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Abstract. In this paper, we investigate the spectra of invertible weighted composition opera-

tors with automorphism symbols, on Hardy space H2(BN ) and weighted Bergman spaces A2

α(BN ),

where BN is the unit ball of the N -dimensional complex space. By taking N = 1, BN = D the

unit disc, we also complete the discussion about the spectrum of a weighted composition operator

when it is invertible on H2(D) or A2

α(D).

1. Introduction

Let BN be the unit ball in C
N and SN denote the unit sphere. Let H(BN) be

the space of all holomorphic functions on BN . The Hardy space Hp(BN) is the set
of holomorphic functions on BN such that

‖f‖pHp = sup
0<r<1

ˆ

SN

|f(rζ)|p dσ(ζ) <∞,

where dσ is the normalized surface measure on SN . For α > −1, the weighted
Bergman space Apα(BN) is the set of holomorphic functions on BN such that

‖f‖p
Apα

=

ˆ

BN

cα|f(z)|p(1− |z|2)α dv(z) <∞,

where dv is the volume measure on BN and cα is a positive constant chosen so that

dvα(z) = cα(1− |z|2)α dv(z)
is normalized. When taking p = 2, the spaces are Hilbert.

Let ϕ be a holomorphic map from BN into itself and ψ be a holomorphic function
on BN . Then we can define a weighted composition operator on H(BN), by

Cψ,ϕf = ψ · f ◦ ϕ.
By taking ψ ≡ 1 we get the composition operator Cϕ, and when ϕ is identity on D,
we get the analytic Toeplitz operator Tψ.

Weighted composition operators arise naturally in the study of many subjects.
For example, Forelli [9] showed that all surjective isometries of the Hardy space
Hp(D) are weighted composition operators when the space is not Hilbert. A similar
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result on weighted Bergman space Apα(D) is due to Kolaski [17]. It has also been
shown that the commutants of analytic Toeplitz operators whose symbols are finite
Blaschke products are exactly the multiple valued weighted composition operators,
which is defined in [7].

Over the past fifty years, composition operators have been actively investigated
from a various points of view. The recent papers or books such as [4, 3, 5, 6, 8, 12,
13, 18, 19, 20, 21, 22, 23] are good sources for information on the developments about
the theory of (weighted) composition operators.

The spectral properties of weighted composition operators on the spaces of an-
alytic functions on the unit disc D have also been discussed in many papers. Most
of them are originated from the work of Kamowitz in [15, 16], which is still instruc-
tive until now. For a non-automorphic symbol ϕ with a fixed point in D, Aron and
Lindström [2] completely described the spectrum of a weighted composition operator
Cψ,ϕ acting on the weighted Banach spaces of H∞-type.

In 2011, Gajath Gunatillake [11] showed that a weighted composition operator
Cψ,ϕ is invertible on H2(D) if and only if both ψ and 1

ψ
are bounded on D and ϕ

is an automorphism of D. Then he investigated the spectrum of Cψ,ϕ on the space

H2(D) when it is invertible, with an extra hypothesis of the continuity of ψ on D.
He got a complete result when ϕ is either elliptic or parabolic, see Theorem 3.1.1,
Theorem 3.2.1 and Theorem 3.3.1 in [11].

In 2013, Hyvärinen et al [14] generalized Gunatillake’s results into more spaces,
such as Hp(D), Apα(D) and H∞

vp (D). Moreover, for a hyperbolic automorphism ϕ,
they get the spectral radius of Cψ,ϕ. Then they find out the spectrum of Cψ,ϕ in
the case when |ψ(a)/ϕ′(a)s| is no less than |ψ(b)/ϕ′(b)s|, where a is the attractive
fixed point of ϕ, b is the repulsive fixed point of ϕ and s depends on the space. See
theorem 4.9 in [14].

The thing remains is the case when |ψ(a)/ϕ′(a)s| is less than |ψ(b)/ϕ′(b)s|. In
this paper, we continue the discussion in [11, 14] and give the result for this case, as
a corollary of our main results. In fact, the spaces we consider in this paper consist
of functions defined on BN instead of the unit disc D, such as H2(BN) and A2

α(BN).
Then we determine the spectrum of invertible Cψ,ϕ when ϕ is an automorphism of
BN with no fixed point in BN , which are Theorem 3.11 and Theorem 4.7.

Finally, we get Corollary 3.12 as a special case of Theorem 3.11, which give a
complete result about the spectra of invertible Cψ,ϕ on H2(D) and A2

α(D) when ϕ is
hyperbolic.

2. Preliminaries

2.1. Spaces. The spaces being considered throughout the paper are Hp(BN)
and Apα(BN) when p = 2, or equivalently, when they are Hilbert spaces.

Recall that the reproducing kernel or the point evaluation kernel at w of H2(BN)
is (

1

1− 〈z, w〉

)N
,

and its norm is (1− |w|2)−N/2. Also, in A2
α(BN) the kernel for evaluation at w is

(
1

1− 〈z, w〉

)N+1+α

,

and its norm is (1− |w|2)−(N+1+α)/2
.
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Let {β(n)}∞n=0 be a sequence of positive numbers. Then we define H2(β,BN), if
possible, as a Hilbert space, in which the monomials form a complete orthogonal set,
consisting of holomorphic functions on BN such that

‖f‖2 =
∞∑

s=0

β(s)2‖fs‖2H2 <∞,

where f =
∑∞

s=0 fs is the homogeneous expansion of the function.
We are particularly interested in the cases when β(n)2 = (1 + n)1−γ with γ > 1.

When γ = 1, the space H2(β,BN) is exactly H2(BN). When γ > 1, it is not hard to
check by Stirling’s formula that H2(β,BN) and A2

γ−2(BN) consist of same functions,
and the norms on the two spaces are equivalent.

For more details about H2(β,BN), one can turn to Section 2.1 in [8].

Remark 2.1. By the equivalence of the norms, if β(n) = (n+1)1−γ with γ > 1,
then the spectra of a weighted composition on H2(β,BN) and A2

γ−2(BN) are same.
Thus, we may as well equip H2(β,BN) with the norm on A2

γ−2(BN). Hence we can

focus on the spaces H2(β,BN) for β(n) = (n+ 1)1−γ with γ > 1, instead of H2(BN)
and A2

α(BN). Straightforwardly, throughout this paper, by writing H2(β,BN) for
β(n) = (n+ 1)1−γ we just mean H2(BN) when γ = 1 and A2

γ−2(BN) when γ > 1.

Let Kw be the point evaluation kernel at w of H2(β,BN), then according to
Remark 2.1,

Kw(z) =

(
1

1− 〈z, w〉

)2K

,

where K = (N + 1− γ)/2. Also we have

‖Kw‖ =

(
1

1− |w|2
)K

.

2.2. Automorphisms of BN . Let ϕ be an automorphism of BN . If ϕ has no
fixed point in BN , then by Proposition 2.2.9 in [1], ϕ has at least one and at most
two fixed points on SN . Moreover, Theorem 2.83 in [8] shows that ϕk converge to one
of the fixed points uniformly on compact subsets of BN . We call it the Denjoy–Wolff
point of ϕ. Thus an automorphism ϕ of BN with no fixed point in BN falls into one
of the two classes below:

ϕ fixes two distinct points on SN . Then one of the fixed points is the Denjoy–
Wolff point of ϕ.
ϕ fixes one point on SN . Then the only fixed point is the Denjoy–Wolff point
of ϕ.

