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Abstract. For a transcendental entire function f, we study the set of points BU(f) whose
iterates under f neither escape to infinity nor are bounded. We give new results on the connectedness
properties of this set and show that, if U is a Fatou component that meets BU(f), then most
boundary points of U (in the sense of harmonic measure) lie in BU(f). We prove this using a new
result concerning the set of limit points of the iterates of f on the boundary of a wandering domain.
Finally, we give some examples to illustrate our results.

1. Introduction

Denote the nth iterate of an entire function f by f", for n € N. The Fatou
set F'(f) is defined to be the set of points z € C such that {f"},en is a normal
family in some neighbourhood of z. A component of F(f) is referred to as a Fatou
component. The Julia set J(f) is the complement of F(f) in C. The Fatou and
Julia sets together form a fundamental dynamical partition of C—roughly speaking,
the dynamical behaviour of f is stable on the Fatou set and chaotic on the Julia set.
For an introduction to the properties of these sets, see [6, 7, 25].

Here we work with an alternative partition of the plane, based on the nature of
the orbits of points; the orbit of a point z is the sequence (f"(z))n>0 of its iterates
under f. Orbits may tend to infinity (in which case we say that they escape), or
they may be bounded, or they may neither escape nor be bounded. This paper is
concerned with the properties of the set of points whose orbits neither escape nor
are bounded—that is, points whose orbits contain both bounded and unbounded
suborbits. For an entire function f, we denote this set by BU(f).

The set I(f) of points whose orbits escape (the escaping set) is defined by

I(f)={z: f"(z2) > 00 as n — co}.

For a polynomial P of degree greater than one, the escaping set I(P) is the basin of
attraction of the point at infinity and so lies in the Fatou set. The escaping set for
a general transcendental entire function f was first studied by Eremenko [18] who
showed that, by contrast, I(f) N J(f) # (). He also showed that all components of

I(f) are unbounded, and conjectured that the same may be true of all components
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of I(f). This conjecture, which remains open, has been the focus of much subsequent
research in complex dynamics.
The set K(f) of points whose orbits are bounded is defined by

K(f) = {z: there exists R > 0 such that |f"(z)] < R, for n > 0}.

When P is a polynomial of degree greater than one, the set K (P) is known as the filled
Julia set and has been extensively investigated. The set K(f) for a transcendental
entire function f was studied in [8] and [27].

We define the set BU(f) as follows:

BU(f) = C\ (I(f)U K(f))-

We say that a set S is completely invariant if z € S implies that f(z) € S and that
f7'{z}) € S. It is easy to see that I(f), K(f) and BU(f) are each completely
invariant and that together they form a dynamical partition of the plane.

For a polynomial P of degree greater than one, it is well known that BU(P) = ).
However, if f is a transcendental entire function, then BU(f) always contains points
in the Julia set |3, Lemma 1]. Examples of a transcendental entire function with a
Fatou component in BU(f) have been given by Eremenko and Lyubich [19] and by
Bishop [10]. We are unaware of any studies of the properties of BU(f) for a general
transcendental entire function.

In the next section of this paper, we briefly review some basic properties of BU(f)
and prove the following. Recall that a Fatou component U is called a wandering do-
main if it is not eventually periodic—that is, if U, is the Fatou component containing
fM(U) for n € N, then U,, = U, only if n = m.

Theorem 1.1. Let f be a transcendental entire function.
(a) If U is a Fatou component of f and U N BU(f) # 0, then U C BU(f) and

U is a wandering domain.
(b) J(f) = 9BU(/).

Our first main result gives certain connectedness and boundedness properties of
BU(f) and related sets. Recall that all components of I(f) are unbounded. The first
author has shown in |27] that either K'(f)NJ(f) is connected, or every neighbourhood
of any point in J(f) meets uncountably many components of K (f)NJ(f); for a certain
class of functions, the same property was also shown to hold for K(f). Related results
have been proved for the complement of K(f) in [28|, and for I(f) by Rippon and
Stallard (forthcoming work).

For BU(f) we prove the following.

Theorem 1.2. Let f be a transcendental entire function.

(a) If f has no multiply connected Fatou components, then all components of
BU(f) are unbounded. Otherwise, all components of BU(f) are bounded.

(b) Either BU(f) N J(f) is connected, or every neighbourhood of any point in
J(f) meets uncountably many components of BU(f) N J(f).

(c) Either BU(f) is connected, or every neighbourhood of any point in J(f)
meets uncountably many components of BU(f).

Next, we consider the boundary of a Fatou component that lies in BU(f). Rippon
and Stallard [39, Theorem 1.1] showed that, if f is a transcendental entire function
and U C I(f) is a wandering domain, then OU N I(f)¢ has harmonic measure zero
relative to U; we refer to Section 4 for a definition. They also showed [39, Theo-
rem 1.2] that, if U is a Fatou component of f and OU N I(f) has positive harmonic
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measure relative to U, then U C I(f). We prove the following version of these results
for BU(f).

Theorem 1.3. Suppose that f is a transcendental entire function and that U is
a Fatou component of f.

(a) If U € BU(f), then OU N BU(f)¢ has harmonic measure zero relative to U.
(b) If U is a wandering domain and OU N BU(f) has positive harmonic measure
relative to U, then U C BU(f).

In view of Theorem 1.1(a), the following corollary of Theorem 1.3 is immediate.

