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Abstract. The purpose of this short note is to establish a sharp version of Forelli-Rudin type
estimates for certain integrals on the real ball.

1. Introduction

Let B,, denote the unit ball in R™ and S"~! its boundary. By dV we denote the
Lebesgue measure on R™, normalized so that V' (B,,) = 1, and do the surface measure
on S"7! so that o(S"!) = 1. For z € B,,, s € R and t > —1, define

(1.1) L(x) == /S do(c)

and
_ [ A=1y'dViy)
(12) Loty = [ Ot

where [z, y] denotes the Ahlfors bracket
[o,y] == (1= 22 -y + | *[y[*) /2.

The following result is well-known to experts in complex analysis and harmonic
analysis. See, for instantce, |7, Lemmas 2.9 and 2.10|, [5, Proposition 2.1] or [11,
lemma 4.4].

Theorem A. Let I,(x) and J,,(z) be defined as in (1.1) and (1.2). Then

1, if s <0,
(13) IS<(L’) ~ Js7t(.f1)') ~ lOg ﬁ, if s = O,
(1= |z[2)=, ifs>0,

as |x| — 17, where the notation a(x) = b(x) means that the ratio a(x)/b(z) is
bounded from above and below by two positive constants as |x| — 17.
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In view of the analogy with the classical Forelli-Rudin estimates (see, e.g. [12,
Proposition 1.4.10]), we shall call the above result the Forelli-Rudin type estimates
on the real ball. The purpose of this note is to present a sharp version of these
estimates, which can also be viewed as an analogue of |8, Theorem 1.3] in the setting
of the unit real ball. More precisely, our main results are as follows.

Theorem 1.1. Let s € R and let I4(z) be defined as in (1.1).
(i) If -1 < s<0ors<1-—mn, then for all x € B,

(-
B e )

2
(ii) If 1 —n < s < —1, then for all x € B,

L5 (=s)
NS T(==) <Iiz) <1

(iii) If0 <s<1ors>n—1, then for all z € B,,

1 S (1 o |I‘2)SIS(SL’) < Fg%)r(s)

" D)

(iv) If 1 < s <n —1, then for all x € B,

F(%)F(S) < (1 o |(IJ‘2)SIS(SL’) S 1.

DT =

(v) If s =0 and n = 2, then for all x € B,

1 1 !
—_ < 2 _— < 1.
s || <log 1 |x|2) Iy(z) <1

(vi) If s =0 and n > 3, then for all z € B,,
1 n
g <lel (o121 i < 2l
Furthermore, all these inequalities are sharp.

Theorem 1.2. Let s € R, t > —1 and let J,,(z) be defined as in (1.2).

(i) If -2 —t<s<0ors<—n-—t, then for all x € B,

L(5 +1)I(1+1) L(5+ 1)1 +1)I(—s)

T(3+1+t) (2 < [(3=s)r(s)

(i) If —=n —t < s < —2 —t, then for all x € B,,
L(5+ 1)1 +)I(—s) L(s+ 1)1 +1)

L rmesy < T S T

(i) If0 < s <24t ors>n+t, then for all x € B,

L(5+1)I(1+1) < (1 P < L5+ DI +1)I(s)

Pg+1+0) = T D(EFT(HEE)

(iv) If 24+t < s <n+t, then for all v € B,,
L5+ DI +1)I(s)

F(%)F(%ﬂré’)

_LEH)ra+n.

< (1= 12?3 Ts4(x) < T(2+1+1)
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(v) If =1 <t <0 and n = 2, then for all x € B,

I(1 4t 1\ 1
( ) S |,’,U‘2 <10g 1—7|:[;|2) J(]’t(flf) a——

< .
r2(%51) S 14t

(vi) If either t > —1 and n > 3, ort > 0 and n > 2, then for all z € B,,

(2 + D1+ 1) 1+ |a] (2 + D01 +1)
e <o (be it to = e

2
Furthermore, all these inequalities are sharp.

2

The following corollary is more useful in applications than Theorems 1.1 and 1.2.
Corollary 1.3. Let s >0 and t > —1. We have

(1.4) xseug’ /Sn ) $ E \_SC|C|):CZ§C)
P'(3)C(s)
s) (n 1+s)

if0<s<lors>n-—1;

(*

1, ifl<s<n-—1,

and

(1= [=[?)°( = |y’
1.5 su dVv
(1:5) erlljn/ . [z, y]rtits )

F(g + D)1+ t)[(s)
e, H0<s<2+4+tors>n+t;
_ FF(2+§1+F)F1( +;+

o4 +t

(2n )T( ), if2+t<s<n+t.

