern in the present paper is to indicate that set of essen-
tially optimal hypotheses on the data of (1.1) which ensure (1.4), and to develop a
Calderón–Zygmund type theory for the problem under consideration. Namely, taking
the non-homogeneous term F in the weighted Lebesgue space Lp

ω(Q) (see Sections 2
and 3 for the corresponding definitions) we prove that the spatial gradient Du of
the weak solution u to (1.1) belongs to the same space Lp

ω(Q), what is actually the
estimate (1.4).

Restricting the value of the exponent p in the range (2,∞), we consider weights
ω(x, t) belonging to the parabolic Muckenhoupt class A p

2
. This is a necessary and suf-

ficient restriction ensuring boundedness of the Hardy–Littlewood maximal operator
when acting on the weighted Lebesgue spaces Lp

ω. For what concerns the coefficients
aαβ(x, t) of the operator considered, we suppose these are only measurable with re-
spect to one spatial variable and are averaged in the sense of small bounded mean
oscillation (BMO) in the remaining space and time variables. This partially BMO
assumption on the coefficients is quite general and allows arbitrary discontinuity in
one spatial direction which is often related to problems of linear laminates, while
the behaviour with respect to the other directions, including the time, are controlled
in terms of small-BMO, such as small multipliers of the Heaviside step function for
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instance. It is clear that the cases of continuous, VMO or small-BMO principal
coefficients with respect to all variables are particular cases of the situation here
considered. Regarding the underlying domain Ω, we suppose that its non-smooth
boundary is Reifenberg flat (cf. [23]) that means ∂Ω is well approximated by hyper-
planes at each point and at each scale. This is a sort of minimal regularity of the
boundary, guaranteeing validity in Ω of some natural properties of geometric analysis
and partial differential equations such as W 1,p-extension, non-tangential accessibility
property, measure density condition, the Poincaré inequality and so on. We refer the
reader to [10, 17, 18, 30] and the references therein for further details. In particu-
lar, a domain which is sufficiently flat in the sense of Reifenberg is also Jones flat.
Moreover, domains with C1-smooth or Lipschitz continuous boundaries with small
Lipschitz constant belong to that category, but the class of Reifenberg flat domains
extends beyond these common examples and contains domains with rough fractal
boundaries such as the Helge von Koch snowflake.

It is worth noting that the weighted Lp-regularity theory here developed is related
to important variational problems arising in modeling of deformations in composite
materials as fiber-reinforced media or, more generally, in the mechanics of mem-
branes and films of simple non-homogeneous materials which form a linear laminated
medium. In particular, a highly twinned elastic or ferroelectric crystal is a typical
situation where a laminate appears. The equilibrium equations of such a linear lam-
inate usually have only bounded and measurable coefficients in the direction of the
stratification. We refer the reader to the seminal papers [8, 20, 19] for the general
statement of the problem and various issues regarding regularity of solutions in case
of piecewise smooth coefficients, and to the more recent works [13, 11] for further de-
velopments. The non-smoothness of the underlying Reifenberg flat domain, instead,
is related to models of real-world systems over media with fractal geometry such as
blood vessels, the internal structure of lungs, bacteria growth, graphs of stock market
data, clouds, semiconductor devices, etc.

The paper is organized as follows. Section 2 collects some auxiliary results from
the harmonic analysis regarding the properties of the Muckenhoupt weights and
boundedness of the Hardy–Littlewood maximal operator on the weighted Lebesgue
spaces, while in Section 3 we set down the hypotheses on the data of problem (1.1)
and state the main result of the paper (Theorem 3.2). The estimate in the weighted
Lebesgue spaces Lp

ω of the spatial gradient Du of the weak solution to (1.1) is proved
in Section 4. The main analytic tools employed in that proof rely on the Vitali
covering lemma, boundedness properties of the Hardy–Littlewood maximal operator
on weighted spaces, power decay estimates of the upper level sets of the spatial
gradient and fine properties of the Muckenhoupt weights ω(x, t). As an outgrowth of
the main result, we show in Section 5 that the Calderón–Zygmund property still holds
true in the framework of the parabolic Morrey scales Lp,λ by showing that F ∈ Lp,λ

yields Du ∈ Lp,λ. A crucial step of our approach here is ensured by an old result of
Coifman and Rochberg [9] ensuring that a suitable power of the maximal operator of
a characteristic function is an A1-weight. Without essential difficulties, the technique
employed in proving regularity of solution to the equation in (1.1) could be extended
to the case of systems and, that is why, in the final Section 6 we restrict ourselves
to announce only the weighted Lp-regularity result for the weak solutions to linear,
second order parabolic systems with partially BMO coefficients over Reifenberg flat
domains.
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To this end, let us note that in the case of elliptic equations, weighted Lp-
regularity results have been proved in [21] under the small-BMO assumption with
respect to all variables, and in [3, 4] for equations with partially BMO coefficients.
To the best of our knowledge, the results here obtained are the first of this kind in
the settings of parabolic weighted spaces.

It is worth also noting that regularity of solution in Morrey spaces have been
recently derived in [26] for linear, non divergence form operators with oblique deriv-
ative boundary condition by means of estimates for singular integrals of Calderón–
Zygmund type. Moreover, the Morrey regularity results from Section 5 could be ex-
tended in the more general framework of generalized Morrey spaces (see [16, 25, 27]).

