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Abstract. We propose a unifying approach to numerous approximation properties in Banach

spaces studied from the 1930s up to our days. To do so, we introduce the concept of ideal topology and

say that a Banach space E has the (I,J , τ)-approximation property if E-valued operators belonging

to the operator ideal I can be approximated, with respect to the ideal topology τ , by operators

belonging to the operator ideal J . This concept recovers many classical/recent approximation

properties as particular instances and several important known results are particular cases of more

general results that are valid in this general framework.

1. Introduction and background

In order to put the problem we deal with in this paper in a proper perspective,
we start by giving a brief historic account of the subject.

Aware of the fact that norm limits of finite rank bounded operators in Banach
spaces are compact, Hildebrandt in 1931 asked if the converse is true. According to
Pietsch [56], this was the most important question ever asked in Banach space theory.
Hildebrandt’s question and the mention Banach himself made to the approximation
property in his book [4] mark the starting point of one of the most long standing and
productive research lines in Functional Analysis, especially in Banach space theory,
namely, the study of the approximation property and its variants. From Mazur’s
problem in the Scottish Book in 1936, passing through Grothendieck’s memoir [30]
in 1953, the counterexamples due to Enflo in 1973, Szankowski in 1981 and Willis
in 1992 and Casazza’s survey [12] in 2001, up to recent striking developments, e.g.,
Figiel, Johnson and Pełczyński [25] in 2011, Johnson and Szankowski [33] in 2012,
Godefroy and Ozawa [27] in 2014, the approximation property and its variants have
been a permanent source of challenging problems and of inspiration to generations of
functional analysts. The subject is so hot that the following important contributions
have appeared while we were writing this paper: Dineen and Mujica [24], Oja and
Zolk [53], Kürsten and Pietsch [36].

The original problem led to many developments that can be divided into two great
groups: (i) quantitative refinements that led, e.g., to the bounded, metric, uniform,
bounded projection, commuting bounded, asymptotically commuting bounded ap-
proximation properties; (ii) problems concerning approximation, in different topolo-
gies, of bounded operators by operators belonging to different special classes (not

doi:10.5186/aasfm.2016.4117
2010 Mathematics Subject Classification: Primary 46B28, 46A32, 47L20, 47B10, 46G25, 47L22.
Key words: approximation property, operator ideal, Banach space, projective tensor product.
∗Supported by Fapemig APQ-04687-10.
†Supported by CNPq Grant 305958/2014-3 and Fapemig Grant PPM-00490-15.



266 Sonia Berrios and Geraldo Botelho

only finite rank operators). We are concerned here with the developments arising
from the second trend.

Considering that a Banach space E has the (classical, original) approximation
property if (and only if) E-valued operators can be approximated, with respect to the
compact-open topology, by finite rank operators, locally convex non-normed topolo-
gies have always been part of the game. The big picture can be described as the
approximation of operators by simpler ones with respect to different (locally convex,
or at least linear) topologies in the spaces of linear operators.

The first variant of the classical approximation property (AP) in the line we are
interested here is the compact approximation property (CAP), which goes back to
Banach’s book [4], that regards the approximation by compact operators with respect
to the compact-open topology. It was only in 1992 that Willis proved that AP 6=
CAP, and it was a strong motivation for mathematicians to consider the problem
of approximation by operators belonging to different classes. By the time of Willis’
counterexample, the study of special classes of linear operators had been successfully
systematized by Pietsch with his theory of Operator Ideals [55]. The consideration of
problems on the approximation by operators belonging to a given operator ideal was
a question of time. Indeed, a number of approximation properties (APs) with respect
to operator ideals—and other ones that are somehow related to operator ideals—have
been studied in the last three decades, see, e.g., [6, 11, 13, 15, 19, 20, 29, 34, 35, 37,
38, 39, 40, 41, 49, 50, 57, 58, 59, 62, 64]. The reader is also referred to the surveys
[51, 52] and to the references therein.

We are interested in the following problem: are all these APs determined by
operator ideals and their respective theories particular cases of one single general
concept? We propose an idea based on the observation that these APs determined
by operator ideals are usually defined (or characterized) by the possibility of approx-
imating operators belonging to a certain class by operators belonging to a smaller
class with respect to a certain prescribed topology. In our approach operator ideals
play the role of the classes of operators and we tried to figure out the conditions for
a topology to be suitable in the sense that: (I) it should give rise to APs enjoying
the usual expected properties; (II) the resulting APs should recover many important
already studied APs as particular instances; (III) results about the already stud-
ied APs should be particular cases of more general results in this new environment.
Our proposal is the concept of ideal topology (cf. Definition 2.1) and the (I,J , τ)-
approximation property, where I,J are operator ideals and τ is an ideal topology,
as defined in the abstract. We believe the examples we provide and the results we
prove throughout the paper show that ideal topologies and the APs they generate
fullfill conditions (I)–(III) above, furnishing in this way a suitable framework to study
approximation properties in Banach spaces in a rather unified and general way. The
referee kindly pointed out that Lissitsin and Oja [46] launched the more general
convex approximation property, yielding also a unified approach.

The paper is organized as follows: in Section 2 we define and give plenty of
examples of ideal topologies, and we introduce the notion of (I,J , τ)-approximation
property. Several well studied approximation properties are shown to be particular
instances of this just defined general concept. In Section 3 we extend/generalize
results from [19, 14] on APs to the language of (I,J , τ)-APs. To reinforce the
unifying feature of our approach, in Section 4 we introduce the notion of projective

ideal topology to prove that recent results from [16, 6, 10] on APs in (symmetric)
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projective tensor products of Banach spaces are particular instances of much more
general results in the context of (I,J , τ)-APs.

Throughout the paper E,E1, . . . , En, F, G,G1, . . . , Gn are Banach spaces over
K = R or C. The closed convex hull of a subset A of a Banach space is denoted by
co(A). By L(E;F ) we denote the Banach space of bounded linear operators from
E to F endowed with the usual operator norm. Given u ∈ L(E;F ) and a bounded
subset A ⊆ E, we use the standard notation

‖u‖A := sup
x∈A

‖u(x)‖.

The identity operator on a Banach space E is denoted by idE and the symbol BE

stands for the closed unit ball of E. Operator ideals are always considered in the
sense of Pietsch [18, 55]. By L we denote the ideal of all bounded operators between
Banach spaces and by F and K the ideals of finite rank and compact operators,
respectively. Given a subset A of a topological space (X, τ), A

τ
denotes the closure

of A in X with respect to τ .
The space of continuous n-linear mappings from E1 × · · · × En to F is denoted

by L(E1, . . . , En;F ) (L(nE;F ) if E1 = · · · = En = E), and the space of continuous
n-homogeneous polynomials from E to F by P(nE;F ); both of them endowed with
their usual sup (complete) norms. The completed n-fold projective tensor product
of E1, . . . , En is denoted by E1⊗̂π · · · ⊗̂πEn, and the completed n-fold symmetric

projective tensor product of E by ⊗̂
n

s,πE. An elementary symmetric tensor x⊗
(n)
· · · ⊗x

shall be simply denoted by ⊗nx. Given an n-linear mapping A ∈ L(E1, . . . , En;F )
and a polynomial P ∈ P(nE;F ), by AL and PL we denote their linearizations, that
is,

AL ∈ L
(
E1⊗̂π · · · ⊗̂πEn;F

)
, AL(x1 ⊗ · · · ⊗ xn) = A(x1, . . . , xn) and

PL ∈ L
(
⊗̂

n

s,πE;F
)
, PL(⊗

nx) = P (x).

For background on multilinear mappings and homogeneous polynomials we refer to
[23, 48], and for projective tensor products of Banach spaces we refer to [18, 26, 61].

2. Ideal topologies

In this section we define the notion of ideal topology, provide a method to gener-
ate many useful examples and introduce the approximation property with respect to
a pair of operator ideals and a given ideal topology. We show that many approxima-
tion properties studied in the literature arise as particular instances of this general
concept.

Definition 2.1. An ideal topology τ is a correspondence that, for all Banach
spaces E and F , assigns a linear topology, still denoted by τ , on the space L(E;F )
such that: for every operator ideal I, if

I
τ
(E;F ) := I(E;F )

τ

for all Banach spaces E and F , then I
τ

is an operator ideal.

