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Abstract. For 1 < p < ∞ and 0 < s < 1, we consider the function spaces Qp

s
(T) that appear

naturally as the space of boundary values of a certain family of analytic Möbius invariant function

spaces on the the unit disk. In this paper, we give a complete description of the pointwise multipliers

going from Qp1

s
(T) to Qp2

r
(T) for all ranges of 1 < p1, p2 < ∞ and 0 < s, r < 1. The spectra of

such multiplication operators is also obtained.

1. Introduction

An important problem of studying function spaces is to characterize the pointwise
multipliers of such spaces. For Banach function spaces X and Y , denote by M(X, Y )
the class of all pointwise multipliers from X to Y . Namely,

M(X, Y ) = {f : fg ∈ Y for all g ∈ X}.

If X = Y , we just write M(X, Y ) as M(X) for the collection of multipliers of X. For
any g ∈ M(X, Y ), denote by Mg the multiplication operator induced by g, that is,
Mg(f) = gf . By the closed graph theorem, Mg is a bounded operator. In this paper
we characterize the pointwise multipliers between a certain family of function spaces
on the unit circle. These spaces appear in a natural way as the boundary values of
a certain family of analytic Möbius invariant spaces on the disk [32] that has been
attracted much attention recently.

Denote by T the boundary of the unit disk D in the complex plane C. Let
H(D) be the space of all analytic functions on D and let H∞ be the class of bounded
analytic functions on D. For 1 < p < ∞ and s ≥ 0, consider the analytic Besov type
space Bp(s) consisting of those functions f ∈ H(D) with

‖f‖Bp(s) =

(
ˆ

D

|f ′(z)|p (1− |z|2)p−2+s dA(z)

)1/p

< ∞,

where dA denotes the Lebesgue measure on D. A norm in Bp(s) is given by |f(0)|+
‖f‖Bp(s). For a ∈ D, let

σa(z) =
a− z

1− az
, z ∈ D,
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be a Möbius transformation of D. The space Bp = Bp(0) is Möbius invariant in the
sense that ‖f ◦ σa‖Bp

= ‖f‖Bp
, and B2 is the classical Dirichlet space. For s > 0 and

1 < p < ∞, we denote by Qp
s(D) the Möbius invariant space generated by Bp(s),

that is, f ∈ Qp
s(D) if f ∈ H(D) and

‖f‖p
Qp

s(D)
= sup

a∈D
‖f ◦ σa‖

p
Bp(s)

< ∞.

The spaces Qp
s(D) are special cases of a class of Möbius invariant function spaces

studied in [38] and coincide with F (p, p−2, s) where F (p, q, s) is the family of function
spaces studied in [23] and [32]. In particular, for s > 1 the spaces Qp

s(D) are the
same and equal to the Bloch space B (the “maximal” Möbius invariant space) which
consists of all functions f ∈ H(D) with

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

When p = 2, one has Q2
s(D) = Qs(D) the holomorphic Q spaces introduced in [4]

and widely studied in the monographs [30, 31]. In particular, Q1(D) = BMOA, the
space of analytic functions with bounded mean oscillation [11]. Essén and Xiao [9]
gave that if 0 < s < 1 and f is in the Hardy space H2, then f ∈ Qs(D) if and only
if f ∈ Qs(T), the space of functions f ∈ L2(T) with

‖f‖2Qs(T) = sup
I⊆T

1

|I|s

ˆ

I

ˆ

I

|f(ζ)− f(η)|2

|ζ − η|2−s
|dζ ||dη| < ∞,

where |I| is the length of an arc I of the unit circle T (a version of these spaces for
several real variables was studied in [8]). If s > 1, Xiao [29] pointed out that Qs(T)
are equal to BMO(T), the space of bounded mean oscillation on T. For p > 1, via
the John–Nirenberg inequality (see [11, 14]), one gets

‖f‖pBMO(T) ≈ sup
I⊆T

1

|I|

ˆ

I

|f(ζ)− fI |
p|dζ |,

where fI is the average of f over I, that is

fI =
1

|I|

ˆ

I

f(ζ)|dζ |.

In view of that it is natural to consider, for 1 < p < ∞ and s > 0, the spaces Qp
s(T)

consisting of functions f ∈ Lp(T) such that

(1.1) ‖f‖p
Qp

s(T)
= sup

I⊆T

1

|I|s

ˆ

I

ˆ

I

|f(ζ)− f(η)|p

|ζ − η|2−s
|dζ ||dη| < ∞.

A true norm in Qp
s(T) is given by ‖f‖∗,Qp

s(T) = ‖f‖Lp(T) + ‖f‖Qp
s(T). We are going

to study these spaces, and we will see that if f is in the Hardy space Hp, then
f ∈ Qp

s(D) if and only if f ∈ Qp
s(T). Also, we give a complete description of the

pointwise multipliers M(Qp1
s (T),Qp2

r (T)) for 1 < p1, p2 < ∞ and 0 < s, r < 1.
It is worth mentioning that Stegenga [24] characterized the multipliers of bounded
mean oscillation spaces on the unit circle (see also [17]), and Brown and Shields [5]
described the pointwise multipliers of the Bloch space. A characterization of the
pointwise multipliers M(Qs(D)) was obtained in [18] proving a conjecture stated in
[28]. See [10, 17, 22, 25, 27, 35] for more results on pointwise multipliers of function
spaces.

The following is the main result of the paper.
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Theorem 1.1. Let 1 < p1, p2 < ∞ and 0 < s, r < 1. Then the following are
true.

(1) If p1 ≤ p2 and s ≤ r, then f ∈ M(Qp1
s (T),Qp2

r (T)) if and only if f ∈ L∞(T)
and

(1.2) sup
I⊆T

1

|I|r

(
log

2

|I|

)p2 ˆ

I

ˆ

I

|f(ζ)− f(η)|p2

|ζ − η|2−r
|dζ ||dη| < ∞.

(2) Let p1 > p2 and s ≤ r. If 1−s
p1

> 1−r
p2

, then f ∈ M(Qp1
s (T),Qp2

r (T)) if and only

if f ∈ L∞(T) and f satisfies (1.2). If 1−s
p1

≤ 1−r
p2

, then M(Qp1
s (T),Qp2

r (T)) =

{0}.

(3) If s > r, then M(Qp1
s (T),Qp2

r (T)) = {0}.

Note that, when p1 = p2 = 2 and s = r, part (1) of Theorem 1.1 proves Conjec-
ture 2.5 stated in [28]. However, as seen in the proof, this conjecture is an immediate
consequence of the results and methods in [18].

Next we give an application. Let T be a bounded linear operator on a Banach
space X. The spectrum of T is defined as

σ(T ) = {λ ∈ C : T − λE is not invertible},

where E is the identity operator on X. Allen and Colonna [2] gave spectra of multi-
plication operators on the Bloch space. In this paper, we also consider the spectra of
multiplication operators on Qp

s(T) spaces. For f ∈ Qp
s(T), let R(f) be the essential

range of f . Namely, R(f) is the set of all λ in C for which {ζ ∈ T : |f(ζ)− λ| < ε}
has positive measure for every ε > 0. By [6, p. 57], if f ∈ L∞(T), then R(f) is a
compact subset of C.

Theorem 1.2. Suppose 1 < p < ∞ and 0 < s < 1. Let f be the symbol of a
bounded multiplication operator Mf on Qp

s(T) space. Then σ(Mf) = R(f).

The paper is organized as follows. In Section 2, we give some preliminaries as well
as basic properties of Qp

s(T) spaces, such as inclusion relations or a characterization
in terms of Carleson type measures. The proof of Theorem 1.1 is given in Section 3.
Particularly interesting is the proof of part (3), where we are in need to use the results
of Nagel, Rudin and Shapiro [15], on tangential boundary behavior of functions in
weighted analytic Besov spaces. In Section 4, we prove Theorem 1.2, and in the last
section, we give the analytic versions of Theorems 1.1 and 1.2.