T(2+1+¢)

2. Lemmas

The Gaussian hypergeometric function is defined by

(2.1) JF {% b. Q] _ i (@) (b)x &

C P (C)k k!
for o € (—1,1), with ¢ #£0,—1,—2,---. Here (a); denotes the shifted factorial

(a)o =
(a)p=ala+1)---(a+k—-1), k=12,....

We should mention that this function is usually defined for complex parameters and
argument. However, the above definition is enough for our purpose in this paper.

Lemma 2.1. Suppose that a,b € R and ¢ > max{a,b,a + b, —1}. If abc > 0
then the function p — oF {a,cb; g] is increasing from [0, 1) onto [1, B), otherwise it
is decreasing from [0, 1) onto (B, 1]. Here

F(e)'(c—a—10)

B = ez are =)
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Proof. Combining the differentiation formula (see [3, p. 94 (2.5.1)])

d a, b | ab a+1,b+1
(2:2) d—Q2F1{C7Q}—?2F1[ c+1 70}
and the Euler transformation formula (see |3, Theorem 2.2.5|)
b c—a— - W —b

(2.3) 2F1[a’c : Q} = (1 -0 " " afy [C YO Q} :
we obtain

d a, b | ab —a—b1 c—a,c—b
(2.4) d_Q2F1|iC7Q:|_?(1_Q) 2F1{ et 1 ,Q}-

Note that the assumption ¢ > max{a,b,a + b, —1} implies that the last hypergeo-
metric function is nonnegative on [0, 1), since its Taylor coefficients are all positive.

a, b

d
Hence — oF} R Q:| >0 on [0,1) if and only if abc > 0.

do
The limiting value as ¢ — 0 follows from the series expansion, while the one as
0 — 17 follows from the Gauss relation (see |3, Theorem 2.2.2|)

] By

c
The lemma is proved. O

Recall that oF}; {a,cb; Q:| is called zero-balanced if ¢ = a + b. We shall need the

following result for the zero-balanced hypergeometric functions from [1].
Lemma 2.2. [1, Theorem 1.4] If 0 < a,b < 1, then the function

1\ a, b
0 Q(logl_g) zFthLb; Q}

is decreasing on (0, 1), and for all ¢ € (0,1), we have
T(a+b) 1 1 §21[a,b_}§1 1

2. —1 — log ——.
(2:5) F(a)f‘(b)gogl—g a+b @ gOgl—g

Moreover, the inequalities in (2.5) are sharp.
The following proposition appears to be new and of independent interest.

Proposition 2.3. Ifa,b > 0 and ab > max{1/2, (a + b)/3}, then the function
1+ 2\ b

\/E) 2F1{ “ ’ Q]
1-4/0 a+b

is increasing on (0, 1), and for all ¢ € (0,1), we have

1 1+ r b) 1 1+
(26) log \/E S 2F1|: @ b X :| S M— lOg \/E

2,/0 1—/o a+b ['(a)l'(b) /o 1—/0
Moreover, the inequalities in (2.6) are sharp.

o = /o (log

The proof follows the same lines as that of Lemma 2.2. We first recall the
following elementary Lemma from [2].
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Lemma 2.4. |2, Lemma 2.2] Let o, f € R, and ¢,v: [a, f] — R be continuous
functions that are differentiable on («, ), with p(a) = () = 0 or p(B) = (5) = 0.
Assume that ¢'(x) # 0 for all x € (o, B). If ¢’ /1) is increasing (decreasing) on (o, ),
then so is /1.

Proof of Proposition 2.3. Set
o0 = Vo] o] e wtg) o= o
then ©(0) = ¢(0) = 0 and
- o (gl e [T
C-g (ng_k+ ab & (a+1)k(b+1)k9’;1>

~2a+b) k! a+bi (at+b+1)

— (e &* | = (@1 (D) a)r(b)k k+1
:ngz(() (v _<><>)@

1+./0
1- /0

=0 2(6L+b k k! =0 (CL—Fb)k_H 2(a+b)k k!
_ i (@) kg1 (D)rr1 0F2
=0 (a + b)k+1 k!
Hence
¢'(0)
2 —1
V(o)
_ab 2ab = (@)pro(b)pra O
_a+bQ+( )Q+Z (a+b)ksa (k+2)!