Throughout the paper, the letter c will denote a universal constant that can
be explicitly computed in terms of known quantities such as n, L, ν, p, ω and the
geometric structure on Q. The exact value of c may vary from one occurrence to
another.

Acknowledgements. S. Byun was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (NRF-2014K2A2A2000796). The work of D.K. Palagachev and
L.G. Softova is part of the INdAM-GNAMPA Project 2015 “Regolarità delle soluzioni
di problemi al bordo per operatori differenziali su domini non regolari o non limitati”.

2. Weighted Lebesgue spaces in parabolic settings

Our aim is to establish a global weighted estimate of Calderón–Zygmund type
for the weak solution of (1.1) and let us start with describing the properties of the
class of weights considered. For this goal, we will use the parabolic metric given in
Stein [28] by the function

ρ(x, t) =

√

|x|2 +
√

|x|4 + 4|t|2
2

(x, t) ∈ R
n+1.

It is proved by Fabes and Rivière in [14] that ρ defines a metric in R
n+1 and the

“balls” with respect to it, centered at (x, t) and of radius r > 0, are the ellipsoids
E = Er(x, t)

Er(x, t) =
{

(y, τ) ∈ R
n+1 :

|x− y|2
r2

+
|t− τ |2

r4
< 1

}

,

or, in an alternative way,

Er(x, t) =
{

(y, τ) ∈ R
n+1 : ρ(x− y, t− τ) < r

}

.

Let µ be a non-negative Borel measure on R
n+1 with the property µ(Rn+1) > 0.

In the particular case when µ is the Lebesgue measure, then µ(Er) = |Er| = crn+2

with a positive constant c = c(n). Let us note that for all points (x, t), (y, τ) ∈ R
n+1

and r > 0, the collection of such ellipsoids and the measure that we postulate satisfy
the following properties (cf. [28]): There exist constants c1 and c2, both greater than
1 and depending on n, such that

(i) Er(x, t) ∩ Er(y, τ) 6= ∅ implies Er(y, τ) ⊂ Ec1r(x, t);
(ii) µ(Ec1r(x, t)) ≤ c2µ(Er(x, t));
(iii) For each open set U and r > 0, the function (x, t) → µ(Er(x, t) ∩ U) is

continuous.
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Statement (i) guarantees the engulfing property crucial in the Vitali-type covering
lemma that we are going to use, while the doubling type property (ii) of the measure
just allows one to exploit the first statement. In our further considerations we shall
also use the collection of cylinders C ≡ Cr(x, t) = Cr(x1, x

′, t) defined as

(2.1) Cr(x, t) =
{

(y1, y
′, τ) ∈ R

n+1 : |x1 − y1| < r, ρ(x′ − y′, t− τ) < r
}

,

or, in an alternate way

(2.2) Cr(x, t) =
{

(y1, y
′, τ) ∈ R

n+1 : |x1 − y1| < r, max{|x′ − y′|,
√

|t− τ |} < r
}

with the Lebesgue measure |Cr| comparable to rn+2, and where we have set x′ =
(x2, . . . , xn).

Remark 2.1. It is not difficult to verify that (i), (ii) and (iii) hold for the
collections (2.1) and (2.2). In what follows we will use the equivalence of these
structures without explicit references (cf. [28]). All definitions given over ellipsoids
Er hold also over the cylinders Cr.

In case of Rn we shall use also the following collection of cylinders

C′
r(x) =

{

y ∈ R
n : |x1 − y1| < r, |x′ − y′| < r

}

.

To define the functional spaces to be used in the sequel, we need to recall the definition
and some properties of the Muckenhoupt weights (cf. García-Cuerva and Rubio de
Francia [15], Stein [28] and Torchinsky [29]). Let M denote the Hardy–Littlewood
maximal operator on R

n+1

Mf(x, t) = sup
r>0

1

|Er(x, t)|

ˆ

Er(x,t)
|f(y, τ)| dy dτ, f ∈ L1

loc
(Rn+1).

If D is a bounded domain in R
n+1 and f ∈ L1(D), then Mf = Mf̄ , where f̄ is the

zero extension of f in the whole space. It is well known that M is bounded sub-linear
operator from Lq to itself for all q > 1. That is, if f ∈ Lq(Rn+1), q ∈ (1,∞), then

(2.3)

ˆ

Rn+1

|Mf(x, t)|q dµ(x, t) ≤ c

ˆ

Rn+1

|f(x, t)|q dµ(x, t)

for some positive constant c = c(q, n), where dµ = dx dt is the Lebesgue measure.
It turns out that the estimate (2.3) still holds true when dµ = ω(x, t)dx dt, where
ω : Rn+1 → R+ is a positive, locally integrable function, satisfying the following
Aq-condition

(2.4)

(

1

|E|

ˆ

E
ω(x, t) dx dt

)(

1

|E|

ˆ

E
ω(x, t)−

1
q−1 dx dt

)q−1

≤ A < ∞

for all E in R
n+1. It is proved in [22] that (2.4) is a necessary and sufficient condition

in order (2.3) to hold. By this reason, ω is commonly called Muckenhoupt weight lying
in the class Aq, and the smallest constant A for which (2.4) holds is denoted by [ω]q.
If q = 1, we say that ω ∈ A1 when

(2.5)
1

|E|

ˆ

E
ω(x, t) dx dt ≤ A essinf

E
ω(x, t).