Throughout this paper, for a positive number λ and an arc I ⊆ T, denote by
λI the arc with the same center as I and with the length λ|I|. The symbol A ≈ B
means that A . B . A. We say that A . B if there exists a constant C such that
A ≤ CB.

2. Preliminaries and basic properties

An important tool to study function spaces is Carleson type measures. Given an
arc I on T, the Carleson sector S(I) is given by

S(I) = {rζ ∈ D : 1−
|I|

2π
< r < 1, ζ ∈ I}.

For s > 0, a positive Borel measure µ on D is said to be an s-Carleson measure if

sup
I⊆T

µ(S(I))

|I|s
< ∞.
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When s = 1, we get the classical Carleson measures, characterizing when Hp ⊂
Lp(D, µ), where for 0 < p < ∞, Hp denotes the classical Hardy space [7] of functions
f ∈ H(D) for which

sup
0<r<1

Mp(r, f) < ∞.

Here

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reiθ)|p dθ

)1/p

.

By [4], µ is an s-Carleson measure if and only if

sup
a∈D

ˆ

D

(
1− |a|2

|1− āz|2

)s

dµ(z) < ∞.

Because

‖f ◦ σa‖
p
Bp(s)

=

ˆ

D

|f ′(z)|p (1− |z|2)p−2 (1− |σa(z)|
2)s dA(z),

we can immediately see that f ∈ Qp
s(D) if and only if |f ′(z)|p (1− |z|2)p−2+s dA(z) is

an s-Carleson measure.
A function f ∈ H(D) is called an inner function if it is an H∞-function with radial

limits of modulus one almost everywhere on the unit circle. A sequence {ak}
∞
k=1 ⊆ D

is said to be a Blaschke sequence if

∞∑

k=1

(1− |ak|) < ∞.

The above condition implies the convergence of the corresponding Blaschke product
B defined as

B(z) =
∞∏

k=1

|ak|

ak

ak − z

1− akz
.

We also need the characterizations of inner functions in Qp
s(D) spaces. Essén and

Xiao [9] characterized inner functions in Qs(D) spaces. Later, Pérez-González and
Rättyä [21] described inner functions in Qp

s(D) spaces as follows.

Theorem A. Let 0 < s < 1 and p > max{s, 1 − s}. Then an inner function
belongs to Qp

s(D) if and only if it is a Blaschke product associated with a sequence
{zk}

∞
k=1 ⊆ D which satisfies that

∑
k(1− |zk|)

sδzk is an s-Carleson measure, that is

sup
a∈D

∞∑

k=1

(
1− |σa(zk)|

2
)s

< ∞.

The proof of Theorem 1.1 will also use the Rademacher functions {rj(t)}
∞
j=0

defined by

r0(t) =





1, 0 < t < 1
2
,

−1, 1
2
< t < 1,

0, t = 0, 1
2
, 1.

rn(t) = r0(2
nt), n = 1, 2, · · · .

See [39, Chapter V, Vol. I] or [7, Appendix A] for properties of these functions. In
particular, we will use Khinchine’s inequality.
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Theorem B. (Khinchine’s inequality) If {ck}
∞
k=1 ∈ ℓ2, then the series

∑∞
k=1 ckrk(t)

converges almost everywhere. Furthermore, for 0 < p < ∞ there exist positive con-
stants Ap, Bp such that for every sequence {ck}

∞
k=1 ∈ ℓ2 we have

Ap

(
∞∑

k=1

|ck|
2

) p

2

≤

ˆ 1

0

∣∣∣∣∣
∞∑

k=1

ckrk(t)

∣∣∣∣∣

p

dt ≤ Bp

(
∞∑

k=1

|ck|
2

) p

2

.

For 1 < p < ∞ and 0 < s < 1, the following result shows that we can regard
Qp

s(T) as a Banach space of functions modulo constants.

Lemma 2.1. Let 1 < p < ∞ and 0 < s < 1. Then Qp
s(T) ⊆ BMO(T).

Furthermore, Qp
s(T) is complete with respect to (1.1).

Proof. Let f ∈ Qp
s(T). For any arc I ⊆ T, it follows from Hölder’s inequality

that

1

|I|

ˆ

I

|f(eit)− fI | dt ≤
1

|I|2

ˆ

I

ˆ

I

|f(eit)− f(eiθ)| dθ dt

≤

(
1

|I|s

ˆ

I

ˆ

I

|f(eit)− f(eiθ)|p

|eit − eiθ|2−s
dθ dt

)1/p

,

because |eit − eiθ| ≤ |I| when eit and eiθ are in I. Thus Qp
s(T) ⊆ BMO(T) with

‖f‖BMO(T) . ‖f‖Qp
s(T). Now let {fm} be a Cauchy sequence in Qp

s(T). Then it is also
a Cauchy sequence in BMO(T). Hence fm → f in BMO(T) for some f in BMO(T)
and there exists a subsequence {fmk

} ⊆ {fm} such that limk→∞ fmk
(eit) = f(eit), for

a.e. eit ∈ I. By Fatou’s lemma, it follows easily that

‖fmk
− f‖Qp

s(T) ≤ lim inf
l→∞

‖fml
− fmk

‖Qp
s(T),

which implies that fmk
→ f in Qp

s(T). Since

‖fk − f‖Qp
s(T) ≤ ‖fmk

− f‖Qp
s(T) + ‖fmk

− fk‖Qp
s(T),

this finishes the proof. �

2.1. Characterizations of Qp

s
(T) spaces. To prove our main results in this

paper, some characterizations of Qp
s(T) spaces are necessary. Given f ∈ L1(T), let

f̂ be the Poisson extension of f , that is,

f̂(z) =
1

2π

ˆ 2π

0

f(eiθ)
1− |z|2

|eiθ − z|2
dθ, z ∈ D.

We will characterize Qp
s(T) spaces in terms of Carleson type measures. Before doing

that, we state and prove some auxiliary results.

Lemma 2.2. Suppose p > 1 and 0 < s < 1. Let f ∈ Lp(T) and let F ∈ C1(D)
with limr→1 F (reit) = f(eit) for a.e. eit ∈ T. For any arc I ⊂ T, we have

ˆ

I

ˆ

I

|f(eis)− f(eiθ)|p

|eis − eiθ|2−s
dθ ds .

ˆ

S(3I)

|∇F (z)|p(1− |z|2)p−2+s dA(z).

In particular, if |∇F (z)|p(1 − |z|2)p−2+sdA(z) is an s-Carleson measure, then f ∈
Qp

s(T).

Proof. We use an argument used in [16] and [3, p. 1294]. After a change of
variables, it is easy to see (it is done in the same way as in [16] or [30, Chapter 7]
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where the case p = 2 was obtained) that
ˆ

I

ˆ

I

|f(eis)− f(eiθ)|p

|eis − eiθ|2−s
dθ ds .

ˆ |I|

0

1

t2−s

(
ˆ

I

|f(ei(θ+t))− f(eiθ)|p dθ

)
dt.

For any arc I with |I| < π
3

and t ∈ (0, |I|), set r = 1− t. Then

|f(ei(θ+t))− f(eiθ)|

≤
∣∣f(ei(θ+t))− F (rei(θ+t))

∣∣ +
∣∣F (rei(θ+t))− F (reiθ)

∣∣+
∣∣F (reiθ)− f(eiθ)

∣∣

≤

ˆ 1

r

|∇F (xei(θ+t))| dx+

ˆ t

0

|∇F (rei(θ+u))| du+

ˆ 1

r

|∇F (xeiθ)| dx.

Since p > 1, we can use Minkowski’s inequality to obtain
ˆ

I

|f(ei(θ+t))− f(eiθ)|pdθ .