Corollary 1.4. If f is a transcendental entire function, then every component
of BU(f) meets J(f).

In fact, Theorem 1.3 is a consequence of the following more general result which
is of wider interest. For a transcendental entire function f, the w-limit set A(z, f)
of the point z € C is the set of accumulation points of its orbit in C (we avoid the
usual notation w(z, f) because of possible confusion with the notation for harmonic
measure). For a wandering domain U of f, it is well known—see, for example, [12,
p. 317] and [22, Section 28]—that A(z1, f) = A(z2, f) for 21, 20 € U, so in this case we
can write A(U, f) without ambiguity. We show that, in a precise sense, this equality
of w-limit sets extends to most of the boundary of a wandering domain.

Theorem 1.5. Suppose that f is a transcendental entire function and that U is
a wandering domain of f. Then the set

{z€0U: Az f) # AU, f)}

has harmonic measure zero relative to U.

We list below a number of further questions that arise naturally from the results
and examples in this paper.

Question 1. Does there exists a transcendental entire function f such that
BU(f) is connected?

Question 2. Isthere a transcendental entire function f with a wandering domain
U such that the w-limit set A(U, f) is an uncountable set (see the remark at the end
of Section 4)?

Question 3. In view of Example 3 below, is there a transcendental entire func-
tion with an unbounded wandering domain in BU(f), all of whose iterates are un-
bounded?

The structure of this paper is as follows. In Section 2, we briefly review some
basic properties of BU(f) and prove Theorem 1.1. Then, in Section 3, we prove
the connectedness and boundedness properties of BU(f) and related sets given in
Theorem 1.2. In Section 4 we give the proofs of Theorem 1.3 and Theorem 1.5.
In Section 5 we briefly discuss the Hausdorff dimension of BU(f). Finally, in Sec-
tion 6, we give a number of examples to illustrate some of the different topological
and dynamical structures that can occur for BU(f). In particular, we show that
there are transcendental entire functions for which BU(f) is totally disconnected, or
has uncountably many unbounded components with empty interior, or contains an
unbounded Fatou component.
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2. Basic properties of BU(f)

For the convenience of the reader, we briefly review a number of basic properties
of BU(f) for a general transcendental entire function f before giving the proof of
Theorem 1.1.

Points in J(f) whose orbits are dense in J(f) evidently lie in BU(f). Since the
set of such points is dense in J(f) [3, Lemma 1], it follows that BU(f) is an infinite,
unbounded set. It is known [10, 19] that there are transcendental entire functions
for which BU(f) meets F'(f) as well as J(f). The facts that BU(f) is completely
invariant, and that BU(f) = BU(f") for n € N, follow from the definition of BU(f)
and the corresponding properties for I(f) and K(f).

To prove Theorem 1.1, we need the following special case of [40, Lemma 10]. For
f: C — C we say that a set S C C is backwards invariant under f if z € S implies
that f~1({z}) C S.

Lemma 2.1. Suppose that f is a transcendental entire function, and that E C C
contains at least three points. Suppose also that F is backwards invariant under f,
that int EN J(f) =0, and that every component of F(f) that meets E is contained
in E. Then OF = J(f).

Proof of Theorem 1.1.  For part (a), let U be a Fatou component of f such
that U N BU(f) # 0 and suppose that, if possible, zg € U does not lie in BU(f).
Then zy € I(f) U K(f), and it follows by normality that if zo € I(f) then U C I(f),
whilst if 2y € K(f) then U C K(f). Hence there is no such z,, which establishes that
U C BU(f). The fact that U is a wandering domain follows from the classification
of periodic Fatou components; see, for example, |7, Theorem 6].

For part (b), we apply Lemma 2.1 with E = BU(f). As discussed above, BU(f)
is an infinite set and is backwards invariant. Moreover, the repelling periodic points
of f are dense in J(f) [1, Theorem 1], and since by definition BU(f) contains no
periodic points, it follows that int BU(f) N J(f) = (. Finally, by part (a), every
component of F(f) that meets BU(f) is contained in BU(f). Thus the conditions
of Lemma 2.1 are satisfied with £ = BU(f), and we conclude that J(f) = 0BU(f),
as required. O

3. Connectedness and boundedness properties

In this section we prove Theorem 1.2, which gives certain connectedness and
boundedness properties of BU(f) and related sets.

Our proof of Theorem 1.2 requires the use of Corollary 1.4, which follows from
Theorem 1.3(a), proved in Section 4. We also need a number of other results, which
we gather here in the form of a series of lemmas. The first, due to Baker [2], gives
some basic properties of multiply connected Fatou components for transcendental
entire functions. We say that the set S surrounds a set or a point if that set or point
lies in a bounded complementary component of S.

Lemma 3.1. Let f be a transcendental entire function and let U be a multiply

connected Fatou component of f. Then

e f*(U) is bounded for any k € N,
o f**1(U) surrounds f*(U) for sufficiently large k, and
o inf{|z]: 2 € f¥(U)} — oo as k — oo.

Next, we need the following characterisation of a disconnected subset of the plane.
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Lemma 3.2. [32, Lemma 3.1| Suppose that S C C. Then S is disconnected if
and only if there is a closed connected set A C C such that SN A = 0 and at least
two different components of C\ A intersect S.

The third result we need is the well-known ‘blowing-up’ property of the Julia set
(see |7, Section 2|, for example). Here E(f) is the exceptional set of f, which consists
of the set of points with a finite backwards orbit under f. For a transcendental entire
function, E(f) contains at most one point.