Remark 2.2. Let I be an arbitrary operator ideal. Since I(E;F ) is a linear
subspace of L(E;F ) and (L(E;F ), τ) is a topological vector space, it is always true
that I

τ
(E;F ) is a linear subspace of L(E;F ). Moreover, it is plain that F(E;F ) ⊆

I
τ
(E;F ). So, once a linear topology is assigned to each of the spaces L(E;F ), the

ideal property of I
τ

is all that has to be checked to show that τ is an ideal topology.
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Example 2.3. (a) It is folklore that the norm topology, which is the topology
of uniform convergence on bounded sets, denoted by ‖ · ‖, is an ideal topology.

(b) The topology of pointwise convergence τs, which is the topology of uniform
convergence on finite sets, is an ideal topology. Indeed, the topology τs is linear
because it is the locally convex topology generated by the seminorms ported by finite
sets (or, equivalently, by singletons). It is straightforward to check that I

τs
is an

operator ideal for every operator ideal I.

Now we give a method to generate ideal topologies ranging from τs to ‖ · ‖. By
BAN we denote the class of all Banach spaces over K.

Proposition 2.4. Suppose that for every Banach space E it has been assigned
a collection A(E) of bounded subsets of E such that {x} ∈ A(E) for every x ∈ E
and

(1) u(A) ∈ A(F ) for all E, F ∈ BAN, A ∈ A(E) and u ∈ L(E;F ).

Then the topology τA of uniform convergence on sets belonging to A(E), E ∈ BAN,
is an ideal topology. Moreover, τs ⊆ τA ⊆ ‖ · ‖.

Proof. First note that τA is not the discrete topology on L(E;F ) as A(E) 6= ∅.
So τA is a linear topology because, for all Banach spaces E and F , it is the locally
convex topology on L(E;F ) generated by the seminorms ported by the sets belonging
to A(E), that is, by the seminorms

u ∈ L(E;F ) 7→ ‖u‖A := sup
x∈A

‖u(x)‖,

where A ∈ A(E). Let I be an operator ideal. By Remark 2.2 we just have to check
that I

τA
enjoys the ideal property. Given operators u ∈ L(E;F ), v ∈ I

τA
(F ;G),

0 6= w ∈ L(G;H), a subset A of E belonging to A(E) and ε > 0, by (1) we know that
u(A) ∈ A(F ), so we can take an operator T ∈ I(F ;G) such that ‖v − T‖u(A) <

ε
‖w‖

.

Then w ◦ T ◦ u ∈ I(E;H) by the ideal property of I and

‖w ◦ v ◦ u− w ◦ T ◦ u‖A ≤ ‖w‖ · ‖v − T‖u(A) < ε,

proving that w ◦ v ◦ u ∈ I
τA
(E;H). The second assertion is obvious because A(E)

contains the singletons and is contained in the set of all bounded subsets of E. �

The containment of the singletons has a twofold purpose: (i) it is a way—among
others, of course—to avoid the (nonlinear) discrete topology on L(E;F ); (ii) it implies
that τs ⊆ τA, which is a desirable property (cf. Proposition 2.9).

Proposition 2.4 allows us to show that several well known and useful topologies
are ideal topologies that can be found in our way from τs to ‖ · ‖.

Example 2.5. Since bounded linear operators send compact sets to compact
sets, the compact-open topology τc, which is the topology of uniform convergence
on compact sets, is an ideal topology. The same happens for the following classes
of subsets of Banach spaces: compact and convex sets, weakly compact sets, weakly
compact and convex sets (remember that bounded linear operators are weak-weak
continuous). So the topologies of uniform convergence on sets belonging to each of
these classes are ideal topologies.

Proposition 2.4 can be used to provide many further useful examples of ideal
topologies. Given an operator ideal I and a Banach space E, according to [63, 28, 37]
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we define

CI(E) = {A ⊆ E : ∃F, ∃u ∈ I(F ;E) such that A ⊆ u(BF )},

KI(E) = {A : A ⊆ E, ∃F, ∃K ⊆ F compact, ∃u ∈ I(F ;E) such that A ⊆ u(K)}.

The sets belonging to CI(E) are called I-bounded sets and the sets belonging to
KI(E) are called I-compact sets.

Example 2.6. Let I be an operator ideal. It is clear that I-bounded sets are
norm bounded and that singletons are I-bounded (indeed, this is obvious for x = 0,
and for x 6= 0 just pick a funcional ϕ ∈ E ′ such that ϕ(x) = ‖x‖ and note that
ϕ⊗ x ∈ I(E;E) and ϕ⊗ x (x/‖x‖) = x). By the ideal property of I it follows that
bounded linear operators send I-bounded sets to I-bounded sets, so the topology
τCI

of uniform convergence on I-bounded sets (cf., e.g., [2]) is an ideal topology by
Proposition 2.4.

Particular instances of this example of special interest are the following. (i) It
is clear that τKI

= τCI◦K
, so the topology τKI

of uniform convergence on I-compact
sets (cf. e.g., [37, 20]) is an ideal topology. In particular, the topology τKp

of uniform
convergence on p-compact sets (cf. e.g., [62]) is an ideal topology. Indeed, if Kp

denotes the ideal of p-compact operators, then τKp
= τKKp

. (ii) For q > 0, a subset A

of a Banach space E is a Bourgain–Reinov q-compact set (see [11, 59, 1]), in symbols
A ∈ BRq(E), if there is a E-valued absolutely q-summable sequence (xn)n such that
A is contained in the closure of the absolutely convex hull of {x1, x2, . . . , }. By [1],
τBRq

= τCK(q,1)
, where K(q,1) is the ideal of (q, 1)-compact operators, so the topology

τBRq
of uniform convergence on Bourgain–Reinov q-compact sets is an ideal topology.

With plenty of useful ideal topologies in hands we can define the approximation
properties determined by a pair of operators ideals and a given ideal topology.

Definition 2.7. Let I,J be operator ideals and τ be an ideal topology. We say
that a Banach space E has the:

(a) (I,J , τ)-approximation property, (I,J , τ)-AP for short, if

I(F ;E) ⊆ J (F ;E)
τ

for every Banach space F ;

(b) (I,J , τ)-weak approximation property, (I,J , τ)-WAP for short, if

I(E;E) ⊆ J (E;E)
τ
.

The examples below unfold that many well studied approximation properties are
particular cases of our general concept. It is good to have in mind the following
characterizations, which are immediate consequences of the ideal property of I

τ
:

E has the (L, I, τ)-AP ⇐⇒ L(E;E) ⊆ I(E;E)
τ

⇐⇒ idE ∈ I(E;E)
τ

⇐⇒ E has the (L, I, τ)-WAP.(2)

By I sur we mean the surjective hull of the operator ideal I.

Example 2.8. (a) The classical approximation property coincides with the (K,F , ‖·
‖)-AP, with the (L,F , τc)-AP (hence with the (L,F , τc)-WAP).

(b) The compact approximation property coincides with the (L,K, τc)-AP (hence
with the (L,K, τc)-WAP).

(c) Let I be an operator ideal. The I-approximation property of [6] coincides
with the (L, I, τc)-AP (hence with the (L, I, τc)-WAP).
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(d) Let I be an operator ideal. The I-approximation property of Lassalle and
Turco [37] and the approximation property with respect to the operator ideal I of
Delgado and Piñeiro [20] both coincide with the (L,F , τKI

)-AP (hence with the
(L,F , τKI

)-WAP) and with the (I sur,F , τc)-AP (see [20, Theorem 2.3]).
(e) The p-approximation property of Sinha and Karn [62] (see also [19]), 1 ≤ p <

∞, coincides with the (L,F , τKNp)-AP, where N p is the ideal of p-nuclear operators
[37] (hence with the (L,F , τKNp)-WAP), with the (L,F , τKKp

)-AP), where Kp is the

ideal of p-compact operators (hence with the (L,F , τKKp
)-WAP)).

(f) Let 0 < p ≤ 1, q = p/(1 − p) and BRq be the class of Bourgain–Reinov q-
compact subsets of Banach spaces (cf. Example 2.6). The aproximation property of
order p of Reinov [57] coincides with the (L,F , τBRq

)-AP (hence with the (L,F , τBRq
)-

WAP) (see [11, 59] and [20, p. 70]).
(g) A long standing problem (see [42, Problem 1.e.9]) asks whether the classical

approximation property coincides with the (K,F , ‖ · ‖)-WAP.