Note that the two classes above are exactly the generalization of hyperbolic and
parabolic automorphisms of the unit disk D respectively. We will treat the two cases
separately in this paper.

For any automorphism ϕ of BN we have

1− |ϕ(z)|2 = (1− |z|2)(1− |a|2)
|1− 〈z, a〉|2 .

This equation will be used repeatedly.
For any two points z and w in BN , define d(z, w) = |ϕw(z)|, where ϕw is the the

involutive automorphism that exchange 0 and a. Then d(·, ·) gives a metric on BN .
We call it the pseudo-hyperbolic metric of BN and d(z, w) is the pseudo-hyperbolic
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distance between z and w. It is easy to check that the pseudo-hyperbolic distance is
invariant under automorphisms of BN , that is,

d(ϕ(z), ϕ(w)) = d(z, w)

whenever ϕ is an automorphism of BN . Moreover, we have

1− d(z, w)2 =
(1− |z|2)(1− |w|2)

|1− 〈z, w〉|2 .

Let ϕ be a holomorphic map from BN into itself. We use ϕk denote the k-th
iterate of ϕ for k ∈ N. If ϕ is an automorphism of BN , ϕ is invertible. Then we
define ϕ−k as the k-th iterate of ϕ−1 for k ∈ N. When k = 0, we set ϕ0 be the
identity map on BN . We use Aut(BN) to denote the set of all automorphisms of BN

throughout the paper.

2.3. Weighted composition operators. Here we list some basic facts about
the weighted composition operators. They are the fundamental of our discussion.
All the facts can be checked easily.

Proposition 2.2. Suppose Cψ1,ϕ1 and Cψ2,ϕ2 are bounded on H2(β,BN), then

Cψ1,ϕ1Cψ2,ϕ2 is also a weighted composition operator on H2(β,BN).

Let ϕ be a holomorphic map from BN into itself and ψ be a holomorphic function
on BN . We define

ψ(k) =

k−1∏

j=0

ψ ◦ ϕj

for k ∈ N
∗. Then according to Proposition 2.2, we can check easily that

Cn
ψ,ϕ = Cψ(n),ϕn .

For a holomorphic function ψ on BN , we say ψ is bounded away from zero if
infz∈BN |ψ(z)| > 0. Note that ψ is bounded away from zero on BN if and only if 1

ψ

is bounded on BN .

Proposition 2.3. Suppose ϕ is an automorphism of BN , then Cψ,ϕ is invertible

on H2(β,BN) if and only if ψ is both bounded and bounded away from zero on BN .

Proof. Since ϕ is an automorphism of BN , then the composition operator Cϕ
is invertible on H2(β,BN), and C−1

ϕ = Cϕ−1 . So if Cψ,ϕ is invertible on H2(β,BN),

then Cψ,ϕC
−1
ϕ is also invertible on H2(β,BN). However, Cψ,ϕC

−1
ϕ = Mψ, which is

the multiplication induced by ψ. Thus the invertibility of Mψ shows that ψ is both
bounded and bounded away from zero on BN .

On the other hand, if ψ is both bounded and bounded away from zero on BN ,
then 1

ψ◦ϕ−1 is bounded on BN . So C 1
ψ◦ϕ−1 ,ϕ

−1 is bounded on H2(β,BN). Then by

Proposition 2.2, we have

C−1
ψ,ϕC 1

ψ◦ϕ−1 ,ϕ
−1 = C 1

ψ◦ϕ−1 ,ϕ
−1C−1

ψ,ϕ = I.

Thus we have
C−1
ψ,ϕ = C 1

ψ◦ϕ−1 ,ϕ
−1. �

In most situations we require that ψ is continuous up to the SN . So throughout
this paper, we always consider the weighted composition operator Cψ,ϕ such that ϕ
is an automorphism of BN and ψ ∈ A(BN) is bounded away from zero. Here A(BN)
denotes the set of functions that are holomorphic on BN and continuous up to the
boundary SN .
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If ϕ is an automorphism of BN and ψ ∈ A(BN) is bounded away from zero, we
also define

ψ(−k) =

k∏

j=1

1

ψ ◦ ϕ−k

for k ∈ N. When k = 0, we set ψ(0) = 1.

Remark 2.4. Another useful observation of Cψ,ϕ is that we can write

Cψ,ϕ =MψCϕ

whenever ϕ is an automorphism of BN and ψ ∈ A(BN).

The next proposition is about the adjoint operator of Cψ,ϕ. We also omit the
proof here since its quite simple.

Proposition 2.5. Suppose Cψ,ϕ is bounded on H2(β,BN). Then we have

C∗
ψ,ϕKz = ψ(z)Kϕ(z)

for all z ∈ BN .

2.4. Some other notations. Let z be a point in C
N , we will write

z = (z[1], z[2], . . . , z[N ]),

where z[j] is the j-th component of z. Also we will let z′ denote the last N − 1
components of z, that is, z = (z[1], z′) and

z′ = (z[2], z[3], . . . , z[N ]) ∈ C
N−1.

By writing e1 we mean the point (1, 0′), whose first component is 1 and other com-
ponents are 0.

Fix a ϕ ∈ Aut(BN), we call the sequence of points {zk}+∞
k=−∞ an iteration sequence

for ϕ if zk+1 = ϕ(zk) for all k ∈ Z. For a operator T on a Hilbert space, we use σ(T )
denote the spectrum of T and r(T ) denote the spectral radius of T .

3. Automorphisms with no fixed point in BN and two fixed points on SN

3.1. Preparations. First, we assume temporarily that the Denjoy–Wolff point
of ϕ is e1 = (1, 0′) and the other fixed points of ϕ is −e1 = (−1, 0′). The next lemma
shows that this can benefit us much in simplifying the calculation.

Lemma 3.1. Suppose ϕ ∈ Aut(BN) fixes the points e1 and −e1 only, with

Denjoy–Wolff point e1. Then

ϕ(z) =

(
z[1] + s

1 + sz[1]
, U

√
1− s2z′

1 + sz[1]

)

for some U unitary on C
N−1 and s ∈ (0, 1).

Proof. Let

M =
{
(z[1], z′) ∈ BN : z′ = 0

}
.

Note that M is the only affine subset in BN of dimension 1 that contains e1 and
−e1. Since the image of any affine subset in BN under ϕ is also an affine subset in
BN of the same dimension (see Theorem 2.74 in [8]), ϕ acts as an automorphism
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when it is restricted on M. So ϕ−1(0) belongs to M. Thus we can write ϕ−1(0) as
a = (ξ, 0′) for some ξ ∈ D. Then

ϕa(z) =

(
ξ − z[1]

1− ξz[1]
,
−
√

1− |ξ|2z′
1− ξz[1]

)

gives the involutive automorphism that exchange 0 and a. So φ = ϕ ◦ ϕa is an
automorphism that fixes the point 0, hence a unitary map. Moreover, since M is
invariant under ϕ and ϕa, it is also invariant under φ, which means that

φ(z) = (eiθz[1], V z′)

for some θ ∈ R and V unitary on C
N−1. Therefore

ϕ(z) = φ ◦ ϕa(z) =
(
eiθ

ξ − z[1]

1− ξz[1]
,−V

√
1− |ξ|2z′
1− ξz[1]

)
.

By using the conditions ϕ(e1) = e1 and ϕ(−e1) = −e1, we get the following
equations {

eiθ(ξ − 1) = 1− ξ,

eiθ(ξ + 1) = −1 − ξ.