There is an alternative way of defining Aq, closely related to the maximal in-
equality (2.3). For any non-negative, locally integrable function f and any ellipsoid
E , the weight ω belongs to Aq, 1 ≤ q < ∞, if and only if

(2.6)

(

1

|E|

ˆ

E
f(x, t) dx dt

)q

≤ A

ω(E)

ˆ

E
f q(x, t)ω(x, t) dx dt < ∞
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for some A = A(q, n) > 0, where

(2.7) ω(E) =
ˆ

E
ω(x, t) dx dt < ∞

is the measure of E with respect to dµ = ω(x, t) dx dt. The smallest A for which (2.6)
is valid equals [ω]q. It is an immediate consequence of (2.6) that whenever ω ∈ Aq

then it satisfies the doubling property, that is,

(2.8) ω(E2r) ≤ c(n, q)ω(Er).

Actually, apply (2.6) with E = E2r and f = χEr that gives (2.8) with c = [ω]q2
q(n+2).

The doubling property of ω, together with (2.6), shows that in the definition (2.4) we
could have replaced the family of ellipsoids {Er}r>0 by a family of cylinders {Cr}r>0

or other such equivalent families, as it is noted in Remark 2.1.
A noteworthy feature of the Aq classes is that these increase with q, that is, if

ω ∈ Aq, then ω ∈ Ap whenever p ≥ q and [ω]p ≤ [ω]q.
Another important characteristic of the Muckenhoupt weights is the strong dou-

bling property (see [29, Theorem IX.2.1] or [21, Lemma 3.3]). Moreover, as proved
in [28, Section V.5.3], for each weight ω ∈ Aq, q > 1, there exist ω1 and ω2 in A1 so

that ω = ω1ω
1−q
2 . This, along with [29, Proposition IX.4.5], gives that ω satisfies the

reverse Hölder inequality and reverse doubling property. Unifying the both doubling
conditions, one can observe that for each E and each measurable subset A ⊂ E , there
exist positive constants c1 and τ1 ∈ (0, 1) such that

(2.9)
1

[ω]q

( |A|
|E|

)q

≤ ω(A)

ω(E) ≤ c1

( |A|
|E|

)τ1

,

where c1 and τ1 depend on [ω]q, n and q, but are independent of E and A. Let us
note that the lower bound in (2.9) is the above mentioned strong doubling property,
while the upper one is the reverse doubling property.

Given a measurable and non-negative weight ω(x, t), the weighted Lebesgue space
Lq
ω(R

n+1), q > 1, is the collection of all measurable functions f for which

(2.10) ‖f‖q
Lq
ω(Rn+1)

=

ˆ

Rn+1

|f(x, t)|qω(x, t) dx dt < ∞.

As already mentioned above, the famous result of Muckenhoupt [22] states that
ω ∈ Aq is a necessary and sufficient condition ensuring that the Hardy–Littlewood
maximal operator maps Lq

ω into itself (see also [29, Theorem IX.4.1]). Summarizing,
we have

Lemma 2.2. Suppose ω(x, t) ∈ Aq, q ∈ (1,∞). Then there exists a positive
constant c = c(q, n) such that

1

c
‖f‖Lq

ω(Rn+1) ≤ ‖Mf‖Lq
ω(Rn+1) ≤ c‖f‖Lq

ω(Rn+1)

whenever f ∈ Lq
ω(R

n+1).

Example 2.3. The weight function ω(x, t) = ρ(x, t)α belongs to Aq with q ∈
(1,∞) if and only if −(n+ 2) < α < (q − 1)(n+ 2).
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3. Assumptions and main result

For each cylinder Cr(y, τ) = Cr(y1, y′, τ) and for a fixed x1 ∈ (y1 − r, y1 + r) we
set Cx1

r (y, τ) to denote the x1-slice of Cr(y, τ), that is,

Cx1
r (y, τ) =

{

(x′, t) ∈ R
n−1 ×R : (x, t) = (x1, x

′, t) ∈ Cr(y, τ)
}

.

Then we define the integral average

aCx1
r (y,τ)(x1) =

1

|Cx1
r (y, τ)|

ˆ

Cx1
r (y,τ)

a(x1, x
′, t) dx′ dt.

Definition 3.1. We say that the couple (a,Ω) is (δ, R)-vanishing of co-dimension
1, if the following properties are satisfied:

• For every point (y, τ) ∈ Q and for every number r ∈ (0, 1
3
R] with

(3.1) dist(y, ∂Ω) >
√
2r,

there exists a coordinate system depending on (y, τ) and r, whose variables we still
denote by (x, t) so that in this new coordinate system (y, τ) is the origin and

(3.2)
1

|Cr(0, 0)|

ˆ

Cr(0,0)
|a(x, t)− aCx1

r (0,0)(x1)|2 dx dt ≤ δ2.

• For any point (y, τ) ∈ Q and for every number r ∈ (0, 1
3
R] such that

dist(y, ∂Ω) = dist(y, x0) ≤
√
2r

for some x0 ∈ ∂Ω, there exists a coordinate system depending on (y, τ) and r, whose
variables we still denote by (x, t) such that in this new coordinate system (x0, τ) is
the origin,

Ω ∩
{

x ∈ C′
3r(0) : x1 > 3rδ

}

⊂ Ω ∩ C′
3r(0)

⊂ Ω ∩
{

x ∈ C′
3r(0) : x1 > −3rδ

}(3.3)

and
1

|C3r(0, 0)|

ˆ

C3r(0,0)
|a(x, t)− aCx1

3r (0,0)(x1)|2 dx dt ≤ δ2.