The reason why we are interested in ideal topologies containing the topology τs
of pointwise convergence (cf. Proposition 2.4) is the following.

Proposition 2.9. Regardless of the operator ideals I and J , every Banach space
has the (I,J , τs)-AP and the (I,J , τs)-WAP.

Proof. It is easy to see that, for every Banach space E, idE ∈ F(E;E)
τs

(see

[43, Proposition 3.14]). Since F
τs

is an operator ideal, we have F(F ;E)
τs
= L(F ;E)

regardless of the Banach spaces E and F . Now the result is immediate. �

Several usual properties of the known approximation properties extend to this
more general context. We give just a couple of illustrative examples.

Proposition 2.10. Let I,J be operator ideals and τ be an ideal topology.

(a) If the Banach space E has the (I,J , τ)-AP ((I,J , τ)-WAP, respectively) and
the Banach space F is isomorphic to a complemented subspace of E, then F
has the (I,J , τ)-AP ((I,J , τ)-WAP, respectively) as well.

(b) Given Banach spaces E1, . . . , En, the finite direct sum
⊕n

j=1Ej has the (I,J , τ)-

AP (the (I,J , τ)-WAP, respectively) if and only if Ej has the (I,J , τ)-AP
(the (Ij ,Jj, τ)-WAP, respectively) for j = 1, . . . , n.

Proof. The cases of the (I,J , τ)-AP in (a) and (b) follow from the fact that a
Banach space has the (I,J , τ)-AP if and only if its identity operator belongs to the
quotient ideal J

τ
◦ I−1 (cf. [55, Theorem 3.2.7]). The case of the (I,J , τ)-WAP in

(a) is easy and we omit the proof. We just give an argument for the implication of
the (I,J , τ)-WAP case in (b) that does not follow from (a): assume that Ej has the
(I,J , τ)-AP for j = 1, . . . , n. Call F :=

⊕n
j=1Ej . For each j let ij : Ej −→ F and

qj : F −→ Ej be the canonical operators. Given an operator u ∈ I (F ;F ), we have

that qj ◦ u ∈ I (F ;Ej), hence qj ◦ u ∈ J
τ
(F ;Ej). Then each ij ◦ qj ◦ u ∈ J

τ
(F ;F ),

so u =
∑n

j=1 ij ◦ qj ◦ u ∈ J
τ
(F ;F ). �

3. Ideal topologies in action

An important aspect of the approximation properties in Banach spaces is the fact
that, sometimes, the approximation by two different classes of operators with respect
to two different topologies actually coincide. The search for this kind of situation in
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our case can be rephrased as: when does the equality (I1,J1, τ1)-AP = (I2,J2, τ2)-
AP hold? What about the WAP? There are several trivial coincidences, for example
the ones in (2) and the following: let I1, I2,J1,J2 be operator ideals and τ1, τ2 be
ideal topologies such that I2 ⊆ I1,J1 ⊆ J2 and τ2 ⊆ τ1. If a Banach space E has the
(I1,J1, τ1)-AP, then E has the (I2,J2, τ2)-AP. The same holds for the corresponding
WAPs.

In this section we use the notion of ideal topology to prove some non-trivial
coincidences that extend and generalize previous results, mainly from [19] and [14].
The argument of the following lemma shall be repeated several times, so we state it
separately for further reference.

Lemma 3.1. Let I be an operator ideal, E, F1 and F2 be Banach spaces, Ai

be a collection of bounded subsets of Fi and τi be the locally convex topology on
L(Fi;E) generated by the seminorms ported by the sets belonging to Ai, i = 1, 2. If

R ∈ I(F1;E)
τ1

and S ∈ L(F2;F1) is such that S(A) ∈ A1 for every A ∈ A2, then

R ◦ S ∈ I(F2;E)
τ2

.

Proof. It is clear that τi is the topology of uniform convergence on the sets
belonging to Ai. Let ε > 0 and A ∈ A2 be given. By assumption we have S(A) ∈ A1

and R ∈ I(F1;E)
τ1

, so there exists an operator T ∈ I(F1;E) such that

‖T ◦ S − R ◦ S‖A = ‖T −R‖S(A) < ε.

Since T ◦ S ∈ I(F2;E) it follows that R ◦ S ∈ I(F2;E)
τ2

. �

Next we show that some of the implications of [19, Theorem 2.1] hold true in a
rather general context. We shall henceforth use the following characterization of the
surjective hull of an operator ideal I: given T ∈ L(E;F ), T ∈ Isur(E;F ) if and only
if T (BE) ∈ CI(F ) if and only if T maps bounded subsets of E to I-bounded subsets
of F .

Proposition 3.2. Let E be a Banach space and let I1, I2, I3 and J be operator
ideals such that I1 ⊆ I3 ∩ (I1 ◦ J sur). Consider the following conditions:

(a) idE ∈ I2(E;E)
τCJ .

(b) E has the (I1, I2, ‖ · ‖)-AP.
(c) E has the (I1, I2, τCJ

)-AP.
(d) E has the (I3, I2, τCJ

)-AP.

Then (a) =⇒ (d) =⇒ (c) ⇐⇒ (b).

Proof. The implications (a) =⇒ (d) =⇒ (c) are obvious; and the implication
(b) =⇒(c) holds because τCJ

⊆ ‖ · ‖ (cf. Example 2.6 and Proposition 2.4). Let us
prove (c) =⇒(b): Let F be a Banach space and T ∈ I1(F ;E). There are a Banach
space G and operators R ∈ I1(G;E) and S ∈ J sur(F ;G) such that T = R ◦S. Then

R ∈ I2(G;E)
τCJ and S maps bounded sets to J -bounded sets. By Lemma 3.1 we

have T = R ◦ S ∈ I2(F ;E)
‖·‖

, proving that E has the (I1, I2, ‖ · ‖)-AP. �

Note that in Proposition 3.2 no condition has been imposed on the operator ideal
I2.

The aim now is to show that, under some additional assumptions, the conditions
(a)–(d) above are all equivalent. To accomplish this task we take advantage of the
quantitative change Lima, Nygaard and Oja [39] made in the classical Davis, Figiel,
Johnson and Pełczyński classical factorization scheme [17], which we describe next.
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Let E be a Banach space, let K be a closed absolutely convex subset of its unit
ball BE and let a > 1. For each n ∈ N put Bn = an/2K + a−n/2BE . As Bn is
absolutely convex and absorbent, the gauge (Minkowski functional) ‖ · ‖n of Bn,

‖x‖n = inf{λ : x ∈ λBn},

is a seminorm on E that is equivalent to the original norm ‖ · ‖ on E. For x ∈ E

define ‖x‖K = (
∑∞

n=1 ‖x‖
2
n)

1/2
and let the subspace EK = {x ∈ E : ‖x‖K < ∞} of E

be endowed with the norm ‖ · ‖K . The function

f : (1,∞) −→ R , f(a) =

∞∑

n=1

an

(an + 1)2
,

is continuous, strictly decreasing, lim
a→1+

f(a) = ∞ and lim
a→∞

f(a) = 0. So there is

exactly one number â ∈ (1,∞) such that f(â) = 1. Let CK = {x ∈ E : ‖x‖K ≤ 1}
and let JK be the identity embedding from EK to E. Replacing a with â in [39,
Lemma 1.1], we get

Lemma 3.3. [39, Lemma 1.1] Let E, K, CK , EK and JK be as above. Then:

(a) K ⊆ CK ⊆ BE .
(b) EK is a Banach space with closed unit ball CK and JK ∈ L(EK ;E) with

‖JK‖ ≤ 1.
(c) J ′′

K is injective.
(d) JK(CK) = CK .

The key result is the following.

Theorem 3.4. (Lima–Nygaard–Oja Factorization Theorem [39, Theorem 2.2])

Suppose T ∈ L(F ;E). Let K = 1
‖T‖

T (BF ) and let TK ∈ L(F ;EK) be defined by

TK(y) = T (y), y ∈ F . Then T = JK ◦ TK .

The expression T = JK ◦ TK above shall be referred to as the LNO factorization

of T .

