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Abstract. We extend the difference analogue of Cartan’s second main theorem for the case of

slowly moving periodic hyperplanes, and introduce two different natural ways to find a difference

analogue of the truncated second main theorem. As applications, we obtain a new Picard type

theorem and difference analogues of the deficiency relation for holomorphic curves.

1. Introduction

In 1933, Cartan [1] obtained a generalization of the second main theorem to
holomorphic curves. Cartan’s result is a natural extension of Nevanlinna’s second
main theorem for the n-dimensional complex projective space, and it has, somewhat
surprisingly, turned out to be a powerful tool for important problems in the complex
plane as well. Examples of such problems appear in relation to considering Fermat-
type equations, and Waring’s problem for analytic functions, etc. A thorough review
due to Gundersen and Hayman of the applications of Cartan’s second main theorem
to the complex plane can be found in [4]. See, for instance, also [10, 11] for detailed
presentations of Cartan’s value distribution theory, and [2, 9] for Nevanlinna theory.

Difference analogues of Cartan’s second main theorem have been recently ob-
tained, independently, by Halburd, Korhonen and Tohge [8], and by Wong, Law and
Wong [12]. In order to state the Cartan second main theorem for differences, we define
the n-dimensional complex projective space Pn as the quotient space

(
C

n+1\{0}
)
/ ∼,

where

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn)

if and only if

(a0, a1, . . . , an) = λ(b0, b1, . . . , bn)
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for some λ ∈ C \ {0}. The Cartan characteristic function of a holomorphic curve

g = [g0 : · · · : gn] : C → P
n,

or its associated system of n+ 1 entire functions gj ,

G := (g0, . . . , gn) : C → C
n+1 \ {0},

is defined by

(1.1) Tg(r) = T (r, G) =

ˆ 2π

0

u(reiθ)
dθ

2π
− u(0),

where r > 0 and
u(z) = max

0≤k≤n
log |gk(z)|.

Here g0, . . . , gn are entire functions such that for all complex numbers z the quantity
max0≤k≤n |gk(z)| is non-zero, that is, the gj’s have no common zeros in the whole
of C. We call the holomorphic map G a reduced representation of the curve g. The
hyper-order of g is defined by

ς(g) = lim sup
r→∞

log log Tg(r)

log r
.

Let c ∈ C, and let P1
c be the field of period c meromorphic functions defined in

C of hyper-order strictly less than one. The following theorem is a difference ana-
logue of Cartan’s result, where the ramification term has been replaced by a quantity
expressed in terms of the Casorati determinant of functions which are linearly inde-
pendent over a field of periodic functions.

Theorem 1.1. [8] Let n ≥ 1, and let g0, . . . , gn be entire functions, linearly
independent over P1

c , such that max{|g0(z)|, . . . , |gn(z)|} > 0 for each z ∈ C, and

ς := ς(g) < 1, g = [g0 : · · · : gn].

Let ε > 0. If f0, . . . , fq are q + 1 linear combinations over C of the n + 1 functions
g0, . . . , gn, where q > n, such that any n + 1 of the q + 1 functions f0, . . . , fq are
linearly independent over P1

c , and

L =
f0f1 · · · fq

C(g0, g1, . . . , gn)
,

then

(q − n)Tg(r) ≤ N

(
r,

1

L

)
−N(r, L) + o

(
Tg(r)

r1−ς−ε

)
+O(1),

where r approaches infinity outside of an exceptional set E of finite logarithmic
measure (i.e.

´

E∩[1,∞)
dt/t < ∞).

Comparing the operators Df = f ′ and ∆f = f(z+1)−f(z), a natural difference
analogue of constant targets for f ′ is the periodic targets case for ∆f . For instance,
linear differential equations with constant coefficients can be exactly solved modulo
arbitrary constants, while for linear difference equations the same statement is true
but with arbitrary periodic functions. Also, as shown in [7], the natural target space
for the second main theorem in the complex plane is the solution space of

L(f) = 0,

where L is a linear operator mapping a subclass N of the meromorphic functions
in C into itself. Taking L(f) = Df gives constants as targets, while the choice
L(f) = ∆f yields periodic functions. Also, as in the above Theorem 1.1, the condition



Difference analogue of Cartan’s second main theorem for slowly moving periodic targets 525

“entire functions g1, g2, . . . , gp linearly independent over C” is changed naturally into
“linearly independent over P1

c ”. A natural difference analogue of Cartan’s second
main theorem would therefore be for slowly moving periodic target hyperplanes,
rather than constants as is the case in Theorem 1.1. In this paper we remedy this
situation by introducing the following theorem.

Theorem 1.2. Let n ≥ 1, and let g = [g0 : . . . : gn] be a holomorphic curve of C
into P

n(C) with ς := ς(g) < 1, where g0, . . . , gn are linearly independent over P1
c . If

fj =
n∑

i=0

aijgi j = 0, . . . , q, q > n,

where aij are c-periodic entire functions satisfying T (r, aij) = o(Tg(r)), such that any
n+ 1 of the q + 1 functions f0, . . . , fq are linearly independent over P1

c , and

(1.2) L =
f0f1 · · · fq

C(g0, g1, . . . , gn)
,

then

(1.3) (q − n)Tg(r) ≤ N

(
r,

1

L

)
−N(r, L) + o(Tg(r)),

where r approaches infinity outside of an exceptional set E of finite logarithmic
measure.

In Section 4 below we will show how Theorem 1.2 leads to two difference analogues
of the truncated second main theorem, which are based on natural discrete versions of
properties of the derivative function. Now, we will show that Theorem 1.2 implies the
difference analogue of the second main theorem obtained in [6, Theorem 2.5] in the
general case of slowly moving periodic targets. (Theorem 1.1 implies only the special
case of constant targets.) To this end, let w be a non-periodic meromorphic function
of hyper-order ς(w) < 1. Let g0 and g1 be linearly independent entire functions with
no common zeros such that w = g0/g1. Let aj be c-periodic meromorphic functions
that are small with respect to w for all j = 0, . . . , q − 1. Denote

aj =
αj

βj
, j ∈ {0, . . . , q − 1},

where αj and βj are c-periodic entire functions, and define fj = βjg0 − αjg1 and
fq = g1. Then Theorem 1.2 yields

(1.4) (q − 1)Tg(r) ≤ N

(
r,

1

L

)
−N(r, L) + o(Tg(r))

where

L =
f0f1 · · · fq−1g1
g0g1 − g0g1

,

and r approaches infinity outside of a set of finite logarithmic measure. The counting

function Ñ in the difference analogue of the second main theorem is defined in [6] by

(1.5) Ñ

(
r,

1

w − a

)
=

ˆ r

0

ñ(t, a)− ñ(0, a)

t
dt+ ñ(0, a) log r

where ñ(r, a) is the number of a-points of w with multiplicity of w(z0) = a counted
according to multiplicity of a at z0 minus the order of zero of ∆cw := w(z+ c)−w(z)
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at z0. By combining (1.4) with (1.5), it follows that

(q − 1)T (r, w) ≤ Ñ(r, w) +

q−1∑

j=0

Ñ

(
r,

1

w − aj

)
−N0

(
r,

1

∆cw

)
+ o(T (r, w))

where N0(r, 1/∆cw) is the counting function of those zeros of ∆cw which do not
coincide with any of the zeros or poles of w−aj , and r approaches infinity outside of
a set of finite logarithmic measure. We have therefore shown that [6, Theorem 2.5]
follows from Theorem 1.2

The remainder of the paper is organized in the following way. Section 2 contains
a key result (see Theorem 2.1 below) on linear combinations of entire functions over
the field of meromorphic functions, which is a crucial tool in the proof of Theorem 1.2
in Section 5. Applications of the difference analogue of Cartan’s theorem to Picard’s
theorem are in Section 3, while deficiencies and difference analogues of the truncated
second main theorem can be found in Section 4.

2. Zeros of linear combinations of entire functions

One of the key problems in the proof of Theorem 1.2 has to do with finding a lower
bound for linear combinations of entire functions over the field of small functions
in terms of moduli of their base functions. In the case of constant coefficients [4,
Lemma 8.2] yields the desired results, but for non-autonomous linear combinations
the situation becomes much more delicate due to possible poles and zeros of the
coefficients. The key idea, which enables an applicable result needed for the proof of
Theorem 1.2, is to formulate the estimate using a positive real valued function A(z)
for which the proximity function

m(r, A) =

ˆ 2π

0

log+ |A(reiθ)|
dθ

2π

can be evaluated as m(r, A) = o(Tg(r)), despite of the fact that A is not meromorphic.
The zeros of the coefficients in the linear combinations can then be included in a small
error term of the growth o(Tg(r)). The exact formulation is as follows.

Theorem 2.1. Let n ≥ 1, and let g = [g0 : . . . : gn] be a holomorphic curve of
C into P

n(C), where g0, . . . , gn are linearly independent over P1
c . If

fj =
n∑

i=0

aijgi, j = 0, . . . , q, q > n,

where aij are entire functions satisfying T (r, aij) = o(Tg(r)), such that any n + 1 of
the q + 1 functions f0, . . . , fq are linearly independent over P1

c , then there exists a
positive real valued function A(z), such that

(2.1) |gj(z)| ≤ A(z) · |fmν
(z)|,

where 0 ≤ j ≤ n, 0 ≤ ν ≤ q − n, m(r, A) = o(Tg(r)) and the integers m0, . . . , mq are
chosen so that

(2.2) |fm0(z)| ≥ |fm1(z)| ≥ · · · ≥ |fmq
(z)|.