We add some comments regarding the above definition. Thanks to the scaling
invariance property, one can take for simplicity R = 1 or any other constant bigger
than 1. On the other hand δ is a small positive constant, being invariant under such
a scaling argument. If a is (δ, R)-vanishing of co-dimension 1, then for each point and
for each sufficiently small scale, there is a coordinate system so that the coefficients
have small oscillation in (x′, t)-variables while these are only measurable in the x1-
variable and therefore may have arbitrary jumps with respect to it. In addition, the
boundary of the domain is (δ, R)-Reifenberg flat (see [23]) and the coefficients have a
small oscillation along the flat direction x′ of the boundary and are only measurable
along the normal direction x1. The number

√
2r in (3.1) is selected for convenience.

It comes from the reason that we need to take an enough size of the cylinders in (3.2)
so that there is a room to have the rotation of Cr(y, τ) in any spatial direction.

We suppose that the right-hand side of the equation in (1.1) belongs to some
weighted Lebesgue space, precisely

|F|2 ∈ L
p

2
ω (Q), ω ∈ A p

2
, p ∈ (2,∞),

which implies
F ∈ Lp

ω(Q), ω ∈ A p

2
⊂ Ap, p ∈ (2,∞).
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Then we get from Hölder’s inequality, (2.4), (2.7) and (2.10) that

‖F‖2L2(Q) =

ˆ

Q

|F(x, t)|2ω 2
p (x, t)ω− 2

p (x, t) dx dt

≤
(
ˆ

Q

(|F(x, t)|2) p

2ω(x, t) dx dt

) 2
p
(
ˆ

Q

ω(x, t)−
2

p−2 dx dt

)
p−2
p

= ‖|F|2‖
L

p
2
ω (Q)

|Q|
p−2
p

(

1

|Q|

ˆ

Q

ω(x, t)−
2

p−2 dx dt

)
p−2
p

≤ ‖|F|2‖
L

p
2
ω (Q)

|Q|ω(Q)−
2
p [ω]

2
p
p

2
.

Hence we have
1

c
‖F‖2L2(Q) ≤ ‖|F|2‖

L
p
2
w (Q)

< ∞

with a constant c = |Q|ω(Q)−
2
p [ω]

2
p
p

2
, which ensures the existence of a unique weak

solution u of the equation (1.1) (cf. [2, 6]).
We now state the main result of the paper.

Theorem 3.2. Let p ∈ (2,∞), ω ∈ A p
2

and assume (1.2). Then there exists a

small positive constant δ = δ(n, L, ν, p, ω,Q) such that if the couple (a,Ω) is (δ, R)-
vanishing of co-dimension 1 and F ∈ Lp

ω(Q), then the spatial gradient Du of the
weak solution u of (1.1) belongs to Lp

ω(Q) and the following estimate holds

‖Du‖Lp
ω(Q) ≤ c‖F‖Lp

ω(Q)

with a constant c depending on n, L, ν, p, ω and Q.

The present work is a natural extension of the previous paper [5] which deals with
the regularity problem for parabolic equations in classical (unweighted, ω(x, t) ≡ 1)
Lebesgue classes.

Here with a natural parabolic Muckenhoupt weight for the problem (1.1), we
first find a correct version for the weight of the Vitali covering lemma, and verify the
hypotheses of this covering lemma from the perturbation results for the unweighted
case and comparable relationships between the Lebesgue and the weighted measures.
We then apply the covering lemma to derive a weighted power decay estimate of the
upper level sets for the Hardy–Littlewood maximal function of the spatial gradient
of the weak solution. The required estimate in the main result follows then by the
standard procedure of summation over the level sets.

4. Gradient estimates in L
p

ω

Because of the scaling invariance property of the Reifenberg flat domains (cf. [5,
Lemma 5.2] for instance), we can take R = 1 hereafter. The next result is a parabolic
counterpart of an elliptic weighted covering lemma obtained in [21, Lemma 3.8].

Lemma 4.1. Suppose Ω is a bounded (δ, 1)-Reifenberg flat domain (that is, (3.3)
is verified) and ω(x, t) ∈ Aq, q ∈ (1,∞). Let C ⊂ D ⊂ Q be measurable subsets of Q
satisfying the following conditions:

• there exists ε ∈ (0, 1) such that for each (y, τ) ∈ Q

(4.1) ω(C ∩ C1(y, τ)) < ǫω(C1(y, τ));
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• for each (y, τ) ∈ Q and r > 0

(4.2) ω(C ∩ Cr(y, τ)) ≥ εω(Cr(y, τ)) implies Q ∩ Cr(y, τ) ⊂ D.

Then

(4.3) ω(C) ≤ ε[ω]2q

(

10
√
2

1− δ

)q(n+2)

ω(D).

Proof. Fix (y, τ) ∈ Q and for each r > 0 define the function

Θ(r) =
ω(C ∩ Cr(y, τ))
ω(Cr(y, τ))

.

We have Θ ∈ C0(0,∞), Θ(1) < ε by (4.1), and Θ(0) = limr→0+ Θ(r) = 1 according
to the Lebesgue Differentiation Theorem. Therefore, for almost all (y, τ) ∈ C, there
exists r(y,τ) ∈ (0, 1) such that Θ(r(y,τ)) = ε and Θ(r) < ε for all r > r(y,τ).