Definition 3.5. An operator ideal I has the Grothendieck property if whenever
A is a bounded subset of a Banach space E such that for every ε > 0 there is a set
Aε ∈ CI(E) with A ⊆ Aε + εBE , it holds that A ∈ CI(E).

Example 3.6. A result due to Jarchow [32, Proposition 2.9], as restated by
González and Gutiérrez [28, Proposition 3(c)], proves that any closed surjective op-
erator ideal has the Grothendieck property. Lists of closed surjective operator ideals
can be found in [28, 21].

Proposition 3.7. Let T = JK◦TK be the LNO factorization of the operator T ∈
L(F ;E). If the operator ideal I has the Grothendieck property, then T ∈ Isur(F ;E)
if and only if JK ∈ Isur(EK ;E).

Proof. Assume that T ∈ Isur(F ;E). In this case we have T (BF ) ∈ CI(E). As,

for all ε > 0, T (BF ) ⊆ T (BF ) + εBF and I has the Grothendieck property, we

have that T (BF ) ∈ CI(E), hence K = 1
‖T‖

T (BF ) ∈ CI(E). Given ε > 0, since

CK ⊆ an/2K + a−n/2BE for every n (see [39, p. 331]), choosing n such that a−n/2 < ε
and putting Aε = an/2K ∈ CI(E), we have CK ⊆ Aε + εBE. The Grothendieck
property of I gives CK ∈ CI(E). By items (b) and (d) of Lemma 3.3 it follows that

JK(BEK
) = JK(CK) = CK ∈ CI(E),
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which proves that JK ∈ Isur(EK ;E). The converse follows from the ideal property.
�

According to [44, Definition 4.3], the proposition above states that the surjective
hull of an operator ideal with the Grothendieck property is DJFP-surjective. The
referee kindly pointed out that the proof of [44, Proposition 4.2] (essentially) yields
Proposition 3.7.

Corollary 3.8. Let T = JK ◦ TK be the LNO factorization of the operator
T ∈ L(F ;E). If the operator ideal I is surjective and has the Grothendieck property
(in particular, if I is closed and surjective), then T ∈ I(F ;E) if and only if JK ∈
I(EK ;E).

The next result, which is a variant of [19, Theorem 2.1] and a generalization of
[14, Theorem 2.4] (see Corollary 3.10), shows that with additional assumptions the
conditions (a)–(d) of Proposition 3.2 are equivalent.

Theorem 3.9. Let I,J1,J2 be operator ideals such that J1 has the Grothendieck
property, I ⊇ J sur

1 = J sur
1 ◦ J sur

2 and such that operators belonging to I map J2-
bounded sets to J1-bounded sets. The following statements are equivalent for a
Banach space E:

(a) idE ∈ F(E;E)
τCJ1 .

(b) E has the (J sur
1 ,F , ‖ · ‖)-AP.

(c) E has the (J sur
1 ,F , τCJ2

)-AP.
(d) E has the (I,F , τCJ2

)-AP.

Proof. (a) =⇒ (b) Let F be a Banach space and T ∈ J sur
1 (F ;E). Since T maps

bounded sets to J1-bounded sets and, by assumption, idE ∈ F(E;E)
τCJ1 , Lemma 3.1

yields that T = idE ◦ T ∈ F(F ;E)
‖·‖

.
(b) =⇒ (a) Let A ∈ CJ1(E) and ε > 0 be given. There exists a Banach space

F and an operator T ∈ J1(F ;E) ⊆ J sur
1 (F ;E) such that A ⊆ T (BF ). Lettting

T = JK ◦ TK be the LNO factorization of T , JK ∈ J sur
1 (EK ;E) by Proposition

3.7 as J1 has the Grothendieck property. By assumption there exists an operator
S ∈ F(EK , E) such that ‖S − JK‖ < ε

2‖T‖
. Noticing that [50, Lemma 4.2 and

Corollary 4.3] hold if K is just closed (and not necessarily weakly compact), applying
[50, Corollary 4.3] we get an operator R′ ∈ F(E;E) such that

∥∥∥∥R
′ ◦ JK −

S

‖S‖

∥∥∥∥ <
ε

2‖S‖ · ‖T‖
.

Thus R := ‖S‖R′ ∈ F(E;E) and ‖R ◦ JK − S‖ < ε
2‖T‖

. For every x ∈ K, since

JK(x) = x and K ⊆ CK = BEK
(Lemma 3.3(a),(b)), we have

‖R(x)− x‖ = ‖R(JK(x))− JK(x)‖ ≤ ‖(R ◦ JK)(x)− S(x)‖+ ‖S(x)− JK(x)‖

≤ ‖R ◦ JK − S‖ · ‖x‖K + ‖S − JK‖ · ‖x‖K

≤ ‖R ◦ JK − S‖+ ‖S − JK‖ <
ε

‖T‖
.

Since A ⊆ T (BF ) ⊆ ‖T‖K, we have

‖R− idE‖A ≤ ‖T‖ · ‖R− idE‖K < ε,

which proves that idE ∈ F(E;E)
τCJ1 .
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(b) ⇐⇒(c) The same arguments of the proofs of the corresponding implications
in Proposition 3.2 work.

(d) =⇒ (c) It follows from the relation J sur
1 ⊆ I .

(a) =⇒ (d) The assumption that operators in I map J2-bounded sets to J1-
bounded sets allows us to repeat the argument of the proof of (a) =⇒(b). �

Question. To the best of our knowledge, the following question is open: does
the ideal Kp of p-compact operators have the Grothendieck property?

If the answer to the question above turns out to be positive, then Theorem 3.9
can be regarded as a generalization of [19, Theorem 2.1]. For the moment we can
only say that Theorem 3.9 is a variant of [19, Theorem 2.1], in the sense that the
same conclusion holds in situations not covered by the original result. Let us see that
Theorem 3.9 recovers a result due to Choi, Kim and Lee [14] as a particular case.

Corollary 3.10. Let I be an operator ideal containing K. The following state-
ments are equivalent for a Banach space E:

(a) E has the approximation property.
(b) E has the (K,F , ‖ · ‖)-AP.
(c) E has the (K,F , τc)-AP.
(d) E has the (I,F , τc)-AP.

Proof. Just apply Theorem 3.9 with J1 = J2 = K having in mind that K has
the Grothendieck property because it is closed and surjective (cf. Example 3.6), and
that K = K ◦ K (cf. the proof of [55, Proposition 3.1.3] or [39, Theorem 2.2]). �

The equivalence (a) ⇐⇒ (c) of Corollary 3.10 recovers the equivalence (a) ⇐⇒
(b) of [14, Theorem 2.4].

4. Projective ideal topologies

In this section we reinforce the unifying feature of our approach to approximation
properties via ideal topologies by proving that some recent results of [16, 6, 10] on ap-
proximation properties in projective tensor products of Banach spaces are particular
instances of much more general results in the realm of ideal topologies. Remember
that approximation properties and topological tensor products are closely connected
since Grothendieck [30]. It is worth noticing that two results of Çaliskan and Rueda
[16] are in fact particular instances of one single result. We start with a refinement
of the definition of ideal topology.

Definition 4.1. Let C be class of Banach spaces, that is, a subclass of BAN. A
C-projective ideal topology τ is a correspondence that, for all positive integers n ∈ N

and Banach spaces E,E1, . . . , En and F , assigns a linear topology, still denoted by
τ , on each of the spaces L(E;F ), P(nE;F ) and L(E1, . . . , En;F ); such that:

(i) When restricted to the spaces L(E;F ), τ is an ideal topology.
(ii) If E,E1, . . . , En belong to C, then, for every F , the linear bijections

P ∈ (P(nE;F ), τ) 7→ PL ∈
(
L
(
⊗̂

n

s,πE;F
)
, τ
)

and

A ∈ (L(E1, . . . , En;F ), τ) 7→ AL ∈
(
L
(
E1⊗̂π · · · ⊗̂πEn;F

)
, τ
)

are homeomorphisms. For simplicity, a BAN-projective ideal topology shall
be referred to as a projective ideal topology.

It is well known that the norm topology is a projective ideal topology. Moreover
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Proposition 4.2. The topology of pointwise convergence τs is a projective ideal
topology.