In particular, there exist at least q−n+1 functions fj that do not vanish at z for all
r outside of a set of finite logarithmic measure, and moreover the integrated counting
function N∗(r) of common zeros of more than n functions fj satisfies

(2.3) N∗(r) = o(Tg(r)).
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The following lemma due to Gundersen [3], which is used to prove Theorem 2.1,
is an estimation of the logarithmic measure about the total moduli of the zeros and
poles of a meromorphic function. Its statement and proof have been embedded as a
part of the proof of [3, Theorem 3].

Lemma 2.2. [3] Let f(z) be a meromorphic function, and let Ef := {r : z ∈
C, |z| = r, f(z) = 0 or f(z) = ∞}. Then the set Ef is of finite logarithmic measure.

Proof of Theorem 2.1. The first part of the proof follows the basic idea behind
the proof of [4, Lemma 8.2]. At the end we need to use other methods to find
an estimate for the proximity function of A(z), and to deal with the zeros of the
coefficient functions in the linear combinations.

Since each fj is a linear combination of the functions g0, . . . , gn with small coef-
ficients,

(2.4) fj =
n∑

i=0

aijgi, j = 0, . . . , q, q > n,

where T (r, aij) = o(Tg(r)). For each z, let m0, m1, . . . , mq be the integers in (2.2),
which depend on z, and let ν be any fixed integer satisfying 0 ≤ ν ≤ q − n. Then

(2.5) |fmµ
(z)| ≤ |fmν

(z)|, µ = q − n, q − n+ 1, . . . , q,

and letting {i0, . . . , in} ⊂ {0, . . . , q}, it follows from (2.4) that

fik(z) =
n∑

j=0

ajik(z)gj(z), k = 0, 1, . . . , n,

that is,

(2.6)




fi0(z)
fi1(z)

...
fin(z)


 =




a0i0(z) · · · ani0(z)
a0i1(z) · · · ani1(z)

...
. . .

...
a0in(z) · · · anin(z)


 ·




g0(z)
g1(z)

...
gn(z)


 .

We set the determinant di0...in(z) by

(2.7) di0...in(z) :=

∣∣∣∣∣∣∣∣

a0i0(z) · · · ani0(z)
a0i1(z) · · · ani1(z)

...
. . .

...
a0in(z) · · · anin(z)

∣∣∣∣∣∣∣∣
.

Since g0, . . . , gn and fi0 , . . . , fin are linearly independent over C (since C ⊂ P1
c ), we

get di0...in(z) 6≡ 0. Otherwise, since fi0 , . . . , fin can be expressed by using g0, . . . , gn,
from (2.6) we would have

rank of




a0i0(z) · · · ani0(z)
a0i1(z) · · · ani1(z)

...
. . .

...
a0in(z) · · · anin(z)


 = rank of




a0i0(z) · · · ani0(z) fi0
a0i1(z) · · · ani1(z) fi1

...
. . .

...
...

a0in(z) · · · anin(z) fin


 .

But from di0...in(z) ≡ 0 and from the fact that fi0, . . . , fin are linearly independent,
we have a contradiction. Thus di0...in(z) 6≡ 0 as we claimed.
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By using Cramer’s rule, for each j = 0, 1, . . . , n, we have

gj =

∣∣∣∣∣∣∣∣

a0i0 · · · aj−1i0 fi0 aj+1i0 · · · ani0
a0i1 · · · aj−1i1 fi1 aj+1i1 · · · ani1
... · · ·

...
...

... · · ·
...

a0in · · · aj−1in fiq aj+1in · · · anin

∣∣∣∣∣∣∣∣

di0...in(z)

= (−1)1+j+1

∣∣∣∣∣∣

a0i1 · · · aj−1i1 aj+1i1 · · · ani1
... · · ·

...
... · · ·

...
a0in · · · aj−1in aj+1in · · · anin

∣∣∣∣∣∣

di0...in(z)
· fi0

+ (−1)2+j+1

∣∣∣∣∣∣∣∣

a0i0 · · · aj−1i0 aj+1i0 · · · ani0
a0i2 · · · aj−1i2 aj+1i2 · · · ani2
... · · ·

...
... · · ·

...
a0in · · · aj−1in aj+1in · · · anin

∣∣∣∣∣∣∣∣

di0...in(z)
· fi1

+ · · ·

+ (−1)n+1+j+1

∣∣∣∣∣∣∣∣

a0i0 · · · aj−1i0 aj+1i0 · · · ani0
a0i1 · · · aj−1i1 aj+1i1 · · · ani1
... · · ·

...
... · · ·

...
a0in−1 · · · aj−1in−1 aj+1in−1 · · · anin−1

∣∣∣∣∣∣∣∣

di0...in(z)
· fin .

By setting

ci0j(z) := (−1)1+j+1

∣∣∣∣∣∣

a0i1 · · · aj−1i1 aj+1i1 · · · ani1
... · · ·

...
... · · ·

...
a0in · · · aj−1in aj+1in · · · anin

∣∣∣∣∣∣

di0...in(z)

ci1j(z) := (−1)2+j+1

∣∣∣∣∣∣∣∣

a0i0 · · · aj−1i0 aj+1i0 · · · ani0
a0i2 · · · aj−1i2 aj+1i2 · · · ani2
... · · ·

...
... · · ·

...
a0in · · · aj−1in aj+1in · · · anin

∣∣∣∣∣∣∣∣

di0...in(z)
...

cinj(z) := (−1)n+1+j+1

∣∣∣∣∣∣∣∣

a0i0 · · · aj−1i0 aj+1i0 · · · ani0
a0i1 · · · aj−1i1 aj+1i1 · · · ani1
... · · ·

...
... · · ·

...
a0in−1 · · · aj−1in−1 aj+1in−1 · · · anin−1

∣∣∣∣∣∣∣∣

di0...in(z)

(2.8)

it follows that

gj(z) =

n∑

k=0

cikj(z)fik(z), j = 0, 1, . . . , n,
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where cikj are meromorphic functions satisfying

T (r, cikj) = O

(
n∑

i=0

q∑

j=0

T (r, aij)

)
= o(Tg(r)).

Thus we have

(2.9) |gj(z)| ≤
n∑

k=0

|cikj(z)| · |fik(z)|, j = 0, 1, . . . , n.

For a particular choice of z ∈ C, let sequence i0 · · · in be mq−n · · ·mq. Then, combin-
ing (2.9) with (2.5) we have

|gj(z)| ≤

q∑

k=q−n

|cmkj(z)| · |fmk
(z)| ≤

q∑

k=q−n

|cmkj(z)| · |fmν
(z)|

≤

(
q∑

k=q−n

|cmkj(z)|

)
· |fmν

(z)| ≤

(
n∑

j=0

q∑

k=q−n

|cmkj(z)|

)
· |fmν

(z)|,

where ν = 0, . . . , q − n and j = 0, 1, . . . , n. By defining

A(z) =
n∑

j=0

q∑

k=q−n

|cmkj(z)|,

we have

(2.10) |gj(z)| ≤ A(z) · |fmν
(z)|

for all ν = 0, . . . , q − n and j = 0, 1, . . . , n, where

m(r, A(z)) ≤
n∑

j=0

q∑

k=q−n

m(r, cmkj(z)) = o(Tg(r)).

Next we prove that A(z) is non-zero for all z ∈ C. From the assumption
that g = [g0 : . . . : gn] is a holomorphic curve of C into P

n(C), we have that
max{|g0(z)|, . . . , |gn(z)|} > 0 for all z ∈ C. Since fik(z) (k = 0, . . . , n) are entire
functions, it clearly follows that |fmν

(z)| gives a finite real number for all z ∈ C. If
there exists z0 ∈ C such that A(z0) = 0, then from (2.10), we have that |gj(z0)| = 0 for
all j = 0, 1, . . . , n, which contradicts with the fact that max{|g0(z)|, . . . , |gn(z)|} > 0.
Thus A(z) 6= 0 for all z ∈ C.

Finally, we will prove that there exist at least q − n+ 1 functions fj that do not
vanish at z for all r outside of a set of finite logarithmic measure. To this end we
define the sets

(2.11) A :=
{
z ∈ C : di0...in(z) = 0, {i0, . . . , in} ⊂ {0, . . . , q}.

}

and
EA = {r : |z| = r, z ∈ A}.

Then we have
EA ⊆

⋃

{i0,...,in}

Edi0...in

where Edi0...in
is defined as in Lemma 2.2. From Lemma 2.2, we have that
ˆ

EA

dx

x
≤

ˆ

⋃
{i0,...,in} Edi0...in

dx

x
≤

∑

{i0,...,in}

ˆ

Edi0...in

dx

x
< ∞.
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So it follows that the set EA is of finite logarithmic measure.
For all z ∈ C\A, we get di0...in(z) 6= 0. Thus from (2.8), we have that cikj(z)(k, j =

0, . . . , n) are analytic on C\A. Therefore
∑n

j=0

∑q
k=q−n |cmkj(z)| gives a finite real

number for all z ∈ C\A. If there exists a z0 ∈ C\A such that |fmν
(z0)| = 0 for any

ν = 0, . . . , q− n, then from (2.10), we deduce that |gj(z0)| = 0 for all j = 0, 1, . . . , n,
which contradicts with the assumption that

max{|g0(z)|, . . . , |gn(z)|} > 0.