(
ˆ 1

r

(
ˆ

I

|∇F (xei(θ+t))|p dθ

)1/p

dx

)p

+

(
ˆ t

0

(
ˆ

I

|∇F (rei(θ+u))|p dθ

)1/p

du

)p

+

(
ˆ 1

r

(
ˆ

I

|∇F (xeiθ)|p dθ

)1/p

dx

)p

.

(
ˆ 1

r

(
ˆ

3I

|∇F (xeiθ)|p dθ

)1/p

dx

)p

+

(
ˆ t

0

(
ˆ

I

|∇F (rei(θ+u))|p dθ

)1/p

du

)p

= (J1) + (J2).

For p > 1 and 0 < s < 1, applying the Hardy inequality (see [26, p. 272]) gives

ˆ |I|

0

1

t2−s
(J1) dt =

ˆ |I|

0

1

t2−s

(
ˆ t

0

(
ˆ

3I

|∇F ((1− y)eiθ)|p dθ

)1/p

dy

)p

dt

≤

(
p

1− s

)p ˆ |I|

0

(
ˆ

3I

|∇F ((1− y)eiθ)|p dθ

)
yp−2+s dy

=

(
p

1− s

)p ˆ 1

1−|I|

(
ˆ

3I

|∇F (xeiθ)|p dθ

)
(1− x)p−2+s dx

.

ˆ

S(3I)

|∇F (z)|p(1− |z|)p−2+s dA(z).

We also have
ˆ |I|

0

1

t2−s
(J2) dt ≤

ˆ |I|

0

1

t2−s

(
ˆ t

0

(
ˆ

3I

|∇F (reiθ)|p dθ

)1/p

du

)p

dt

=

ˆ |I|

0

tp−2+s

(
ˆ

3I

|∇F ((1− t)eiθ)|p dθ

)
dt

.

ˆ

S(3I)

|∇F (z)|p(1− |z|)p−2+s dA(z).

Combining the above estimates, we obtain the desired result. �

We also need the following result which is a generalization of Stegenga’s estimate
in [25].

Lemma 2.3. For p > 1 and 0 < s < 1, let f ∈ Lp(T) and let I, J be two arcs
on T centered at eiθ0 with |J | ≥ 3|I|. Then there exists a constant C depending only
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on p and s such that
ˆ

S(I)

|∇f̂(z)|p(1− |z|)p−2+s dA(z)

≤ C

[
ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθ dt+ |I|p+s

(
ˆ

|t|≥ 1
3
|J |

|f(ei(t+θ0))− fJ |
dt

t2

)p]
.

Proof. Without loss of generality, one may assume that θ0 = 0. Following
Stegenga, we let φ be a function with 0 ≤ φ ≤ 1 such that φ = 1 on 1

3
J , supp φ ⊆ 2

3
J ,

and

(2.1) |φ(eiθ)− φ(eit)| .
|eiθ − eit|

|J |

for all θ, t ∈ [0, 2π). Now we write

f = (f − fJ)φ+ (f − fJ)(1− φ) + fJ = f1 + f2 + f3.

Since f3 is constant, we have ∇f̂3 = 0. For z = reiθ in the Carleson box S(I),

|∇f̂2(z)| .

ˆ 2π

0

|f2(e
it)|

(1− r)2 + (θ − t)2
dt .

ˆ

|t|≥ 1
3
|J |

|f(eit)− fJ |
dt

t2

and hence
ˆ

S(I)

|∇f̂2(z)|
p(1− |z|)p−2+s dA(z) . |I|p+s

(
ˆ

|t|≥ 1
3
|J |

|f(eit)− fJ |
dt

t2

)p

.

For the integral over S(I) of |∇f̂1|
p, replacing S(I) with the unit disc D and using

Proposition 4.2 in [3], we obtain
ˆ

S(I)

|∇f̂1(z)|
p(1− |z|)p−2+s dA(z) .

ˆ

T

ˆ

T

|f1(e
iθ)− f1(e

it)|p

|eiθ − eit|2−s
dθ dt

≈
ˆ

eiθ∈J

ˆ

eit∈J

|f1(e
iθ)− f1(e

it)|p

|eiθ − eit|2−s
dθ dt+

ˆ

eiθ 6∈J

ˆ

eit∈ 2
3
J

|f1(e
iθ)− f1(e

it)|p

|eiθ − eit|2−s
dθ dt

+

ˆ

eit 6∈J

ˆ

eiθ∈ 2
3
J

|f1(e
iθ)− f1(e

it)|p

|eiθ − eit|2−s
dθ dt ≈ T1 + T2 + T3.

For estimating T1, we see first that, due to the condition (2.1), for eiθ, eit ∈ T,

|f1(e
iθ)− f1(e

it)| . |f(eiθ)− f(eit)|+ |J |−1|eiθ − eit||f(eit)− fJ |.

By Hölder’s inequality, we deduce that

1

|J |p

ˆ

J

ˆ

J

|f(eit)− fJ |
p

|eiθ − eit|2−s−p
dθ dt =

1

|J |p

ˆ

J

|f(eit)− fJ |
p

(
ˆ

J

|eiθ − eit|p−2+s dθ

)
dt

.
1

|J |1−s

ˆ

J

|f(eit)− fJ |
p dt

.
1

|J |2−s

ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p dθ dt

.

ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθ dt.
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Thus,

T1 .

ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθ dt.

For T2, using that f1(e
iθ) = 0 for eiθ 6∈ J , one gets

T2 =

ˆ

eiθ 6∈J

ˆ

eit∈ 2
3
J

|f1(e
iθ)− f1(e

it)|p

|eiθ − eit|2−s
dθ dt ≤

ˆ

eiθ 6∈J

ˆ

eit∈ 2
3
J

|f(eit)− fJ |
p

|eiθ − eit|2−s
dθ dt

.
1

|J |1−s

ˆ

J

|f(eit)− fJ |
p dt .

ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθ dt.

The estimate of T3 is similar to T2. The above inequalities implies the lemma. �

The following theorem characterizes Qp
s(T) spaces in terms of Carleson type

measures. It generalizes the corresponding result of Qs(T) spaces in [16].

Theorem 2.4. Let p > 1 and 0 < s < 1. Suppose f ∈ Lp(T). The following
conditions are equivalent.

(a) f ∈ Qp
s(T).

(b) |∇f̂(z)|p(1− |z|2)p−2+sdA(z) is an s-Carleson measure.

(c) sup
a∈D

ˆ

T

ˆ

T

|f(ζ)− f(η)|p

|ζ − η|2−s

(
1− |a|2

|ζ − a||η − a|

)s

|dζ ||dη| < ∞.

Proof. We first show that (b) is equivalent to (c). By Proposition 4.2 in [3], one
gets

(2.2)

ˆ

D

|∇f̂(z)|p(1− |z|2)p−2+s dA(z) ≈
ˆ 2π

0

ˆ 2π

0

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθdt

for all f ∈ Lp(T). Note that f̂ ◦ σa = f̂ ◦ σa for any a ∈ D. Replacing f by f ◦ σa in
the above formula and making a change of variables, we get

ˆ

D

|∇f̂(z)|p(1− |z|2)p−2+s

(
1− |a|2

|1− āz|2

)s

dA(z)

≈
ˆ 2π

0

ˆ 2π

0

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s

(
1− |a|2

|1− aeiθ||1− aeit|

)s

dθ dt.

This gives that (b) is equivalent to (c).
By Lemma 2.2, we see that (b) implies (a). Next we verify that (a) implies (b).

Let f ∈ Qp
s(T). Then f is also in BMO(T) by Lemma 2.1. For an arc I centered at

eiθ0 , let J = 3I. Then Lemma 2.3 gives
ˆ

S(I)

|∇f̂(z)|p(1− |z|)p−2+s dA(z)

.

ˆ

J

ˆ

J

|f(eiθ)− f(eit)|p

|eiθ − eit|2−s
dθ dt+ |I|p+s

(
ˆ

|t|≥ 1
3
|J |

|f(ei(t+θ0))− fJ |
dt

t2

)p

.