Proof. We already know that τs is an ideal topology (Example 2.3(b)). Let

(Pλ)λ be a net in P(nE;F ) such that Pλ
τs−→ P ∈ P(nE;F ). We have to prove that

(Pλ)L
τs−→ PL in L

(
⊗̂

n

s,πE;F
)
, that is, (Pλ)L(z) −→ PL(z) in F for every z ∈ ⊗̂

n

s,πE.

Assume first that z =
∑k

j=1 λj ⊗n xj for some k ∈ N, x1, . . . , xk ∈ E and nonzero
scalars λ1, . . . , λk ∈ K. Given ε > 0, there exists λ0 such that

‖Pλ − P‖{x1,...,xk} <
ε

k · max
j=1,...,k

|λj|
for every λ ≥ λ0.

So, for λ ≥ λ0,

‖(Pλ)L(z)− PL(z)‖ =

∥∥∥∥∥(Pλ − P )L

(
k∑

j=1

λj ⊗
n xj

)∥∥∥∥∥ ≤
k∑

j=1

‖(Pλ − P )L (λj ⊗
n xj)‖

=
k∑

j=1

|λj| · ‖(Pλ − P )L (⊗
nxj)‖ =

k∑

j=1

|λj| · ‖(Pλ − P ) (xj)‖ < ε.

This proves that (Pλ)L(z) −→ PL(z) in F . Observe that (Pλ − P )λ is collection

of continuous n-homogeneous polynomials from the Banach space ⊗̂
n

s,πE to the Ba-

nach space F . The convergence Pλ
τs−→ P implies, in particular, that the collec-

tion (Pλ − P )λ is pointwise bounded, so by the polynomial version of the Banach–
Steinhaus Theorem [48, Theorem 2.6] there is K > 0 such that ‖Pλ − P‖ ≤ K for
every λ. Let now z be an arbitrary element of ⊗̂

n

s,πE. There are sequences (xj)
∞
j=1 in

E and (λj)
∞
j=1 in K such that

z =

∞∑

j=1

λj ⊗
n xj and

∞∑

j=1

|λj| · ‖xj‖
n < ∞

(see [26, Proposition 2.2(9)]). Given ε > 0, let n0 be such that
∑∞

j=n0+1 |λj| · ‖xj‖
n <

ε
2K

. Calling z′ =
∑n0

j=1 λj ⊗n xj , by the first part of the proof we know that

(Pλ)L(z
′) −→ PL(z

′) in F . Let λ0 be such that ‖(Pλ)L(z
′) − PL(z

′)‖ < ε
2

when-
ever λ ≥ λ0. Thus,

‖(Pλ)L(z)− PL(z)‖ =

∥∥∥∥∥(Pλ − P )L

(
∞∑

j=1

λj ⊗
n xj

)∥∥∥∥∥

=

∥∥∥∥∥(Pλ − P )L

(
n0∑

j=1

λj ⊗
n xj

)
+ (Pλ − P )L

(
∞∑

j=n0+1

λj ⊗
n xj

)∥∥∥∥∥

≤

∥∥∥∥∥(Pλ − P )L

(
n0∑

j=1

λj ⊗
n xj

)∥∥∥∥∥+
∞∑

j=n0+1

‖(Pλ − P )L (λj ⊗
n xj)‖

≤
ε

2
+

∞∑

j=n0+1

|λj| · ‖Pλ − P‖ · ‖xj‖
n < ε,

for every λ ≥ λ0, proving that (Pλ)L(z) −→ PL(z) in F .

The converse is easy: given a net (uλ)λ in L
(
⊗̂

n

s,πE;F
)

such that uλ
τs−→ u ∈

L
(
⊗̂

n

s,πE;F
)
, there are (unique) polynomials (Pλ)λ and P in P(nE;F ) such that
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(Pλ)L = uλ for every λ and PL = u. For every x ∈ E,

Pλ(x) = (Pλ)L(⊗
nx) = uλ(⊗

nx) −→ u(⊗nx) = PL(⊗
nx) = P (x).

This proves that Pλ
τs−→ P and completes the proof of the polynomial case of condi-

tion 4.1(ii). The multilinear case is analogous (for a simple proof of the multilinear
Banach–Steinhaus Theorem, see Bernardino [5]). �

Now let us give some further examples of projective ideal topologies that are
useful in the study of the approximation properties. For A ⊆ E and Aj ⊆ Ej ,
j = 1, . . . , n, define

A1 ⊗ · · · ⊗ An := {x1 ⊗ · · · ⊗ xn : xj ∈ Aj , j = 1, . . . , n} ⊆ E1 ⊗ · · · ⊗ En,

⊗n
sA := {⊗nx : x ∈ A} ⊆ ⊗n

sE.

Proposition 4.3. Let C ⊆ BAN be given. Suppose that for every Banach space
E it has been assigned a collection A(E) of bounded subsets of E containing the sin-
gletons, satisfying (1) and such that, for all n ∈ N and Banach spaces E1, . . . , En, E
belonging to C, the following hold:

(i) Every A ∈ A(E1⊗̂π · · · ⊗̂πEn) is contained in a finite union of sets of the form
co(A1 ⊗ · · · ⊗ An), where Aj ∈ A(Ej), j = 1, . . . , n.

(ii) If Aj ∈ A(Ej) for j = 1, . . . , n, then there is A ∈ A(E1⊗̂π · · · ⊗̂πEn) such
that A1 ⊗ · · · ⊗ An ⊆ A.

(iii) Every A ∈ A
(
⊗̂

n

s,πE
)

is contained in a finite union of sets of the form
co(⊗n

sA
′), where A′ ∈ A(E).

(iv) If A ∈ A(E), then there is A′ ∈ A
(
⊗̂

n

s,πE
)

such that ⊗n
sA ⊆ A′.

By τA we mean the topology on the spaces L(E;F ) and P(nE;F ) of uniform conver-
gence on sets of A(E), and the topology on the space L(E1, . . . , En;F ) of uniform
convergence on sets of A(E1)×· · ·×A(En). Then τA is a C-projective ideal topology.

Proof. We already know that τA is an ideal topology (Proposition 2.4). Let E
and F be Banach spaces with E ∈ C and let (Pλ)λ be a net in P(nE;F ) such that

Pλ
τA−→ P ∈ P(nE;F ). Let A ∈ A

(
⊗̂

n

s,πE
)

and ε > 0. By condition (iii) there

exist k ∈ N and sets A′
1, . . . , A

′
k ∈ A(E) such that A ⊆

⋃k
j=1

(
co(⊗s

nA
′
j)
)
. Let λ0 be

such that ‖Pλ − P‖A′
j
< ε, j = 1, . . . , k, whenever λ ≥ λ0. Since (Pλ)L and PL are

continuous linear operators,

‖(Pλ)L − PL‖A ≤ ‖(Pλ)L − PL‖ k⋃
j=1

(co(⊗s
nA

′
j))

= max
j=1,...,k

‖(Pλ)L − PL‖co(⊗s
nA

′
j)
=

= max
j=1,...,k

‖(Pλ)L − PL‖⊗s
nA

′
j
= max

j=1,...,k
‖Pλ − P‖A′

j
< ε

whenever λ ≥ λ0. This proves that (Pλ)L
τc−→ PL in L

(
⊗̂

n

s,πE;F
)
.

Conversely, let (uλ)λ be a net in L
(
⊗̂

n

s,πE;F
)

such that uλ
τA−→ u ∈ L

(
⊗̂

n

s,πE;F
)
.

There are (Pλ)λ and P in P(nE;F ) such that (Pλ)L = uλ for every λ and PL = u.
Let A ∈ A(E) and ε > 0. By condition (iv) there is a set A′ ∈ A

(
⊗̂

n

s,πE
)

such that
⊗s

n(A) ⊆ A′. So there is λ0 such that ‖uλ − u‖A′ < ε for λ ≥ λ0. Thus,

‖Pλ − P‖A = ‖(Pλ)L − PL‖⊗s
nA = ‖uλ − u‖⊗s

nA ≤ ‖uλ − u‖A′ < ε,

for λ ≥ λ0. This proves that Pλ
τA−→ P and completes the proof of the polynomial

case of condition 4.1(ii). The multilinear case is analogous. �
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Example 4.4. Choosing A(E) as the collection of compact subsets of the Banach
space E, let us see that the conditions of Proposition 4.3 are fulfilled. Condition (1)
is obvious; every compact subset of E1⊗̂π · · · ⊗̂πEn is contained in a set of the form
co(A1 ⊗ · · · ⊗ An), where Aj is compact in Ej for j = 1, . . . , n (see [22, Proposition
2.1]); and K1⊗· · ·⊗Kn is compact in E1⊗̂π · · · ⊗̂πEn whenever Kj is compact in Ej ,
j = 1, . . . , n [22, p. 509]. So letting τc be the compact-open topology on the spaces
L(E;F ) and P(nE;F ) and the topology on the space L(E1, . . . , En;F ) of uniform
convergent on cartesian products of compact sets, we have by Proposition 4.3 that
τc is a projective ideal topology.