=0
k+2
0

I Z ( k+2 k+2 _ <a>k+1<b>k+1) _9 i (a)k+1(b)k+1 Qk+2
(@~ b)ki2 (a+0)y1 ) (K+1)! c~ (a+by1 k!
(a)k—l—l(b)k—i—l Qk+2
(a+b)pa (K+2)V

_ ( Sab _1) Q+Z[(k+1)(2ab—1)+(3ab—a—b)]

a+b —~

in which all the coefficients are positive. Thus ¢’/ is increasing on (0, 1), thereby
so is /1, by Lemma 2.4. The first assertion of the propostion is proved.
To prove the second assertion, it suffices to note that

. : 1+o\ " b 1
lim @: lim \/§<log%§) 2F1|:aa_'_b; Q:| 257

and

1+\/§)—1 Fa+b), 1 _Tla+)
r

wlo) _ ..
A () T e Ve (k’g 1=v2) T@re) °T-¢ T@r@)

where the next to the last equality follows from the formula (|3, Theorem 2.1.3|)

. 1\ ab T(a+b)
b3 (l"g . @> £ [a+ b 9} = Ty

The optimality of the constants involved in (2.6) is also proved. O
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3. Proofs of Theorems 1.1 and 1.2

We begin by recalling two formulas: for x € B,,, s ¢ R and t > —1,

n—1+4s 1+s
(3_1) Is(x>:2F1[ 2 2 ;Mz}

2

and

D2+ DI(1+¢ ntths  24tts
(32) J87t(ll§') = (2 ) ( ) 2 1|: 2 ;

T(3+1+1)

See |9, Lemma 2.1] and [10, Lemma 2.2] for the proofs. (Note that there is a typo in
[10, Lemma 2.2]. The exponent in the integrand on the left-hand side of the formula
should be A instead of 2).)

In view of (3.2), the assertions (i) and (ii) of Theorems 1.1 and 1.2 follow imme-
diately from Lemma 2.1. The assertions (iii) and (iv) of Theorems 1.1 and 1.2 also
follow, since it is easy to check, by using (3.1), (3.2) and (2.3), that

(1—|z*)°Li(z) =1 4(z) and (1 — |z]*)* Tse(x) =T _,4(2).

To prove (v) and (vi) of Theorems 1.1 and 1.2 we shall apply Lemma 2.2 and
Proposition 2.3. We give only the proof for the assertion (vi) of Theorem 1.2; the
others are similar and easier. Note that if either t > —1 and n > 3, or t > 0 and
n > 2, then (n+1¢)/2>0, (2+1t)/2 >0 and

n+t 2+t - m 11 n+t+2+t
2 2 1273\ 2 2 '

Thus we can combine Proposition 2.3 with (3.2) to get the assertion (vi) of Theo-
rem 1.2.

4. Examples

We present two examples to illustrate the use of our main results, especially,
Corollary 1.3. We claim no originality for the results presented in this section.

4.1. Example 1: Norm estimates. If 7" is a bounded linear operator from
LP(B,,) to LY(B,,), we write ||T'||,—, for the usual operator norm of 7. Namely,

Ty
Tl = s { EAle: 7 2Bo), £ 20}
£ 1l
Suppose t > —1. Let T} be the integral operator defined by
ﬂﬂ@?=B1Q@wﬁ@WV@%
where
_ =1y
Ki(z,y) == Te gt

The following proposition is slightly less general than [14, Corollary 1.2]. We give
a simpler proof here to illustrate the use of Corollary 1.3.