Lemma 3.3. Let f be a transcendental entire function, let K be a compact set
with K N E(f) = 0, and let A be a neighbourhood of z € J(f). Then there exists
N € N such that f*(A) D K, forn > N.

Finally we need the following generalisation of [40, Lemma 1|, which was proved
in [44].

Lemma 3.4. Suppose that (E,).eN is a sequence of compact sets and (my,)neN
is a sequence of positive integers. Suppose also that f is a transcendental entire
function such that E, .y C f™(E,), forn € N. Set p, = Y ,_, my, forn € N. Then
there exists ( € £ such that

(3.1) f(C) € Epyq1, forn € N.

If, in addition, E, N J(f) # 0, for n € N, then there exists ( € E1 N J(f) such that
(3.1) holds.

Proof of Theorem 1.2. For part (a), suppose that f is a transcendental entire

function and that BU(f) has a bounded component B, say. Then there exists a
bounded domain A, homeomorphic to an annulus, that surrounds B and lies in
BU(f)c. Since BU(f) is an infinite set and is completely invariant, it follows from
Montel’s theorem that A lies in a component of F(f), and since B meets J(f) by
Theorem 1.1(b), this component of F(f) must be multiply connected.

On the other hand, if f has a multiply connected Fatou component U, then it is
immediate from Lemma 3.1 that all components of BU(f) are bounded.

Our proof of part (b) of the theorem uses techniques similar to the proof of |27,
Theorem 1.3]. Suppose that BU(f)NJ(f) is disconnected. It follows from Lemma 3.2
that there exists a closed connected set I' C (BU(f)NJ(f))¢ with two complementary
components, G; and Gy say, each of which contains points in BU(f) N J(f).

For i = 1,2, let H; be a bounded domain, compactly contained in G;, such that
H; N J(f) # 0. Since J(f) is a perfect set, we can assume that neither H; nor Hs
meets E(f).

Now suppose that z; is an arbitrary point of J(f), and that V; is a neighbourhood
of z1. Let (2,)n>2 be a sequence of points in J(f)\E(f) such that z, — co as n — oco.
For n > 2, let V,, be a bounded neighbourhood of z,. Evidently we can choose the
(Vi)n>2 so that inf{|z|: z € V,,} — 0o as n — oo, and such that V,, N E(f) = 0, for
n > 2.

Then, by Lemma 3.3, for each n € N there exist t,,,u,, € N such that

ﬁl UF2 C ftn(vn)

and

Vi1 C [ (Hy) N fU(Hy).

Now let s = s1s283... be an infinite sequence of 1s and 2s. We show that each
such sequence s can be associated with the orbit of a point in Vi N BU(f) N J(f).
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For n € N and k£ = %n, define

B {Z’“*i’ if n is odd,

H,, , ifniseven,

and

m = {tm;v if n is odd,

U, if n is even.

Then E, 1 C f™(E,), for n € N, so it follows from Lemma 3.4 that there exists a
point ¢ € VN J(f), the orbit of which visits H; U H, infinitely often, and also visits
each V,,. Hence ¢ € BU(f).

Now points in V; N BU(f) N J(f) whose orbits are associated with two different
infinite sequences of 1s and 2s must lie in different components of BU(f)NJ(f). For
if two such sequences differ, then it is easy to see that there exists m € N such that
the mth iterate of one point lies in G; and the mth iterate of the other lies in Gs.
Thus, if the two points were in the same component B of BU(f)NJ(f), then f™(B)
would meet I' C (BU(f) N J(f))¢, which is a contradiction.

Finally, there are uncountably many possible infinite sequences of 1s and 2s,
so we have shown that every neighbourhood of an arbitrary point in J(f) meets
uncountably many distinct components of BU(f) N J(f), as required.

For part (c), suppose that BU(f) is disconnected. As in the proof of part (b), it
follows from Lemma 3.2 that there exists a closed connected set I' C BU( f)¢ with two
complementary components, G; and G5 say, each of which contains points in BU(f).

We claim that each of G; and G must contain points in J(f). For suppose not.
Then we can assume without loss of generality that G; C F'(f). Let U be the Fatou
component containing G. Then U C BU(f) by Theorem 1.1(a), and indeed U = G
since 0G; C I' C BU(f)¢. Thus G, is a component of BU(f) that is also a Fatou
component, which is impossible by Corollary 1.4. This contradiction establishes our
claim.

The remainder of the proof proceeds exactly as for part (b), but we conclude that
points in V; N BU(f) whose orbits are associated with different infinite sequences of
Is and 2s must lie in different components of BU(f). It then follows that every neigh-
bourhood of an arbitrary point in J( f) meets uncountably many distinct components
of BU(f), as required. O

Remarks. (1) The argument in the proof of Theorem 1.2(a) is due to Ere-
menko [18], who used it to prove that, for a transcendental entire function f, all

components of I(f) are unbounded. Using the same technique, it is easy to show

that, if f has no multiply connected Fatou components, then all components of K ( f)
are unbounded, whilst otherwise all components of K(f) are bounded.

(2) Eremenko also conjectured in [18] that every component of I( f) is unbounded,
and this conjecture remains open. If f is a transcendental entire function with no
multiply connected Fatou components, one can similarly ask whether every compo-
nent of BU(f) is unbounded. We give examples in Section 6 to show that this is
not the case, and indeed that BU(f) can be totally disconnected. Similar remarks
apply to K(f); examples of transcendental entire functions for which K(f) is totally

disconnected were given in [27].