Example 4.5. Let A(E) be the collection of convex compact subsets of the
Banach space E. Trivially, A satisfies condition (1). As to condition 4.3(i), given
a compact convex set A ∈ E1⊗̂π · · · ⊗̂πEn, as in Example 4.4 there are compact
sets Aj ⊆ Ej , j = 1, . . . n, such that A ⊆ co(A1 ⊗ · · · ⊗ An). Then each co(Aj) is
compact and convex in Ej by Mazur’s Compactness Theorem [47, Theorem 2.8.15]
and A ⊆ co(co(A1) ⊗ · · · ⊗ co(An)). As to condition 4.3(ii), given convex compacts
sets Kj ⊆ Ej, j = 1, . . . , n, as in Example 4.4 we know that K1⊗· · ·⊗Kn is compact
in E1⊗̂π · · · ⊗̂πEn. By Mazur’s Theorem we have that co(K1⊗· · ·⊗Kn) is a compact
convex set containing K1⊗· · ·⊗Kn. By Proposition 4.3, the topology τA on spaces of
linear operators and polynomials of uniform convergence on compact convex sets and
the topology on spaces of multilinear mappings of uniform convergence on cartesian
products of compact convex sets is a projective ideal topology.

Example 4.6. Let DP be the class of all Banach spaces with the Dunford–Pettis
property and let WCπ be the class of Banach spaces defined by the following property:
for every n ∈ N and all E1, . . . , En ∈ WCπ, weakly compact subsets of E1⊗̂π · · · ⊗̂πEn

are contained in a finite union of sets of the form co(A1 ⊗ · · · ⊗ An), where Aj is a
weakly compact subset of Ej , j = 1, . . . , n (property WCπ is stronger than property
wcπ of Ruess [60, p. 247]). Let A(E) be the collection of weakly compact subsets of
the Banach space E. Since bounded linear operators are weak-weak continuous, A
satisfies condition (1). Condition 4.3(i) is automatically fulfilled for Banach spaces
in WCπ. If Aj is weakly compact in Ej, j = 1, . . . , n, and each Ej has the Dunford–
Pettis property, then A1 ⊗ · · · ⊗ An is weakly compact in E1⊗̂π · · · ⊗̂πEn by [22,
Proposition 2.5]. This proves condition 4.3(ii) for Banach spaces in DP . Thus the
topology of uniform convergence on weakly compact sets or on products of weakly
compact sets is a (DP ∩WCπ)-projective ideal topology.

Example 4.7. Let A(E) be the collection of convex weakly compact subsets of
Banach space E. As before, A satisfies condition (1). The Krein–Smulian Theorem
(the closed convex hull of a weakly compact subset of a Banach space is weakly
compact as well) yields that condition 4.3(i) is fulfilled for Banach spaces belonging
to the class WCπ of Example 4.6. Applying [22, Proposition 2.5] together with the
same Krein–Smulian Theorem we have that condition 4.3(ii) is satisfied for the class
DP of Banach spaces with the Dunford–Pettis property. So the topology of uniform
convergence on convex weakly compact sets or on products of convex weakly compact
sets is a (DP ∩WCπ)-projective ideal topology.

Let us put the projective ideal topologies to work. Our first aim is to generalize
the results of Çaliskan and Rueda [16, Section 3] and a very recent result from [10].

Definition 4.8. (Composition ideals) For a given operator ideal I, it is said
that:
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(a) A multilinear mapping A ∈ L(E1, . . . , En;F ) belongs to the composition
multi-ideal I ◦ L, in symbols A ∈ I ◦ L(E1, . . . , En;F ), if there are Ba-
nach spaces G, a multilinear mapping B ∈ L(E1, . . . , En;G) and an operator
u ∈ I(G;F ) such that A = u ◦B.

(b) A polynomial P ∈ P(nE;F ) belongs to the composition polynomial ideal
I ◦ P , in symbols P ∈ I ◦ P (nE;F ), if there are a Banach space G, a poly-
nomial Q ∈ P(nE;G) and an operator u ∈ I(G;F ) such that P = u ◦Q.

Further details on these polynomial/multi-ideals can be found in [9].

Proposition 4.9. Let I,J be operator ideals, C ⊆ BAN, τ be a C-projective
ideal topology, n ∈ N and E, F be Banach spaces with E ∈ C. Consider the following
conditions:

(a) I
(
⊗̂

n

s,πE;F
)
⊆ J

(
⊗̂

n

s,πE;F
) τ

.

(b) I ◦ P (nE;F ) ⊆ J ◦ P(nE;F )
τ
.

(c) I (E;F ) ⊆ J (E;F )
τ
.

Then (a) and (b) are equivalent and they imply (c).

Proof. Let L : (P(nE;F ), τ) −→
(
L
(
⊗̂

n

s,πE;F
)
, τ
)

be the linearization operator,
that is, L(P ) = PL.

(a) =⇒ (b) By [9, Proposition 3.2] we know that L (I ◦ P(nE;F )) = I
(
⊗̂

n

s,πE;F
)

and L (J ◦ P(nE;F )) = J
(
⊗̂

n

s,πE;F
)
. Since L is a homeomorphism, we have

I ◦ P (nE;F ) = L−1 (L (I ◦ P (nE;F ))) = L−1
(
I
(
⊗̂

n

s,πE;F
))

⊆ L−1
(
J
(
⊗̂

n

s,πE;F
) τ)

= L−1
(
J
(
⊗̂

n

s,πE;F
)) τ

= J ◦ P (nE;F )
τ
.

(b) =⇒ (a) In the same fashion,

I
(
⊗̂

n

s,πE;F
)
= L

(
L−1

(
I
(
⊗̂

n

s,πE;F
)))

= L (I ◦ P (nE;F )) ⊆ L
(
J ◦ P(nE;F )

τ
)

= L (J ◦ P(nE;F ))
τ
= J

(
⊗̂

n

s,πE;F
) τ

.

(a) =⇒ (c) Let u ∈ I(E;F ). As ⊗̂
n

s,πE contains a complemented isomorphic

copy of E [7, Corollary 4], there are continuous linear operators j : E −→ ⊗̂
n

s,πE and

p : ⊗̂
n

s,πE −→ E such that p◦j = idE. Then u◦p ∈ I
(
⊗̂

n

s,πE;F
)

and, by assumption,

u ◦ p ∈ J
(
⊗̂

n

s,πE;F
) τ

. The ideal property of J
τ

gives u = u ◦ p ◦ j ∈ J (E;F )
τ
. �

Taking F = ⊗̂
n

s,πE in Proposition 4.9 we obtain

Theorem 4.10. Let I,J be operator ideals, C ⊆ BAN, τ be a C-projective ideal
topology, n ∈ N and E ∈ C. Consider the following conditions:

(a) ⊗̂
n

s,πE has the (I,J , τ)-WAP.

(b) I ◦ P
(
nE; ⊗̂

n

s,πE
)
⊆ J ◦ P

(
nE; ⊗̂

n

s,πE
) τ

.

(c) I
(
E; ⊗̂

n

s,πE
)
⊆ J

(
E; ⊗̂

n

s,πE
) τ

.

Then (a) and (b) are equivalent and they imply (c).

We need two ingredients to recover Proposition 7 and Proposition 8 of [16] as
particular instances of Theorem 4.10. Remember that a vector space-valued map
has finite rank if its range generates a finite dimensional subspace of the target
vector space. It is easy to check that a polynomial P ∈ P(nE;F ) has finite rank
if and only if there are k ∈ N, P1, . . . , Pk ∈ P(nE) and b1, . . . , bk ∈ F such that
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P =
∑k

j=1 Pj ⊗ bj . The space of all such polynomials is denoted by PF(
nE;F ). Here

is the first ingredient.