Since, by [30, p. 71],

|J |

ˆ

|t|≥ 1
3
|J |

|f(ei(t+θ0))− fJ |
dt

t2
. ‖f‖BMO(T),

we have

sup
I⊆T

1

|I|s

ˆ

S(I)

|∇f̂(z)|p(1− |z|)p−2+s dA(z) . ‖f‖p
Qp

s(T)
+ ‖f‖pBMO(T).



Boundary multipliers of a family of Möbius invariant function spaces 207

The proof is complete. �

If p > 1 and 0 < s < 1, then Qp
s(D) ⊆ BMOA ⊆ H2. Thus functions in Qp

s(D)
have boundary values. As noticed before, an analytic function f belongs to Qp

s(D)
if and only if |f ′(z)|p(1− |z|2)p−2+sdA(z) is an s-Carleson measure. Combining this
with Theorem 2.4, one gets the following result immediately.

Corollary 2.5. Let p > 1 and 0 < s < 1. Suppose f ∈ H1. Then f ∈ Qp
s(D) if

and only if f ∈ Qp
s(T).

Remark 1. Let p > 1 and 0 < s < 1. We say that f ∈ Lp
s if f ∈ Lp(T) and

‖f‖p
Lp
s
=

ˆ 2π

0

ˆ 2π

0

|f(eit)− f(eiθ)|p

|eit − eiθ|2−s
dθ dt < ∞.

The condition (c) of Theorem 2.4 gives that f ∈ Qp
s(T) if and only if

sup
a∈D

‖f ◦ σa‖Lp
s
< ∞.

Thus if we set

|||f |||Qp
s(T) = sup

a∈D
‖f ◦ σa‖Lp

s
,

then Qp
s(T) is a Möbius invariant space in the sense of that

|||f |||Qp
s(T) = |||f ◦ σa|||Qp

s(T)

for any f ∈ Qp
s(T) and a ∈ D.

2.2. Inclusion relations. Applying Theorem 2.4 and Corollary 2.5, we can
obtain a complete picture on the inclusion relations between different Qp

s(T) spaces.

Theorem 2.6. Let 1 < p1, p2 < ∞ and 0 < s, r < 1.

(1) If p1 ≤ p2, then Qp1
s (T) ⊆ Qp2

r (T) if and only if s ≤ r.
(2) If p1 > p2, then Qp1

s (T) ⊆ Qp2
r (T) if and only if 1−s

p1
> 1−r

p2
.

Proof. We first consider the inclusion relation between the analytic spaces Qp1
s (D)

and Qp2
r (D). Note that Qp1

s (D) is a subset of the Bloch space B. Let f ∈ Qp1
s (D). If

p1 ≤ p2 and s ≤ r, then

sup
a∈D

ˆ

D

|f ′(z)|p2(1− |z|2)p2−2
(
1− |σa(z)|

2
)r

dA(z)

≤ ‖f‖p2−p1
B sup

a∈D

ˆ

D

|f ′(z)|p1(1− |z|2)p1−2
(
1− |σa(z)|

2
)s

dA(z),

which gives Qp1
s (D) ⊆ Qp2

r (D).
By [34, Theorem 70], if p1 > p2, Bp1(s) ⊆ Bp2(r) if and only if 1−s

p1
> 1−r

p2
. Note

that f ∈ Qp1
s (D) if and only if

sup
a∈D

‖f ◦ σa − f(a)‖Bp1 (s)
< ∞.

Thus Qp1
s (D) ⊆ Qp2

r (D) for p1 > p2 and 1−s
p1

> 1−r
p2

.

For s > r, it is easy to construct a Blaschke sequence {zk} satisfying that
∑

k(1−
|zk|)

sδzk is an s-Carleson measure and
∑

k(1− |zk|)
rδzk is not an r-Carleson measure

(see Lemma 3.3 where such a sequence is constructed with even more properties).
Applying Theorem A, we get that the corresponding Blaschke product B satisfies

B ∈ Qp1
s (D) \ Qp2

r (D).
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Let 1−s
p1

< 1−r
p2

. By [32, Theorem 5.5], the lacunary series

g(z) =

∞∑

k=0

2
− k

2
( 1−s

p1
+ 1−r

p2
)
z2

k

∈ Qp1
s (D) \ Qp2

r (D).

If p1 > p2, s < r and 1−s
p1

= 1−r
p2

, the lacunary series

h(z) =
∞∑

k=0

2
−k 1−s

p1 k
− 1

p2 z2
k

∈ Qp1
s (D) \ Qp2

r (D).

Therefore, if p1 ≤ p2, then Qp1
s (D) ⊆ Qp2

r (D) if and only if s ≤ r. If p1 > p2,
then Qp1

s (D) ⊆ Qp2
r (D) if and only if 1−s

p1
> 1−r

p2
. Hence it is enough to prove that

the inclusion relations between Qp1
s (D) and Qp2

r (D) are the same as the inclusion
relations between Qp1

s (T) and Qp2
r (T).

Suppose Qp1
s (D) ⊆ Qp2

r (D). Let g ∈ Qp1
s (T). Without loss of generality we

may assume that g is real valued. Denote by g̃ the harmonic conjugate function of
ĝ. Set h = ĝ + ig̃. The Cauchy–Riemann equations give |∇ĝ(z)| ≈ |h′(z)|. Then
Theorem 2.4 shows that |h′(z)|p1(1−|z|2)p1−2+sdA(z) is an s-Carleson measure. Thus
h ∈ Qp1

s (D). So h is also in Qp2
r (D). Then |∇ĝ(z)|p2(1 − |z|2)p2−2+rdA(z) is an r-

Carleson measure, that is g ∈ Qp2
r (T). Hence Qp1

s (T) ⊆ Qp2
r (T). On the other

hand, if Qp1
s (T) ⊆ Qp2

r (T), then Corollary 2.5 shows Qp1
s (D) ⊆ Qp2

r (D). The proof
is complete. �

Remark 2. If 1 < p1 < p2 < ∞, 0 < r < s < 1 and 1−s
p1

≥ 1−r
p2

, it is easy to

check that any lacunary series in Qp1
s (D) must be in Qp2

r (D), but Qp1
s (D) * Qp2

r (D).
Thus we are in need to use inner functions to determine the inclusion relation in the
proof of Theorem 2.6.

2.3. Logarithmic Carleson type measures. Let α ≥ 0 and s > 0. A positive
Borel measure µ on D is called an α-logarithmic s-Carleson measure if

sup
I⊆T

1

|I|s

(
log

2

|I|

)α

µ(S(I)) < ∞.

By [33], µ is an α-logarithmic s-Carleson measure if and only if

sup
a∈D

(
log

2

1− |a|2

)α ˆ

D

(
1− |a|2

|1− āz|2

)s

dµ(z) < ∞.

Condition (1.2) in Theorem 1.1 can be described in terms of α-logarithmic s-Carleson
measure as follows.

Lemma 2.7. Let 1 < p < ∞ and 0 < r < 1. Then the following conditions are
equivalent.

(1) sup
I⊆T

1

|I|r

(
log

2

|I|

)p ˆ

I

ˆ

I

|f(ζ)− f(η)|p

|ζ − η|2−r
|dζ ||dη| < ∞.

(2) |∇f̂(z)|p(1− |z|2)p−2+r dA(z) is a p-logarithmic r-Carleson measure.

Proof. For an arc I ⊆ T, by Lemma 2.2, we have
ˆ

I

ˆ

I

|f(ζ)− f(η)|p

|ζ − η|2−r
|dζ ||dη| .

ˆ

S(3I)

|∇f̂(z)|p(1− |z|)p−2+r dA(z).

Thus (2) implies (1).
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Let (1) hold. Without loss of generality, let I be any arc centered at 1. Then
ˆ

I

ˆ

I

|f(eiθ)− f(eit)|p dθ dt .
|I|2(

log 2
|I|

)p .