On the set where the iterates of an entire function are neither escaping nor bounded 567

4. Boundaries of wandering domains

In this section we prove Theorem 1.3 by first proving Theorem 1.5, which is a
more general result on the behaviour of iterates of a transcendental entire function f
on the boundary of a wandering domain.

First, we define the term harmonic measure used in the statements of Theo-
rems 1.3 and 1.5 (see [23, 29| for further details, including the terminology used
here). Let U C C be a domain such that OU is not a polar set; in this paper we
use the fact that if a set contains a continuum, then it is not polar. For z € U
and £ C 0U, the harmonic measure at z of E relative to U, which we denote by
w(z, E,U), is the value at z of the solution to the Dirichlet problem in U with bound-
ary values equal to the characteristic function xg. If there exists zg € U such that
w(zo, E,U) = 0, then w(z, E,U) = 0 for all z € U. In this case we say that the set
E has harmonic measure zero relative to U.

We require the following more general result related to [39, Theorem 1.1, which
emerged from discussions with Rippon and Stallard. We denote the Riemann Sphere
by C:=CuU {o0}, write d(z,w) for the spherlcal distance between z,w € C and
define the spherical distance between a point z € C and aset U c C by d(z,U) =
inf,ep d(z, w). We assume that d(-,-) is normalised so that d(0,00) = 1.

Lemma 4.1. Let (G,)n>0 be a sequence of disjoint simply connected domains

in § Suppose that, for each n € N, g,: G,_1 — G, is analytic in G,,_1, continuous
in G,_4, and satisfies g,(0G,,_1) C 0G,,. Let

h,=g,0---0gs0gq;, forné&N.
Suppose that there exist £ € 6, p€(0,1), N € N and z, € Gy such that
d(hn(20),€) < p, forn> N.
Suppose finally that ¢ > 1, and let
H ={z € 0Gy: d(h,(2),&) > cp for infinitely many values of n}.
Then H has harmonic measure zero relative to Gy.

Proof. By composing with a M&bius map if necessary, we can assume that £ = 0.
Let 7 > 0 be such that d(0,7) = p. By hypothesis we have |h,(z)| < r, for n > N.
Let 7" > r be such that d(0,7") = cp.

Define, for n > N,

(4.1) B, ={z € 0Gy: |h,(2)| > '}
It is easy to see that
(4.2) H= () U B..
m>N n>m
Let A = {z: |z| < 7'}, and define the following sets, for n > N:
o E,=0G,N{z: |z| >1'};

e V,, to be the component of G,, N A that contains h,(z);
o F, =0V, Nn{z: |z| =r"}.

We may assume that none of these sets are empty. By a similar argument to the
proof of |39, Equation (2.2)| we have

(4.3) w(z, By, Gp) <w(z, F,,A), forzeV,, n>N.
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Since |h,(20)] < r for n > N, an application of Harnack’s inequality [29, Theo-
rem 1.3.1] gives

(4.4) w(hn(z0), Fr, A) < Kw(0, F,,,A), forn> N,
/
where K = 7“/ i " Since the sets F,, are disjoint, it then follows from (4.3) and (4.4)
r—r
that
(45) > wlhn(z0), En,Ga) < K Y w(0, Fy, A) < Kw(0,0A,A) = K.
n>N n>N

Now h,(Gy) C G, and h,(B,) C E,, so
W(ZOaBn7GO) S w(hn(ZO)aEnan)a fOI' n Z Na
by |29, Theorem 4.3.8|. Thus, by (4.5),

Z w(zo, B, Go) < Z w(hn(20), En, Gp) < K,

n>N n>N
and therefore w(zg, By, Go) — 0 as n — co. We deduce by (4.2) that H has harmonic
measure zero relative to Gy, as required. O

Remarks. (1) Suppose that, with the hypotheses of Lemma 4.1, there exist

£ e C and 20 € Gy such that h,(z9) — £ as n — oo. It is straightforward to show,
by repeated application of the lemma, that the set

{z € 0Gy: hyp(z) / & as n — oo}

has harmonic measure zero with respect to Gy. We do not use this result here.

(2) The last three lines of Lemma 4.1 are equivalent to the statement that
limsup,,_, d(h,(2),£) < p for almost every z with respect to harmonic measure
relative to GGg. However, our form of the lemma is more suited to our purposes here.

We now proceed to the proof of Theorem 1.5. Recall that, for a transcendental
entire function f, we write A(z, f) for the w-limit set of the point z € C, that is, the
set of accumulation points in C of the orbit of z under f. For a wandering domain U
of f, we can write A(U, f) without ambiguity, since A(zy, f) = A(za, f) for 21, 20 € U.
Note that A(U, f) C J(f) U {cc}.

Proof of Theorem 1.5. Let f be a transcendental entire function and U be a
wandering domain of f. If U is multiply connected, then U C I(f) by [36, Theorem 2|,
so the theorem is immediate. We therefore assume in what follows that U is simply
connected.

We show separately that each of the sets

{z€dU: ANz, f)Z AU, f)} and {z€0U: Az, f) 2 AU, f)}

is a countable union of sets of harmonic measure zero relative to U. Since a countable
union of sets of measure zero also has measure zero, it then follows that the set
{z€0U: Az, f) # A(U, f)} has harmonic measure zero relative to U, as required.