Thus |fmν
(z0)| 6= 0 for all ν ∈ {0, . . . , q − n}.

If z0 ∈ A, then there may be a zero of fmν
(z) at z = z0 but the order of this

zero is bounded by the order of the zero of di0...in(z) at z = z0. By going through all
points z ∈ A, and taking into account that T (r, di0...in) = o(Tg(r)), we obtain (2.3).
This completes the proof of Theorem 2.1. �

3. Picard’s theorem

As an application of the difference analogue of Cartan’s theorem, in [8] Hal-
burd, Korhonen and Tohge obtained a difference analogue of Picard’s theorem for
holomorphic curves.

Theorem 3.1. [8] Let f : C → P
n be a holomorpic curve such that ς(f) < 1,

let c ∈ C and let p ∈ {1, . . . , n + 1}. If n + p hyperplanes in general position have
forward invariant preimages under f with respect to the translation τ(z) = z + c,
then the image of f is contained in a projective linear subspace over P1

c of dimension
≤ [n/p].

Here a preimage of a hyperplane H ⊂ P
n under f is said to be forward invariant

with respect to the translation τc(z) = z + c if

(3.1) τc(f
−1({H})) ⊂ f−1({H})

where f−1({H}) and τc(f
−1({H})) are multisets in which each point is repeated

according to its multiplicity. Finitely many exceptional values are allowed in the
inclusion (3.1) if the holomorphic curve f is transcendental.

As mentioned in the introduction, a natural difference analogue of Picard’s the-
orem would have periodic moving targets. In order to state our generalization to
that direction, we first need to define what do we exactly mean by a moving periodic
hyperplane.

First, we fix the numbers n and q(≥ n), and observe q moving hyperplanes
Hj(z) associated with aj =

(
aj0(z), . . . , ajn(z)

)
. Let us put Q := {0, . . . , q} and

N := {0, . . . , n} for convenience. By K we denote a field containing all the ajk(z)
(j ∈ Q, k ∈ N) and also C, where ajk(z) are c-periodic entire functions.

Let H(z) be an arbitrary moving hyperplane over the field K in P
n, that is, a

hyperplane given by

(3.2) H(z) = {[x0 : · · · : xn] ∈ P
n : a0(z)x0 + · · ·+ an(z)xn = 0},

where a0, . . . , an are c-periodic entire functions. Thus H(z) is associated with a
holomorphic mapping

a(z) =
(
a0(z), . . . , an(z)

)
: C → C

n+1.

Letting x = [x0 : · · · : xn], we denote

LH(x, a(z)) = 〈x, a(z)〉 = a0(z)x0 + · · ·+ an(z)xn.



Difference analogue of Cartan’s second main theorem for slowly moving periodic targets 531

For x = g = [g0 : · · · : gn], we then have

LH(g, a(z)) = 〈g(z), a(z)〉 = a0(z)g0(z) + · · ·+ an(z)gn(z),

and we say that the curve g and the moving hyperplane H is free if LH(g, a(z)) 6≡ 0.

Definition 3.2. Moving hyperplanes

Hj(z) =

{
[x0 : · · · : xn] :

n∑

i=0

aji(z)xi = 0

}

in P
n over K, and holomorphic mappings aj(z) =

(
aj0(z), . . . , ajn(z)

)
of C into C

n+1

associated with Hj(z), j = 0, . . . , q, are given. Let K̃ be a field such that C ⊂ K̃.

We say that H0(z), . . . , Hq(z) are in general position over K̃, if q ≥ n and any n+ 1

of the vectors aj(z), j = 0, . . . , q, are linearly independent over K̃.

In order to measure the growth of holomorphic mappings associated with moving
hyperplanes, we need a modified version of the Cartan characteristic function, and
the corresponding notion of hyper-order.

Definition 3.3. Let a(z) = (a0(z), . . . , an(z)) : C → C
n+1 be a holomorphic

mapping. Then

T ∗
a
(r) =

ˆ 2π

0

sup
j∈{0,...,n}

log |aj(re
iθ)|

dθ

2π

is the characteristic function of a, and

ς∗(a) = lim sup
r→∞

log+ log+ T ∗
a
(r)

log r

is the hyper-order of a.

We can now state our generalization of Theorem 3.1.

Theorem 3.4. Let f : C → P
n be a holomorphic curve such that ς(f) < 1, let

c ∈ C, let p ∈ {1, . . . , n + 1}. If n + p moving c-periodic hyperplanes Hj in general
position over P1

c with associated holomorphic mappings aj(z) =
(
aj0(z), . . . , ajn(z)

)

have forward invariant preimages under f with respect to the translation τ(z) = z+c,
and

(3.3) ai1···in+2 = (ai10, . . . , ai1n, ai20, . . . , ai2n, . . . , ain+20, . . . , ain+2n)

satisfies ς∗(ai1···in+2) < 1 for all i1 · · · in+2, then the image of f is contained in a
projective linear subspace over P1

c of dimension ≤ [n/p].

We have introduced the holomorphic mapping (3.3) only for the purpose of stating
the relevant growth condition for the coordinate functions aji of a0, . . . , an+p in a
condensed form. Alternatively this assumption could be replaced with a stronger
but simpler condition that each of the coordinate functions aji satisfy ς(aji) < 1.
Note that in either case we do not need every element of aj to be of growth o(Tg(r)),
what is needed here is just that the hyper-order of the holomorphic mapping (3.3) is
strictly less than 1.

Before going into the proof, we demonstrate the sharpness of Theorem 3.4 by
using the following example.

Example 3.5. Since g(z) := π/Γ(1 − z) = (sin πz)Γ(z) is an entire function
with only simple zeros on the set of positive integers, it follows that g−1({0}) = Z>0

is forward invariant under the shift τ(z) = z + 1. On the other hand, the entire
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function h(z) := (sin πz)/Γ(z) has simple zeros on Z>0 and double zeros on the set of
non-positive integers Z≤0. Despite of this jump in the multiplicities at the origin, the
set of the zeros of h(z) is still forward invariant with respect to τ(z) in our definition.
We also note that the gamma function Γ(z) is a meromorphic function of order 1 and
maximal type in the plane, in fact,

T (r,Γ) = (1 + o(1))
r

π
log r

by, e.g., [2, Proposition 7.3.6], while

T (r, sin πz) = 2r +O(1) = o(T (r,Γ)),

see, e.g., [2, p. 27]. Further, sin πz ∈ P1
1 but Γ 6∈ P1

1 .
Let us consider the holomorphic curve

f :=

[
1

Γ(z)
:

1

Γ(z)
:

1

Γ(z + 1/2)

]
=

[
1 : 1 :

Γ(z)

Γ(z + 1/2)

]
: C → P

2

which has its image in a subset of P2 of dimention 1. Take the four moving hyper-
planes Hj(z) over P1

c with c = 1, each of which is given respectively by the vectors
(
sin πz, 0, 0

)
,
(
0, sin π(z + 1), 0

)
,
(
0, 0, sinπ(z + 1/2)

)
,

and (
sin πz, sin π(z + 1), sin π(z + 1/2)

)

in (P1
1 )

3 in general position. Now it is easy to see that each of these hyperplanes has
a forward invariant preimage under f . For example, f−1({H1}) coincides with the
zeros of the above entire function h(z). This shows that Theorem 3.4 is sharp in the
case where n = p = 2.

Similarly, when n = 3 and p = 2, 3, the bound [n/p] = 1 is attained by the six
hyperplanes given by following vectors in (P1

1 )
4 in general position with the primitive

fourth root of unity ω:

(sin πz)
(
1, 0, 0, 0

)
, (sin πz)

(
0, 1, 0, 0

)
, (sin πz)

(
1, ω, ω2, ω3

)
,

(cosπz)
(
0, 0, 1, 0

)
, (cosπz)

(
0, 0, 0, 1

)
, (cosπz)

(
1, 1, 1, 1

)

and the curve f : C → P
3 is given by

f :=

[
1

Γ(z)
: −

1

Γ(z)
:

ω

Γ
(
z + 1

2

) : −
1

Γ
(
z + 1

2

)
]

=

[
1 : −1 : ω

Γ(z)

Γ
(
z + 1

2

) : −
Γ(z)

Γ
(
z + 1

2

)
]
.

This f is linearly degenerate in the sense that

f(C) =
{
[z1 : z2 : z3 : z4] ∈ P

3 | z1 + z2 = 0, z3 + ωz4 = 0
}
≃ P

1.

A counter-example is also given to show the best-possibility of the restriction of
hyper-order < 1.

Example 3.6. Consider the holomorphic curve f(z) := [1 : exp e2πiz ] : C → P
1,

and three two-dimensional constant vectors (1, 0), (0,−1), (1,−1) associating to three
hyperplanes of P1 in general position. It is easy to see that the roots of the linear
equation

〈(1, exp e2πiz), (1,−1)〉 = 1− exp e2πiz = 0
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are forward invariant with respect to τ(z) = z + 1, since they are of the form

z =
1

2πi
log(2mπ)±

1

4
+ k

for m ∈ Z>0 and k ∈ Z. (For τ(z) = 1
2πi

log(2mπ)± 1
4
+ (k+1).) On the other hand,

[n/p] = [1/2] = 0, but f(z) satisfies f 6∈ P1
1 .