Combining this with Hölder’s inequality, we deduce that

1

|I|

ˆ

I

|f(eiθ)− fI | dθ ≤

(
1

|I|

ˆ

I

|f(eiθ)− fI |
p dθ

)1/p

≤

(
1

|I|2

ˆ

I

ˆ

I

|f(eiθ)− f(eit)|p dθ dt

)1/p

.
1

log 2
|I|

.

Let J = 3I. Using the above estimate and a same argument in [28, p. 499], we get
ˆ

|t|≥ 1
3
|J |

|f(eit)− fJ |
dt

t2
.

1

|I| log 3
|I|

.

Combining this with Lemma 2.3, we get that (2) is true. �

We also need the following result from [20].

Lemma C. Let p > 1 and s > 0. Let µ be a nonnegative Borel measure on D.
If µ is a p-logarithmic s-Carleson measure, then

ˆ

D

|f(z)|p dµ(z) . ‖f‖pBp(s)

for all f ∈ Bp(s).

Now we are ready for the proofs of the main results of the paper.

3. Proof of Theorem 1.1

3.1. Proof of part (1). Assume first that f ∈ M(Qp1
s (T),Qp2

r (T)). Set
hw(z) = log 2

1−w̄z
, w ∈ D. From [20, Lemma 2.6],

sup
w∈D

‖hw‖Qp1
s (D) < ∞,

for all 1 < p1 < ∞ and 0 < s < 1. This together with Corollary 2.5 shows that
hw(e

iθ) = log 2
1−w̄eiθ

belongs to Qp1
s (T) uniformly for w ∈ D, and hence the same

is true for gw = Rehw. For any arc I ⊆ T centered at eit with |I| < 1/3, take
a = (1 − |I|)eit. Then ga(e

iθ) ≈ log 2
|I|

for all eiθ ∈ I. Since f is a pointwise

multiplier, then fga ∈ Qp2
r (T) and it follows by Lemma 2.1 that fga ∈ BMO(T).

By [24, Lemma 2.6],
∣∣∣∣
1

|I|

ˆ

I

f(ζ)ga(ζ)|dζ |

∣∣∣∣ .
1

log |I|
‖fga‖BMO(T) .

1

log |I|
‖fga‖Qp2

r (T).

Thus ∣∣∣∣
1

|I|

ˆ

I

f(ζ)|dζ |

∣∣∣∣ . sup
a∈D

‖ga‖Qp1
s (D) < ∞,

which shows f ∈ L∞(T).
Since

ga(e
iθ)(f(eit)− f(eiθ)) = ga(e

it)f(eit)− ga(e
iθ)f(eiθ) + f(eit)

(
ga(e

iθ)− ga(e
it)
)
,
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we get

1

|I|r

ˆ

I

ˆ

I

|ga(e
iθ)(f(eit)− f(eiθ))|p2

|eiθ − eit|2−r
dθ dt . ‖gaf‖

p2
Q

p2
r (T)

+ ‖f‖p2L∞(T)‖ga‖
p2
Q

p1
s (T)

.

Note that ga(e
iθ) ≈ log 2

|I|
for all eiθ ∈ I. Thus

ˆ

I

ˆ

I

|f(eit)− f(eiθ)|p2

|eiθ − eit|2−r
dθ dt .

|I|r(
log 2

|I|

)p2 ,

which gives (1.2).
Next, suppose that f ∈ L∞(T) and (1.2) holds. We need to show f ∈ M(Qp1

s (T),
Qp2

r (T)). The proof of this implication is based on a technique developed in [18]

(see also [20]). By Lemma 2.7, |∇f̂(z)|p2(1 − |z|2)p2−2+r dA(z) is a p2-logarithmic
r-Carleson measure. Thus

sup
a∈D

(
log

2

1− |a|

)p2 ˆ

D

|∇f̂(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z) < ∞.

For all g ∈ Qp1
s (T), we need to prove gf ∈ Qp2

r (T). Since f̂ · ĝ is an extension of gf ,
by Lemma 2.2, it is enough to prove that

I(a) :=

ˆ

D

∣∣∇(f̂ ĝ)(z)
∣∣p2(1− |z|2)p2−2(1− |σa(z)|

2)r dA(z) ≤ C

for some positive constant C not depending on the point a ∈ D. Using Theorem 2.4,
we have

I(a) .

ˆ

D

|f̂(z)|p2 |∇ĝ(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z)

+

ˆ

D

|∇f̂(z)|p2 |ĝ(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z)

. ‖f‖p2L∞(T) · ‖g‖
p2
Q

p2
r (T)

+

ˆ

D

|∇f̂(z)|p2 |ĝ(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z).

If p1 ≤ p2 and s ≤ r, Theorem 2.6 gives Qp1
s (T) ⊆ Qp2

r (T), and by the closed-graph
theorem, ‖g‖Qp2

r (T) . ‖g‖Qp1
s (T) for all g ∈ Qp1

s (T). Hence, we have

I(a) . ‖f‖p2L∞(T) · ‖g‖
p2
Q

p1
s (T)

+

ˆ

D

|ĝ(z)|p2 |∇f̂(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z).

Without loss of generality, we may assume that g is real valued. Let g̃ be the
harmonic conjugate function of ĝ. Set h = ĝ + ig̃. The Cauchy–Riemann equations
give |∇ĝ(z)| ≈ |h′(z)|. Then h ∈ Qp1

s (D) ⊆ Qp2
r (D) and |ĝ(z)| ≤ |h(z)|. Hence

ˆ

D

|ĝ(z)|p2 |∇f̂(z)|p2 (1− |z|2)p2−2 (1− |σa(z)|
2)r dA(z)

≤

ˆ

D

|h(z)|p2 |∇f̂(z)|p2 (1− |z|2)p2−2 (1− |σa(z)|
2)r dA(z)

.

ˆ

D

|h(a)|p2 |∇f̂(z)|p2 (1− |z|2)p2−2 (1− |σa(z)|
2)r dA(z)

+

ˆ

D

|h(z)− h(a)|p2 |∇f̂(z)|p2 (1− |z|2)p2−2 (1− |σa(z)|
2)r dA(z)

≈ T1 + T2.
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Since Qp1
s (D) is a subspace of the Bloch space B, then any function h ∈ Qp1

s (D) has
the following growth:

|h(z)| . ‖h‖B log
2

1− |z|
. ‖h‖Qp1

s (D) log
2

1− |z|

for all z ∈ D. Thus

T1 . sup
a∈D

(
log

2

1− |a|

)p2 ˆ

D

|∇f̂(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z) < ∞.

Applying Lemma C, we see that

T2 = (1− |a|2)r
ˆ

D

∣∣∣∣∣
h(z)− h(a)

(1− āz)
2r
p2

∣∣∣∣∣

p2

|∇f̂(z)|p2(1− |z|2)p2−2+r dA(z)

. (1− |a|2)r

(
|h(0)− h(a)|p2 +

ˆ

D

∣∣∣∣∣

(
h(z)− h(a)

(1− āz)
2r
p2

)′∣∣∣∣∣

p2

(1− |z|2)p2−2+r dA(z)

)

. (1− |a|2)r‖h‖p2B

(
log

2

1− |a|

)p2

+

ˆ

D

|h′(z)|p2(1− |z|2)p2−2(1− |σa(z)|
2)r dA(z)

+

ˆ

D

|h(z)− h(a)|p2

|1− āz|p2
(1− |z|2)p2−2(1− |σa(z)|

2)r dA(z)

. ‖h‖p2
Q

p1
s (D)

+

ˆ

D

|h(z)− h(a)|p2

|1− āz|p2
(1− |z|2)p2−2(1− |σa(z)|

2)r dA(z).

By [20, Proposition 2.8], one gets
ˆ

D

|h(z)− h(a)|p2

|1− āz|p2
(1− |z|2)p2−2(1− |σa(z)|

2)r dA(z) . ‖h‖p2
Q

p2
r (D)

.