Lemma 4.11. F ◦ P = PF .

Proof. Let P ∈ P(nE;F ). Is is easy to check that [P (E)] = PL

(
⊗̂

n

s,πE
)
. So,

P ∈ F ◦ P(nE;F ) ⇐⇒ PL ∈ F
(
⊗̂

n

s,πE;F
)
⇐⇒ dimPL

(
⊗̂

n

s,πE
)
< ∞

⇐⇒ dim[P (E)] < ∞ ⇐⇒ P ∈ PF (
nE;F ),

where the first equivalence follows from [9, Proposition 3.2]. �

Let PK denote the class of compact homogeneous polynomials between Banach
spaces (bounded sets are sent to relatively compact sets). The second ingredient is
a classical result due to Aron and Schottenloher [3] that asserts that

(3) PK = K ◦ P.

Taking τ = τc, I = K, J = F and C = BAN in Theorem 4.10, with the help of
Lemma 4.11 and (3) we get

Corollary 4.12. [16, Proposition 7] Let n ∈ N and E be a Banach space.
Consider the following conditions:

(a) ⊗̂
n

s,πE has the (K,F , τc)-WAP.

(b) PK

(
nE; ⊗̂

n

s,πE
)
⊆ PF

(
nE; ⊗̂

n

s,πE
) τc

.

(c) K
(
E; ⊗̂

n

s,πE
)
⊆ F

(
E; ⊗̂

n

s,πE
) τc

.

Then (a) and (b) are equivalent and they imply (c).

Remark 4.13. Condition (b) in [16, Proposition 7] reads PK

(
nE; ⊗̂

n

s,πE
)
=

PF

(
nE; ⊗̂

n

s,πE
) τc

, but a glance at its proof reveals that it should read PK

(
nE; ⊗̂

n

s,πE
)

⊆ PF

(
nE; ⊗̂

n

s,πE
) τc

.

Taking τ = ‖ · ‖, I = K, J = F and C = BAN in Theorem 4.10, with the help
of Lemma 4.11 and (3) and remembering that PK and K are norm closed, we get

Corollary 4.14. [16, Proposition 8] Let n ∈ N and E be a Banach space.
Consider the following conditions:

(a) ⊗̂
n

s,πE has the (K,F , ‖ · ‖)-WAP.

(b) PK

(
nE; ⊗̂

n

s,πE
)
= PF

(
nE; ⊗̂

n

s,πE
) ‖·‖

.

(c) K
(
E; ⊗̂

n

s,πE
)
= F

(
E; ⊗̂

n

s,πE
) ‖·‖

.

Then (a) and (b) are equivalent and they imply (c).

Moreover, the choices τ = ‖ · ‖, J = F and C = BAN show that Theorem 4.10
also generalizes the very recent result [10, Proposition 2.12].

The results above can be extended to the full projective tensor product. Re-
placing the projective symmetric tensor product by the projective tensor product,
homogeneous polynomials by multilinear mappings and the polynomial ideal I ◦ P
by the multi-ideal I ◦L, the proof of Proposition 4.9, mutatis mutandis, works. Actu-
ally the multilinear case is easier as E1⊗̂π · · · ⊗̂πEn trivially contains complemented
copies of each Ej . So
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Proposition 4.15. Let I,J be operator ideals, C ⊆ BAN, τ be C-a projective
ideal topology, n ∈ N and E1, . . . , En, F be Banach spaces with E1, . . . , En ∈ C.
Consider the following conditions:

(a) I
(
E1⊗̂π · · · ⊗̂πEn;F

)
⊆ J

(
E1⊗̂π · · · ⊗̂πEn;F

) τ
.

(b) I ◦ L (E1, . . . , En;F ) ⊆ J ◦ L(E1, . . . , En;F )
τ
.

(c) I (Ej ;F ) ⊆ J (Ej ;F )
τ

for j = 1, . . . , n.

Then (a) and (b) are equivalent and they imply (c).

Taking F = E1⊗̂π · · · ⊗̂πEn in Proposition 4.15 we get

Theorem 4.16. Let I,J be operator ideals, C ⊆ BAN, τ be a C-projective ideal
topology, n ∈ N and E1, . . . , En be Banach spaces with E1, . . . , En ∈ C. Consider
the following conditions:

(a) E1⊗̂π · · · ⊗̂πEn has the (I,J , τ)-WAP.

(b) I ◦ L
(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

)
⊆ J ◦ L

(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

) τ
.

(c) I
(
Ej ;E1⊗̂π · · · ⊗̂πEn

)
⊆ J

(
Ej;E1⊗̂π · · · ⊗̂πEn

) τ
for j = 1, . . . , n.

Then (a) and (b) are equivalent and they imply (c).

By L we denote the class of all continuous multilinear mappings of finite rank.
The same proof of Lemma 4.11 gives the formula L ◦ F = LF . Denoting by LK

the class of compact multilinear mappings, a classical result due to Pełczyński [54,
Proposition 3] gives the formula L ◦ K = LK. Thus, a multilinear analogue of
[16, Proposition 7] is obtained taking C = BAN, τ = τc, I = K and J = F in
Theorem 4.16.

Corollary 4.17. Let n ∈ N and E1, . . . , En be Banach spaces. Consider the
following conditions:

(a) E1⊗̂π · · · ⊗̂πEn has the (K,F , τc)-WAP.

(b) LK

(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

)
⊆ LF

(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

) τc
.

(c) K
(
Ej ;E1⊗̂π · · · ⊗̂πEn

)
⊆ F

(
Ej ;E1⊗̂π · · · ⊗̂πEn

) τc
for j = 1, . . . , n.

Then (a) and (b) are equivalent and they imply (c).

And remembering that LK and K are norm closed, taking C = BAN, τ = ‖·‖, I =
K and J = F in Theorem 4.16 we obtain a multilinear analogue of [16, Proposition 8].

Corollary 4.18. Let n ∈ N and E1, . . . , En be Banach spaces. Consider the
following conditions:

(a) E1⊗̂π · · · ⊗̂πEn has the (K,F , ‖ · ‖)-WAP.

(b) LK

(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

)
= LF

(
E1, . . . , En;E1⊗̂π · · · ⊗̂πEn

) ‖·‖
.

(c) K
(
Ej ;E1⊗̂π · · · ⊗̂πEn

)
= F

(
Ej ;E1⊗̂π · · · ⊗̂πEn

) ‖·‖
for j = 1, . . . , n.

Then (a) and (b) are equivalent and they imply (c).

We finish the paper showing that the concept of projective ideal topology allows
us to generalize the results of [6, Section 3]. We shall need the so-called factorization
method to generate a multi-ideal from a given operator ideal.

Definition 4.19. For a given operator ideal I, a multilinear mapping A ∈
L(E1, . . . , En;F ) is said to belong to the multi-ideal L[I], in symbols A ∈ L[I](E1,
. . . , En;F ), if there are Banach spaces G1, . . . , Gn, a multilinear mapping B ∈
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L(G1, . . . , Gn;F ) and operators uj ∈ I(Ej ;Gj), j = 1, . . . , n, such that A = B ◦
(u1, . . . , un).

Further details on these multi-ideals can be found in [8].
The examples of projective ideal topologies we have been working with are topolo-

gies of uniform convergence on subsets (or products of subsets) belonging to a certain
class A(E) of subsets of the Banach space E, E ∈ BAN. The condition

(4) If A1, A2 ∈ A(E), then there is A ∈ A(E) such that A1 ∪A2 ⊆ A,

is fulfilled by all of them. Indeed, it is obvious that the projective ideal topologies
of Proposition 4.2 and Examples 4.4 and 4.6 fulfill condition (4). And using that
the closed convex hull of a (weakly) compact set is (weakly) compact we have that
the projective ideal topologies of Examples 4.5 and 4.7 fulfill condition (4) too. So,
imposing condition (4) we keep all our examples of projective ideal topologies.