First we consider the set {z € OU: A(z, f) ¢ A(U, f)}. For § > 0, denote by As
the set of points whose spherical distance from A(U, f) is at least ¢:

As:={ze C:d(z, AU, f)) > 6}.

Let (0,)pen be a decreasing sequence of real numbers in (0, 1), tending to zero, with
41 sufficiently small that Ass, # (. This is possible since C\A(U, f) D F(f).
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For each p € N, we now choose a sequence ((p,q)qen 0f points in Ass, such that,
with T}, , being the open spherical disc T}, := {z € C: d(z,(,4) < 0}, we have

Ags, C | J{z € Crd(2,Gy) <6,/2) and | Tpy C A,

qeN geN

(Clearly, for fixed p, a finite number of these discs is sufficient, but this is not required
for our proof.)

For each p,q € N, let H,, be the set of points in the boundary of U with an
w-limit point in 7}, ;. In other words

H,,={z€0U: f*(z) € T,,, for infinitely many values of n}.

Fix a point zg € U. For each ¢ > 0, we have f"(z) ¢ As for all sufficiently large
values of n.

Suppose that p,q € N are fixed. Let £ be the point opposite to (,, on the
Riemann sphere; in other words £ = —1 /Zp,q, with the obvious modification when
Gog € {0,00}. Set p =1—25, and ¢ = (1 —6,)/(1 —25,) > 1, in which case
Tpy = {#z:d(2,§) > cp}. Since the spherical distance of (,, from A(U, f) is at
least 30,, it follows that there exists N € N such that d(f™(z),&) < p, for n > N.

Set Go = U and, for each n € N, let g, = f and let G,, be the component of F(f)
containing f"(U). Since U is a simply connected wandering domain, the domains
(Gn)n>o are disjoint and simply connected, and moreover g,(0G,_1) C 9G,, for
n € N. Thus we may apply Lemma 4.1, and we deduce that H,, has harmonic
measure zero relative to U, for all p,q € N.

Now suppose that z € OU, and that ( € A(z, f) is such that { ¢ A(U, f).
Since A(U, f) is closed, d(¢,A(U, f)) > 0. Hence there exist p,q € N such that
¢ €{zeC:d(zC(y) < 6,/2}, so that f(z) € T, for infinitely many values of n.
We deduce that

[ze0U: A=) AU DY C | Hyg
p,qeN
Since H,, has harmonic measure zero relative to U for all p,q € N, it follows by
countable additivity that {z € oU: A(z, f) ¢ A(U, f)} also has harmonic measure
zero relative to U.

Now we consider the set {z € OU: A(z, f) 2 A(U, f)}, and let (6,)pen be the
sequence introduced earlier. For each p € N, we choose a sequence (¢, ,)4en of points
in A(U, f) such that, with 7] , being the open spherical disc

T,,=1z € C: d(2,¢,,) < 0p},
we have
/
AU U T,
geN

(Again, for fixed p, a finite number of these discs is sufficient, but this fact is not
required for our proof).

For each p,q € N, let H, , be the set of points in the boundary of U whose orbits
eventually lie outside 77 ,. In other words,

H,, ={z€0U: f"(2) ¢ T,,,

Suppose that p,q € N are fixed. Since (,, € A(U, f), there exist w € U and an
increasing sequence of positive integers (¢, )nen such that

fir(w) € {z € C: d(2,(,,) < 8,/2}, forneN.

for all sufficiently large values of n}.
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We again apply Lemma 4.1. Let g; = f and, for n > 2, set g, = f¢ 91 so that
gno--0g20og = f*, forné€N.

Set Gy = U and, for each n € N, let G,, be the component of F'(f) containing f (U).
Also set 29 = w, £ = (), ,, p = 6p/2 and ¢ = 2. Then it follows from Lemma 4.1 that
H, , has harmonic measure zero relative to U, for all p,q € N.

Now suppose that z € OU, and that ¢’ € A(U, f) is such that ¢’ ¢ A(z, f). Since
(" ¢ A(z, f), there exists § > 0 such that d(f"(z),(’) > ¢ for all sufficiently large
values of n. Thus, since §, — 0 as p — oo, there exist p, ¢ € N such that f"(z) ¢ T},
for all sufficiently large values of n. We deduce that

{zedU: A=z /) 2AUNYC | H),

p,gEN

7q,

which has harmonic measure zero relative to U, by countable additivity. This com-
pletes the proof. O

We next show that Theorem 1.3 is a straightforward consequence of Theorem 1.5.

Proof of Theorem 1.3. For part (a), suppose that U C BU(f). Then U is a
wandering domain by Theorem 1.1(a). Since U C BU(f), there exists ¢ € C such
that {¢,00} C A(U, f). Hence it follows from Theorem 1.5 that the set

{z € 0U:{¢ 00} Z Az f)}

has harmonic measure zero relative to U and therefore, in particular, so does the set
{z€0U: z € BU(f)}.