Combining the above estimates, we obtain

sup
a∈D

I(a) < ∞.

Thus f ∈ M(Qp1
s (T),Qp2

r (T)).

3.2. Proof of part (2). Let p1 > p2 and s ≤ r. If 1−s
p1

> 1−r
p2

, Theorem 2.6

gives the inclusion Qp1
s (T) ⊆ Qp2

r (T). Hence

M(Qp2
r (T),Qp2

r (T)) ⊆ M(Qp1
s (T),Qp2

r (T)).

Checking the proof in (1), one gets that f ∈ M(Qp1
s (T),Qp2

r (T)) if and only if
f ∈ L∞(T) and f satisfies (1.2).

In case that 1−s
p1

≤ 1−r
p2

, as has been observed in the proof of Theorem 2.6, there is

a lacunary Fourier series in Qp1
s (T)\Qp2

r (T). Then we get M(Qp1
s (T),Qp2

r (T)) = {0}
as a consequence of the following result.

Lemma 3.1. Let 1 < p1, p2 < ∞ and 0 < s, r < 1. If there exists a lacunary
Fourier series g(eiθ) =

∑∞
k=0 ake

i2kθ ∈ Qp1
s (T) \ Qp2

r (T), then M(Qp1
s (T), Qp2

r (T)) =
{0}.

Proof. We adapt an argument from [10]. By Corollary 2.5 and the lacunary series
characterization of Qp1

s (D) spaces in [32, Theorem 5.5], we see that

‖g‖p1
Q

p1
s (T)

≈
∞∑

k=0

|ak|
p1 2k(1−s) < ∞
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and
∞∑

k=0

|ak|
p2 2k(1−r) = ∞.

Let {rk(t)}
∞
k=0 be the sequence of Rademacher functions and consider the function

gt(z) =
∞∑

k=0

rk(t)akz
2k , 0 ≤ t ≤ 1.

Then gt ∈ Qp1
s (T) with ‖gt‖Qp1

s (T) ≈ ‖g‖Qp1
s (T). Suppose f ∈ M(Qp1

s (T),Qp2
r (T)).

For any a ∈ D, we have
ˆ 1

0

Igt(f, a) dt :=

ˆ 1

0

ˆ

T

ˆ

T

|f(ζ)(gt(ζ)− gt(η))|
p2

|ζ − η|2−r

(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη| dt

.

ˆ 1

0

ˆ

T

ˆ

T

|f(ζ)gt(ζ)− f(η)gt(η)|
p2

|ζ − η|2−r

(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη| dt

+

ˆ 1

0

ˆ

T

ˆ

T

|(f(ζ)− f(η))gt(η)|
p2

|ζ − η|2−r

(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη| dt.

Hence, using Fubini’s Theorem, we obtain
ˆ 1

0

Igt(f, a) dt .

ˆ 1

0

‖fgt‖
p2
Q

p2
r (T)

dt

+

ˆ

T

ˆ

T

|f(ζ)− f(η)|p2

|ζ − η|2−r

(
ˆ 1

0

|gt(η)|
p2dt

)(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη|.

Since f ∈ M(Qp1
s (T),Qp2

r (T)), then ‖fgt‖Qp2
r (T) . ‖g‖Qp1

s (T). Also, by Khinchine’s
inequality

ˆ 1

0

|gt(η)|
p2 dt ≈

(
∞∑

k=0

|ak|
2

)p2
2

≈ ‖g‖p2H2 . ‖g‖Qp1
s (T),

because Qp1
s (D) ⊆ H2. Combining these estimates with Theorem 2.4 we have

(3.1)

ˆ 1

0

Igt(f, a) dt . ‖g‖p2
Q

p1
s (T)

+ ‖g‖p2
Q

p1
s (T)

· ‖f‖p2
Q

p2
r (T)

< ∞,

because, as 1 ∈ Qp1
s (T), then f = f · 1 ∈ Qp2

r (T).
Now, if f 6= 0, then there exists a positive constant C such that

(3.2)

ˆ 2π

0

|f(eiθ)| dθ ≥ C.

Fubini’s theorem and a change of variables give
ˆ 1

0

Igt(f, 0) dt ≈
ˆ 2π

0

dh

h2−r

ˆ 2π

0

|f(eiθ)| dθ

ˆ 1

0

|gt(e
iθ)− gt(e

i(θ+h))|p2 dt.

Applying Khinchine’s inequality again, we see that

ˆ 1

0

|gt(e
iθ)− gt(e

i(θ+h))|p2 dt ≈

(
∞∑

k=0

|ak|
2|1− ei2

kh|2

) p2
2

.
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Hence, by (3.2),

ˆ 1

0

Igt(f, 0) dt ≈
ˆ 2π

0

(∑∞
k=0 |ak|

2|1− ei2
kh|2
)p2

2

h2−r
dh

ˆ 2π

0

|f(eiθ)| dθ

&

ˆ 2π

0

dh

h2−r

ˆ 1

0

|gt(e
iθ)− gt(e

i(θ+h))|p2 dt,

for any θ ∈ [0, 2π). Thus, using (2.2) and the Khinchine inequality, we have
ˆ 1

0

Igt(f, 0) dt &

ˆ 2π

0

dh

h2−r

ˆ 2π

0

ˆ 1

0

|gt(e
iθ)− gt(e

i(θ+h))|p2 dt dθ

≈
ˆ 1

0

ˆ

T

ˆ

T

|gt(ζ)− gt(η)|
p2

|ζ − η|2−r
|dζ ||dη| dt

≈
ˆ 1

0

ˆ

D

|g′t(z)|
p2(1− |z|2)p2−2+r dA(z) dt

≈
ˆ

D

(
ˆ 1

0

|g′t(z)|
p2dt

)
(1− |z|2)p2−2+r dA(z)

≈
ˆ

D

(M2(|z|, g
′))

p2 (1− |z|2)p2−2+r dA(z).

Since g′(z) is also a lacunary series, it is well known that M2(|z|, g
′) ≈ Mp2(|z|, g

′)
(see [39] for example). Hence

ˆ 1

0

Igt(f, 0) dt &

ˆ

D

(Mp2(|z|, g
′))

p2 (1− |z|2)p2−2+r dA(z)

≈
ˆ

D

|g′(z)|p2(1− |z|2)p2−2+r dA(z)

≈
∞∑

k=0

|ak|
p22k(1−r) = ∞.

This contradicts (3.1). Thus M(Qp1
s (T),Qp2

r (T)) = {0}. �

3.3. Preliminaries for the proof of part (3). Lemma 3.1 shows that
M(Qp1

s (T),Qp2
r (T)) is trivial for a wide range of values of the parameters p1, s,

p2, r. However Lemma 3.1 miss the case that p1 < p2, s > r and 1−s
p1

≥ 1−r
p2

. In

this case, Qp1
s (T) * Qp2

r (T), but any lacunary Fourier series in Qp1
s (T) must be

in Qp2
r (T). Thus, we are in need to look for another method to determine that

M(Qp1
s (T),Qp2

r (T)) is trivial in this case. We are going to use the tangential bound-
ary approximation results of Nagel, Rudin and Shapiro [15] in order to handle this
case.

Given ζ ∈ T and α > 1, let

Γα(ζ) = {z ∈ D : |1− ζz| < α(1− |z|)}

be a Stolz angle with vertex at ζ . If f ∈ Hp, then its non-tangential limit exists
almost everywhere. Namely, for almost every ζ ∈ T, the limit

f(ζ) := lim
z∈Γα(ζ)

z→ζ

f(z)

exists. In order to handle part (3), for every ζ ∈ T, we need to construct a Blaschke
sequence {ak} converging to ζ in a way that the associated Blaschke product is in



214 Guanlong Bao and Jordi Pau

Qp1
s (D) \ Qp2

r (D). In view of Theorem A,
∑

k(1 − |ak|)
sδak must be an s-Carleson

measure, but
∑

k(1− |ak|)
rδak can not be an r-Carleson measure. According to [13]

this is not possible if the sequence {ak} converges to ζ non-tangentially.
For c > 0 and δ > 1, consider the region

Ωδ,c(θ) =

{
reiϕ ∈ D : 1− r > c

∣∣∣∣sin
ϕ− θ

2

∣∣∣∣
δ
}
.

