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Abstract. Let S̃t
A(B

n) be the family of normalized univalent mappings on the Euclidean unit

ball Bn in C
n, which have generalized parametric representation with respect to time-dependent

operators A ∈ Ã, where Ã is a family of measurable mappings from [0,∞) into L(Cn) with some

particular properties. Also, let R̃T (idBn , (NA(t))t∈[T0,T ]) be the time-T -reachable family of the

control system C([T0, T ], (NA(t))t∈[T0,T ]), where A ∈ Ã and T0 ≥ 0. In this paper we obtain

certain convergence results for the families S̃t
A(B

n) and R̃T (idBn , (NA(t))t∈[T0,T ]) with respect to

the Hausdorff metric ρ on H(Bn). These results may be seen as dominated convergence type

theorems for time-dependent operators A ∈ Ã. In particular, we obtain related convergence results

for the family S0
A
(Bn) (resp. for the family ŜA(Bn)) of mappings with A-parametric representation

on B
n (resp. of spirallike mappings on B

n with respect to A), in the case that A ∈ L(Cn) is a

linear operator with k+(A) < 2m(A), where k+(A) is the Lyapunov index of A and m(A) =

min‖z‖=1 ℜ〈A(z), z〉. We also obtain a convergence result for the Carathéodory family NA, where

m(A) > 0. Finally, we obtain some sufficient conditions related to A ∈ Ã, which yield the equality

S̃t
A(B

n) = S0(Bn), for all t ≥ 0, where S0(Bn) is the family of normalized univalent mappings with

usual parametric representation on B
n. Certain consequences are also provided.

1. Introduction

Since the early works devoted to Loewner chains and the Loewner differential
equation in higher dimensions due to Pfaltzgraff [27] and Poreda [28, 29], many
results in this field have been obtained (see [1, 5, 6, 9, 11, 13, 14, 15, 20, 21, 35]). We
also mention the main contributions of Bracci [5] related to the existence of bounded
support points for the family S0(Bn), n ≥ 2, and of Roth [31] concerning the n-
dimensional version of the well known Pontryagin maximum principle. Other recent
contributions in the Loewner theory in Cn may be found in [2, 3, 4, 7, 16, 17, 23, 24,
25, 32].
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Let Ã be the family of all measurable mappings A : [0,∞) → L(Cn), which
satisfy the following conditions:

(i) m(A(τ)) ≥ 0, for a.e. τ ≥ 0;
(ii) ess sups≥0‖A(s)‖ < ∞;

(iii) sups≥0

´∞

s
‖V (s, t)−1‖e−2

´ t
s
m(A(τ)) dτ dt < ∞, where V (s, t) is the unique solu-

tion on [s,∞) of the initial value problem (2.1).

The authors in [22] have investigated various extremal properties of compact

families S̃t
A(B

n) (t ≥ 0) consisting of normalized biholomorphic mappings on the
Euclidean unit ball Bn in Cn which have generalized parametric representation with
respect to time-dependent linear operators A ∈ Ã. We have considered examples and

applications which yield that the study of the family S̃t
A(B

n) for time-dependent op-

erators A ∈ Ã is basically different from that in the case of constant time-dependent
linear operators (see [22]). In the case that A(t) = A, for all t ≥ 0, where A ∈ L(Cn)

with k+(A) < 2m(A), then S̃t
A(B

n) = S0
A
(Bn), for all t ≥ 0, where S0

A
(Bn) is the

family of mappings with A-parametric representation (see [13]). Note that k+(A) is

the Lyapunov index of A and m(A) = min‖z‖=1ℜ〈A(z), z〉. If n = 1 and a ∈ Ã, then

S̃t
a(U) = S, for all t ≥ 0 (see [22]), where S is the family of normalized univalent

functions on the unit disc U.
In this paper we consider a certain dependence of the family S̃T

A(B
n) on A ∈ Ã,

where T ≥ 0. The main results of this paper can be summarized as follows. The
notations in the following results will be explained in the next sections.

Theorem 1.1. Let T ≥ 0 and A ∈ Ã be such that ess inf t≥Tm(A(t)) > 0. Also,

let M > 0, α ∈ L1([T,∞),R) and (Ak)k∈N be a sequence in Ã such that ‖Ak(t)‖ ≤ M

and ‖Vk(T, t)
−1‖e−2

´ t

T
m(Ak(τ))dτ ≤ α(t), for a.e. t ≥ T and for all k ∈ N, where Vk(T, ·)

is the unique solution on [T,∞) of the initial value problem (2.1) related to Ak. If

limk→∞Ak(t) = A(t) for a.e. t ≥ T , then limk→∞ ρ(S̃T
Ak
(Bn), S̃T

A(B
n)) = 0.

Theorem 1.2. Let A ∈ L(Cn) be such that k+(A) < 2m(A), and let (Al)l∈N
be a sequence in L(Cn) such that Al → A, as l → ∞. Then there is l0 ∈ N such

that S0
Al
(Bn) is compact for l ≥ l0, and ρ(S0

Al
(Bn), S0

A
(Bn)) → 0, as l → ∞.

In view of the definition of the family Ã, it follows that Theorem 1.1 may be
seen as a dominated convergence type theorem. In particular, we obtain a related

convergence result for the compact family ŜA(B
n) consisting of spirallike mappings

on Bn with respect to A, in the case that A ∈ L(Cn) is a constant time-dependent
linear operator with k+(A) < 2m(A). We also obtain a convergence result related
to the Carathéodory family NA, where m(A) > 0.