Proposition 4.1. Let 1 < p < oo and p' = p/(p — 1) be the conjugate index of
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(i) Ifeither%—l <i§§%or152n—2—l—2 then

D3+ D0+ 1 - DIy
NEDNC

2 2

1 Tellp—p <

(i) If 2 <t<n—2+2, then

T < D2+ DI+t HT()) ¥ (T +1)T(d)) 7
e <\ T EOTER fg+D J

2 2
Proof. Put

h(z) = (1— |z[2)"w, z€B,.
By Corollary 1.3, we have
_1
(1= Jy[»)
B [[xvy]]n+t

< sup {/ (1— |113'|2)5(1 - |y|2) TP dV(y)} (1 _ |(L"2)_% - h(l’)pl,

[z, y["*

Ky, )h(y) AV (y) = / V()

Similarly,
. Ki(z,y)h(z)PdV (x)
< sup { I }[yﬁ = 'dwx)} (L= ) = (o)

for every y € B,,, where

P(5 + )

I(g+1)r (%)
L(5+5)

The results now follow by an application of Schur’s test (see, for example, [16, The-
orem 3.8]). O

The operators T; are closely related to the harmonic Bergman spaces. Recall
that, for 1 < p < oo, the harmonic Bergman space ”(B,,) is the set of all harmonic
functions f on B,, for which

= ([ If(ar)|”dV(x))% <o

It is a closed subspace of LP(B,,). Let Q denote the orthogonal projection of L*(B,,)
onto b*(B,,), known as the harmonic Bergman projection. It can be expressed as an
integral operator:

Qf(x)= [ [f(y)R(x,y)dV(y),

B,
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1 1= aPly\*  4fz?yl?
R(z,y) = [z, y]" {( [z, y] ) n }

It is easy to verify that |R(x,y)| < 4Ko(x,y) for all z,y € B, and hence |Qf| <
4To|f|. Thus Proposition 4.1 implies the following.

Proposition 4.2. [13, Theorem 3.1] If 1 < p < oo then ) maps L?(B,,) bound-
edly onto b°(B,,). Moreover, we have ||Q||,—, < 2np*/(p — 1) for all 1 < p < .

where

4.2. Example 2: An inequality of Hardy—Littlewood type. Recall that
the Poisson integral P[f] of a function f € L'(S"™!) is defined by

PI@ = [ P@OfQd(0), @ eB,.

where P(x,() denotes the Poisson kernel
1— |zf”

|z — ¢

P(z,() = reB,, (eSS

As usual, for a measurable function f on B, the means M(r, f) are defined by

i ={[ | \f(r<)|qda(<)}; C0<g<w

The following result is probably well-known, but we have been unable to locate
an appropriate reference. It is in the spirit of the classical Hardy-Littlewood in-
equality concerning the rate of growth of mean values of analytic functions (see |6,
Theorem 2]|). Also, an M-harmonic analogue can be found in [15, Corollary 4.45].

Proposition 4.3. If 1 < p < g < oo, then there exists a positive constant C'
such that

(4.1) My(r, Pf]) < C(1 = )5 [l o)
for all f € LP(S"™ ') and 0 <r < 1.
Corollary 1.3 allows us to give an explicit constant in the above inequality.
Proposition 4.4. One can take the constant C' in (4.1) to be
1, if1<t¢< 222

(4.2) Chy = (Mt —n+ DV -
Sre==reod BEEAEE S

with t = pq+:n q’

Proof. Note that C,, = 1 for all p > 1, and in the case when p = ¢, (4.1) is
well-known, see, for example, [4, Theorem 6.4]. So we assume 1 < p < ¢ < oo in
what follows.

Note first that, by (1.4),
(43 [ POl < (G'(a - Jof?)0-0
gn-1

with the constant C), , defined as in (4.2).
Now we let a =¢q, b=1t/(t —1) and ¢ = p/(p — 1). Then

11 1 1 1 1 1 1 1
a

, +o==, 44+ -=1.
b p

c t° a b ¢
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Hence, by Holder’s inequality, we obtain

Pr@I < [ IAQIPG.0)ldo(0
- /Sn1{|P(:c,C)\5|f(<)|5}{|f( O} { 1P, 01} do(0)

<{ [ pwarisorao) { [ iroraeo)
AL e orao)

Combined with (4.3), this yields

PRI < (G (= o) U1 B gy [ 1P ONAQOP dotc).

Let z = rn, integrate with respect to 1, and apply Fubini’s theorem. We get

[ IPFrn)itasn) < (Cpg)t(1 =0 R

This proves the desired inequality. U

o=

Q=

d-n)(t-1q n)(t g
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