So we have eiθ = −1 and ξ = ξ ∈ R. By taking U = −V and s = −ξ, we get the
expected expression of ϕ.

Finally, since e1 is the Denjoy–Wolff point of ϕ,

∂ϕ[1]

∂z[1]
(e1) =

1− s

1 + s
< 1.

Thus we have s ∈ (0, 1). �

Remark 3.2. The lemma above shows that if ϕ ∈ Aut(BN) fixes the points e1
and −e1 only, with Denjoy–Wolff point e1, then

ϕ[1](z) =
z[1] + s

1 + sz[1]

for some s ∈ (0, 1). It is trivial to check that the inverse is also true.

The next lemma is just a restatement of some familiar results by our notations.

Lemma 3.3. Suppose ϕ ∈ Aut(BN) fixes the points e1 and −e1 only, with

Denjoy–Wolff point e1. Then

dv(ϕ(z)) =

(
∂ϕ[1]

∂z[1]
(z)

)N+1

dv(z)

for all z in BN and

dσ(ϕ(ζ)) =

(
∂ϕ[1]

∂z[1]
(ζ)

)N
dσ(ζ)

for all ζ on SN .

Proof. By Remark 3.2, we can find U unitary on C
N−1 and s ∈ (0, 1) such that

ϕ(z) =

(
z[1] + s

1 + sz[1]
, U

√
1− s2z′

1 + sz[1]

)
.
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Then by a simple computation we get

ϕ′(z) =

(
1−s2

(1+sz[1])2
0

0
√
1−s2

1+sz[1]
U

)
.

So

detϕ′(z) =

(
1− s2

(1 + sz[1])2

)(N+1)/2

=

(
∂ϕ[1]

∂z[1]
(z)

)(N+1)/2

.

Therefore we have

dv(ϕ(z)) = | detϕ′(z)|2 dv(z) =
(
∂ϕ[1]

∂z[1]
(z)

)N+1

dv(z).

Since ϕ is holomorphic in a neighbourhood of BN , the equation above also holds
for any ζ on SN . Thus in polar coordinate we can write

dr(ϕ(ζ)) dσ(ϕ(ζ)) =

(
∂ϕ[1]

∂z[1]
(ζ)

)N+1

dr(ζ) dσ(ζ).

However,

dr(ϕ(ζ))

dr(ζ)
= lim

w→ζ

1− |ϕ(w)|
1− |w| = lim

w→ζ

1− |ϕ(w)|2
1− |w|2 = lim

w→ζ

∂ϕ[1]

∂z[1]
(w) =

∂ϕ[1]

∂z[1]
(ζ).

So

dσ(ϕ(ζ)) =

(
∂ϕ[1]

∂z[1]
(ζ)

)N
dσ(ζ). �

In order to generalize our discussion to the cases when the fixed points of ϕ are
not ±e1, the next lemma is also needed.

Lemma 3.4. Suppose ϕ ∈ Aut(BN), with no fixed point in BN , has two distinct

fixed points a 6= b on SN and a is the Denjoy–Wolff point of ϕ. Then we can find

φ ∈ Aut(BN) such that

φ ◦ ϕ ◦ φ−1(z) =

(
z[1] + s

1 + sz[1]
, U

√
1− s2z′

1 + sz[1]

)

for some U unitary on C
N−1 and s ∈ (0, 1). Moreover, the spectral radius of the

matrixs ϕ′(a)−1 and ϕ′(b) are both 1+s
1−s

Proof. According to Corollary 2.2.5 in [1], we can find φ ∈ Aut(BN) such that
φ(a) = e1 and φ(b) = −e1. Then ϕ̂ = φ ◦ ϕ ◦ φ−1 is an automorphism of BN that
fixes ±e1 only, and the Denjoy–Wolff point of ϕ̂ is e1. Thus by Lemma 2.1 we can
write

ϕ̂(z) =

(
z[1] + s

1 + sz[1]
, U

√
1− s2z′

1 + sz[1]

)

for some U unitary on C
N−1 and s ∈ (0, 1).

Since both ϕ and φ are holomorphic in a neighbourhood of BN , we have

ϕ̂′(e1) = φ′(a) · ϕ′(a) · (φ−1)′(e1) = φ′(a) · ϕ′(a) · φ′(a)−1.

So ϕ′(a), as a matrix, is similar to ϕ̂′(e1). Likewise, ϕ′(b) is similar to ϕ̂′(−e1).
By a simple computation, we get

ϕ̂′(e1) =

(
1−s
1+s

0

0
√

1−s
1+s

U

)
and ϕ̂′(−e1) =

(
1+s
1−s 0

0
√

1+s
1−sU

)
.
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Since U is unitary, 1+s
1−s is the spectral radius of ϕ̂′(−e1) and ϕ̂′(e1)

−1, hence by the

similarity, is also the spectral radius of ϕ′(b) and ϕ′(a)−1. �

3.2. Spectral radius. In this section, we find out the spectral radius of Cψ,ϕ
by, of course, estimating the norm of Cn

ψ,ϕ = Cψ(n),ϕn. For this purpose, we will turn
to the Siegel upper half space. Recall that the Siegel upper half space HN is defined
by

HN = {w ∈ C
N : Im w[1] > |w′|2},

and the Cayley transform Φ given by

Φ(z) = i
e1 + z

1− z[1]

is a biholomorphism between BN andHN . Moreover, Φ extends to a homeomorphism
of BN onto HN ∪ ∂HN ∪ {∞}.

If ϕ fixes the points e1 and −e1 only, then σ = Φ ◦ ϕ ◦Φ−1 is a automorphism of
HN that fixs 0 and ∞ only. By Proposition 2.2.11 in [1], we can write

σ(w) = (r2w[1], rUw′)

where U is unitary on C
N−1 and 0 < r < 1.

Suppose ψ ∈ A(BN) is bounded away from zero, then for any ǫ > 0 we can find
neighborhoods V1 and V2 of e1 and −e1 respectively such that

|ψ(z)| 6 (1 + ǫ)max{|ψ(e1)|, |ψ(−e1)|}
for all z ∈ (V1 ∪ V2)∩SN . Since Φ(e1) = 0 and Φ(−e1) = ∞, we can find R > 1 such
than {w ∈ ∂HN : |w| < 1

R
} ⊂ Φ(V1 ∩ SN) and {w ∈ ∂HN : |w| > R} ⊂ Φ(V2 ∩ SN).

By noticing that|σ(w)| 6 r|w|, there exist n0 ∈ N such that

σn(w) ∈ {w ∈ ∂HN : |w| < 1

R
} ⊂ Φ(V1 ∩ SN)

whenever n > n0 and

w ∈ Φ (SN\(V1 ∪ V2)) ⊂ {w ∈ ∂HN :
1

R
6 |w| 6 R},

which means that ϕn(z) ∈ V1 ∩ SN whenever z ∈ SN\(V1 ∪ V2). So for all z ∈ SN , at
most n0 elements of the set {ϕj(z) : j = 0, 1, 2, . . .} are not contained in (V1∪V2)∩SN .
Thus for n > n0,

‖ψ(n)‖∞ = max
|z|=1

(
n−1∏

j=0

|ψ ◦ ϕj(z)|
)

6 ‖ψ‖n0
∞ [(1 + ǫ)max{|ψ(e1)|, |ψ(−e1)|}]n−n0 .

By the arbitrariness of ǫ,

lim
n→∞

‖ψ(n)‖1/n∞ 6 max{|ψ(e1)|, |ψ(−e1)|}.