The authors in [22] obtained extremal properties for the family S̃t
A(B

n) con-
sisting of normalized univalent mappings on Bn which have generalized parametric

representation with respect to time-dependent operators A ∈ Ã, and deduced cer-
tain applications by considering examples of time-dependent normalizations that are
step functions. In this paper we shall apply Theorem 1.1 to obtain other results
which involve time-dependent operators that are step functions. For example, in the
last section we shall obtain some sufficient conditions for a time-dependent operator

A ∈ Ã such that S̃t
A(B

n) = S0(Bn), for all t ≥ 0, where S0(Bn) is the family of
normalized univalent mappings with usual parametric representation on Bn.
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2. Preliminaries

Let Cn be the space of n complex variables z = (z1, . . . , zn) with the Euclidean
inner product 〈z, w〉 =

∑n
j=1 zjwj and the Euclidean norm ‖z‖ = 〈z, z〉1/2. The open

ball {z ∈ Cn : ‖z‖ < r} is denoted by Bn
r and the unit ball Bn

1 is denoted by Bn.
The closed ball {z ∈ Cn : ‖z‖ ≤ r} is denoted by Bn

r . In the case n = 1, the unit
disc B1 is denoted by U.

Let L(Cn) denote the space of linear operators from Cn into Cn with the standard
operator norm. Also, let In be the identity operator in L(Cn). If A ∈ L(Cn), we
denote by A∗ the adjoint of the operator A. Let H(Bn) be the family of holomorphic
mappings from Bn into Cn with the compact-open topology. If f ∈ H(Bn), we
say that f is normalized if f(0) = 0 and Df(0) = In. Let S(Bn) be the family
of normalized biholomorphic mappings on Bn. If n = 1, then the family S(U) is
denoted by S.

Next, we use the following notations for an operator A ∈ L(Cn) (see e.g. [10, 13]):

m(A) = min{ℜ〈A(z), z〉 : ‖z‖ = 1},

k(A) = max{ℜ〈A(z), z〉 : ‖z‖ = 1},

|V (A)| = max{|〈A(z), z〉| : ‖z‖ = 1},

k+(A) = max{ℜλ : λ ∈ σ(A)},

where σ(A) is the spectrum of A. Note that |V (A)| is the numerical radius of the
operator A and k+(A) is the upper exponential index (Lyapunov index) of A. Then
m(A) ≤ k+(A) ≤ |V (A)| ≤ ‖A‖ (see e.g. [16]) and it is known that ‖A‖ ≤ 2|V (A)|

and k+(A) = limt→∞
log ‖etA‖

t
(see e.g. [10]).

The following families of holomorphic mappings on the unit ball Bn play the role
of the Carathéodory family in Cn (see [33]):

N = {h ∈ H(Bn) : h(0) = 0, ℜ〈h(z), z〉 ≥ 0, z ∈ Bn},

Ñ = {h ∈ N : ℜ〈h(z), z〉 > 0, z ∈ Bn \ {0}}.

If A ∈ L(Cn) with m(A) ≥ 0, let (see e.g. [13])

NA = {h ∈ N : Dh(0) = A}.

Also, let M = NIn. In view of the minimum principle for harmonic mappings, it is
easily seen that (see [33])

M = {h ∈ Ñ : Dh(0) = In}.

The following growth result was obtained by Graham, Hamada, and Kohr [11]

for the family M (see [13, Lemma 1.2] in the case of mappings h ∈ Ñ ; see also [34,
Proposition 1.2.3] for the family N ).

Lemma 2.1. If h ∈ N , then

‖h(z)‖ ≤
4‖z‖

(1− ‖z‖)2
|V (Dh(0))|, z ∈ Bn.

Next, let A : [0,∞) → L(Cn) be a measurable mapping which is locally integrable
on [0,∞). For every s ≥ 0, let V (s, ·) : [s,∞) → L(Cn) be the unique locally
absolutely continuous solution of the initial value problem (cf. [34])

(2.1)
∂V

∂t
(s, t) = −A(t)V (s, t), a.e. t ∈ [s,∞), V (s, s) = In.
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Also, let V (t) = V (0, t), for all t ≥ 0. Then V (s, t) = V (t)V (s)−1 for 0 ≤ s ≤ t < ∞
(see [8]; cf. [34]).

Remark 2.2. Let s ≥ 0. If A(t) and
´ t

s
A(τ) dτ commute for t ≥ s, then

V (s, t) = e−
´ t

s
A(τ) dτ , ∀ t ∈ [s,∞),

by [8, Exercise VII.2.22].

The following estimates related to a measurable and locally integrable mapping
A : [0,∞) → L(Cn) will be useful in the forthcoming sections (see [34, Proposi-
tion 1.2.1, Remark 1.2.2]; cf. [14, Remark 1.6 (v)]).

Lemma 2.3. Let A : [0,∞) → L(Cn) be a measurable mapping that is locally

integrable, and let V (s, t) be the unique solution on [s,∞) of the initial value problem

(2.1) related to A. Then

e
´ t
s
m(A(τ)) dτ ≤

∥∥V (s, t)−1
∥∥ ≤ e

´ t
s
k(A(τ)) dτ

and

e−
´ t
s
k(A(τ)) dτ ≤

∥∥V (s, t)
∥∥ ≤ e−

´ t
s
m(A(τ)) dτ ,

for all t ≥ s ≥ 0.