Define the family of cylinders {Cr(y,τ)(y, τ)}(y,τ)∈C which forms an open covering of

C. By the Vitali lemma (cf. [28, Lemma I.3.1]), there exists a disjoint sub-collection
{Cri(yi, τi)}i≥1 with ri = r(yi,τi) ∈ (0, 1), (yi, τi) ∈ C such that Θ(ri) = ε and

∑

i≥1

|Cri(yi, τi)| ≥ c|C|, C ⊂
⋃

i≥1

C5ri(yi, τi), C =
⋃

i≥1

(

C ∩ C5ri(yi, τi)
)

for some c = c(n) > 0.
Since Θ(5ri) < ε, we have by (2.9)

ω(C ∩ C5ri(yi, τi)) < εω(C5ri(yi, τi)) ≤ ε[ω]q

( |C5ri(yi, τi)|
|Cri(yi, τi)|

)q

ω(Cri(yi, τi))

= ε[ω]q5
q(n+2)ω(Cri(yi, τi)).

In order to employ (4.2), we have to estimate the ratio
ω(Cri (yi,τi))

ω(Q∩Cri (yi,ti))
. For this

goal, making use of the bound

sup
0<r<1

sup
(y,τ)∈Q

|Cr(y, τ)|
|Q ∩ Cr(y, τ)|

≤
(

2
√
2

1− δ

)n+2

,

obtained in [5, 7], and the doubling condition (2.9), we get

ω(Cri(yi, τi)) ≤ [ω]q

(

2
√
2

1− δ

)q(n+2)

ω(Q ∩ Cri(yi, τi)).

Now we have

ω(C) ≤ ω
(

⋃

i≥1

(

C ∩ C5ri(yi, τi)
))

≤
∑

i≥1

ω(C ∩ C5ri(yi, τi))

< ε
∑

i≥1

ω(C5ri(yi, τi)) ≤ ε[ω]q5
q(n+2)

∑

i≥1

ω(Cri(yi, τi))

≤ ε[ω]2q

(

10
√
2

1− δ

)q(n+2)
∑

i≥1

ω(Q ∩ Cri(yi, τi)).
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Having in mind that {Cri(yi, τi)} are mutually disjoint, Θ(ri) = ε and (4.2), we get

ω(C) ≤ ε[ω]2q

(

10
√
2

1− δ

)q(n+2)

ω
(

⋃

i≥1

Q ∩ Cri(yi, τi)
)

≤ ε[ω]2q

(

10
√
2

1− δ

)q(n+2)

ω(D). �

In the following we recall an approximation lemma obtained for the unweighted
spaces in [12, Corollary 8.4], [5, Lemma 5.3] and [7, Lemma 5.5].

Lemma 4.2. Assume (1.2) and let u be a weak solution of (1.1). Then there is
a constant λ1 = λ1(ν, n) > 1 such that for each ε ∈ (0, 1) there exists δ = δ(ε) > 0
such that if a is (δ, 1)-vanishing of co-dimension 1 and if Cr(y, τ) satisfies

|{(x, t) ∈ Q : M(|Du|2) > λ2
1} ∩ Cr(y, τ)| ≥ ε|Cr(y, τ)|,

then we have

Q ∩ Cr(y, τ) ⊂ {(x, t) ∈ Q : M(|Du|2) > 1} ∪ {M(|F|2) > δ2}.
We need now to establish a weighted version of the lemma cited above. For this

goal, for any weak solution u of (1.1) we set

(4.4) C = {(x, t) ∈ Q : M(|Du|2) > λ2
1}

and

(4.5) D = {(x, t) ∈ Q : M(|Du|2) > 1} ∪ {M(|F|2) > δ2}

with λ1 and δ as in Lemma 4.2. The next assertion shows that the assumption (4.2)
holds for the such defined sets C and D.

Lemma 4.3. Let ω ∈ Aq, q ∈ (1,∞). Assume that a is (δ, 1)-vanishing of
co-dimension 1 and for each r > 0 and almost all (y, τ) ∈ Q, Cr(y, τ) satisfies

Θ(r) =
ω(C ∩ Cr(y, τ))
ω(Cr(y, τ))

≥ ε.

Then we have Q ∩ Cr(y, τ) ⊂ D.

Proof. The reverse doubling property of ω (the upper bound in (2.9)) gives that

ε ≤ ω(C ∩ Cr(y, τ))
ω(Cr(y, τ))

≤ c1

( |C ∩ Cr(y, τ)|
|Cr(y, τ)|

)τ1

.

Hence

|C ∩ Cr(y, τ)| ≥
(

ε

c1

)
1
τ1

|Cr(y, τ)|.

The assertion holds after applying Lemma 4.2 with ε replaced by
(

ε
c1

) 1
τ1
. �

We are going to derive now the power decay estimate of the upper level set C

with respect to A p

2
-weights.

Lemma 4.4. Under the assumptions of Lemma 4.3 we suppose additionally that

(4.6) Θ(1) =
ω(C ∩ C1(y, τ))
ω(C1(y, τ))

< ε
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with C as in (4.4). Then for each k = 1, 2, . . ., we have

ω
(

{(x, t) ∈ Q : M(|Du|2) > λ2k
1 }
)

≤ εk1ω
(

{(x, t) ∈ Q : M(|Du|2) > 1}
)

+
k
∑

i=1

εi1ω
({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k−i)
1

})(4.7)

where ε1 = ε[ω]2p
2

(

10
√
2

1−δ

)
p

2
(n+2)

.