In order to prove Theorem 3.4, we need to introduce the following lemma, which
is a generalization of [8, Theorem 3.1]. Since the proof is a simple modification of
the proof of [8, Theorem 3.1], we omit the details.

Lemma 3.7. Let c ∈ C, and let g = (g0, . . . , gn) be a holomorphic mapping such
that ς∗(g) < 1 and such that preimages of all zeros of g0, . . . , gn are forward invariant
with respect to the translation τ(z) = z + c. Let

S1 ∪ · · · ∪ Sl

be the partition of {0, . . . , n} formed in such a way that i and j are in the same class
Sk if and only if gi/gj ∈ P1

c . If

n∑

i=0

cigi ≡ 0,(3.4)

where ci ∈ P1
c , then

∑

i∈Sk

cigi ≡ 0

for all k ∈ {1, . . . , l}.

Proof of Theorem 3.4. Let x = [x0 : · · · : xn], and let LHj
(z) (j = 1, . . . , n+p) be

the linear forms defining the hyperplanes Hj(z) = 0 as in (3.2). Since by assumption
any n+ 1 of the hyperplanes Hj, j = 1, . . . , n+ p, are linearly independent over P1

c ,
it follows that any n+2 of the forms LHj

(z) satisfy a linear relation with coefficients
none of which vanishes identically in P1

c . By writing τ(z) = z + c, it follows by
assumption that the functions hj = LHj

(f, a) = aj0f0 + · · ·+ ajnfn satisfy

{τ(h−1
j ({0}))} ⊂ {h−1

j ({0})}

for all j = 1, . . . , n + p, where {·} denotes a multiset which takes into account the
multiplicities of its elements.

The set of indexes {1, . . . , n+ p} may be split into disjoint equivalence classes Sk

by saying that i ∼ j if hi = αhj for some α ∈ P1
c \{0}. Therefore

{1, . . . , n+ p} =
N⋃

j=1

Sj

for some N ∈ {1, . . . , n+ p}.
Suppose that the complement of Sk has at least n + 1 elements for some k ∈

{1, . . . , N}. Choose an element s0 ∈ Sk, and denote U = {1, . . . , n + p}\Sk ∪ {s0}.
Since the set U contains at least n + 2 elements, there exists a subset U0 ⊂ U such
that U0 ∩ Sk = {s0} and card(U0) = n+ 2. Therefore, there exists cj ∈ P1

c \{0} such
that

(3.5)
∑

j∈U0

cjhj ≡ 0.
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Denote h = (hi1 , . . . , hin+2). In order to apply Lemma 3.7 to deduce a contradic-
tion, we need to prove ς∗(h) < 1. To this end, let

u(z) = sup
k∈{0,...,n}

log |fk(z)|

and
vij (z) = sup

k∈{0,...,n}

log |aijk(z)| (j = 1, . . . , n+ 2).

Then we have

log |hij | = log |aij0f0 + · · ·+ aijnfn| ≤ log
(
|aij0f0|+ · · ·+ |aijnfn|

)

≤ log(n + 1) · eu · evij ≤ u+ vij +O(1)

= sup
k∈{0,...,n}

log |fk|+ sup
k∈{0,...,n}

log |aijk|+O(1)
(3.6)

for any z satisfying |hij(z)| 6= 0 and supk∈{0,...,n} |aijk(z)| 6= 0. Thus we have

sup
j∈{1,...,n+2}

log |hij | ≤ sup
k∈{0,...,n}

log |fk|+ sup
j∈{1,...,n+2}

sup
k∈{0,...,n}

log |aijk|+O(1)

for any z satisfying

sup
j∈{1,...,n+2}

|hij (z)| 6= 0,

sup
j∈{1,...,n+2}

sup
k∈{0,...,n}

|aijk(z)| 6= 0.
(3.7)

This gives that
ˆ 2π

0

sup
j∈{1,...,n+2}

log |hij (re
iθ)|

dθ

2π
≤

ˆ 2π

0

sup
k∈{0,...,n}

log |fk(re
iθ)|

dθ

2π

+

ˆ 2π

0

sup
j∈{1,...,n+2}

sup
k∈{0,...,n}

log |aijk(re
iθ)|

dθ

2π
+O(1)

(3.8)

for those positive r for which the functions in (3.7) have no zeros on |z| = r.
Suppose that supj∈{1,...,n+2} |hij | has infinitely many zeros on the circle {z : |z| =

r} (where r > 0). Then from Bolzano–Weierstrass theorem, there exists a convergent
subsequence zt → z0 as t → ∞ satisfying

sup
j∈{1,...,n+2}

|hij (zt)| = sup
j∈{1,...,n+2}

|hij (z0)| = 0.

Thus we have |hij (zt)| = |hij(z0)| = 0 (j = 1, . . . , n + 2), i.e., hij(zt) = hij (z0) =
0 (j = 1, . . . , n + 2). Since hij (j = 1, . . . , n + 2) are all entire functions, it follows
from the identity theorem of holomorphic functions, that hij ≡ 0 (j = 1, . . . , n+2), a
contradiction. Similarly it follows that also supj∈{1,...,n+2} supk∈{0,...,n} |aijk| can have
at most finitely many zeros on the circle {z : |z| = r}.

If either one of the functions supj∈{1,...,n+2} supk∈{0,...,n}|aijk| and supj∈{1,...,n+2}|hij |
have a finite number of zeros on the circle {z : |z| = r} (where r > 0), we refer to
[4] for the method of proof on how to deal with this case. Here in convenience for
the readers, we give the details of the proof for (3.8), following [4]. For those r
where there are zeros on the circle of radius r, we modify the path of integration
slightly in order to avoid having zeros on the path. This is done by integrating the
two integrands in (3.8) around a curve γ = γ(r, δ) consisting of arcs of |z| = r and
small “recesses” of sufficiently small radius δ about each zero of supj∈{1,...,n+2} |hij | and
supj∈{1,...,n+2} supk∈{0,...,n} |aijk| on |z| = r, such that these functions have no zeros on
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the new path of integration for any δ > 0. In this case, (3.8) holds when the path of
integration is replaced by γ. Letting δ → 0, it follows that on each small recess the
integrands on both sides of the inequality (3.8) are of the form O(− log δ), and the
length of the recess is of the form O(δ). This implies that the corresponding integrals
around each recess tend to zero as δ → 0. Since the curve γ approaches the circle
|z| = r as δ → 0, it follows that (3.8) holds on |z| = r.

We have shown that (3.8) holds for all positive r. We set

T ∗
h (r) =

ˆ 2π

0

sup
j∈{1,...,n+2}

log |hij (re
iθ)|

dθ

2π
,

T ∗
f (r) =

ˆ 2π

0

sup
k∈{0,...,n}

log |fk(re
iθ)|

dθ

2π
,

and

T ∗
ai1···in+2

(r) =

ˆ 2π

0

sup
j∈{1,...,n+2}

sup
k∈{0,...,n}

log |aijk(re
iθ)|

dθ

2π
.

Then from (3.8) we have

(3.9) T ∗
h (r) ≤ T ∗

f (r) + T ∗
ai1···in+2

(r) +O(1).

Since by assumption ς(f) < 1 and ς∗(ai1···in+2) < 1, it follows by (3.9) that

(3.10) ς∗(h) < 1

and we can hence apply Lemma 3.7.
By using Lemma 3.7, from (3.5) we get that

cs0hs0 ≡ 0,

which is a contradiction. So we have that the set {1, . . . , n + p}\Sk has at most n
elements. Hence Sk has at least p elements for all k = 1, . . . , N , and it follows that
N ≤ (n+ p)/p.

Let V be any subset of {1, . . . , n + p} with exactly n + 1 elements. Then the
forms LHj

, j ∈ V , are linearly independent. By denoting Vk = V ∩ Sk it follows that

V =

N⋃

k=1

Vk.

Since each set Vk gives raise to card(Vk) − 1 equations over the field P1
c , it follows

that we have at least

N∑

k=1

(card(Vk)− 1) = n + 1−N ≥ n+ 1−
n + p

p
= n−

n

p

linearly independent relations over the field P1
c . Therefore the image of f is contained

in a linear subspace over P1
c of dimension ≤ [n/p], as desired. �

4. Difference analogues of truncated second main theorem

In this section we introduce two alternative difference analogues of the truncated
second main theorem, and give corresponding difference deficiency relations. We
start with a definition of the difference counterpart of the concept of truncation.
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Definition 4.1. Let n ∈ N, c ∈ C \ {0} and a ∈ P. An a-point z0 of a
meromorphic function h(z) is said to be n-successive and c-separated, if the n entire
functions h(z + νc) (ν = 1, . . . , n) take the value a at z = z0 with multiplicity not
less than that of h(z) there. All the other a-points of h(z) are called n-aperiodic of

pace c. By Ñ
[n,c]
g (r, LH) we denote the counting function of n-aperiodic zeros of the

function LH(g, a) = 〈g(z), a(z)〉 of pace c.

Note that Ñ
[n,c]
g (r, LH) ≡ 0 when all the zeros of LH(g, a) with taking their

multiplicities into account are located periodically with period c. This is also the
case when the hyperplane H is forward invariant by g with respect to the translation
τc(z) = z + c, i.e. τc

(
g−1({H})

)
⊂ g−1({H}) holds. In fact, it follows by definition

that any zero with a forward invariant preimage of the function LH(g, a) must be
n-successive and c-separated, since

g−1({H}) ⊂ τ−c

(
g−1({H})

)
⊂ τ−(n−1)c

(
g−1({H})

)
.