Next, we recall the notion of generalized parametric representation with respect
to a time-dependent linear operator (see [22]; cf. [14, Definition 1.5], [34, Proposi-
tion 1.5.1]).

Definition 2.4. Let A : [0,∞) → L(Cn) be a measurable mapping, which is
locally integrable, such that m(A(t)) ≥ 0 for a.e. t ≥ 0, and let T ≥ 0. Also, let
V (s, t) be the unique solution on [s,∞) of the initial value problem (2.1) related to
A. We say that a mapping f : Bn → Cn has generalized parametric representation
with respect to A on [T,∞) if there exists a mapping h = h(z, t) : Bn× [0,∞) → Cn

which satisfies the following conditions:

(i) h(z, ·) is measurable on [0,∞), for all z ∈ Bn;
(ii) h(·, t) ∈ N , for all t ≥ 0;
(iii) Dh(0, t) = A(t), for all t ≥ 0;

and such that
f(z) = lim

t→∞
V (T, t)−1v(z, T, t)

locally uniformly on Bn, where v(z, T, ·) : [T,∞) → Cn is the unique locally abso-
lutely continuous solution of the initial value problem

∂v

∂t
(z, T, t) = −h(v(z, T, t), t), a.e. t ∈ [T,∞), v(z, T, T ) = z,

for all z ∈ Bn. Let S̃T
A(B

n) be the family of mappings with generalized parametric
representation with respect to A on [T,∞).

Obviously, S̃T
A(B

n) 6= ∅, since idBn ∈ S̃T
A(B

n), for T ≥ 0 and every measurable
and locally integrable mapping A : [0,∞) → L(Cn) such that m(A(t)) ≥ 0, for a.e.
t ≥ 0.

Definition 2.5. Let A : [0,∞) → L(Cn) be a measurable mapping, which is
locally integrable on [0,∞), such that m(A(t)) ≥ 0, for a.e. t ≥ 0. A mapping
h : Bn × [0,∞) → Cn which satisfies the conditions (i)–(iii) of Definition 2.4 will be
called a Herglotz vector field (or a generating vector field) with respect to A (cf. [6]
and [9]).
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Remark 2.6. Let A ∈ L(Cn) be such that m(A) > 0 and let A : [0,∞) → L(Cn)

be such that A(t) = A, for all t ≥ 0. In this case, the family S̃t
A(B

n) reduces to the
family S0

A
(Bn) of mappings with A-parametric representation on Bn, for all t ≥ 0

(see [13]). If A = In, then S0
A
(Bn) = S0(Bn), where S0(Bn) is the family of mappings

with the usual parametric representation on Bn (see [11] and [13]).
Various properties of mappings with generalized parametric representation may

be found in [12], [14], and [22].

Definition 2.7. (see [33]) Let A ∈ L(Cn) be such that m(A) > 0. A mapping

f ∈ S(Bn) is said to be spirallike with respect to A (denoted by f ∈ ŜA(B
n)) if

e−tAf(Bn) ⊆ f(Bn), for all t ≥ 0.

Next we recall the notion of a univalent subordination chain whose normalization
is given by a time-dependent linear operator in Cn (see [14]; cf. [18, Chpater 8]).

Definition 2.8. A mapping f : Bn × [0,∞) → Cn is called a univalent subordi-
nation chain if f(·, t) is univalent on Bn, f(0, t) = 0 for t ≥ 0, and f(Bn, s) ⊆ f(Bn, t)
for 0 ≤ s ≤ t. If, in addition, Df(0, t) = V (t)−1 for t ≥ 0, and {V (t)f(·, t)}t≥0 is
a normal family on Bn, then we say that f is a normal Loewner chain with respect
to A, where A : [0,∞) → L(Cn) is a measurable and locally integrable mapping and
V (t) = V (0, t) is the unique solution on [0,∞) of the initial value problem (2.1)
related to A.

Note that if f = f(z, t) is a univalent subordination chain, then there exists
a unique univalent Schwarz mapping v = v(z, s, t), called the transition mapping
associated with f , such that

f(z, s) = f(v(z, s, t), t), z ∈ Bn, 0 ≤ s ≤ t < ∞.

The family (vs,t) is also called the evolution family associated with f(z, t), where
vs,t(z) = v(z, s, t) (cf. [6]).

Remark 2.9. It is easily seen that if A ∈ L(Cn) and f ∈ H(Bn) is a normalized

mapping, then f ∈ ŜA(B
n) if and only if f(z, t) = etAf(z) is a normal Loewner chain

with respect to A (see [13]).

In this paper we are concerned with normal Loewner chains whose normalizations

depend on operators A ∈ Ã, where Ã is the family of operators A : [0,∞) → L(Cn)
given in Definition 2.10 below (see [22]):

Definition 2.10. Let Ã be the family of all measurable mappings A : [0,∞) →
L(Cn), which satisfy the following conditions:

(i) m(A(τ)) ≥ 0, for a.e. τ ≥ 0;
(ii) ess sups≥0‖A(s)‖ < ∞;

(iii) sups≥0

´∞

s
‖V (s, t)−1‖e−2

´ t
s
m(A(τ)) dτ dt < ∞,

where V (s, t) is the unique solution on [s,∞) of the initial value problem (2.1) related
to A.