Given operator ideals I1, . . . , In and Banach spaces E1, . . . , En, F , by

I1 ⊗ · · · ⊗ In(E1, . . . , En;F )

we denote that set of all n-linear mappings A ∈ L(E1, . . . , En;F ) for which there
are linear operators Tj ∈ Ij(Ej;Ej), j = 1, . . . , n, and an n-linear mapping B ∈
L(E1, . . . , En;F ) such that A = B ◦ (T1 . . . , Tn). The next result generalizes [6,
Proposition 3.4], which, in its turn, generalizes a classical result due to Heinrich [31,
Theorem 3.].

Theorem 4.20. Let C ⊆ BAN, A be as in Proposition 4.3 and satisfying (4), τA
be the corresponding C-projective ideal topology, I, I1, . . . , In,J ,J1, . . . ,Jn be op-
erator ideals with L[I1, . . . , In] ⊆ I

τA ◦L and E1, . . . , En be Banach spaces belonging
to C such that

(5) J ◦L(E1, . . . , En;E1⊗̂π · · · ⊗̂πEn) ⊆ J1⊗ · · ·⊗Jn(E1, . . . , En;E1⊗̂π · · · ⊗̂πEn).

If each Ej has the (Jj, Ij, τA)-WAP, then E1⊗̂π · · · ⊗̂πEn has the (J , I, τA)-WAP.

Proof. Let T ∈ J (E1⊗̂π · · · ⊗̂πEn;E1⊗̂π · · · ⊗̂πEn). By [9, Proposition 3.2], the
n-linear mapping B ∈ L(E1, . . . , En;E1⊗̂π · · · ⊗̂πEn) such that BL = T belongs to
J ◦ L. By (5) there are linear operators Tj ∈ Jj(Ej;Ej), j = 1, . . . , n, and an n-
linear mapping D ∈ L(E1, . . . , En;E1⊗̂π · · · ⊗̂πEn) such that B = D ◦ (T1, . . . , Tn).
It follows easily that

T = BL = DL ◦ (T1 ⊗ · · · ⊗ Tn).

Given A ∈ A(E1⊗̂π · · · ⊗̂πEn), by condition 4.3(i) there are k ∈ N and sets Ai
j ∈

A(Ej), j = 1, . . . , n, i = 1, . . . , k, such that A ⊆
⋃k

i=1 co(A
i
1 ⊗ · · · ⊗ Ai

n). Let ε > 0.
By condition (4) there are sets Aj ∈ A(Ej) such that A1

j ∪· · ·∪Ak
j ⊆ Aj , j = 1, . . . , n.

Since sets in A are bounded there is M > 0 such that ‖x‖ ≤ M for every x ∈ Aj ,
j = 1, . . . , n. As E1 has the (J1, I1, τA)-WAP, there is an operator u1 ∈ I1(E1;E1)
such that

‖u1 − T1‖A1 <
ε

4nMn−1‖D‖ · ‖T2‖ · · · ‖Tn‖
.

As E2 has (J2, I2, τA)-WAP , there is an operator u2 ∈ I2(E2;E2) such that

‖u2 − T2‖A2 <
ε

4nMn−1‖D‖ · ‖u1‖ · ‖T3‖ · · · ‖Tn‖
.

Continuing the process we obtain operators uj ∈ Ij(Ej ;Ej) such that

‖uj − Tj‖Aj
<

ε

4nMn−1‖D‖ · ‖u1‖ · · · ‖uj−1‖ · ‖Tj+1‖ · · · ‖Tn‖
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for j = 1, . . . , n. Performing a computation identical to the one in the proof of [6,
Proposition 3.4] we conclude that

(6) ‖u1 ⊗ · · · ⊗ un(x1 ⊗ · · · ⊗ xn)− T1(x1)⊗ · · · ⊗ Tn(xn)‖ <
ε

4‖D‖
,

for all x1 ∈ A1, . . . , xn ∈ An. Using that DL, u1 ⊗ · · · ⊗ un and T1 ⊗ · · · ⊗ Tn are all
continuous linear operators, from (6) it follows that

‖DL ◦ (u1 ⊗ · · · ⊗ un)− T‖A ≤ ‖DL ◦ (u1 ⊗ · · · ⊗ un)− T‖⋃k
i=1 co(A

i
1⊗···⊗Ai

n)

= max
i=1,...,k

‖DL ◦ (u1 ⊗ · · · ⊗ un)− T‖co(Ai
1⊗···⊗Ai

n)

≤ ‖DL ◦ (u1 ⊗ · · · ⊗ un)− T‖co((A1
1∪···∪A

k
1)⊗···⊗(A1

n∪···∪A
k
n))

≤ ‖DL ◦ (u1 ⊗ · · · ⊗ un)− T‖co(A1⊗···⊗An)

= ‖DL ◦ (u1 ⊗ · · · ⊗ un − T1 ⊗ · · · ⊗ Tn)‖co(A1⊗···⊗An)

≤ ‖DL‖ · ‖u1 ⊗ · · · ⊗ un − T1 ⊗ · · · ⊗ Tn‖co(A1⊗···⊗An)

= ‖D‖ · ‖u1 ⊗ · · · ⊗ un − T‖A1⊗···⊗An
≤

ε

4
<

ε

2
.

We know that I
τA

is an operator ideal because τA is an ideal topology, so the assump-
tion L[I1, . . . , In] ⊆ I

τA ◦L together with [6, Proposition 3.3] yield that u1⊗· · ·⊗un

belongs to I
τA
(E1⊗̂π · · · ⊗̂πEn;E1⊗̂π · · · ⊗̂πEn). Calling on the ideal property of I

τA

once again we conclude that DL◦(u1⊗· · ·⊗un) belongs to I
τA
(E1⊗̂π · · · ⊗̂πEn;E1⊗̂π

· · · ⊗̂πEn) as well. So there is U ∈ I(E1⊗̂π · · · ⊗̂πEn;E1⊗̂π · · · ⊗̂πEn) such that

‖U −DL ◦ (u1 ⊗ · · · ⊗ un)‖A <
ε

2
.

It follows that ‖U − T‖A < ε, which proves that

T ∈ I(E1⊗̂π · · · ⊗̂πEn;E1⊗̂π · · · ⊗̂πEn)
τA

and completes the proof. �

When In = I for every n, we write L[I] :=
⋃∞

n=1L[I1, . . . , In].

Corollary 4.21. Let C ⊆ BAN, A be as in Proposition 4.3 and satisfying (4),
τA be the corresponding C-projective ideal topology and I, J be operator ideals such
that L[I] ⊆ I

τA ◦ L. The following are equivalent for a Banach space E ∈ C such
that J ◦ L

(
nE; ⊗̂

n

πE
)
⊆ ⊗nJ

(
nE; ⊗̂

n

πE
)

for every n (for some n, respectively):

(a) E has the (J , I, τA)-WAP.

(b) ⊗̂
n

πE has the (J , I, τA)-WAP for every n (⊗̂
k

πE has the (J , I, τA)-WAP for
every k ≤ n, respectively).

(c) ⊗̂
n

πE has the (J , I, τA)-WAP for some n (⊗̂
k

πE has the (J , I, τA)-WAP for
some k ≤ n, respectively).

(d) ⊗̂
n,s

π E has the (J , I, τA)-WAP for every n (⊗̂
k,s

π E has the (J , I, τA)-WAP for
every k ≤ n, respectively).

(e) ⊗̂
n,s

π E has the (J , I, τA)-WAP for some n (⊗̂
k,s

π E has the (J , I, τA)-WAP for
some k ≤ n, respectively).

Proof. Repeat the proof of [6, Corollary 3.8] using Theorem 4.20 and Proposi-
tion 2.10. �

Since idE1⊗̂π···⊗̂πEn
= idE1 ⊗· · ·⊗ idEn

, it is clear that condition (5) holds for J =
J1 = · · · = Jn = L and every n. Thus, taking C = BAN, J = J1 = · · · = Jn = L
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and letting A(E) be the collection of compact subsets of the Banach space E, that
is, τA = τc, Theorem 4.20 recovers [6, Proposition 3.4] and Corollary 4.21 recovers
[6, Corollary 3.8] (remember that (L, I, τ)-AP = (L, I, τ)-WAP).

A number of examples of ideals satisfying L[I1, . . . , In] ⊆ J ◦ L and/or L[I] ⊆
J ◦ L can be found in [6, 3.5–3.7].

Acknowledgement. The authors thank the referee for his/her careful reading of
the manuscript and helpful suggestions that improved the final presentation of the
paper.
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