However, since ψ(n)(e1) = ψ(e1)
n and ψ(n)(−e1) = ψ(−e1)n, we have

‖ψ(n)‖1/n∞ > max{|ψ(e1)|, |ψ(−e1)|}.
Thus we can get

lim
n→∞

‖ψ(n)‖1/n∞ = max{|ψ(e1)|, |ψ(−e1)|}.

This limitation plays a critical role in our next lemma.
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Lemma 3.5. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. Then the spectral radius of Cψ,ϕ on

H2(β,BN), for β(n) = (n + 1)1−γ with γ > 1, is no larger than

max

{
|ψ(e1)|

(
1 + s

1− s

)K
, |ψ(−e1)|

(
1− s

1 + s

)K}
,

where K = (N − 1 + γ)/2.

Proof. For any fixed n ∈ N,

ψ(n) =
n−1∏

j=0

ψ ◦ ϕj =



n−1∏

j=0

ψ ◦ ϕj(
∂ϕ[1]

∂z[1]
◦ ϕj

)K



(
n−1∏

j=0

∂ϕ[1]

∂z[1]
◦ ϕj

)K

=

(
n−1∏

j=0

ψ

(∂ϕ[1]/∂z[1])
K

◦ ϕj
)(

∂ϕ
[1]
n

∂z[1]

)K

.

Let

υ =
ψ

(∂ϕ[1]/∂z[1])
K
, ν =

(
∂ϕ

[1]
n

∂z[1]

)K

,

then ψ(n) = υ(n) · ν. So

‖Cn
ψ,ϕ‖1/n = ‖Cψ(n),ϕn‖1/n = ‖Mυ(n)Cν,ϕn‖1/n 6 ‖υ(n)‖1/n∞ · ‖Cν,ϕn‖1/n

Since υ ∈ A(BN) is bounded away from zero, the argument before the theorem shows
that

lim
n→∞

‖υ(n)‖1/n∞ = max {|υ(e1)|, |υ(−e1)|}

= max

{
|ψ(e1)|

(
1 + s

1− s

)K
, |ψ(−e1)|

(
1− s

1 + s

)K}
.

Now we estimate the norm of Cν,ϕn , we treat the situations whether γ = 1 or not
separately. When γ = 1, the space is H2(BN). So for any f in the space,

‖Cν,ϕnf‖2 =
ˆ

SN

|f ◦ ϕn(z)|2|ν(z)|2 dσ(z) =
ˆ

SN

|f ◦ ϕn(z)|2
∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

N

dσ(z).

Since ϕn also fixes ±e1 only, by taking w = ϕn(z), Lemma 3.3 shows that

‖Cν,ϕnf‖2 =
ˆ

SN

|f(w)|2dσ(w) = ‖f‖2.

Thus we have ‖Cν,ϕn‖ = 1.
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When γ > 1, H2(β,BN) is equipped with the norm on the weighted Bergman
space A2

γ−2(BN). So for any f ∈ H2(β,BN),

‖Cν,ϕnf‖2 =
ˆ

BN

cγ−2|f ◦ ϕn(z)|2|ν(z)|2(1− |z|2)γ−2 dv(z)

=

ˆ

BN

cγ−2|f ◦ ϕn(z)|2(1− |z|2)γ−2

∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

N−1+γ

dv(z)

=

ˆ

BN

cγ−2|f ◦ ϕn(z)|2(1− |ϕn(z)|2)γ−2

∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

N+1

dv(z).

The last equality above follows from the fact that
∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣ =
1− |ϕn(z)|2
1− |z|2 .

Again by Lemma 3.3, taking w = ϕn(z) we get

‖Cν,ϕnf‖2 =
ˆ

BN

cγ−2|f(w)|2(1− |w|2)γ−2 dv(w) = ‖f‖2.

Thus for any n ∈ N
∗ and γ > 1, the norm of Cν,ϕn on H2(β,BN) is 1. So

r(Cψ,ϕ) = lim
n→∞

‖Cn
ψ,ϕ‖1/n 6 lim

n→∞
‖υ(n)‖1/n∞ · ‖Cν,ϕn‖1/n

= max

{
|ψ(e1)|

(
1 + s

1− s

)K
, |ψ(−e1)|

(
1− s

1 + s

)K}
. �

Corollary 3.6. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. Then the spectrum of Cψ,ϕ onH2(β,BN),
for β(n) = (n+ 1)1−γ with γ > 1, is contained in the annulus

{
λ : min

{
|ψ(e1)|ρK , |ψ(−e1)|ρ−K

}
6 λ 6 max

{
|ψ(e1)|ρK , |ψ(−e1)|ρ−K

}}

where ρ = 1+s
1−s and K = (N − 1 + γ)/2.

Proof. By Lemma 3.5, the spectrum of Cψ,ϕ is contained in the disk
{
λ : |λ| 6 max

{
|ψ(e1)|ρK , |ψ(−e1)|ρ−K

}}
.

In order to determine the inner radius, let

ϕ̂ = φ ◦ ϕ−1 ◦ φ−1 , ψ̂ =
1

ψ ◦ ϕ−1
◦ φ−1,

where φ(z) = −z. Then it is easy to check that

ϕ̂[1](z) = ϕ[1](z) =
z[1] + s

1 + sz[1]

and ψ̃ ∈ A(BN) is also bounded away from zero. Moreover, since

C−1
ψ,ϕ = C 1

ψ◦ϕ−1 ,ϕ
−1,
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for any f ∈ H2(β,BN),

C−1
φ C−1

ψ,ϕCφ(f) = ψ̂ · f ◦ ϕ̂ = Cψ̂,ϕ̂(f).

Thus C−1
ψ,ϕ is similar to Cψ̂,ϕ̂. So the spectrum of C−1

ψ,ϕ, which is also the spectrum
of Cψ̂,ϕ̂, is contained in the disk

{
λ : |λ| 6 max

{
|ψ̂(e1)|ρK , |ψ̂(−e1)|ρ−K

}}

=

{
λ : |λ| 6 max

{
1

|ψ(−e1)|
ρK ,

1

|ψ(e1)|
ρ−K

}}
.

This means that the spectrum of Cψ,ϕ is contained in the set
{
λ : |λ| > min

{
|ψ(e1)|ρK , |ψ(−e1)|ρ−K

}}
. �

3.3. The spectra. Next lemma shows that the composition operators we
consider here are circularly symmetric.

Lemma 3.7. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. If λ ∈ σ(Cψ,ϕ), then for any θ ∈ R,

eiθλ ∈ σ(Cψ,ϕ).

Proof. By the proof of Theorem 7.21 in [8], for any θ ∈ R we can found f ∈
H∞(D) bounded away from zero such that

f ◦ ϕ[1](z[1], 0′) = eiθf(z[1])

for all z[1] ∈ D. Now let
F (z[1], z′) = f(z[1]),

then F ∈ H∞(BN) and F is also bounded away from zero. Moreover, we have that

F ◦ ϕ(z[1], z′) = f ◦ ϕ[1](z[1], z′) = f ◦ ϕ[1](z[1], 0′) = eiθf(z[1]) = eiθF (z[1], z′).

So for any g ∈ H2(BN),

M−1
F Cψ,ϕMF (g) =M−1

F MψCϕMF (g) =MψM
−1
F ((F ◦ ϕ) · (g ◦ ϕ))

= eiθMψ(g ◦ ϕ) = eiθCψ,ϕ(g).