Remark 2.11. Let T > 0, A ∈ L(Cn) and let A : [0,∞) → L(Cn) be such that
m(A(t)) ≥ 0, for a.e. t ∈ [0, T ], ess supt∈[0,T ]‖A(t)‖ < ∞ and A(t) = A, for a.e.

t > T . Then A ∈ Ã if and only if k+(A) < 2m(A), by Lemma 2.3, [9, Remark 2.8]

and [14, Remark 2.2]. In particular, In ∈ Ã.
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Remark 2.12. (i) The authors in [22] proved that if T ≥ 0, A ∈ Ã, and g ∈

H(Bn) is a normalized mapping, then g ∈ S̃T
A(B

n) if and only if there exists a
normal Loewner chain f = f(z, t) with respect to A such that g = V (T )f(·, T ),
where V (t) = V (0, t) is the unique locally absolutely continuous solution on [0,∞) of
the initial value problem (2.1) related to A. In particular, if A ∈ L(Cn) is a constant
time-dependent operator such that k+(A) < 2m(A), then f ∈ S0

A
(Bn) if and only if

there is a normal Loewner chain f(z, t) with respect to A such that f = f(·, 0) (see
[13]).

(ii) If A ∈ L(Cn) with k+(A) < 2m(A), then ŜA(B
n) is a compact family in

H(Bn) (see [35]; cf. [13]) and ŜA(B
n) ⊂ S0

A
(Bn) (see [13] and [35]).

The results contained in Proposition 2.13 and Lemma 2.14 were obtained in [22].

Proposition 2.13. Let a : [0,∞) → R be a measurable function such that

(2.2) ess inf t≥0 a(t) > 0 and ess supt≥0a(t) < ∞.

Also, let A ∈ L(Cn) be such that k+(A) < 2m(A) and let A : [0,∞) → L(Cn) be

given by A(t) = a(t)A for a.e. t ≥ 0. Then A ∈ Ã and S̃T
A(B

n) = S0
A
(Bn) for T ≥ 0.

Lemma 2.14. Let T ≥ 0 and A ∈ Ã. Also, let f be a normal Loewner

chain with respect to A, and let v be the transition mapping associated with f .

If h ∈ S̃T
A(B

n), then V (t, T )−1h(v(·, t, T )) ∈ S̃t
A(B

n), for all t ∈ [0, T ]. In particular,

V (t, T )−1v(·, t, T ) ∈ S̃t
A(B

n), for all t ∈ [0, T ], where V (t) = V (0, t) and V (s, t) is the

unique solution on [s,∞) of the initial value problem (2.1) related to A.

Next, we mention the following growth result for the transition mappings of

normal Loewner chains with respect to A ∈ Ã (see the proof of [22, Proposition 3.10];
cf. [34, Proposition 1.5.2]).

Lemma 2.15. Let A ∈ Ã and let f be a normal Loewner chain with respect to

A. Also, let v be the transition mapping associated to f . Then for every r ∈ (0, 1),
there exists some Cr > 0 such that

∥∥V (s, t2)
−1v(z, s, t2)− V (s, t1)

−1v(z, s, t1)
∥∥

≤ Cr

ˆ t2

t1

‖A(t)‖‖V (s, t)−1‖e−2
´ t

s
m(A(τ)) dτ dt,

for all z ∈ Bn
r , s ≥ 0 and s ≤ t1 < t2 ≤ ∞, where V (s) = V (0, s) and V (s, t) is the

unique solution on [s,∞) of the initial value problem (2.1) related to A.

We recall the following definitions that have been recently introduced in [22] (cf.
[15, 16, 24, 25]; cf. [30], in the case n = 1).

Definition 2.16. Let I be an interval and A ∈ Ã. A mapping h : Bn × I → Cn

is called a Carathéodory mapping on I with respect to A if the following conditions
hold:

(i) h(·, t) ∈ NA(t), for all t ∈ I;
(ii) h(z, ·) is measurable on I, for all z ∈ Bn.

Let C(I, (NA(t))t∈I) denote the family of Carathéodory mappings on I with respect
to A. We say that the Carathéodory mappings on I with respect to A represent
the controls of the control system C(I, (NA(t))t∈I), and (NA(t))t∈I represents the input

family.
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Definition 2.17. Let I be either the interval [T0, T1], where T1 > T0 ≥ 0, or the

interval [T0,∞), where T0 ≥ 0, and A ∈ Ã. For every h ∈ C(I, (NA(t))t∈I) we denote
by v(z, T0, ·; h) the unique locally absolutely continuous solution on I of the initial
value problem





∂v

∂t
(z, T0, t; h) = −h(v(z, T0, t; h), t), for a.e. t ∈ I,

v(z, T0, T0; h) = z,

for all z ∈ Bn.
Note that v(·, T0, t; h) is a univalent Schwarz mapping with Dv(0, T0, t; h) =

V (T0, t), for all t ∈ I (cf. [34] and [22]), where V (T0, ·) is the unique solution on
[T0,∞) of the initial value problem (2.1) related to A.

Now, we consider the notion of the reachable family with respect to time-dependent
linear operators (see [22]).