In addition, we denote

Ng(r, LH) = N

(
r,

1

LH(g, a)

)
= N

(
r,

1

〈g(z), a(z)〉

)

and

NC(r, 0) = N

(
r,

1

C(g0, . . . , gn)

)
.

We give the following short notation to be used through the remainder of this
paper. Let g(z) be a meromorphic function, and let c ∈ C, we set

g(z) ≡ g, g(z + c) ≡ g, g(z + 2c) ≡ g and g(z + nc) ≡ g[n]

to suppress the z-dependence of g(z). The Casorati determinant of g0, . . . , gn is then
defined by

C(g0, . . . , gn) =

∣∣∣∣∣∣∣∣∣

g0 g1 . . . gn
g0 g1 . . . gn
...

...
. . .

...

g
[n]
0 g

[n]
1 . . . g[n]n

∣∣∣∣∣∣∣∣∣

.

With these definitions in hand we can show the following auxiliary result.

Lemma 4.2. Let g be a holomorphic curve of C into P
n(C), let n ∈ N and

q ∈ N be such that q ≥ n, and let

aj(z) = (aj0, . . . , ajn), j ∈ {0, . . . , q},

where ajk(z) are c-periodic entire functions satisfying T (r, ajk) = o(Tg(r)) for all
j, k ∈ {0, . . . , q}. If the moving hyperplanes

(4.1) Hj(z) =
{
[x0 : · · · : xn] : LHj

(x, aj(z)) = 0
}
, j ∈ {0, . . . , q},

are located in general position over P1
c , then

(4.2)

q∑

j=0

Ng(r, LHj
)−NC(r, 0) ≤

q∑

j=0

Ñ [n,c]
g (r, LHj

) + o(Tg(r)).

Proof. By Theorem 2.1 the counting function N∗(r) for those points where more
than n functions LHj

vanish simultaneously is of the growth

(4.3) N∗(r) = o(Tg(r)).
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The contribution to (4.2) from such points can therefore be incorporated in the error
term.

Suppose now that z0 is an n-successive c-separated zero of LHj
for some j ∈

{0, . . . , q}. By (4.3), and Theorem 2.1, we may assume that there are at most n
indexes within {0, . . . , q} such that LHj

(z0) = 0. Therefore, by reordering the indexes
if necessary we may assume that LHj

(z0) 6= 0 for all j ∈ {n, . . . , q}, and thus there is
no contribution to the counting functions Ng(r, LHn

), . . . , Ng(r, LHq
) from the point

z0.
Now, there are integers mj(≥ 0) and holomorphic functions hjk(z) in a neighbor-

hood U of z0 such that

(4.4) LHj
(z + kc) = 〈g(z + kc), aj(z + kc)〉 = (z − z0)

mjhjk(z) for 0 ≤ j, k ≤ n.

Here, for convenience, we set mj = 0 whenever 〈g(z0), aj(z0)〉 6= 0. Since

LHj
(z) = 〈g(z), aj(z)〉 =

n∑

k=0

ajk(z)gk(z),

where ajk are c-periodic entire functions satisfying T (r, ajk) = o(Tg(r)), it follows
that 



LH0 LH1 · · · LHn

LH0 LH1 · · · LHn

...
...

...

L
[n]

H0
L
[n]

H1
· · · L

[n]

Hn




=




g0 g1 · · · gn

g0 g1 · · · gn
...

...
...

g
[n]
0 g

[n]
1 · · · g[n]n




×A,

where

A =




a00 a10 · · · an0

a01 a11 · · · an1
...

...
...

a0n a1n · · · ann




.

Since the hyperplanes (4.1) are in general position over P1
c , we may invert A and

obtain

C(g0, . . . , gn) = C
(
LH0 , . . . , LHn

)
det(A−1) ,

where T (r, det(A−1)) = o(Tg(r)). The cases where z0 is a zero of det(A−1) can
therefore be incorporated in the error term o(Tg(r)). Hence, assuming that det(A−1)
is non-zero at z0, we have by (4.4),

C
(
g0, . . . , gn

)
=

n∏

j=0

(z − z0)
mjh(z) ,

where h(z) is a holomorphic function defined on U . Thus C(g0, . . . , gn) vanishes at z
with order at least

∑q
j=0mj . This, by going through all points z0 ∈ C, together with

definitions of Ng(r, LHj
), NC(r, 0) and Ñ

[n,c]
g (r, LHj

) implies the assertion. �

The following difference analogue of truncated second main theorem is an appli-
cation of Lemma 4.2 and Theorem 1.2.
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Theorem 4.3. (Difference analogue of Cartan’s second main theorem) Let n ≥
1, and let g = [g0 : . . . : gn] be a holomorphic curve of C into P

n(C) with ς := ς(g) <
1, where g0, . . . , gn are linearly independent over P1

c . Let

aj(z) = (aj0, . . . , ajn), j ∈ {0, . . . , q},

where ajk(z) are c−periodic entire functions satisfying T (r, ajk) = o(Tg(r)) for all
j, k ∈ {0, . . . , q}. If the moving hyperplanes

Hj(z) =
{
[x0 : · · · : xn] : LHj

(x, aj(z)) = 0
}
, j ∈ {0, . . . , q},

are located in general position over P1
c , then

(q − n)Tg(r) ≤

q∑

j=0

Ñ [n,c]
g (r, LHj

) + o(Tg(r))

for all r outside of a set E with finite logarithmic measure.

From Theorem 4.3 we can obtain a difference analogue of the truncated deficiency
relation for holomorphic curves.

Corollary 4.4. Under the assumptions of Theorem 4.3, we have

q∑

j=0

δ[n,c]g (0, LHj
) ≤ n + 1,

where

δ[n,c]g (0, LHj
) = 1− lim sup

r→∞

Ñ
[n,c]
g (r, LHj

)

Tg(r)
.

Instead of n-successive points, we can consider points with different separation
properties. For instance, we say that a is a derivative-like paired value of f with
the separation c if the following property holds for all except at most finitely many
a-points of f : whenever f(z) = a with the multiplicity m, then also f(z + c) = a
with the multiplicity max{m− 1, 0}.

Before introducing Theorem 4.6, we give the following definition of the usual
truncated counting function first, please refer, for instance, to [4] for details.

Definition 4.5. For a meromorphic function f satisfying f 6≡ 0 and a positive
integer j, let nj(r, 0, f) denote the number of zeros of f in {z : |z| ≤ r}, counted in
the following manner: a zero of f of multiplicity m is counted exactly k times where
k = min{m, j}. Then let Nj(r, 0, f) denote the corresponding integrated counting
function; that is,

Nj(r, 0, f) = nj(0, 0, f) log r +

ˆ r

0

nj(t, 0, f)− nj(0, 0, f)

t
dt.

With this definition we may state the second difference analogue of the truncated
second main theorem.

Theorem 4.6. Assume that the hypotheses of Theorem 1.2 hold, and 0 is a
derivative-like paired value of fi with the separation c for all i ∈ {0, . . . , q}. Then we
have

N(r, 0, L) ≤

q∑

j=0

Nn(r, 0, fj) +O(1),
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and this gives

(q − n)Tg(r) ≤

q∑

j=0

Nn(r, 0, fj)−N(r, L) + o(Tg(r)),

where r approaches infinity outside of an exceptional set of finite logarithmic measure.

For the proof of Theorem 1.2 and Theorem 4.6, the following lemma is needed.

Lemma 4.7. [8] If the holomorphic curve g = [g0 : · · · : gn] satisfies ς(g) < 1
and if c ∈ C, then C(g0, . . . , gn) ≡ 0 if and only if the entire functions g0, . . . , gn are
linearly dependent over the field P1

c .

Proof of Theorem 4.6. Suppose that a0, . . . , aq−n−1 are any q−n distinct integers
in the set {0, 1, . . . , q}, and let b0, b1, . . . , bn denote the remaining integers in the set
{0, 1, . . . , q}. From the assumptions of Theorem 4.6 (the same as the assumptions of
Theorem 1.2), we have that

(4.5)




fb0 · · · fbn
f b0 · · · f bn
...

. . .
...

f
[n]

b0
· · · f

[n]

bn


 =




g0 · · · gn
g0 · · · gn
...

. . .
...

g
[n]
0 · · · g[n]n


 ·




a0b0 · · · a0bn
a1b0 · · · a1bn
...

. . .
...

anb0 · · · anbn


 ,

where

(4.6)

∣∣∣∣∣∣∣∣

a0b0 · · · a0bn
a1b0 · · · a1bn

...
. . .

...
anb0 · · · anbn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a0b0 · · · anb0
a0b1 · · · anb1
...

. . .
...

a0bn · · · anbn

∣∣∣∣∣∣∣∣
= db0···bn(z).

Lemma 4.7 yields C(g0, . . . , gn) 6≡ 0. Since fb0 , . . . , fbn are linearly independent over
P1

c , it follows that the determinant (4.6) of the coefficient matrix of (4.5) satisfies

db0···bn(z) 6≡ 0,

and so also C(fb0 , . . . , fbn) 6≡ 0 by (4.5). Since

(4.7)




fb0(z)
fb1(z)

...
fbn(z)


 =




a0b0 · · · anb0
a0b1 · · · anb1
...