Therefore Cψ,ϕ is similar to eiθCψ,ϕ. Thus by the spectral mapping theorem and the
fact that similar operators have the same spectrum, we come to the conclusion. �

Corollary 3.8. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. Let β(n) = (n + 1)1−γ with γ > 1. If

|ψ(−e1)|
(
1− s

1 + s

)K
= |ψ(e1)|

(
1 + s

1− s

)K
,

where K = (N − 1 + γ)/2, then the spectrum of Cψ,ϕ on H2(β,BN) is the circle
{
λ : |λ| = |ψ(−e1)|

(
1− s

1 + s

)K
= |ψ(e1)|

(
1 + s

1− s

)K}
.
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Proof. Since the spectrum of Cψ,ϕ can not be empty, the conclusion follows
directly from Corollary 3.6 and Lemma 3.7. �

Lemma 3.9. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. Let β(n) = (n + 1)1−γ with γ > 1. If

|ψ(−e1)|
(
1− s

1 + s

)K
6 |ψ(e1)|

(
1 + s

1− s

)K

where K = (N − 1 + γ)/2, then the spectrum of Cψ,ϕ on H2(β,BN) is
{
λ : |ψ(−e1)|

(
1− s

1 + s

)K
6 |λ| 6 |ψ(e1)|

(
1 + s

1− s

)K}
.

Moreover, each interior point of the annulus belongs to the point spectrum of Cψ,ϕ.

Proof. Suppose λ ∈ C satisfies

|ψ(−e1)|
(
1− s

1 + s

)K
< |λ| < |ψ(e1)|

(
1 + s

1− s

)K
.

Then we can take R1 and R2 such that

|ψ(−e1)|
(
1− s

1 + s

)K
< R1 < |λ| < R2 < |ψ(e1)|

(
1 + s

1− s

)K
.

Since 1−s
1+s

< 1, we can find p > 0 such that

|ψ(e1)|
(
1 + s

1− s

)−p
< R1 and |ψ(−e1)|

(
1− s

1 + s

)−p
> R2.

Define

g(z) = (1− z[1])p · (1 + z[1])p.

Now let zk = ϕk(0) for k ∈ Z. Since

ϕ[1](z) =
z[1] + s

1 + sz[1]
,

by Theorem 2.6.5 in [8], {z[1]k }+∞
k=−∞ is a interpolating sequence for H∞(D). So we

can find f ∈ H∞(D) such that |f(z[1]k )| = 1 and

λ−k · ψ(k)(0) · g(zk) · f(z[1]k ) > 0

for all k ∈ Z. Define

F (z) = f(z[1]), z ∈ BN ,

then F ∈ H∞(BN). Also |F (zk)| = 1 and

λ−k · ψ(k)(0) · g(zk) · F (zk) > 0.

Let

h =

+∞∑

k=−∞
λ−k · ψ(k) · g ◦ ϕk · F ◦ ϕk = gF +

+∞∑

k=1

(h+k + h−k ),
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where

h+k = λ−k

(
k−1∏

j=0

ψ ◦ ϕj
)

· g ◦ ϕk · F ◦ ϕk

and

h−k = λk

(
k∏

j=1

1

ψ ◦ ϕ−j

)
· g ◦ ϕ−k · F ◦ ϕ−k.

Then we have

h(0) =
+∞∑

k=−∞
λ−k · ψ(k)(0) · g(zk) · F (zk) > 0,

so h 6= 0. Also it is easy to check that

(Cψ,ϕ − λI)h = 0.

Thus we have λ belongs to the point spectrum of Cψ,ϕ if we can show that h converges
in H2(β,BN).

For this end, what we should do is almost the same as what have been done in
the proof of Theorem 4.9 in [14]. Note that

h+k = λ−k · Ck
ψ,ϕ(gF ) and h−k = λk · C−k

ψ,ϕ(gF ),

so we just need to estimate the norm of Ck
ψ,ϕ(gF ) and C−k

ψ,ϕ(gF ) for k ∈ N. Con-
sidering the length of our proof, we will only present the details for γ > 1. When
γ = 1, one can get the conclusion in exactly the same way and the calculation is even
simpler.

When γ > 1, H2(β,BN) is equipped with the norm on the weighted Bergman
space A2

γ−2(BN). Since

|ψ(−e1)|
(
1− s

1 + s

)K
= |ψ(−e1)|

∣∣∣∣
∂ϕ[1]

∂z[1]
(−e1)

∣∣∣∣
−K

< R1,

we can find a neighbourhood U of −e1 such that for all z ∈ U ∩BN we have

|ψ(z)| 6 R1

∣∣∣∣
∂ϕ[1]

∂z[1]
(z)

∣∣∣∣
K

.

Denote U0 = U ∩BN and Un = {z ∈ Un−1 : ϕn(z) ∈ U0} for n ∈ N. Then

‖Ck
ψ,ϕ(gF )‖2 = cγ−2

ˆ

BN

|ψ(k)(z)g(ϕk(z))F (ϕk(z))|2(1− |z|2)γ−2 dv(z)

6 cγ−2‖F‖2∞
ˆ

Uk−1

|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2 dv(z)

+ cγ−2‖F‖2∞
ˆ

BN\Uk−1

|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2 dv(z).

When z ∈ Uk−1, we have ϕj(z) ∈ U0 for j = 0, 1, . . . , k − 1. So

|ψ(k)(z)| 6 Rk
1

k−1∏

j=0

∣∣∣∣
∂ϕ[1]

∂z[1]
(ϕj(z))

∣∣∣∣
K

= Rk
1

∣∣∣∣∣
∂ϕ

[1]
k

∂z[1]
(z)

∣∣∣∣∣

K

.
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Then by Lemma 3.3 we have
ˆ

Uk−1

|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2 dv(z)

6 R2k
1

ˆ

Uk−1

∣∣∣∣∣
∂ϕ

[1]
k

∂z[1]
(z)

∣∣∣∣∣

2K

|g(ϕk(z))|2(1− |z|2)γ−2 dv(z)

= R2k
1

ˆ

Uk−1

|g(ϕk(z))|2(1− |ϕk(z)|2)γ−2

∣∣∣∣∣
∂ϕ

[1]
k

∂z[1]
(z)

∣∣∣∣∣

N+1

dv(z)

6 R2k
1

ˆ

BN

|g(w)|2(1− |w|2)γ−2 dv(w) = R2k
1 ‖g‖2.

For n 6 k − 1 and z ∈ Un−1\Un, we have ϕj(z) ∈ U0 for j = 0, 1, . . . , n− 1. So

|ψ(k)(z)| 6 Rn
1

n−1∏

j=0

∣∣∣∣
∂ϕ[1]

∂z[1]
(ϕj(z))

∣∣∣∣
K

|ψ(k−n)(ϕn(z))| = Rn
1

∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

K

|ψ(k−n)(ϕn(z))|.

Then again by Lemma 3.3 we have
ˆ

Un−1\Un
|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2 dv(z)

6 22pR2n
1

ˆ

Un−1\Un

∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

2K

|ψ(k−n)(ϕn(z))|2|1− ϕ
[1]
k (z)|2p(1− |z|2)γ−2 dv(z)

= 22pR2n
1

ˆ

Un−1\Un
|ψ(k−n)(ϕn(z))|2|1− ϕ

[1]
k (z)|2p(1− |ϕn(z)|2)γ−2

∣∣∣∣∣
∂ϕ

[1]
n

∂z[1]
(z)

∣∣∣∣∣

N+1

dv(z)

6 22pR2n
1

ˆ

BN\U0

|ψ(k−n)(w)|2|1− ϕ
[1]
k−n(w)|2p(1− |w|2)γ−2 dv(w).