Definition 2.18. Let T0 ≥ 0 and A ∈ Ã. For every T > T0 we denote the
normalized time-T-reachable family of the control system C

(
[T0, T ], (NA(t))t∈[T0,T ]

)
by

R̃T (idBn, (NA(t))t∈[T0,T ]) =
{
V (T0, T )

−1v(·, T0, T ; h) : h ∈ C
(
[T0, T ], (NA(t))t∈[T0,T ]

)}
.

We also denote the normalized infinite-time-reachable family of the control system

C
(
[T0,∞), (NA(t))t≥T0

)
by

R̃∞(idBn , (NA(t))t≥T0
) =

{
lim
t→∞

V (T0, t)
−1v(·, T0, t; h) : h ∈ C

(
[T0,∞), (NA(t))t≥T0

)}
.

Remark 2.19. In view of Definition 2.4 and Lemma 2.14 (ii), we have that

R̃∞(idBn, (NA(t))t≥T0
) = S̃T0

A (Bn) and R̃T (idBn , (NA(t))t∈[T0,T ]) ⊆ S̃T0

A (Bn), for all
T ∈ (T0,∞) (see [22]).

Using arguments similar to those in the proofs of [16, Lemmas 4.12 and 4.13] (see
[30, Theorem I.29, Lemma I.37] and [25, Proposition 2.3, Lemmas 3.1 and 3.2]), we
obtain the following lemmas. We omit the proofs of Lemmas 2.20 and 2.21.

Lemma 2.20. Let I be the interval [T0, T ], where T > T0 ≥ 0, and let A ∈ Ã.

Also, let (hk)k∈N be a sequence in C(I, (NA(t))t∈I). Then there exist a subsequence

(hkm)m∈N of (hk)k∈N and h ∈ C(I, (NA(t))t∈I) such that
ˆ t

T0

hkm(v(·, T0, τ ; h), τ) dτ →

ˆ t

T0

h(v(·, T0, τ ; h), τ) dτ, as m → ∞,

locally uniformly on Bn, for all t ∈ I.

Lemma 2.21. Let I be the interval [T0, T ], where T > T0 ≥ 0, let A ∈ Ã,

M > 0, and let (Ak)k∈N be a sequence in Ã such that ‖Ak(t)‖ ≤ M , for a.e. t ∈ I
and for all k ∈ N. Let h ∈ C(I, (NA(t))t∈I) and (hk)k∈N be a sequence such that

hk ∈ C(I, (NAk(t))t∈I), for k ∈ N, and
ˆ t

T0

hk(v(·, T0, τ ; h), τ) dτ →

ˆ t

T0

h(v(·, T0, τ ; h), τ) dτ, as k → ∞,

locally uniformly on Bn, for all t ∈ I. Then

v(·, T0, t; hk) → v(·, T0, t; h), as k → ∞,

locally uniformly on Bn, for all t ∈ I.



608 Hidetaka Hamada, Mihai Iancu and Gabriela Kohr

Remark 2.22. Recently, the authors [22] proved that if T0 ≥ 0 and A ∈ Ã, then

R̃T (idBn , (NA(t))t∈[T0,T ]) is a compact family, for all T > T0. Moreover, the family

R̃∞(idBn, (NA(t))t≥T0
) is also compact.

Now, we give the definition of the Hausdorff metric on H(Bn) (cf. [30]).

Definition 2.23. Let δ be the well known metric on H(Bn) such that (H(Bn), δ)
is a Fréchet space with respect to the compact-open topology. For all nonempty
subsets V and W of H(Bn), let

δ(V,W ) = sup
f∈V

inf
g∈W

δ(f, g).

Also, let ρ be the Hausdorff metric on H(Bn) given by

ρ(V,W ) = max{δ(V,W ), δ(W,V )},

for all nonempty compact subsets V and W of H(Bn).

We close this section with the notions of extreme/support points associated with
compact subsets of H(Bn) (see e.g. [8], [30]).

Definition 2.24. Let E ⊆ H(Bn) be a nonempty compact set.

(i) A point f ∈ E is called an extreme point of E (denoted by f ∈ exE) if
f = λg + (1− λ)h, for some λ ∈ (0, 1), g, h ∈ E, implies that f ≡ g ≡ h.

(ii) A point f ∈ E is called a support point of E (denoted by f ∈ suppE) if
there exists a continuous linear functional L : H(Bn) → C such that ℜL is
nonconstant on E and ℜL(f) = maxg∈E ℜL(g).

Remark 2.25. Let A ∈ L(Cn) be such that k+(A) < 2m(A). In view of
[13, Theorem 2.15], the family S0

A
(Bn) is compact. Thus exS0

A
(Bn) 6= ∅ and

suppS0
A
(Bn) 6= ∅.

3. Convergence results for S̃
T

A
(Bn) and for reachable

families generated by time-dependent operators

In this section we consider a dependence of S̃T
A(B

n) on A ∈ Ã, where T ≥ 0
(cf. [22, Proposition 3.15]; cf. [30] for n = 1). Note that the following results may
be seen as dominated convergence type theorems. In the next section we shall apply
Theorem 3.2 to obtain other results which involve time-dependent operators that are
step functions (cf. Propositions 4.1 and 4.3).

Theorem 3.1. Let I be the interval [T0, T ], where T > T0 ≥ 0, and A ∈ Ã be

such that ess inf t∈Im(A(t)) > 0. Also, let M > 0 and let (Ak)k∈N be a sequence in

Ã such that ‖Ak(t)‖ ≤ M , for a.e. t ∈ I and for all k ∈ N. If

Ak(t) → A(t), as k → ∞, for a.e. t ∈ I,

then

ρ(R̃T (idBn, (NAk(t))t∈I), R̃T (idBn, (NA(t))t∈I)) → 0, as k → ∞.