. . .
...

a0bn · · · anbn


 ·




g0(z)
g1(z)

...
gn(z)


 ,

by using Cramer’s rule, we get that

gi =

∣∣∣∣∣∣∣∣

a0b0 · · · ai−1b0 fb0 ai+1b0 · · · anb0
a0b1 · · · ai−1b1 fb1 ai+1b1 · · · anb1
... · · ·

...
...

... · · ·
...

a0bn · · · ai−1bn fbn ai+1bn · · · anbn

∣∣∣∣∣∣∣∣

db0···bn(z)
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= (−1)1+i+1

∣∣∣∣∣∣

a0b1 · · · ai−1b1 ai+1b1 · · · anb1
... · · ·

...
... · · ·

...
a0bn · · · ai−1bn ai+1bn · · · anbn

∣∣∣∣∣∣

db0···bn(z)
· fb0

+ (−1)2+i+1

∣∣∣∣∣∣∣∣

a0b0 · · · ai−1b0 ai+1b0 · · · anb0
a0b2 · · · ai−1b2 ai+1b2 · · · anb2
... · · ·

...
... · · ·

...
a0bn · · · ai−1bn ai+1bn · · · anbn

∣∣∣∣∣∣∣∣

db0···bn(z)
· fb1

+ · · ·

+ (−1)n+1+i+1

∣∣∣∣∣∣∣∣

a0b0 · · · ai−1b0 ai+1b0 · · · anb0
a0b1 · · · ai−1b1 ai+1b1 · · · anb1
... · · ·

...
... · · ·

...
a0bn−1 · · · ai−1bn−1 ai+1bn−1 · · · anbn−1

∣∣∣∣∣∣∣∣

db0···bn(z)
· fbn.

We set

c∗b0i(z) := (−1)1+i+1

∣∣∣∣∣∣

a0b1 · · · ai−1b1 ai+1b1 · · · anb1
... · · ·

...
... · · ·

...
a0bn · · · ai−1bn ai+1bn · · · anbn

∣∣∣∣∣∣

db0···bn(z)

c∗b1i(z) := (−1)2+i+1

∣∣∣∣∣∣∣∣

a0b0 · · · ai−1b0 ai+1b0 · · · anb0
a0b2 · · · ai−1b2 ai+1b2 · · · anb2
... · · ·

...
... · · ·

...
a0bn · · · ai−1bn ai+1bn · · · anbn

∣∣∣∣∣∣∣∣

db0···bn(z)
...

c∗bni(z) := (−1)n+1+i+1

∣∣∣∣∣∣∣∣

a0b0 · · · ai−1b0 ai+1b0 · · · anb0
a0b1 · · · ai−1b1 ai+1b1 · · · anb1
... · · ·

...
... · · ·

...
a0bn−1 · · · ai−1bn−1 ai+1bn−1 · · · anbn−1

∣∣∣∣∣∣∣∣

db0···bn(z)

(4.8)

to obtain

(4.9)




g0(z)
g1(z)

...
gn(z)


 =




c∗b00(z) c∗b10(z) · · · c∗bn0(z)
c∗b01(z) c∗b11(z) · · · c∗bn1(z)

...
...

. . .
...

c∗b0n(z) c∗b1n(z) · · · c∗bnn(z)


 ·




fb0(z)
fb1(z)

...
fbn(z)


 ,
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where c∗bkj (k = 0, . . . , n; j = 0, . . . , n) are c-periodic meromorphic functions. Thus
for all i = 1, . . . , n,




g
[i]
0 (z)

g
[i]
1 (z)
...

g[i]n (z)


 =




c∗
[i]
b00

(z) c∗
[i]
b10

(z) · · · c∗
[i]
bn0

(z)

c∗
[i]
b01

(z) c∗
[i]
b11

(z) · · · c∗
[i]
bn1

(z)
...

...
. . .

...

c∗
[i]
b0n

(z) c∗
[i]
b1n

(z) · · · c∗
[i]
bnn(z)


 ·




f
[i]

b0(z)

f
[i]

b1
(z)
...

f
[i]

bn(z)




=




c∗b00(z) c∗b10(z) · · · c∗bn0(z)
c∗b01(z) c∗b11(z) · · · c∗bn1(z)

...
...

. . .
...

c∗b0n(z) c∗b1n(z) · · · c∗bnn(z)


 ·




f
[i]

b0
(z)

f
[i]

b1(z)
...

f
[i]

bn(z)




,

(4.10)

and so 


g0 · · · gn
g0 · · · gn
...

. . .
...

g
[n]
0 · · · g[n]n




=




fb0 · · · fbn
f b0 · · · f bn
...

. . .
...

f
[n]

b0
· · · f

[n]

bn


 ·




c∗b00(z) c∗b01(z) · · · c∗b0n(z)
c∗b10(z) c∗b11(z) · · · c∗b1n(z)

...
...

. . .
...

c∗bn0(z) c∗bn1(z) · · · c∗bnn(z)


 ,

(4.11)

implying

(4.12) C(g0, · · · , gn) = C(fb0 , . . . , fbn) ·

∣∣∣∣∣∣∣∣

c∗b00(z) c∗b01(z) · · · c∗b0n(z)
c∗b10(z) c∗b11(z) · · · c∗b1n(z)

...
...

. . .
...

c∗bn0(z) c∗bn1(z) · · · c∗bnn(z)

∣∣∣∣∣∣∣∣
.

For simplicity, we set

(4.13) Ab0b1···bn(z) =

∣∣∣∣∣∣∣∣

c∗b00(z) c∗b01(z) · · · c∗b0n(z)
c∗b10(z) c∗b11(z) · · · c∗b1n(z)

...
...

. . .
...

c∗bn0(z) c∗bn1(z) · · · c∗bnn(z)

∣∣∣∣∣∣∣∣
,

and then we have Ab0b1···bn(z) 6≡ 0 from (4.9) and T (r, Ab0b1···bn(z)) = o(Tg(r)) from
(4.6), (4.8) and (4.13).

From (1.2), (4.12) and (4.13), we have

(4.14) L =
f0f1 · · · fq

Ab0b1···bn(z)C(fb0 , fb1 , . . . , fbn)
=

fa0fa1 · · · faq−n−1

Ab0b1···bn(z)H
,

where

(4.15) H =

∣∣∣∣∣∣∣∣∣

1 · · · 1
f b0/fb0 · · · f bn/fbn

...
. . .

...

f
[n]

b0 /fb0 · · · f
[n]

bn /fbn

∣∣∣∣∣∣∣∣∣

and Ab0b1···bn(z) is a meromorphic function satisfying T (r, Ab0b1···bn(z)) = o(Tg(r)).
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We set A as in (2.11) in the proof of Theorem 2.1. Let z0 ∈ C\A be a zero
of L of multiplicity µ. Then from (1.2), at least one of the functions f0, f1, . . . , fq
has a zero at z0. For each z0 ∈ C\A, from Theorem 2.1 we can choose the integers
a0, a1, . . . , aq−n−1 to be a particular set of integers 0, 1, . . . , q satisfying

(4.16) fa0(z0)fa1(z0) · · · faq−n−1(z0) 6= 0,

and we use these integers in (4.14). From (4.13), (4.8) and (4.6), we have Ab0···bn(z0) 6=
∞. Thus combining (4.14), (4.15) with the above analysis, we get that z0 is a pole
of H with the multiplicity at least µ. From inspection of the form of H in (4.15),
we deduce that the poles of H arise from the zeros of fbi (i = 0, . . . , n). For each
j = 0, . . . , n, z0 is a zero of fbj of multiplicity mbj , where mbj ≥ 0. Since 0 is
the derivative-like paired value of fi with the separation c, we have that whenever

fbj (z) = 0 with the multiplicity mbj , we get that
fbj (z+ic)

fbj (z)
= ∞ with the multiplicity

mbj − max{mbj − i, 0} = min{i,mbj} except for at most finitely many zeros of fbj .
Hence

µ ≤
n∑

j=0

min{mbj , n}

except at most finitely many zeros of fb0 , . . . , fbn . Thus the conclusions hold. �

Theorem 4.6 immediately implies the following deficiency relation for derivative-
like paired values of holomorphic curves.

Corollary 4.8. Under the assumption of Theorem 4.6, we have

q∑

j=0

δ[n]g (0, fj) ≤ n+ 1,

where

δ[n]g (0, fj) = 1− lim sup
r→∞

Nn

(
r, 1

fj

)

Tg(r)
.

Theorem 1.2 can also be used to obtain a sufficient condition, in terms of value
distribution, for the growth of a holomorphic curve to be relatively fast. For this, we
first need the following definition from [6].

Definition 4.9. [6] We say that a is an exceptional paired value of f with the
separation c if the following property holds for all except at most finitely many a-
points of f : Whenever f(z) = a then also f(z + c) = a with the same or higher
multiplicity.