So
ˆ

BN\Uk−1

|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2 dv(z)

6

k−1∑

n=0

22pR2n
1

ˆ

BN\U0

|ψ(k−n)(z)|2|1− ϕ
[1]
k−n(z)|2p(1− |z|2)γ−2 dv(z)

=
k∑

n=1

22pR
2(k−n)
1

ˆ

BN\U0

|ψ(n)(z)|2|1− ϕ[1]
n (z)|2p(1− |z|2)γ−2 dv(z).

Since

lim
n→∞

(
|ψ(n)(z)| · |1− ϕ[1]

n (z)|p
)1/n

= lim
n→∞

∣∣∣∣∣

n−1∏

j=0

ψ(ϕj(z))

(
1− ϕ

[1]
j+1(z)

1− ϕ
[1]
j (z)

)p∣∣∣∣∣

1/n

= |ψ(e1)|
(
1− s

1 + s

)p
< R1,

we can find M > 0 such that

|ψ(n)(z)‖1 − ϕ[1]
n (z)|p < Rn

1
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whenever n >M . So for k > M we have
ˆ

BN\Uk−1

|ψ(k)(z)|2|g(ϕk(z))|2(1− |z|2)γ−2dv(z)

=
M∑

n=1

22pR
2(k−n)
1

ˆ

BN\U0

|ψ(n)(z)|2|1− ϕ[1]
n (z)|2p(1− |z|2)γ−2 dv(z)

+

k∑

n=M+1

22pR2k
1

ˆ

BN\U0

(1− |z|2)γ−2dv(z)

6

M∑

n=1

22pR
2(k−n)
1 ‖Cn

ψ,ϕ(1− z[1])p‖2 + (k −M)22pR2k
1

ˆ

BN\U0

(1− |z|2)γ−2 dv(z)

6 c1kR
2k
1 + c2R

2k
1 ,

where c1 and c2 are positive constants. So

‖Ck
ψ,ϕ(gF )‖2 = cγ−2

ˆ

BN

|ψ(k)(z)g(ϕk(z))F (ϕk(z))|2(1− |z|2)γ−2 dv(z)

6 cγ−2‖F‖2∞(c1k + c2 + ‖g‖2)R2k
1 ,

and

‖h+k ‖2 = |λ−2k| · ‖Ck
ψ,ϕ(g · F )‖2 6 cγ−2‖F‖2∞(c1k + c2 + ‖g‖2)

(
R1

|λ|

)2k

Since R1 < |λ|, we have
∑∞

k=0 h
+
k converges in H2(β,BN).

On the other hand, by considering ϕ−1 and 1
ψ◦ϕ−1

instead of ϕ and ψ, we can get

that
∑∞

k=0 h
−
k also converges in H2(β,BN). Thus h is well defined. �

Lemma 3.10. Suppose ϕ ∈ Aut(BN) where

ϕ[1](z) =
z[1] + s

1 + sz[1]
, 0 < s < 1

and ψ ∈ A(BN) is bounded away from zero. Let β(n) = (n + 1)1−γ with γ > 1. If

|ψ(e1)|
(
1 + s

1− s

)K
6 |ψ(−e1)|

(
1− s

1 + s

)K
,

where K = (N − 1 + γ)/2, then the spectrum of Cψ,ϕ on H2(β,BN) is
{
λ : |ψ(e1)|

(
1 + s

1− s

)K
6 |λ| 6 |ψ(−e1)|

(
1− s

1 + s

)K}
.

Moreover, each interior point of the annulus belongs to the point spectrum of C∗
ψ,ϕ.

Proof. Let zk = ϕk(0) for k ∈ Z. Then

lim
k→+∞

zk = e1, lim
k→−∞

zk = −e1

Let gk =
Kzk

‖Kzk‖
where Kzk denote the kernel for evaluation at zk in H2(β,BN). Then

by Proposition 2.5,

C∗
ψ,ϕgk = ukgk+1,
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where

uk = ψ(zk)
‖Kzk+1

‖
‖Kzk‖

= ψ(zk)

(
1− |zk|2
1− |zk+1|2

)K
.

A simple calculation shows that

1− |zk+1|2
1− |zk|2

=

∣∣∣∣
∂ϕ[1]

∂z[1]
(zk)

∣∣∣∣ ,

so we have

lim
k→+∞

|uk| = |ψ(e1)| · lim
k→+∞

∣∣∣∣
∂ϕ[1]

∂z[1]
(zk)

∣∣∣∣
−K

= |ψ(e1)|
∣∣∣∣
∂ϕ[1]

∂z[1]
(zk)

∣∣∣∣
−K

= |ψ(e1)|
(
1 + s

1− s

)K
.

Also we have

lim
k→−∞

|uk| = |ψ(−e1)|
(
1− s

1 + s

)K
.

Now suppose λ ∈ C satisfies

|ψ(e1)|
(
1 + s

1− s

)K
< |λ| < |ψ(−e1)|

(
1− s

1 + s

)K

and let

h = g0 +
+∞∑

j=1

(ajgj + bjg−j) ,

where

aj = λ−j
j−1∏

k=0

uk, bj = λj
−1∏

k=−j

1

uk
.

Since limk→∞
∣∣uk
λ

∣∣ < 1, we can find q ∈ (0, 1) and n0 ∈ N
∗ such that

|an| = |λ−n
n−1∏

k=0

uk| < qn

when n > n0. Thus we have
∑+∞

j=1 |aj| < ∞. Also by limk→∞

∣∣∣ λuk
∣∣∣ < 1, we have

∑+∞
j=1 |bj | <∞. So h is well defined in H2(β,BN). It is easy to check that

(C∗
ψ,ϕ − λI)h = 0,

therefore we have λ belongs to the point spectrum of C∗
ψ,ϕ if we can show h 6= 0.

Again by Theorem 2.6.5 in [8], {z[1]k }+∞
k=−∞ is a interpolating sequence for H∞(D).

So we can find f ∈ H∞(D) such that f(0) = 1 and f(z
[1]
k ) = 0 when k 6= 0. Let

F (z) = f(z[1]), z ∈ BN .

Then F ∈ H∞(BN) ⊂ H2(β,BN). Also F (0) = 1 and F (zk) = 0 when k 6= 0. So

〈F, hλ〉 = 〈F, g0〉 =
F (0)

‖Kz0‖
= 1.

Thus we have h 6= 0. So λ belongs to the point spectrum of C∗
ψ,ϕ. Along with

Corollary 3.6, we get our conclusion. �

Now we are ready to generalize our result to the cases when the fixed points of
ϕ are not necessarily ±e1.
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Theorem 3.11. Suppose ϕ ∈ Aut(BN), with no fixed point in BN , has two

distinct fixed points a 6= b on SN and a is the Denjoy–Wolff point of ϕ. Let ψ ∈
A(BN) be bounded away from zero. Then the spectrum of Cψ,ϕ on H2(β,BN), for

β(n) = (n+ 1)1−γ with γ > 1, is
{
λ : min{|ψ(a)|ρK , |ψ(b)|ρ−K} 6 λ 6 max{|ψ(a)|ρK , |ψ(b)|ρ−K}

}
,

where K = (N − 1 + γ)/2 and ρ is the spectral radius of the matrix ϕ′(a)−1.