Proof. First, we prove that δ(R̃T (idBn , (NAk(t))t∈I), R̃T (idBn , (NA(t))t∈I)) → 0,
as k → ∞. Suppose that there are ε > 0 and a nondecreasing sequence of indices
(km)m∈N such that for every m ∈ N we have

δ(R̃T (idBn , (NAkm(t))t∈I), R̃T (idBn, (NA(t))t∈I)) > ε
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i.e. for every m ∈ N there exists fm ∈ R̃T (idBn, (NAkm(t))t∈I) such that for every

g ∈ R̃T (idBn , (NA(t))t∈I) we have δ(fm, g) > ε.

Let m ∈ N be arbitrary. Since fm ∈ R̃T (idBn , (NAkm(t))t∈I), there exists hm ∈

C
(
I, (NAkm(t))t∈I

)
such that fm = Vm(T0, T )

−1v(·, T0, T ; hm), where Vm(T0, ·) is the
unique solution on [T0,∞) of the initial value problem (2.1) related to Akm . By [19,
Lemma 3], for every r ∈ (0, 1) we have

ℜ
〈1
r
hm(rz, t)−

(
Akm(t)z −A(t)z

)
, z
〉
≥

(
m(Akm(t))

1− r

1 + r
−
∥∥Akm(t)−A(t)

∥∥
)
‖z‖2,

z ∈ Bn, t ∈ I. For every l ∈ N, by Egorov’s Theorem, there exists a measurable
set Nl ⊂ I such that λ(Nl) ≤

1
l

and (Akm)m∈N converges to A uniformly on I \ Nl.
Since ess inf t∈Im(A(t)) > 0, we deduce that for every l ∈ N there is ml ∈ N such
that ql : B

n × I → Cn given by

ql(z, t) =

{
1
rl
hml

(rlz, t)−Akml
(t)z + A(t)z, t ∈ I \Nl

A(t)z, t ∈ Nl

,

for all z ∈ Bn, satisfies ql ∈ C
(
I, (NA(t))t∈I

)
, where rl = 1− 1

l
.

For every l ∈ N and t ∈ I the following equality holds:

(3.1)
1

rl
hml

(rlz, t)−hml
(z, t) =

rl − 1

rl

ˆ 1

0

(Dhml
(τrlz+(1−τ)z, t)(z)−hml

(z, t)) dτ.

Since ‖Akml
(t)‖ ≤ M , for a.e. t ∈ I and for all l ∈ N, we deduce in view Lemma 2.1

that there is a null set J ⊆ I such that {hml
(·, t)}t∈I\J,l∈N is a normal family. Hence,

using (3.1) and the fact that rl → 1 as l → ∞, we obtain for a.e. t ∈ I that

(3.2) ql(·, t)− hml
(·, t) → 0, as l → ∞, locally uniformly on Bn.

Using Lemma 2.20, we deduce that there is q ∈ C
(
I, (NA(t))t∈I

)
such that up to

a subsequence, we have

(3.3)

ˆ t

T0

ql(v(·, T0, τ ; q), τ) dτ →

ˆ t

T0

q(v(·, T0, τ ; q), τ) dτ, as l → ∞,

locally uniformly on Bn, for all t ∈ I. Since ess supt∈I‖A(t)‖ < ∞, we deduce by
Lemma 2.1 that there is a null set J ′ ⊆ I such that {ql(·, t)}t∈I\J ′,l∈N is a normal fam-
ily. Hence, in view of (3.2), (3.3) and the Lebesgue dominated convergence theorem,
we obtain that

(3.4)

ˆ t

T0

hml
(v(·, T0, τ ; q), τ) dτ →

ˆ t

T0

q(v(·, T0, τ ; q), τ) dτ, as l → ∞,

locally uniformly on Bn, for all t ∈ I. In view of (3.3) and (3.4), we apply Lemma
2.21 to deduce that

(3.5) v(·, T0, T ; hml
) → v(·, T0, T ; q) and v(·, T0, T ; ql) → v(·, T0, T ; q), as l → ∞,

locally uniformly on Bn.
Let V (s, t) be the unique solution on [s,∞) of the initial value problem (2.1)

related to A. In view of (3.5) and Weierstrass’ convergence theorem, we deduce that
Dv(0, T0, T ; hml

) → Dv(0, T0, T ; q), as l → ∞. Since Dv(0, T0, T ; hml
) = Vml

(T0, T ),
for l ∈ N, and Dv(0, T0, T ; q) = V (T0, T ) (see [22]), it follows that Vml

(T0, T ) →
V (T0, T ), as l → ∞. Since V (T0, T ) and Vml

(T0, T ), for l ∈ N, are invertible opera-
tors, it is easy to prove that (cf. [9, Theorem 2.17])

(3.6) Vml
(T0, T )

−1 → V (T0, T )
−1, as l → ∞.
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Let g = V (T0, T )
−1v(·, T0, T ; q) and gl = V (T0, T )

−1v(·, T0, T ; ql), for l ∈ N. In
view of (3.5) and (3.6), we deduce that gl → g and fml

→ g locally uniformly on Bn,
as l → ∞. Hence δ(fml

, gl) → 0, as l → ∞. However, this is a contradiction, since

gl ∈ R̃T (idBn, (NA(t))t∈I), for all l ∈ N.