Proof. Lemma 4.3 and condition (4.6) ensure the validity of the hypotheses of
Lemma 4.1 for the sets (4.4) and (4.5). Thus, we get by (4.3)

ω
(

{(x, t) ∈ Q : M(|Du|2) > λ2
1}
)

≤ ε1ω
(

{(x, t) ∈ Q : M(|Du|2) > 1}
)

+ ε1ω
(

{(x, t) ∈ Q : M(|F|2) > δ2}
)

,

where ε1 = ε[ω] p
2

(

10
√
2

1−δ

)
p

2
(n+2)

.

The last inequality is exactly (4.7) with k = 1. Further, we proceed with the
proof by induction, as it is done in [1, Corollary 4.15]. Suppose that (4.7) holds true
for each weak solution of (1.1) and for some k > 1. Define the functions u1 =

u
λ1

and

F1 =
F

λ1
. It is easy to see that u1 is a weak solution to the problem (1.1) with a right-

hand side F1. Hence, (4.6) and Lemma 4.3 hold with the sets C and D corresponding
to u1 as defined by (4.4) and (4.5) and according to (4.7), the inductive assumption
holds true for u1 with the same k > 1. The definition of u1 ensures the inductive
passage from k to k + 1 for u. Namely,

ω
({

(x, t) ∈ Q : M(|Du|2) > λ
2(k+1)
1

})

= ω
(

{(x, t) ∈ Q : M(|Du1|2) > λ2k
1 }
)

≤ εk1ω
(

{(x, t) ∈ Q : M(|Du1|2) > 1}
)

+
k
∑

i=1

εi1ω
({

(x, t) ∈ Q : M(|F1|2) > δ2λ
2(k−i)
1

})

= εk1ω
(

{(x, t) ∈ Q : M(|Du|2) > λ2
1}
)

+

k
∑

i=1

εi1ω
({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k−i)
1 λ2

})

≤ εk+1
1 ω

(

{(x, t) ∈ Q : M(|Du|2) > 1}
)

+

k+1
∑

i=1

εi1ω
({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k+1−i)
1

})

. �

The next result follows directly from [21, Lemma 3.7].

Lemma 4.5. Let h ∈ L1(Q) be a non-negative function, ω be an Aq-weight,
q ∈ (1,∞) and θ > 0, Λ > 1 be constants. Then h ∈ Lq

ω(Q) if and only if

S :=
∑

k≥1

Λkqω({(x, t) ∈ Q : h(x, t) > θΛk}) < ∞.

Moreover,

c−1S ≤ ‖h‖q
Lq
ω(Q)

≤ c
(

ω(Q) + S
)

,

where c = c(θ,Λ, q).
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We are in a position now to prove Theorem 3.2.

Proof of Theorem 3.2. Since ω ∈ A p

2
then ω ∈ Ap with [ω]p ≤ [ω] p

2
. Recall that

F ∈ Lp
ω(Q) and from the scaling invariance property of (1.1) under a normalization,

we assume that ‖F‖Lp
ω(Q) ≤ δ with δ > 0 small enough. Hence

(4.8) ‖F‖2Lp
ω(Q) = ‖|F|2‖

L
p
2
ω (Q)

≤ δ2.

Then we need to prove boundedness of the norm of the gradient ‖Du‖Lp
ω(Q). Because

of the properties of the maximal function (see Lemma 2.2), it is enough to get

‖M(|Du|2)‖
L

p
2
ω (Q)

≤ c.

For this goal, we apply Lemma 4.5 with h = M(|Du|2), Λ = λ2
1, q = p

2
, θ = 1. By

the reverse doubling property (2.9), we have

ω(C ∩ C1(y, τ))
ω(C1(y, τ))

≤ c

( |C ∩ C1(y, τ)|
|C1(y, τ)|

)τ1

.

To estimate the right-hand side, we note that

|C ∩ C1(y, τ)|
|C1(y, τ)|

≤ c|C| = c|{(x, t) ∈ Q : M(|Du|2) > λ2
1}|

≤ c

ˆ

Q

M(|Du|2) dx dt ≤ c

ˆ

Q

|Du|2 dx dt

≤ c

ˆ

Q

|F(x, t)|2 dx dt ≤ c|Q|
ω(Q)

2
p

(
ˆ

Q

|F(x, t)|2 p

2ω(x, t) dx dt

)
2
p

≤ cδ2,

for almost all (y, τ) ∈ C, where we have used (2.6). Taking δ small enough, we get
by (2.9) that

Θ(1) =
ω(C ∩ C1(y, τ))
ω(C1(y, τ))

≤ cδ2τ1 < ε,

which ensures the validity of (4.6). Therefore Lemma 4.4 gives

S :=
∑

k≥1

λ
2k p

2
1 ω

(

{(x, t) ∈ Q : M(|Du|2) > λ2k
1 }
)

≤
∑

k≥1

λ
kp
1 εk1ω

(

{(x, t) ∈ Q : M(|Du|2) > 1}
)

+
∑

k≥1

k
∑

i=1

λ
kp
1 εi1ω

({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k−i)
1

})

≤
∑

k≥1

(

λ
p
1ε1
)k
ω(Q)

+
∑

i≥1

(

λ
p
1ε1
)i
∑

k≥i

λ
p(k−i)
1 ω

({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k−i)
1

})