Proof. By lemma 2.4, we can find φ ∈ Aut(BN) such that

φ ◦ ϕ ◦ φ−1(z) =

(
z[1] + s

1 + sz[1]
, U

√
1− s2z′

1 + sz[1]

)
,

where U is unitary on C
N−1 and 0 < s < 1. Also, we have

ρ =
1 + s

1− s
.

Now let ϕ̂ = φ ◦ ϕ ◦ φ−1 and ψ̂ = ψ ◦ φ−1. Then for any f ∈ H2(β,BN),

C−1
φ Cψ,ϕCφ(f) = C−1

φ Cψ,ϕ(f ◦ φ) = C−1
φ (ψ · f ◦ φ ◦ ϕ)

= ψ ◦ φ−1 · f ◦ φ ◦ ϕ ◦ φ−1 = ψ̂ · f ◦ ϕ̂ = Cψ̂,ϕ̂.

So Cψ,ϕ is similar to Cψ̂,ϕ̂, hence

σ(Cψ,ϕ) = σ(Cψ̂,ϕ̂).

Since ψ̂ ∈ A(BN) is also bounded away from zero, the results follow directly from
Corollary 3.8, Lemma 3.9 and Lemma 3.10. �

Finally, by taking N = 1, we get the result when ϕ is a hyperbolic automorphism
of D, which complete the discussion in [11] and [14] on H2(D) and A2

α(D), as our
corollary below.

Corollary 3.12. Suppose ϕ is a hyperbolic automorphism of D with Denjoy–

Wolff point a and the other fixed point b. Assume that ψ ∈ A(D) is bounded away

from zero. Then on H2(D), the spectrum of Cψ,ϕ is
{
λ : min{|ψ(a)|ρ1/2, |ψ(b)|ρ−1/2} 6 |λ| 6 max{|ψ(a)|ρ1/2, |ψ(b)|ρ−1/2}

}
,

and on A2
α(D), the spectrum of Cψ,ϕ is

{
λ : min{|ψ(a)|ρ(α+2)/2, |ψ(b)|ρ−(α+2)/2} 6 |λ| 6 max{|ψ(a)|ρ(α+2)/2, |ψ(b)|ρ−(α+2)/2}

}
.

Here ρ = ϕ′(a)−1 = ϕ′(b).

4. Automorphisms with no fixed point in BN and one fixed point on SN

4.1. Spectral radius. Let us also start by estimating the spectral radius in
this situation.

Lemma 4.1. Suppose ϕ ∈ Aut(BN) fixes the point e1 only, and ψ ∈ A(BN)
is bounded away from zero. Then the spectral radius of Cψ,ϕ on H2(β,BN), for

β(n) = (n+ 1)1−γ with γ > 1, is no larger than |ψ(e1)|.
Proof. Let

Φ(z) = i
e1 + z

1− z[1]

be the Cayley transform from BN onto the Siegel upper half space HN . Since e1 is
the only fixed point of ϕ in BN , σ = Φ ◦ϕ ◦Φ−1 is a automorphism of HN that fixes
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∞ only. Hence by Proposition 2.2.10 in [1] and the continuity of σ on HN , we can
find U unitary on C

N−1 and a ∈ ∂HN such that

σ(w) = (w[1] + a[1] + 2i〈Uw′, a′〉, Uw′ + a′)

for all w ∈ HN .
By our assumption, ψ(e1) 6= 0. Then for any ǫ > 0 we can find a neighborhood

V of e1 such that

|ψ(z)| 6 (1 + ǫ)|ψ(e1)|
for all z ∈ SN ∩ V . Since Φ, which maps e1 to ∞, extends to a homeomorphism of
BN onto HN ∪ ∂HN ∪ {∞}, we can take Λ = Φ(SN\V ) and Λ′ = {w + i : w ∈ Λ}.
Note that Λ is a compact set on ∂HN and Λ′ is a compact set in HN . Hence we can
find R > 0 such that both Λ and Λ′ are contained in the set {w ∈ C

N : |w| 6 R}.
Since e1 is the Denjoy–Wolff point of ϕ, ϕn converges to e1 uniformly on compact
subsets of BN as n → +∞. Equivalently, σn converges to ∞ uniformly on compact
subsets of HN . Thus we can find a positive integer n0 such that |σn(w)| > R + 1 for
all n > n0 and w ∈ Λ′. By noticing that σn(w+ i) = σn(w)+ ie1, for any w in Λ and
n > n0 we have

|σn(w)| > |σn(w + i)| − 1 > R.

Now suppose z ∈ SN\V , then Φ(z) ∈ Λ. So for any n > n0,

|Φ(ϕn(z))| = |σn(Φ(z))| > R,

which means that ϕn(z) is no longer in SN\V . So for all z ∈ SN , at most n0 elements
of the set {ϕj(z) : j = 0, 1, 2, . . .} are not contained in SN ∩ V . Thus for n > n0,

‖ψ(n)‖∞ = max
|z|=1

(
n−1∏

j=0

|ψ ◦ ϕj(z)|
)

6 ‖ψ‖n0
∞ [(1 + ǫ)|ψ(e1)|]n−n0 .

By the arbitrariness of ǫ,

lim
n→∞

‖ψ(n)‖1/n∞ 6 |ψ(e1)|.

However, since ψ(n)(e1) = ψ(e1)
n, we have ‖ψ(n)‖1/n∞ > |ψ(e1)|. Thus we can get

lim
n→∞

‖ψ(n)‖1/n∞ = |ψ(e1)|.

Proposition 7.11 in [8] shows that if ϕ ∈ Aut(BN) fixes the point e1 only, then
the spectral radius of Cψ on H2(β,BN) is 1. So

r(Cψ,ϕ) = lim
n→∞

‖Cn
ψ,ϕ‖1/n 6 lim

n→∞
‖ψ(n)‖1/n∞ · ‖Cϕn‖1/n = |ψ(e1)| · r(Cϕ) = |ψ(e1)|. �

Remark 4.2. The proof of Lemma 4.1 shows that if ϕ ∈ Aut(BN) fixes the
point e1 only, then ϕn converge to e1 uniformly on any compact subset of BN\{e1}
as n→ +∞.

Corollary 4.3. Suppose ϕ ∈ Aut(BN) fixes the point e1 only, and ψ ∈ A(BN)
is bounded away from zero.Then the spectrum of Cψ,ϕ on H2(β,BN), for β(n) =
(n+ 1)1−γ with γ > 1, is contained in the circle

{λ : |λ| = |ψ(e1)|}.
Proof. By Lemma 4.1, the spectrum of Cψ,ϕ on H2(β,BN) is contained in

{λ : |λ| 6 |ψ(e1)|}.
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On the other hand, since ϕ−1 is also an automorphism of BN that fixes e1 only and
1
ψ

is bounded away from zero on BN , the spectrum of C−1
ψ,ϕ = C 1

ψ◦ϕ−1 ,ϕ
−1 is contained

in {
λ : |λ| 6 | 1

ψ(e1)
|
}
,

which means that the spectrum of Cψ,ϕ is also contained in the set

{λ : |λ| > |ψ(e1)|}.
Thus the corollary is proved. �

4.2. The spectra.

Lemma 4.4. Suppose ϕ ∈ Aut(BN) fixes the point e1 only. Then for any

δ ∈ (0, 1), we can find z0 ∈ BN such that d(ϕj1(z0), ϕj2(z0)) > δ whenever j1 6= j2.
Here d(·, ·) denote the pseudo-hyperbolic distance between two points in BN .