Then Ωδ,c(θ) touches T at eiθ tangentially. We say that a function h, defined in D,
has Ωδ-limit L at eiθ if h(z) → L as z → eiθ within Ωδ,c(θ) for every c. Nagel, Rudin
and Shapiro [15] obtained the following result.

Theorem D. Suppose 1 ≤ p < ∞, f ∈ Lp(T), 0 < α < 1, and

h(z) =
1

2π

ˆ π

−π

f(eiθ) dθ

(1− e−iθz)1−α
, z ∈ D.

If αp < 1 and δ = 1/(1− αp), then the Ωδ-limit of h exists almost everywhere on T.

For β ∈ R and 0 < p < ∞, the Hardy–Sobolev space Hp
β consists of analytic func-

tions f in D such that Dβf ∈ Hp, where f(z) =
∑∞

k=0 akz
k is the Taylor expansion

of f and

Dβf(z) =

∞∑

k=0

(1 + k)βakz
k.

Proposition 3.2. Let 1 < p < ∞ and 0 < s < t < 1. Suppose h ∈ Bp(s). Then
the Ω1/t-limit of h exists almost everywhere on T.

Proof. By Theorem D, it is enough to show that there exists f ∈ Lp(T) with

h(z) =
1

2π

ˆ π

−π

f(eiθ) dθ

(1− e−iθz)1−
1−t
p

, z ∈ D.

Thus we only need to prove that h ∈ Hp
1−t
p

. Note that [36, Theorem 2.19]

ˆ

D

∣∣∣D1+ 1−t
p h(z)

∣∣∣
p

(1− |z|)p−1+s−t dA(z) ≈
ˆ

D

|h′(z)|
p
(1− |z|)p−2+s dA(z) < ∞.

Thus D
1−t
p h ∈ Bp(1 + s − t). Since s < t, then 1 + s − t < 1 and therefore Bp(1 +

s− t) ⊆ Hp (see [3, Lemma 2.4] for example). Hence we get h ∈ Hp
1−t
p

. The proof is

complete. �

In case that p ≤ 2, it is known [12] that one can take t = s in Proposition 3.2.
The following construction will be a key for the proof of part (3).

Lemma 3.3. Let 0 < r < s < 1 and 0 < t < 1. For every eiθ ∈ T, there exists
a Blaschke sequence {ak}

∞
k=1 satisfying the following conditions.

(a) eiθ is the unique accumulation point of {ak}.
(b) {ak} ⊆ Ω1/t,c(θ) for some c > 0.
(c)

∑
k(1− |ak|)

sδak is an s-Carleson measure.
(d)

∑
k(1− |ak|)

rδak is not an r-Carleson measure.

Proof. Set

ak =
(
1− k− 1

ε

)
eiθk , k = 1, 2, · · · ,
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where ε > 0 is taken so that

r(1− t) < ε < min{r, s(1− t)}

and
θk = k− t

ε + θ.

Clearly, {ak} is a Blaschke sequence and eiθ is its unique accumulation point with
{ak} ⊆ Ω1/t,c(θ) for some c > 0. To prove that

∑
k(1 − |ak|)

sδak is an s-Carleson
measure, it is enough to consider sufficiently small arcs I ⊆ T centered at eiθ. Since
ε < s(1− t) < s, we deduce that

∑

ak∈S(I)

(1− |ak|)
s ≈

∑

|θk−θ|≤
|I|
2

k− s
ε ≈

∑

k≥( 2
|I|)

ε
t

k− s
ε ≈
ˆ ∞

( 2
|I|)

ε
t

x− s
ε dx ≈ |I|

s−ε
t . |I|s,

which gives that
∑

k(1− |ak|)
sδak is an s-Carleson measure. On the other hand, for

r(1− t) < ε < r, one gets
∑

ak∈S(I)

(1− |ak|)
r

|I|r
≈

1

|I|r

ˆ ∞

( 2
|I|)

ε
t

x− r
ε dx ≈ |I|

r−ε
t

−r → ∞, as |I| → 0.

Thus
∑

k(1− |ak|)
rδak is not an r-Carleson measure. The proof is complete. �

We also need the following estimate.

Lemma 3.4. Let 1 < q < ∞ and 0 < r < 1. Let f ∈ Lq(T) and S an inner
function. For a ∈ D,

J(a) :=

ˆ

D

|̂f |q(z) (1− |S(z)|)q (1− |z|)−2 (1− |σa(z)|)
r dA(z)

.

ˆ

T

ˆ

T

|f(ζ)|q|S(ζ)− S(η))|q

|ζ − η|2−r

(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη|.

Proof. We first consider the case a = 0. Using Fubini’s Theorem, we see that

J(0) =

ˆ

T

|f(ζ)|q
(
ˆ

D

(1− |S(z)|)q

|ζ − z|2
(1− |z|2)r−1 dA(z)

)
|dζ |

≤

ˆ

T

|f(ζ)|q
(
ˆ

D

|S(ζ)− S(z)|q

|ζ − z|2
(1− |z|2)r−1 dA(z)

)
|dζ |.

Note that

|S(ζ)− S(z)|q ≤

ˆ

T

|S(ζ)− S(η)|q
1− |z|2

|η − z|2
|dη|.

Consequently, by the estimate [17],
ˆ

D

(1− |z|2)r

|ζ − z|2 |η − z|2
dA(z) .

1

|ζ − η|2−r
,

we have

J(0) ≤

ˆ

T

ˆ

T

(
ˆ

D

(1− |z|2)r

|ζ − z|2|η − z|2
dA(z)

)
|f(ζ)|q |S(ζ)− S(η)|q|dη||dζ |

.

ˆ

T

ˆ

T

|f(ζ)|q|S(ζ)− S(η)|q

|ζ − η|2−r
|dη||dζ |.

That is,
ˆ

D

|̂f |q(z)(1 − |S(z)|)q(1− |z|2)r−2 dA(z) .

ˆ

T

ˆ

T

|f(ζ)|q |S(ζ)− S(η)|q

|ζ − η|2−r
|dη||dζ |.
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Replacing f and S by f ◦ σa and S ◦ σa in the above inequality respectively and
changing the variables, the desired result follows. �

3.4. Proof of part (3). If s > r, for any eiθ ∈ T, we take the sequence
{ak}

∞
k=1 ⊆ D constructed in Lemma 3.3, and let B be the corresponding Blaschke

product. Then Theorem A shows that B ∈ Qp1
s (T). If f ∈ M(Qp1

s (T),Qp2
r (T)), then

fB ∈ Qp2
r (T) and

sup
a∈D

ˆ

T

ˆ

T

|f(ζ)(B(ζ)−B(η))|p2

|ζ − η|2−r

(
1− |a|2

|ζ − a||η − a|

)r

|dζ ||dη|

. ‖fB‖p2
Q

p2
r (T)

+ ‖f‖p2
Q

p2
r (T)

< ∞.

Then Lemma 3.4 gives

sup
a∈D

ˆ

D

|̂f |p2(z)(1 − |B(z)|)p2(1− |z|)−2 (1− |σa(z)|)
r dA(z) < ∞.

Since the sequence {ak} is Carleson–Newman, that is,

sup
a∈D

∞∑

k=1

(
1− |σa(ak)|

2
)
< ∞,

we have (see [3, p. 1292], for example) that

(1− |B(z)|)p2 &

(
∞∑

k=1

(
1− |σak(z)|

2
)
)p2

≥
∞∑

k=1

(
1− |σak(z)|

2
)p2 , z ∈ D.