≤ ω(Q)
∑

k≥1

(

λ
p
1ε1
)k

+ S ′.
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Let us note that
∑

k≥i

λ
p(k−i)
1 ω

({

(x, t) ∈ Q : M(|F|2) > δ2λ
2(k−i)
1

})

=
∑

k≥i

(

λ
2(k−i)
1

)
p
2ω

({

(x, t) ∈ Q : M
( |F|2

δ2

)

> λ
2(k−i)
1

})

≤ C

∥

∥

∥

∥

|F|2
δ2

∥

∥

∥

∥

p

2

L
p
2
ω (Q)

=
c

δp

∥

∥|F|2
∥

∥

p

2

L
p
2
ω (Q)

≤ c,

where (4.8) has been used in the last estimate. Hence S ′ ≤ c
∑

i≥1(λ
p
1ε1)

i.

Taking ε small enough in a way that λ
p
1ε1 < 1, and consequently also δ, we get

S < ∞ which gives

‖M(|Du|2)‖
L

p
2
ω (Q)

≤ c(ω(Q) + S) < ∞.

This way, Lemmas 2.2 and 4.5 imply

‖Du‖Lp
ω(Q) ≤ c

(

‖F‖Lp
ω(Q) + ω(Q)

)

and the desired estimate which completes the proof of Theorem 3.2 follows by the
Banach inverse mapping theorem. �

5. Morrey regularity of the gradient

A direct consequence of Theorem 3.2 is the Morrey regularity of the spatial
gradient of the weak solution to the problem (1.1). Recall that the Morrey spaces
Lq,λ(Q) with q > 1 and λ ∈ (0, n+ 2) consist of all measurable functions f ∈ Lq(Q)
for which the following norm is finite

‖f‖Lq,λ(Q) =






sup

(y,τ)∈Q
0<r<diamQ

1

rλ

ˆ

Er(y,τ)∩Q
|f(x, t)|q dx dt







1/q

< ∞,

where Er(y, τ) is any ellipsoid with radius r and centered at (y, τ) ∈ Q.

Theorem 5.1. Under the assumptions of Theorem 3.2, suppose in addition that
F ∈ Lp,λ with p > 2 and λ ∈ (0, n + 2). Then there exists a small positive constant
δ = δ(n, L, ν, p, λ,Q) such that if the couple (a,Ω) is (δ, R)-vanishing of co-dimension
1, then the spatial gradient Du of the weak solution u to the problem (1.1) belongs
to Lp,λ(Q) and satisfies the estimate

(5.1) ‖Du‖Lp,λ(Q) ≤ c‖F‖Lp,λ(Q)

with a constant c independent of u and F.

Proof. Suppose that F : Q → R
n is extended as zero to the whole R

n+1. Fix a
point (x0, t0) ∈ Q, r > 0, and consider the ellipsoid Er(x0, t0) with a characteristic
function χEr(x0,t0) and maximal function MχEr(x0,t0)(x, t). It is proved [9, Proposi-
tion 2] (see also [29, Proposition IX.3.3]) that

(

MχE(x0,t0)

)σ

∈ A1 when 0 ≤ σ < 1.

Hence, by the definition (2.5) of an A1-weight, we get

1

|Er(x0, t0)|

ˆ

Er(x0,t0)

(

MχEr(x0,t0)(x, t)
)σ

dx dt ≤ A essinf
Er(x0,t0)

(

MχEr(x0,t0)

)σ

.



80 Sun-Sig Byun, Dian K. Palagachev and Lubomira G. Softova

Because of the increasing property of the Aq-classes we have
(

MχEr(x0,t0)

)σ ∈ A p

2

for each p > 2 with a bound
[

(MχEr(x0,t0))
σ
]

p

2

≤ A depending only on n, p and σ.

Therefore, applying the result of Theorem 3.2, we obtain

I =

ˆ

Er(x0,t0)∩Q
|Du|pdx dt =

ˆ

Q

|Du|p
(

χEr(x0,t0)

)σ
dx dt

≤
ˆ

Q

|Du|p
(

MχEr(x0,t0)

)σ
dx dt ≤ c

ˆ

Q

|F(x, t)|p
(

MχEr(x0,t0)

)σ
dx dt

= c

ˆ

Rn+1

|F(x, t)|p
(

MχEr(x0,t0)

)σ
dx dt.

Employing the dyadic decomposition of Rn+1 related to Er(x0, t0),

R
n+1 = E2r(x0, t0) ∪

( ∞
⋃

k=1

E2k+1r(x0, t0) \ E2kr(x0, t0)

)

,

the last bound becomes

I ≤ c

(
ˆ

E2r(x0,t0)

|F(x, t)|p
(

MχEr(x0,t0)

)σ
dx dt

+
∞
∑

k=1

ˆ

E
2k+1r

(x0,t0)\E2kr
(x0,t0)

|F(x, t)|p
(

MχEr(x0,t0)

)σ
dx dt

)

= I0 +
∞
∑

k=1

Ik.

Let us estimate now the maximal function of χEr(x0,t0). It follows by the definition
that

MχEr(x0,t0)(y, τ) = sup
Er̄(y,τ)

1

|Er̄(y, τ)|

ˆ

Er̄(y,τ)
χEr(x0,t0)(x, t) dx dt

= sup
Er̄(y,τ)

|Er̄(y, τ) ∩ Er(x0, t0)|
|Er̄(y, τ)|

= sup
r̄

rn+2

r̄n+2
,

where Er̄(y, τ) is an arbitrary ellipsoid centered at some point (y, τ) ∈ R
n+1.