For part (b) we prove the contrapositive. Suppose that U is a wandering domain
and that U ¢ BU(f). Then U N BU(f) = 0 by Theorem 1.1(a), so U C I(f) or
UC K(f). Now if U C I(f), we have A(U, f) = {0}, so it follows from Theorem 1.5
that A(z, f) = {oo} for all z € OU except at most a set of harmonic measure zero
relative to U. On the other hand, if U C K(f), then co ¢ A(U, f), and it follows
from Theorem 1.5 that co ¢ A(z, f), for all z € QU except at most a set of harmonic
measure zero relative to U. In either case we deduce that OU N BU(f) has harmonic
measure zero relative to U, and the result follows. 0

Remarks. (1) Suppose that f is a transcendental entire function, and that U is
a wandering domain of f. Using a similar argument to the proof of Theorem 1.3, it
is easy to see that if U C K(f), then OU N K(f)¢ has harmonic measure zero relative
to U, and, in the other direction, that if OU N K(f) has positive harmonic measure
relative to U, then U C K(f). We omit the details.

However, it is unknown whether wandering domains in K(f) can exist for tran-
scendental entire functions. In |27, Theorem 1.4], the first author showed that such
functions with the property of being strongly polynomial-like have no wandering do-
mains in K(f); we refer to [27] for the definition.

(2) Our proof of Theorem 1.5 allows for the possibility that the w-limit set A(U, f)
of a wandering domain U of a transcendental entire function f could be an uncount-
able set. We are unaware of any examples where this is the case, and it is an
interesting question whether or not it can occur. Our proof of Theorem 1.5 could
be simplified if it cannot. We observe that Rempe-Gillen and Rippon [33] showed
that there are holomorphic functions between Riemann surfaces whose w-limit set is
uncountable. However, in their examples the limit set is contained in the boundary
of the Riemann surface, which in our context is a single point.
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5. Hausdorff dimension of BU(f)

In this section we show that a recent result in [35] enables us to draw conclusions
about the Hausdorff dimension of BU(f) that are similar to known results for K (f).
We denote the Hausdorff dimension of a set A by dimgy A, and refer to [21] for a
definition and further information.

Stallard [45] used the Ahlfors five islands theorem to show that dimy K (f) > 0.
A stronger result holds for functions in the Eremenko—Lyubich class B, that is, those
transcendental entire functions with a bounded set of singular values (a singular
value is, by definition, a critical value or a finite asymptotic value). For functions in
this class, Stallard [46] showed that dimg J(f) > 1, whilst Baranski, Karpinska and
Zdunik [5] showed that dimy (K (f) N J(f)) > 1.

For BU(f) we have the following analogous result.

Theorem 5.1. Suppose that f is a transcendental entire function. Then:
(a) dimy (BU(f) N J(f)) > 0.
(b) If, in addition, f € B, then dimy(BU(f)NJ(f)) > 1.

We need the idea of the hyperbolic dimension of a transcendental entire func-
tion f. This is defined to be the supremum of the Hausdorff dimensions of hyperbolic
subsets of J(f), where K C J(f) is hyperbolic if it is compact and forward invariant,
and if sufficiently large iterates of f are expanding when restricted to K. We refer
to [35] and references therein for more details.

Proof of Theorem 5.1.  Suppose that f is a transcendental entire function. Let
Ja(f) denote the set of points in J(f) whose orbits are dense in J(f). It is shown
in |35, Theorem 1.4] that the Hausdorff dimension of Jy(f) is greater than or equal
to the hyperbolic dimension of f. The proof of Stallard’s result [46] in fact shows
that the Hausdorff dimension of a hyperbolic subset of K(f) N J(f) is greater than
zero, so it follows that the hyperbolic dimension of f is greater than zero. Since
Ja(f) € BU(f) N J(f), this proves part (a).

Similarly, the proof in [5] shows that, for f € B, the Hausdorff dimension of a
hyperbolic subset of K(f)NJ(f) is greater than one. Hence part (b) of the theorem
follows in the same way as part (a). O

Remarks. (1) Bishop’s construction in [11] shows that Theorem 5.1(a) is sharp.
He shows that, given o > 0, there exists a transcendental entire function f such that
all Fatou components of f lie in a subset A(f) of I(f) known as the fast escaping
set, and dimgy J(f)\A(f) < .

(2) The above results on the Hausdorff dimension of K (f)NJ(f) and BU(f)NJ(f)
stand in contrast to the situation for I(f)NJ(f). For a general transcendental entire
function f, it is known [37] that I(f) N J(f) contains nondegenerate continua, so
dimg(I(f)NJ(f)) > 1. Moreover, there is a function f € B such that dimy I(f) = 1;
see [34, Theorem 1.1].

(3) We are grateful to Lasse Rempe-Gillen for drawing our attention to The-
orem 5.1(b), which strengthens a result we had proved earlier using the methods
of [9]. We also note that it is possible to prove Theorem 5.1(a) directly using the
same technique as in [45].
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6. Examples

In this section, we illustrate some of the different topological and dynamical
structures that can occur for BU(f). First, we give an example of a transcendental
entire function for which BU(f) is totally disconnected.

Example 1. Let
f(z) = Xe?, for A e (0,1/e).
Then BU(f) is totally disconnected.

Proof. Tt was shown by Devaney and Tangerman [17] that F(f) is a completely
invariant immediate attracting basin, and that J(f) is a Cantor bouquet, which con-
sists of uncountably many disjoint curves, each with one finite endpoint and the other
endpoint at infinity. It is well known that these curves, apart from some of the finite
endpoints, lie in I(f) (see [42] and references therein). Mayer [24] showed that the
set of finite endpoints is totally disconnected. Since BU(f) is a subset of this set of
endpoints, it follows that BU(f) is totally disconnected. O

Remarks. (1) A similar argument using results in [4] gives that BU(f) is totally
disconnected whenever f € B is of finite order (or is a finite composition of such
maps) and F'(f) has only one component, which is an immediate attracting basin
that contains all the singular values of f.