Corollary 4.10. Let n ≥ 1, and let g = [g0 : . . . : gn] be a holomorphic curve of
C into P

n(C), where g0, . . . , gn are linearly independent over P1
c . If

fj =

n∑

i=0

aijgi, j = 0, . . . , q, q > n,

where aij are c-periodic entire functions satisfying T (r, aij) = o(Tg(r)), such that any
n + 1 of the q + 1 functions f0, . . . , fq are linearly independent over P1

c and 0 is an
exceptional paired value of fi for all i ∈ {0, . . . , q}, then we have ς(g) ≥ 1.
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Proof of Corollary 4.10. Suppose that ς(g) < 1. Then from Theorem 1.2, we
have that

(4.17) (q − n)Tg(r) ≤ N

(
r,

1

L

)
−N(r, L) + o(Tg(r)),

where r approaches infinity outside of an exceptional set E of finite logarithmic
measure.

But combining (4.15) with the assumption that 0 is exceptional paired value of
fi, we deduce that H(z) does not have poles. Thus L(z) does not have zeros on
z ∈ C \ A, where A ⊂ E is defined as in the proof of Theorem 2.1. So we get a
contradiction from (4.17), and thus we have ς(g) ≥ 1. �

5. Proof of Theorem 1.2

In order to prove Theorem 1.2, we introduce some lemmas firstly. The following
lemma is about the growth of non-decreasing real-valued functions.

Lemma 5.1. [8] Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous
function and let s ∈ (0,∞). If the hyper-order of T is strictly less than one, i.e.,

lim sup
r→∞

log log T (r)

log r
= ς < 1

and δ ∈ (0, 1− ς), then

T (r + s) = T (r) + o

(
T (r)

rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

The following lemma is an extension of the analogue of the lemma on the loga-
rithmic derivative for finite-order meromorphic functions ([5, Lemma 2.3], [6, Theo-
rem 2.1]) to the case of functions with the hyper-order less than one.

Lemma 5.2. [8] Let f(z) be a non-constant meromorphic function and c ∈ C.
If ς(f) = ς < 1 and ε > 0, then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ς−ε

)

for all r outside of a set of finite logarithmic measure.

The following lemma shows that Cartan and Nevanlinna characteristic functions
are essentially the same in the one-dimensional case.

Lemma 5.3. [4] Let h1 and h2 be two linearly independent entire functions that
have no common zeros, and set f = h1/h2. For positive r, set

Tf (r) =
1

2π

ˆ 2π

0

u(reiθ) dθ − u(0), where u(z) = sup{log |h1(z)|, log |h2(z)|}.

Then

Tf (r) = T (r, f) +O(1) as r → ∞.

For two meromorphic functions f and g (where f 6≡ 0 and g 6≡ 0), let N(r, 0; f, g)
denote the counting function of the common zeros of f and g, counted in the following
manner. If z0 is a zero of f with multiplicity m and a zero of g with multiplicity n,
then N(r, 0; f, g) counts z0 exactly k times, where k = min{m,n}.
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The following lemma is a generalization of [4, Lemma 8.1]. The difference is that
in the original version, fj are linear combinations of the functions g0, . . . , gn with
constant coefficients, while in the following version, we generalize the coefficients
into small entire functions.

Lemma 5.4. Let g = [g0 : · · · : gn] with n ≥ 1 be a reduced representation of a
non-constant holomorphic curve g. If

fj =

n∑

i=0

aijgi, j = 0, . . . , q, q > n,

where aij are entire functions satisfying T (r, aij) = o(Tg(r)), such that any n + 1 of
the q + 1 functions f0, . . . , fq are linearly independent over P1

c , then we have

T (r, gj/gm) +N(r, 0; gj, gm) ≤ (1 + o(1))Tg(r), as r → ∞,

and for any µ and ν, we have

T (r, fµ/fν) +N(r, 0; fµ, fν) ≤ (1 + o(1))Tg(r), as r → ∞,

where µ and ν are distinct integers in the set {0, . . . , q}.

Proof. The proof of the first inequality is the same as the proof of the corre-
sponding inequality in [4, Lemma 8.1]. Next we prove the second inequality. Parts of
the proof are based on modifications of the ideas behind the proof of [4, Lemma 8.1].
Suppose that fµ and fν are any two distinct functions of the functions f0, f1, . . . , fq.
Since

fj =
n∑

i=0

aijgi j = µ, ν,

it follows by the definition of u(z) in (1.1) that

c(z) := sup{log |fµ(z)|, log |fν(z)|}

= sup

{
log

∣∣∣∣∣

n∑

i=0

aiµ(z)gi(z)

∣∣∣∣∣ , log
∣∣∣∣∣

n∑

j=0

ajν(z)gj(z)

∣∣∣∣∣

}

≤ sup

{
log

(
n∑

i=0

|aiµ(z)| · |gi(z)|

)
, log

(
n∑

j=0

|ajν(z)| · |gj(z)|

)}

≤ sup

{
log

(
n∑

i=0

|aiµ(z)|e
u(z)

)
, log

(
n∑

j=0

|ajν(z)|e
u(z)

)}

≤ u(z) + sup

{
log

(
n∑

i=0

|aiµ(z)|

)
, log

(
n∑

j=0

|ajν(z)|

)}

≤ sup
i∈{0,...,n}

log |gi(z)| + sup

{
log+

(
n∑

i=0

|aiµ(z)|

)
, log+

(
n∑

j=0

|ajν(z)|

)}

≤ sup
i∈{0,...,n}

log |gi(z)| +
n∑

i=0

log+ |aiµ(z)|+
n∑

j=0

log+ |ajν(z)|+ 2 log(n + 1),

(5.1)

whenever z ∈ C.
Since fµ and fν are linearly independent entire functions, there exist entire func-

tions hµ, hν , ωµν , where hµ, hν are linearly independent and have no common zeros
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such that

(5.2) fµ = hµωµν and fν = hνωµν

where N(r, 0, ωµν) = N(r, 0; fµ, fν). Set

(5.3) t(z) = sup{log |hµ(z)|, log |hν(z)|}.

By applying Lemma 5.3 to hµ and hν , we obtain

(5.4) T (r, fµ/fν) = T (r, hµ/hν) =
1

2π

ˆ 2π

0

t(reiθ) dθ +O(1) as r → ∞.

From (5.2) and (5.3), we have

t(z) = sup{log |hµ(z)|, log |hν(z)|} = sup

{
log

∣∣∣∣
fµ
ωµν

∣∣∣∣ , log
∣∣∣∣
fν
ωµν

∣∣∣∣
}

= sup{log |fµ|, log |fν |} − log |ωµν |

for any z satisfying sup{|fµ(z)|, |fν(z)|} 6= 0 and |ωµν(z)| 6= 0. Thus we have

(5.5)
1

2π

ˆ 2π

0

t(reiθ) dθ =
1

2π

ˆ 2π

0

c(reiθ) dθ −
1

2π

ˆ 2π

0

log |ωµν(re
iθ)| dθ

for those positive r for which sup{|fµ(z)|, |fν(z)|} and |ωµν(z)| have no zeros on
|z| = r.

If sup{|fµ(z)|, |fν(z)|} or |ωµν(z)| have zeros on the circle {z : |z| = r} (where
r > 0), then following a similar argument as in the proof of Theorem 3.4, we will
obtain that (5.5) holds on |z| = r. Hence (5.5) holds for all positive r.

Following a similar method as above, we obtain from (5.1) that

(5.6)
1

2π

ˆ 2π

0

c(reiθ)dθ ≤ Tg(r) +
n∑

i=0

m(r, aiµ) +
n∑

j=0

m(r, ajν) +O(1)

holds for all positive r. Hence, combining (5.4), (5.5) and (5.6), we obtain that

T (r, fµ/fν) =
1

2π

ˆ 2π

0

c(reiθ) dθ −
1

2π

ˆ 2π

0

log |ωµν(re
iθ)| dθ +O(1)

≤ Tg(r) +
n∑

i=0

m(r, aiµ) +
n∑

j=0

m(r, ajν)−
1

2π

ˆ 2π

0

log |ωµν(re
iθ)| dθ +O(1)

≤ Tg(r) +

n∑

i=0

m(r, aiµ) +

n∑

j=0

m(r, ajν)−

(
m(r, ωµν)−m

(
r,

1

ωµν

))
+O(1)

(5.7)

as r → ∞. Since ωµν is entire, then from Nevanlinna’s first main theorem, we get

m(r, ωµν)−m

(
r,

1

ωµν

)
= T (r, ωµν)−N(r, ωµν)−

(
T

(
r,

1

ωµν

)
−N

(
r,

1

ωµν

))

= N

(
r,

1

ωµν

)
.(5.8)

Since Tg(r) → ∞ as r → ∞, we have that O(1) = o(Tg(r)), and so from (5.7) and
(5.8), we have

T (r, fµ/fν) ≤ (1 + o(1))Tg(r)−N(r, 0, ωµν)

= (1 + o(1))Tg(r)−N(r, 0; fµ, fν) as r → ∞.

Thus the conclusion holds. �
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Proof of Theorem 1.2. By Theorem 2.1, the auxiliary function

(5.9) h(z) = max
{kj}

q−n−1
j=0 ⊂{0,...,q}

log |fk0(z) · · · fkq−n−1(z)|

gives a finite real number for all z ∈ C \ A, where the set A is of finite logarithmic
measure as defined in Theorem 2.1. We let {a0, . . . , aq−n−1} ⊂ {0, . . . , q}, and

{b0, . . . , bn} = {0, . . . , q} \ {a0, . . . , aq−n−1}.

Then we have (4.5) and (4.6). By using the same method as in the proof of Theo-
rem 4.6, we have (4.12) and (4.13).