To prove that δ(R̃T (idBn, (NA(t))t∈I), R̃T (idBn, (NAk(t))t∈I)) → 0, as k → ∞, it
suffices to use similar arguments as before. This completes the proof. �

Theorem 3.2. Let T ≥ 0 and A ∈ Ã be such that ess inf t≥Tm(A(t)) > 0.

Also, let M > 0, α ∈ L1([T,∞),R) and (Ak)k∈N be a sequence in Ã such that

‖Ak(t)‖ ≤ M and ‖Vk(T, t)
−1‖e−2

´ t

T
m(Ak(τ))dτ ≤ α(t), for a.e. t ≥ T and for all

k ∈ N, where Vk(T, ·) is the unique solution on [T,∞) of the initial value problem

(2.1) related to Ak. If

Ak(t) → A(t), as k → ∞, for a.e. t ≥ T,

then

ρ(S̃T
Ak
(Bn), S̃T

A(B
n)) → 0, as k → ∞.

Proof. First, we prove that for every sequence (Tk)k∈N in (T,∞) such that
Tk → ∞, as k → ∞, we have

(3.7) ρ(R̃Tk

(
idBn , (NAk(t))t∈[T,Tk]

)
, S̃T

Ak
(Bn)) → 0, as k → ∞.

Fix a sequence (Tk)k∈N in (T,∞) such that Tk → ∞, as k → ∞. Let k ∈ N

and fk ∈ S̃T
Ak
(Bn) be arbitrary. Then there is hk ∈ C([T,∞), (NAk(t))t≥T ) such

that fk = limt→∞ Vk(T, t)
−1v(·, T, t; hk). Let gk = Vk(T, Tk)

−1v(·, T, Tk; hk). Then

gk ∈ R̃Tk

(
idBn, (NAk(t))t∈[T,Tk]

)
. Taking into account Lemma 2.15, we deduce that

for every r ∈ (0, 1) there is Cr > 0 such that

‖fk − gk‖Bn
r
≤ Cr

ˆ ∞

Tk

‖Ak(t)‖‖Vk(T, t)
−1‖e−2

´ t

T
m(Ak(τ)) dτ dt ≤ CrM

ˆ ∞

Tk

α(t) dt.

Hence
δ(S̃T

Ak
(Bn), R̃Tk

(
idBn, (NAk(t))t∈[T,Tk]

)
) → 0, as k → ∞.

By Remark 2.19

δ(R̃Tk

(
idBn, (NAk(t))t∈[T,Tk]

)
, S̃T

Ak
(Bn)) = 0, for all k ∈ N,

and thus we obtain (3.7).

In the same manner, since A ∈ Ã, we can also prove that for every sequence
(Tk)k∈N in (T,∞) such that Tk → ∞, as k → ∞, we have

(3.8) ρ(R̃Tk

(
idBn , (NA(t))t∈[T,Tk]

)
, S̃T

A(B
n)) → 0, as k → ∞.

Let (Akm)m∈N be an arbitrary subsequence of (Ak)k∈N. Let (Tl)l∈N be a sequence
in (T,∞) such that Tl → ∞, as l → ∞. By Theorem 3.1, we deduce that for every
l ∈ N there is ml ∈ N such that

ρ(R̃Tl

(
idBn, (NAkml

(t))t∈[T,Tl]

)
, R̃Tl

(
idBn , (NA(t))t∈[T,Tl]

)
) ≤

1

l
.

Taking into account (3.7) and (3.8), we deduce that

ρ(S̃T
Akml

(Bn), S̃T
A(B

n)) → 0, as l → ∞.

Since every subsequence of (S̃T
Ak
(Bn))k∈N contains a subsequence that converges

to S̃T
A(B

n), we deduce that (S̃T
Ak
(Bn))k∈N converges to S̃T

A(B
n). �
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Corollary 3.3. Let T ≥ 0 and A ∈ Ã be such that ess inf t≥Tm(A(t)) > 0. Also,

let T ′ > T , M > 0 and (Ak)k∈N be a sequence in Ã such that ‖Ak(t)‖ ≤ M , for a.e.

t ∈ [T, T ′], and Ak(t) = A(t), for a.e. t > T ′, and for all k ∈ N. If

Ak(t) → A(t), as k → ∞, for a.e. t ∈ [T, T ′],

then

ρ(S̃T
Ak
(Bn), S̃T

A(B
n)) → 0, as k → ∞.

Proof. Let V (T, ·) be the unique solution on [T,∞) of the initial value problem
(2.1) related to A and for every k ∈ N let Vk(T, ·) be the unique solution on [T,∞)
of the initial value problem (2.1) related to Ak. For every k ∈ N we have (see
Lemma 2.3)

‖Vk(T, t)
−1‖e−2

´ t

T
m(Ak(τ)) dτ

≤ ‖Vk(T, T
′)−1‖e−2

´ T ′

T
m(Ak(τ)) dτ‖V (T ′, t)−1‖e−2

´ t

T ′ m(A(τ)) dτ

≤ e(T
′−T )M‖V (T ′, t)−1‖e−2

´ t

T ′ m(A(τ)) dτ ,

for all t ≥ T ′. Let α : [T,∞) → R be given by

α(t) =

{
e(t−T )M , t ∈ [T, T ′)

e(T
′−T )M‖V (T ′, t)−1‖e−2

´ t

T ′ m(A(τ)) dτ , t ∈ [T ′,∞)
.