If (y, τ) ∈ Er(x0, t0), then MχEr(x0,t0)(y, τ) = 1. On the other hand, if (y, τ) ∈
E2r(x0, t0) \ Er(x0, t0), then

MχEr(x0,t0)(y, τ) =
rn+2

(2r)n+2
=

1

2n+2
< 1.

Let (y, τ) ∈ E2k+1r(x0, t0) \ E2kr(x0, t0). We have

2k−1r ≤ 2kr − r ≤ ρ(y − x0, τ − t0)− r ≤ r̄

≤ ρ(y − x0, τ − t0) + r ≤ 2k+1r + r,

and the maximal function is evaluated by

MχEr(x0,t0)(y, τ) ≤
rn+2

(2k−1r)n+2
=

1

2(k−1)(n+2)
.
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We are in a position now to estimate the terms Ik, k = 0, 1, . . . . Namely,

I0 ≤
ˆ

E2r(x0,t0)

|F(x, t)|p dx dt ≤ C(n)rλ‖F‖p
Lp,λ(Q)

,

Ik ≤
1

2(k−1)(n+2)σ

ˆ

E
2k+1r\E

2kr

(x0,t0)

|F(x, t)|p dx dt

≤ 1

2(k−1)(n+2)σ

ˆ

E
2k+1r

(x0,t0)

|F(x, t)|p dx dt

=
(2k+1r)λ

2(k−1)(n+2)σ

1

(2k+1r)λ

ˆ

E
2k+1r

|F(x, t)|p dx dt

≤ C(n, σ, λ)2k(λ−(n+2)σ)rλ‖F‖p
Lp,λ(Q)

,

which leads to
ˆ

Er(x0,t0)∩Q
|Du|pdx dt ≤ C

(

1 +
∞
∑

k=1

2λ−(n+2)σ

)

rλ‖F‖p
Lp,λ(Q)

.

At this point we choose σ ∈
(

λ
n+2

, 1
)

in order to ensure convergence of the series

above. To get the desired estimate (5.1), it remains to divide the both sides by rλ

and to take supremum with respect to 0 < r < diamQ and (x0, t0) ∈ Q. �

6. Linear parabolic systems in divergence form

The previous results could be easily extended to the case of non-homogeneous
parabolic systems in divergence form

(6.1)

{

ui
t −Dα

(

a
αβ
ij (x, t)Dβu

j
)

= Dαf
i
α(x, t) in Q,

ui(x, t) = 0 on ∂PQ,

for i = 1, . . . , m.

The tensor matrix of the coefficients

A = {aαβij } : Rn+1 → R
mn×mn

is assumed to be uniformly bounded and uniformly parabolic, namely, we suppose
that there exists positive constants L and ν such that

(6.2) ‖A‖L∞(Rn+1,Rmn×mn) ≤ L, a
αβ
ij (x, t)ξ

i
αξ

j
β ≥ ν|ξ|2

for all matrices ξ ∈ Mm×n and for almost every (x, t) ∈ R
n+1.

When the non-homogeneous term F = {f i
α} belongs to L2(Q,Rmn), the Cauchy–

Dirichlet problem (6.1) has a unique weak solution u = (u1, . . . , um) with the stan-
dard L2-estimate

‖Du‖L2(Q,Rnm) ≤ c‖F‖L2(Q,Rnm),

where c is a positive constant depending only on n, m, L, ν and |Q|. In particular,
the weak solution of (6.1) belongs to

H
1
2 (0, T ;L2(Ω,Rm)) ∩ L2(0, T ;H1

0(Ω,R
m)),

and satisfies the estimate

‖u‖
H

1
2 (0,T ;L2(Ω,Rm))∩L2(0,T ;H1

0 (Ω,Rm))
+ ‖Du‖L2(Q,Rmn) ≤ c‖F‖L2(Q,Rmn),

where the constant c is independent of u and F.
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The proofs given in Sections 4 and 5 apply also to the weak solutions of the system
(6.1). That is why, we shall restrict ourselves only to announce the corresponding
regularity results.

Theorem 6.1. Assume (6.2) and let p ∈ (2,∞) and ω ∈ A p

2
. There exists a

small positive constant δ = δ(n,m, L, ν, p, ω) such that if the couple (A,Ω) is (δ, R)-
vanishing of co-dimension 1 and F ∈ Lp

ω(Q,Rmn), then the spatial gradient Du of
the weak solution u to (6.1) lies in Lp

ω(Q,Rmn) and satisfies the estimate

‖Du‖Lp
ω(Q,Rmn) ≤ c‖F‖Lp

ω(Q,Rmn),

with a constant c independent of u and F.

Corollary 6.2. Under the assumptions of Theorem 6.1, there is a small positive
constant δ = δ(n,m, L, ν, p, λ) such that if the couple (A,Ω) is (δ, R)-vanishing of
co-dimension 1 and F ∈ Lp,λ(Q,Rmn) with p ∈ (2,∞) and λ ∈ (0, n + 2), then
Du ∈ Lp,λ(Q,Rmn) and

‖Du‖Lp,λ(Q,Rmn) ≤ c‖F‖Lp,λ(Q,Rmn)

with a constant c independent of u and F.
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