This gives

(3.3) sup
a∈D

∞∑

k=1

ˆ

E(ak)

|̂f |p2(z)
(
1− |σak(z)|

2
)p2 (1− |z|)−2 (1− |σa(z)|)

r dA(z) < ∞,

where E(ak) = {w ∈ D : |σak(w)| < 1/2} is a pseudo-hyperbolic disk centered at ak.
It is well known that

(1− |z|2)2 ≈ |1− akz|
2 ≈ (1− |ak|

2)2

for all z ∈ E(ak). Furthermore, by [37, Lemma 4.30],

1− |σa(z)|
2 ≈ 1− |σa(ak)|

2

for all a ∈ D and z ∈ E(ak). This, (3.3) and subharmonicity yield

sup
a∈D

∞∑

k=1

(|̂f |(ak))
p2(1− |σa(ak)|)

r < ∞.

Since

sup
a∈D

∞∑

k=1

(1− |σa(ak)|)
r = ∞,

this forces |̂f |(ak) → 0. Note that |f | ∈ Qp2
r (T) and limk→∞ ak = eiθ. Then

g = |̂f | + i|̃f | ∈ Qp2
r (D) ⊂ Bp2(r) because of Theorem 2.4, since the Cauchy–

Riemann equations give |g′(z)| ≈ |∇(|̂f |)(z)|. Take t > r in Lemma 3.3, and apply
Proposition 3.2, to get

(|̂f |+ i|̃f |)(eiθ) = lim
k→∞

(|̂f |+ i|̃f |)(ak)
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for almost every eiθ ∈ T. This implies

|̂f |(eiθ) = lim
k→∞

|̂f |(ak) = 0 a.e. eiθ ∈ T.

If we take the normalized |̃f | with |̃f |(0) = 0, then the analytic function |̂f | + i|̃f |

vanishes on T almost everywhere. Hence |̂f |+ i|̃f | vanishes on the whole disk. Then

|̂f |(z) ≡ 0, z ∈ D. This implies f(ζ) = 0 for almost every ζ ∈ T. The proof is
complete.

4. Proof of Theorem 1.2

Let f be the symbol of a bounded multiplication operator Mf on Qp
s(T) space.

If λ 6∈ σ(Mf ), then Mf − λE is invertible. Clearly, the inverse operator of Mf − λE
is M 1

f−λ
. By the open mapping theorem, M 1

f−λ
is also bounded on Qp

s(T), and

Theorem 1.1 gives 1
f−λ

∈ L∞(T). Then
∣∣∣∣

1

f(ζ)− λ

∣∣∣∣ < 2
∥∥∥ 1

f − λ

∥∥∥
L∞(T)

, a.e. ζ ∈ T.

Namely, the set 

ζ ∈ T : |f(ζ)− λ| <

(
2

∥∥∥∥
1

f − λ

∥∥∥∥
L∞(T)

)−1




has measure zero. Thus λ 6∈ R(f).
Conversely, let λ 6∈ R(f). Then there exists some positive constant δ such that

the set {ζ ∈ T : |f(ζ)− λ| < δ} has measure zero. Hence

1

f(ζ)− λ
≤

1

δ
, a.e. ζ ∈ T.

Thus Mf − λE is injective. Using f ∈ M(Qp
s(T)) and Theorem 1.1, we obtain

sup
I⊆T

1

|I|s

(
log

2

|I|

)p ˆ

I

ˆ

I

∣∣∣ 1
f(ζ)−λ

− 1
f(η)−λ

∣∣∣
p

|ζ − η|2−s
|dζ ||dη| < ∞.

Applying Theorem 1.1 again, one gets 1
f−λ

∈ M(Qp
s(T)). Then for any g ∈ Qp

s(T),

we obtain g
f−λ

∈ Qp
s(T) and

(Mf − λE)
g

f − λ
= g.

Then Mf − λE is surjective. Thus Mf − λE is invertible and hence λ 6∈ σ(Mf ).

5. The analytic version of Theorems 1.1 and 1.2

Theorem 5.1. Let 1 < p1, p2 < ∞ and 0 < s, r < 1. Then the following are
true.

(1) If p1 ≤ p2 and s ≤ r, then f ∈ M(Qp1
s (D),Qp2

r (D)) if and only if f ∈ H∞

and

(5.1) sup
I⊆D

1

|I|r

(
log

2

|I|

)p2 ˆ

I

ˆ

I

|f(ζ)− f(η)|p2

|ζ − η|2−r
|dζ ||dη| < ∞.

(2) Let p1 > p2 and s ≤ r. If 1−s
p1

> 1−r
p2

, then f ∈ M(Qp1
s (D),Qp2

r (D)) if and only

if f ∈ H∞ and f satisfies (5.1). If 1−s
p1

≤ 1−r
p2

, then M(Qp1
s (D),Qp2

r (D)) = {0}.
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(3) If s > r, then M(Qp1
s (D),Qp2

r (D)) = {0}.

Proof. Just follow the proof of Theorem 1.1. Now we give a different proof of (3)
using zero sets. Set

zn =

(
1−

1

n1/t

)
eiθn, n = 2, 3, · · · ,

where r < t < s and

θn =

n−1∑

k=1

1

k
+

1

2n
, n = 2, 3, · · · .

By [19, Theorem 8],
∑

n(1−|zn|)
sδzn is an s-Carleson measure. Also, since

∑∞
n=1(1−

|zn|)
t = ∞, it follows from the proof of [15, Theorem 5.10] that {zn} is not a zero set

of Bp2(r) (look also at the proof of Proposition 3.2). Let B be the Blaschke product
with zero sequence {zn}. Then B ∈ Qp1

s (D) \ Qp2
r (D). If f ∈ M(Qp1

s (D),Qp2
r (D)),

then fB ∈ Qp2
r (D) ⊆ Bp2(r). If f 6≡ 0, then there exists an inner function S and an

outer function O such that f = SO. By [1, Proposition 4.2], OB ∈ Bp2(r). Hence
{zn} is a zero set of Bp2(r). This is a contradiction. Thus f ≡ 0. �

Next we prove the analytic version of Theorem 1.2, without using Theorem 5.1.

Theorem 5.2. Suppose 1 < p < ∞ and 0 < s < 1. Let f be the symbol of a
bounded multiplication operator Mf on Qp

s(D) space. Then σ(Mf) = f(D).

Proof. Let λ ∈ f(D). Note that Mf − λE = Mf−λ. Clearly, Mf−λ is not

invertible. Thus λ ∈ σ(Mf ). Since σ(Mf) is compact, we get f(D) ⊆ σ(Mf).

Let λ 6∈ f(D). Then there exists a positive constant C such that

inf
z∈D

|f(z)− λ| > C,

which shows g(z) = 1
f(z)−λ

∈ H∞. Thus Mf − λE is injective. Clearly, f ∈ H∞. For

any h ∈ Qp
s(D), fh ∈ Qp

s(D). Consequently, for any a ∈ D,
ˆ

D

|g′(z)h(z)|p(1− |z|)p−2(1− |σa(z)|)
s dA(z)

≈
ˆ

D

|f ′(z)|p|h(z)|p

|f(z)− λ|2p
(1− |z|)p−2(1− |σa(z)|)

s dA(z)

.

ˆ

D

|f ′(z)h(z)|p(1− |z|)p−2(1− |σa(z)|)
s dA(z)

. ‖fh‖p
Qp

s(D)
+

ˆ

D

|f(z)h′(z)|p(1− |z|)p−2(1− |σa(z)|)
s dA(z)

. ‖fh‖p
Qp

s(D)
+ ‖f‖pH∞‖h‖

p
Qp

s(D)
.

Thus gh ∈ Qp
s(D). Then we get g ∈ M(Qp

s(D)). It follows that Mf−λE is surjective.
Hence λ 6∈ σ(Mf ). The proof is complete. �
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