(2) It can be shown by an argument similar to that in [27, Example 5.4] that
BU(f) is also totally disconnected for the function f(z) = z + 1 4 ™7, first studied
by Fatou, which is not in the class B. We omit the details.

(3) More generally, there are many transcendental entire functions for which
BU(f) consists of uncountably many bounded components, though all components

of BU(f) are unbounded. In particular, this is the case whenever f has no multiply
connected Fatou components (recall Theorem 1.2(a)) and I(f) takes the form of a
spider’s web—we refer to [41, 43] for a discussion of the terminology used here and
examples of functions of this type. For some such functions, for instance the functions
of small growth referred to in [38, Examples 1 and 2|, all components of BU(f) also
have empty interior.

Next, we show that there is a transcendental entire function for which BU(f)
has uncountably many unbounded components.

Example 2. Let
f(z) =Xe?*, for A > 1/e.

Then BU(f) has uncountably many unbounded components, each with empty inte-
rior.

Proof. Since J(f) = C (see the survey article [15] and references therein), it is
clear that all components of BU(f) have empty interior. It remains to show that
BU(f) has uncountably many unbounded components.

Our argument is based on a construction due to Devaney [14] and its extension
in [16]. We first describe Devaney’s construction and use it to show that BU(f) has
an unbounded component, and then indicate how the argument in [16] implies the
existence of uncountably many such components. We adopt the same notation as in
[14] for ease of reference.

Devaney’s construction begins with the closed horizontal strip,

S={2:0<Imz <7}
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Since f(0S) C R, it follows that 0S and all its preimages lie in I(f). Note that f
maps the interior of S onto the upper half-plane, so some points in S are mapped
outside S, while others are mapped inside S.

Denote by A the set of points whose whole orbit lies inside S,

A:={z€85: f"(z) €S, forne N},
and by L, the set of points in S that leave S at the nth iteration of f,
L, :={z: fF(2) €S, for 0 <k <n, and f"(2) ¢ S}, forn € N.

Finally, let B,, = 0L, for n € N. It is easy to see that B,, C ANI(f), forn € N. The
reader may find it helpful to refer to the pictures of these sets given in [14, Figure 3]
or [31, Figure 1].

For each n € N, define J, = Uzozn By. Devaney proves that each J, is dense
in A, and uses this fact to show that A is connected. He also shows [14, p. 632] that,
if z € A, then exactly one of the following applies:

(1) z is a unique fixed point py;
(2) z € B, for some n € N, so z € I(f);
(3) the w-limit set of z is the orbit of zero plus the point at infinity.

Next, Devaney compactifies A by adjoining the backward orbit of zero. Roughly
speaking, this is achieved by adding ‘points at infinity’ that ‘join together’ the ends
of the curves B,,. The union of A and these ‘points at infinity’ is denoted by I', which
is compact and connected and hence a continuum. Moreover, Devaney uses a result
of Curry [13, Theorem 8| to deduce that I' is an indecomposable continuum-—that
is, a continuum that cannot be written as the union of two proper subcontinua. We
refer to [14] for the full details.

Now if Z is a nondegenerate continuum and x € Z, the composant of Z containing
x is defined by

{y € Z: there is a proper subcontinuum C' C Z such that =,y € C'}.

It is known [26, Theorem 11.15 and Theorem 11.17] that a nondegenerate indecom-
posable continuum has uncountably many composants and that these are pairwise
disjoint.

We consider the composants of I'. If a composant X of I' meets B, for some
n € N, then B, C X since B, is an unbounded Jordan curve. Thus there are at
most countably many composants of I' that either intersect B, for some n € N, or
contain py. Any other composant of I', of which there are uncountably many, lies in
BU(f) by (3) above.

Now each composant of a continuum is dense in that continuum; see, for example,
[26, 5.20]. Thus every composant of I' is unbounded, and we deduce that BU(f) has
at least one unbounded component.

In [16], Devaney and Jarque strengthened the original result in [14| by showing
that there are, in fact, uncountably many indecomposable continua with properties
similar to T'; see, in particular, [16, Theorem 5.1 and Theorem 6.1]. Using an ar-
gument similar to that above, it is easy to see that each of these indecomposable
continua meets an unbounded component of BU(f).

Suppose that I'; # I'y are two such indecomposable continua, meeting the un-
bounded components 3; and 5y of BU(f) respectively. Now it follows from Devaney
and Jarque’s construction that there exists n € N such that f"(I';) and f"(I'y) lie
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in different horizontal strips of the form
{z: 2p—1D7m <Im(z) < (2p+1)r}, forpeZ.

Since the boundaries of these strips lie in I(f), we deduce that 5, # (33, and hence
that BU(f) has uncountably many unbounded components, as claimed. U

Remark. By a similar argument, it follows from [30, Theorem 1.2] that BU(f)
has uncountably many unbounded components with empty interior for any function
f in the exponential family whose singular value is on a dynamic ray or is the landing
point of such a ray. We refer to [30] for definitions.

Finally, we show that BU(f) can contain unbounded Fatou components.

Example 3. There exists a transcendental entire function f such that BU(f)
contains an unbounded Fatou component.