Proof. For any z ∈ BN and n ∈ N
∗,

1− d(z, ϕn(z))
2 =

(1− |z|2)(1− |ϕn(z)|2)
|1− 〈z, ϕn(z)〉|2

.

Let M = {−re1 : 0 6 r 6 1}. Since

lim
r→1

ϕn(−re1) = ϕn(−e1) 6= −e1,

we have

1− lim
r→1

d(−re1, ϕn(−re1))2 = lim
r→1

(1− | − re1|2)(1− |ϕn(−re1)|2)
|1− 〈−re1, ϕn(−re1)〉|2

= 0,

which means that

lim
r→1

d(−re1, ϕn(−re1)) = 1.

Thus for each n ∈ N
∗, we can find rn ∈ (0, 1) such that d(−re1, ϕn(−re1)) > δ

whenever r ∈ (rn, 1).
Since M is a compact subset of BN\{e1}, by Remark 4.2, we can find n0 ∈ N

∗

such that |ϕn(−re1)−e1| < 1−δ for all n > n0 and r ∈ (0, 1). Thus, |ϕn(−re1)| > δ.
Also,

1− Re
(
ϕ[1]
n (−re1)

)
< |ϕn(−re1)− e1| < 1.

So Re
(
ϕ
[1]
n (−re1)

)
> 0. Therefore,

|1− 〈−re1, ϕn(−re1)〉| > 1 + rRe
(
ϕ[1]
n (−re1)

)
> 1.

So for any n > n0 and r ∈ (0, 1) we have

1− d(−re1, ϕn(−re1))2 =
(1− | − re1|2)(1− |ϕn(−re1)|2)

|1− 〈−re1, ϕn(−re1)〉|2
< 1− δ2.

Now take r0 > max{rj : 1 6 j 6 n0} and z0 = −r0e1. Then the discussion above
shows that

d(z0, ϕn(z0)) > δ

for all n ∈ N
∗. Suppose j1 6= j2, then

d(ϕj1(z0), ϕj2(z0)) = d(z0, ϕ|j1−j2|(z0)) > δ. �

The next lemma strengthens the Theorem 7.11 in [8].
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Lemma 4.5. Suppose ϕ ∈ Aut(BN) fixes the point e1 only. Then we have

lim
z→e1

1− |ϕ(z)|2
1− |z|2 = 1.

Proof. Since e1 is the only fixed point of ϕ in BN , the Wolff’s lemma in BN (see
Theorem 2.2.22 in [1]) shows that

|1− ϕ[1](z)|2
1− |ϕ(z)|2 6

|1− z[1]|2
1− |z|2

for all z ∈ BN . However, e1 is also the only fixed point of ϕ−1 in BN , so

|1− z[1]|2
1− |z|2 6

|1− ϕ[1](z)|2
1− |ϕ(z)|2 .

Thus we have
|1− ϕ[1](z)|2
1− |ϕ(z)|2 =

|1− z[1]|2
1− |z|2

for all z ∈ BN . Let a = ϕ−1(0). Then

|1− a[1]|2
1− |a|2 =

|1− ϕ[1](a)|2
1− |ϕ(a)|2 = 1,

so

lim
z→e1

1− |ϕ(z)|2
1− |z|2 = lim

z→e1

1− |a|2
|1− 〈a, z〉|2 =

1− |a|2
|1− a[1]|2 = 1. �

Lemma 4.6. Suppose ϕ ∈ Aut(BN) fixes the point e1 only, and ψ ∈ A(BN)
is bounded away from zero. Then the spectrum of Cψ,ϕ on H2(β,BN), for β(n) =
(n+ 1)1−γ with γ > 1, is the circle

{λ : |λ| = |ψ(e1)|}.
Proof. By Corollary 4.3, it is sufficient to prove that each point on the circle

belongs to the spectrum of Cψ,ϕ. Letm be a fixed positive integer, then by Lemma 4.4,
we can find a iteration sequence {zk}+∞

k=0 such that

(
1− d(zk, zj)

2
)K

<
1

2e4m

whenever k 6= j. Here K = (N − 1 + γ)/2. Let

gj(z) =
Kzj (z)

‖Kzj‖
=

(1− |zj |2)K
(1− 〈z, w〉)2K .

Then for any k 6= j,

|〈gk, gj〉| =
(
(1− |zk|2)(1− |zj|2)

|1− 〈zk, zj〉|2
)K

=
(
1− d(zk, zj)

2
)K

<
1

2e4m
.

Also we have
C∗
ψ,ϕgj = ujgj+1,

where

uj = ψ(zj)

(
1− |zj|2
1− |zj+1|2

)K
.

Since zj → e1 as j → +∞, by Lemma 4.5 we have

lim
j→+∞

|uj| = |ψ(e1)| lim
j→+∞

(
1− |zj|2

1− |ϕ(zj)|2
)K

= |ψ(e1)|.
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Now suppose that |λ| = |ψ(e1)|. Then for any m > 0 we can find n0 ∈ N
∗ such

that

1− 1

m
<
∣∣∣un
λ

∣∣∣ < 1 +
1

m
for all n > N . Let

hm =

m−1∑

j=0

ajgn0+j,

where a0 = 1 and aj = λ−j
∏j−1

k=0 un0+j for j = 1, 2, . . . , m− 1. Then

|aj | < (1 +
1

m
)j < (1 +

1

m
)m < e.

Also

|aj| > (1− 1

m
)j > (1− 1

m
)m >

1

e
.

So

‖hm‖2 = 〈hm, hm〉 >
m−1∑

j=0

|aj|2 −
∑

j1 6=j2

|aj1‖aj2| · |〈gn0+j1, gn0+j2〉|

>

m−1∑

j=0

|aj|2 −
1

2e4m

∑

j1 6=j2

|aj1‖aj2| >
m

e2
− 1

2e4m
·m2e2 =

m

2e2
.

However,

(C∗
ψ,ϕ − λI)hm = λ(amgn0+m − gn0),

where

am = λ−m
m∏

k=0

un0+k.

Since |am| < (1 + 1
m
)m < e, we have

‖(C∗
ψ,ϕ − λI)hm‖2 6 |λ|2

(
|am|2 + 1

)
6 |ψ(e1)|2(e2 + 1).

So
‖(C∗

ψ,ϕ − λI)hm‖2
‖hm‖2

6 |ψ(e1)|2 ·
e2(e2 + 1)

m
.

Thus, by letting m → +∞, we conclude that λ belongs to the approximate point
spectrum of C∗

ψ,ϕ. �

Finally we treat the general case when the fixed point of ϕ is not necessarily e1.

Theorem 4.7. Suppose ϕ ∈ Aut(BN) has no fixed point in BN and a is the

only fixed point of ϕ on SN . Let ψ ∈ A(BN) be bounded away from zero.Then the

spectrum of Cψ,ϕ on either H2(BN) or A2
α(BN) is the circle

{λ : |λ| = |ψ(a)|}.
Proof. Let U be a unitary map that takes a to e1. Then ϕ̂ = U ◦ ϕ ◦ U−1 is an

automorphism of BN that fixes e1 only. Let ψ̂ = ψ ◦ U−1, then a same discussion
with Theorem 3.11 shows that Cψ,ϕ is similar to Cψ̂,ϕ̂. So

σ(Cψ,ϕ) = σ(Cψ̂,ϕ̂) = {λ : |λ| = |ψ̂(e1)|} = {λ : |λ| = |ψ(a)|}. �
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