Next, we set the auxiliary function

(5.10) L̃ :=
f0f 1 · · · f

[n]

n fn+1 · · ·fq
C(g0, · · · , gn)

,

which is also well defined since C(g0, . . . , gn) 6≡ 0. Obviously, L̃ is meromorphic.
Following the reference [8], we now prove

(5.11) N

(
r,

1

L̃

)
−N(r, L̃) ≤ N

(
r,

1

L

)
−N(r, L) + o(Tg(r)).

Consider first the counting functions

(5.12) N

(
r,

1

f
[j]

j

)
≤ N

(
r + j,

1

fj

)

for j = 1, . . . , n. In order to apply Lemma 5.1 to the right side of inequality (5.12),
we need to consider the growth of N(r, 1/fj). Since each fj is a linear combination
of entire functions g0, . . . , gn with small periodic coefficients, we have

|fj| ≤
n∑

i=0

|aij| · |gi| ≤
n∑

i=0

|aij| · max
i=0,...,n

|gi| ≤ max
i=0,...,n

|gi|

(
n∑

i=0

|aij |

)
.

So we have

log |fj| ≤ log

(
max

i=0,...,n
|gi|

(
n∑

i=0

|aij|

))
= log

(
max

i=0,...,n
|gi|

)
+ log

(
n∑

i=0

|aij|

)

= max
i=0,...,n

log |gi|+ log

(
n∑

i=0

|aij |

)
≤ sup

i=0,...,n
log |gi|+ log+

(
n∑

i=0

|aij|

)

≤ sup
i=0,...,n

log |gi|+
n∑

i=0

log+ |aij |+O(1).

Following a similar method as in the proof of Theorem 3.4, we get that

1

2π

ˆ 2π

0

log |fj(re
iθ)| dθ ≤ Tg(r) +

n∑

i=0

m(r, aij) +O(1)

holds for all positive r. By Poisson–Jensen formula we have that

N

(
r,

1

fj

)
=

ˆ 2π

0

log |fj(re
iθ)|

dθ

2π
≤ Tg(r) +

n∑

i=0

m(r, aij) +O(1)

= (1 + o(1))Tg(r), as r → ∞.

(5.13)
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Since ς(g) < 1, it follows by (5.13) that

δj := lim sup
r→∞

log logN
(
r, 1

fj

)

log r
≤ ς(g) < 1

for all j = 1, . . . , n. Therefore, by Lemma 5.1, we have

(5.14) N

(
r + j,

1

fj

)
= N

(
r,

1

fj

)
+ o

(
N(r, 1

fj
)

r1−δj−ε

)
, as r → ∞,

where j = 1, . . . , n and r tends to infinity outside of an exceptional set E0 of finite
logarithmic measure. By using (5.13), the inequality (5.14) yields

N

(
r,

1

f
[j]

j

)
≤ N

(
r,

1

fj

)
+ o

(
Tg(r)

r1−ς−ε

)
, j = 1, . . . , n, as r → ∞,

outside of the exceptional set E0 of finite logarithmic measure. Therefore,

N

(
r,

1

L̃

)
−N(r, L̃)

= N

(
r,

C(g0, . . . , gn)

f0f 1 · · · f
[n]

n fn+1 · · ·fq

)
−N

(
r,
f0f 1 · · · f

[n]

n fn+1 · · · fq
C(g0, . . . , gn)

)

= N

(
r,

1

f0f 1 · · · f
[n]

n fn+1 · · ·fq

)
−N

(
r,

1

C(g0, . . . , gn)

)

=
n∑

j=0

N

(
r,

1

f
[j]

j

)
+N

(
r,

1

fn+1 · · · fq

)
−N

(
r,

1

C(g0, . . . , gn)

)

≤
n∑

j=0

N

(
r,

1

fj

)
+N

(
r,

1

fn+1 · · ·fq

)
−N

(
r,

1

C(g0, . . . , gn)

)
+ o

(
Tg(r)

r1−ς−ε

)

= N

(
r,

1

f0 · · · fq

)
−N

(
r,

1

C(g0, . . . , gn)

)
+ o

(
Tg(r)

r1−ς−ε

)

= N

(
r,

1

L

)
−N(r, L) + o

(
Tg(r)

r1−ς−ε

)
,

where r → ∞ outside of the exceptional set E0 with finite logarithmic measure.
Next, we prove the inequality (1.3) for the auxiliary function L̃. By substituting

(4.12) (4.13) into (5.10), we have

L̃ =
f0f1 · · · f

[n]

n fn+1 · · · fq
Ab0b1···bn(z)C(fb0 , fb1 , . . . , fbn)

=
f0 · · · fq · (f 1/f1) · · · (f

[n]

n /fn)

Ab0b1···bn(z)C(fb0 , fb1, . . . , fbn)

=
fb0f b1 · · · f

[n]

bn · fa0 · · · faq−n−1 · (f 1/f1) · · · (f
[n]

n /fn) · (fb1/f b1) · · · (fbn/f
[n]

bn )

Ab0b1···bn(z)C(fb0 , fb1 , . . . , fbn)

=
fa0 · · ·faq−n−1 · (f 1/f1) · (fb1/f b1) · · · (f

[n]

n /fn) · (fbn/f
[n]

bn )(
Ab0b1···bn

(z)f0f0···f
[n]
0 C(fb0/f0,fb1/f0,...,fbn/f0)

fb0fb1
···f

[n]
bn

)
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=
fa0 · · · faq−n−1 · (f 1/f b1)/(f1/fb1) · · · (f

[n]

n /f
[n]

bn )/(fn/fbn)(
Ab0b1···bn

(z)f0f0···f
[n]
0 C(fb0/f0,fb1/f0,...,fbn/f0)

fb0fb1
···f

[n]
bn

)

=
fa0 · · · faq−n−1 · (f 1/f b1)/(f1/fb1) · · · (f

[n]

n /f
[n]

bn )/(fn/fbn)(
Ab0b1···bn

(z)C(fb0/f0,fb1/f0,...,fbn/f0)

(fb0/f0)·(fb1
/f0)···(f

[n]
bn

/f
[n]
0 )

)

Therefore,

L̃ =
fa0 · · · faq−n−1

Ab0b1···bn(z)G(z)
,

where

(5.15) G(z) =

(
C(fb0/f0, fb1/f0, ..., fbn/f0)

(fb0/f0)·(fb1
/f0)···(f

[n]
bn

/f
[n]
0 )

)

(f 1/f b1)/(f1/fb1) · · · (f
[n]

n /f
[n]

bn )/(fn/fbn)

By defining

ω(z) = max
{bj}nj=0⊂{0,...,q}

log |Ab0b1···bn(z)G(z)|,

it follows that h(z) = log |L̃(z)| + ω(z) for any z ∈ C\A such that L̃(z) is non-zero
and finite. Thus we have

(5.16)

ˆ 2π

0

h(reiθ) dθ =

ˆ 2π

0

log |L̃(reiθ)| dθ +

ˆ 2π

0

ω(reiθ) dθ

for all positive r outside of the set

EL̃ = {r : z ∈ C\A, |z| = r, L̃(z) = 0 or L̃(z) = ∞}.

By using a similar reasoning as in [4, p. 451] or in the proof of Theorem 3.4, it
follows that (5.16) holds for all positive r outside of the exceptional set EA. (Since

L̃ is meromorphic, there is a possibility of skipping this step by adding another
exceptional set, according to Lemma 2.2.)

Let {m0, . . . , mq−n−1} be the set of indexes for which the maximum in (5.9) is
attained for a particular choice of z ∈ C \ A. Then by Theorem 2.1 it follows that

(5.17) log |gj(z)| ≤ log |fmν
(z)|+ log+ A(z)

for all 0 ≤ j ≤ n and 0 ≤ ν ≤ q − n− 1, and so

(q − n)Tg(r) ≤
1

2π

ˆ 2π

0

h(reiθ) dθ + (q − n)m(r, A(z))

≤
1

2π

ˆ 2π

0

h(reiθ) dθ + o(Tg(r))

(5.18)

as r → ∞ outside of the exceptional set EA with finite logarithmic measure. Since
the function G in (5.15) contains only sums, products and quotients of fractions of the

form (fj/fk)
[l]
/(fj/fk)

[i]
where l, i ∈ {0, . . . , n} satisfying i ≤ l, and j, k ∈ {0, . . . , q},

it follows by Lemmas 5.2 and 5.4 that

(5.19)
1

2π

ˆ 2π

0

ω(reiθ) dθ ≤ m(r, G) +m(r, Amq−nmq−n+1···mq
) = o(Tg(r)),
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as r approaches infinity outside of an exceptional set E1 of finite logarithmic measure.
Finally, by Jensen’s formula,

(5.20)
1

2π

ˆ 2π

0

log |L̃(reiθ)| dθ = N

(
r,

1

L̃

)
−N(r, L̃) +O(1)

as r → ∞, and therefore by combining (5.16), (5.18), (5.19), and (5.20), we have

(5.21) (q − n)Tg(r) ≤ N

(
r,

1

L̃

)
−N(r, L̃) + o(Tg(r)),

where r approaches infinity outside of the exceptional set EA ∪ E0 ∪ E1. Since EA,
E0 and E1 are all of finite logarithmic measure, their union EA ∪ E0 ∪ E1 is as well.
The assertion therefore follows by substituting inequality (5.11) into (5.21). �
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