Proof. We outline how Bishop’s example of a transcendental entire function in
the Eremenko—Lyubich class B which has a wandering domain in BU(f) |10, Sec-
tion 17| can easily be modified to give a function which also has an unbounded Fatou
component in BU(f). The fact that all the Fatou components in Bishop’s exam-
ple are bounded has recently been confirmed by his student Lazebnik (forthcoming
work).

For the convenience of the reader, we first give a brief description of Bishop’s
construction. For full details and definitions of terminology, we refer to [10]. Also
useful is |20, Section 3|, which discusses Bishop’s example in depth and verifies certain
points that are left to the reader in [10].

The paper [10] introduces quasiconformal folding, a new technique for construct-
ing transcendental entire functions with good control over geometry and singular
values. Starting from an infinite connected graph that satisfies certain geometric
conditions, Bishop shows how to combine carefully chosen quasiconformal maps on
the complementary components of the graph into a map that is continuous across the
graph and quasiregular on the whole plane. An entire function with similar proper-
ties to the quasiregular map is then obtained by the measurable Riemann mapping
theorem.

The key result used in Bishop’s example is [10, Theorem 7.2]. Here, the complex
plane is divided by a graph into domains known as R-components, L-components and
D-components, with certain quasiconformal maps defined in each. Subject to some
technical constraints, for which we refer to [10], these components and quasiconformal
maps are as follows. We denote the unit disc B(0,1) by D.

(1) R-components are unbounded. The required quasiconformal map on an
R-component is the composition of a quasiconformal map to the right half-
plane and another map, which in this case we can take to be z +— cosh(z).
Note that R-components are the only components on which Bishop’s new
technique of quasiconformal folding is needed.

(2) L-components are also unbounded, and share edges only with R-components.
The required quasiconformal map on an L-component is the composition of
a quasiconformal map to the left half-plane, the exponential map to D\{0}
and (optionally) a quasiconformal map from D to D that takes the origin to
another point in D.
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(3) D-components are bounded, and share edges only with R-components. The
required quasiconformal map on a D-component is the composition of a quasi-
conformal map to D, a power map z — 2¢ and (optionally) a quasiconformal
map from D to D that takes the origin to another point in D.

Note that a graph consisting only of R-components is a tree, and the correspond-
ing transcendental entire function has only two singular values, namely critical values
at +1. Adding D-components to the graph enables the introduction of critical points
of any degree, and adding L-components enables the inclusion of finite asymptotic
values.

The graph used in Bishop’s example is symmetrical about both the real and
imaginary axes, and does not use L-components. The construction is very delicate,
in that the properties of the D-components depend on the function resulting from |10,
Theorem 7.2|. There are then further post hoc adjustments to the construction. A key
aspect of Bishop’s argument is that any apparent circularity here can be controlled.
We do not attempt to discuss this detail.

One R-component is the strip

Sy={z=a+iy:z>0,y| <n/2}.

The quasiconformal map in S, is the (in fact, conformal) map z +— cosh(Asinh(z)),
where A € 7N is chosen sufficiently large that the point % tends to infinity along the
real axis under iteration by f.

00 11¥440¢
BN

Figure 1. Sketch of the graph for our modification of Bishop’s construction (replacing Bishop’s

Figure 41), showing the placement of the four additional L-components. The graph is not drawn to
scale.

The D-components are disjoint discs of unit radius, centred at points of imaginary
part +m. The quasiconformal maps on these D-components are compositions of a
translation to D, a power map of high degree and a quasiconformal map that takes
the origin to a point close to % The positioning of the D-components, the degree of
the power map and the choice of the point close to % are all carefully controlled.



576 John W. Osborne and David J. Sixsmith

The remainder of the complex plane is divided into R-components, but since the
dynamics in these components does not affect the example, the quasiconformal maps
are not specified.

Choosing a small domain U in S close to % and with positive imaginary part, it is
shown that the iterates of U under f follow the orbit of % until—through careful choice
of the location of the D-components—the nth iterate (say) lands in a D-component.
The quasiconformal map in this D-component is selected so as to reduce the diameter
of f*(U) by a large factor (by using a power map of sufficiently high degree), and
return it even closer to % Subsequent iterates again follow the orbit of % but, because
they start closer to this point, they do so for longer before landing in a D-component
further from the origin. Bishop shows that U C F(f), and indeed that U is a
wandering domain. It is easy to see that U C BU(f).

Our only change to Bishop’s construction is to add some extra components to
his graph, and fix the behaviour of the function in these components. We do this in
such a way that we add a further property to the dynamics of the function, without
disturbing Bishop’s construction of a wandering domain in BU(f).

Specifically we add four L-components to Bishop’s graph—see Figure 1 and com-
pare |10, Figure 41] (we use four L-components to preserve the symmetry of the
graph). Note that this introduces four additional R-components, but these do not
affect the construction.

In the L-component in the first quadrant, labeled Ly in Figure 1, we define the
required quasiconformal map as the composition of a map to the left half plane,
the exponential map to D\{0} and a quasiconformal map from D to D that maps
the origin to a point in the domain U defined above. In the L-components labeled
Ly, Ly and Ly in Figure 1, the map is defined symmetrically. The rest of Bishop’s
construction is then followed without further amendment.

Since U is a domain in F'(f) N BU(f) and since, by construction, f has a finite
asymptotic value in U, we deduce that f has an unbounded Fatou component in
BU(f), as claimed. O
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