Since A ∈ Ã, we have α ∈ L1([T,∞),R). By Theorem 3.2, the proof is done. �

For constant time-dependent operators (cf. Remark 2.11), we have the following
result.

Theorem 3.4. Let A ∈ L(Cn) be such that k+(A) < 2m(A), and let (Al)l∈N
be a sequence in L(Cn) such that Al → A, as l → ∞. Then there is l0 ∈ N such

that S0
Al
(Bn) is compact for l ≥ l0, and ρ(S0

Al
(Bn), S0

A
(Bn)) → 0, as l → ∞.

Proof. First, we observe that for every l ∈ N we have

m(Al)− ‖A−Al‖ ≤ m(A) ≤ m(Al) + ‖A−Al‖.

Hence

lim sup
l→∞

m(Al) ≤ m(A) ≤ lim inf
l→∞

m(Al)

and thus liml→∞m(Al) = m(A).
Let ε = 2m(A) − k+(A). In view of [13, Remark 2.2], there exists δ > 0 such

that

(3.9) ‖etA‖ ≤ δe(2m(A)−ε/2)t, t ≥ 0.

Let l0 ∈ N be such that for every l ≥ l0 we have

(3.10) 2m(A)− 2m(Al) + δ‖A−Al‖ ≤ ε/4.

Taking into account the proof of [26, Theorem 2.1, pp. 497–498], and using (3.9)
and (3.10), we deduce that for every l ≥ l0 we have

‖etAl‖ ≤ δe(2m(A)−ε/2+δ‖Al−A‖)t ≤ δe−tε/4e2m(Al)t, for all t ≥ 0.

Let α : [0,∞) → R be given by α(t) = δe−tε/4, for all t ≥ 0. Then α ∈
L1([0,∞),R) and ‖etAl‖e−2m(Al)t ≤ α(t), for all t ≥ 0 and l ≥ l0. So, by [9, Re-
mark 2.8], we have that k+(Al) < 2m(Al), and thus S0

Al
(Bn) is compact, for all
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l ≥ l0. Moreover, by Theorem 3.2, we have ρ(S0
Al
(Bn), S0

A
(Bn)) → 0, as l → ∞.

This completes the proof. �

Taking into account Theorem 3.4, it is natural to ask the following question.

Question 3.5. Under the assumptions of Theorem 3.4, is it true that

lim
l→∞

ρ(exS0
Al
(Bn), exS0

A
(Bn)) = 0 and lim

l→∞
ρ(suppS0

Al
(Bn), suppS0

A
(Bn)) = 0?

In view of Theorem 3.4, we obtain the following convergence result related to the
Carathéodory family NA, where A ∈ L(Cn) with m(A) > 0. This result is motivated
by the fact that every mapping f ∈ S0

A
(Bn) is generated by a Herglotz vector field

h : Bn × [0,∞) → Cn with respect to A.

Proposition 3.6. Let A ∈ L(Cn) be such that m(A) > 0, and let (Ak)k∈N be

a sequence in L(Cn) such that Ak → A, as k → ∞. Then there is k0 ∈ N such that

m(Ak) > 0, for all k ≥ k0, and ρ(NAk
,NA) → 0, as k → ∞.

Proof. Since limk→∞m(Ak) = m(A) by the proof of Theorem 3.4, and since
m(A) > 0, it follows that there is k0 ∈ N such that m(Ak) > 0, for all k ≥ k0.
Hence, NAk

is well defined, for all k ≥ k0.
The fact that ρ(NAk

,NA) → 0, as k → ∞, follows by arguments similar to those
in the proof of Theorem 3.1. Indeed, suppose that there exist ε > 0, a sequence
of indices (km)m∈N with km ≥ k0, m ∈ N, and a sequence of mappings (hm)m∈N

with hm ∈ NAkm
, m ∈ N, such that δ(hm, h) > ε, for all h ∈ NA. In view of [19,

Lemma 3], we deduce that for every l ∈ N, there exists ml ∈ N such that ql ∈ NA,
where ql(z) = 1

rl
hml

(rlz) − Akml
z + Az, for all z ∈ Bn, and rl = 1 − 1

l
. Since

Akml
→ A, as l → ∞, we deduce that there is M > 0 such that ‖Akml

‖ ≤ M ,
for all l ∈ N. Hence, as in the proof of Theorem 3.1, we get that hml

− ql → 0, as
l → ∞, locally uniformly on Bn, which is a contradiction. Thus, δ(NAk

,NA) → 0, as
k → ∞. The fact that δ(NA,NAk

) → 0, as k → ∞, follows by the same arguments
as above. �

We close this section with the following convergence result for the family ŜA(B
n)

of spirallike mappings with respect to A ∈ L(Cn), where k+(A) < 2m(A).

Proposition 3.7. Let A ∈ L(Cn) be such that k+(A) < 2m(A), and let (Al)l∈N
be a sequence in L(Cn) such that Al → A, as l → ∞. Then there is l0 ∈ N such

that ŜAl
(Bn) is compact for l ≥ l0, and ρ(ŜAl

(Bn), ŜA(B
n)) → 0, as l → ∞.

Proof. By the proof of Theorem 3.4, we have that there exist l0 ∈ N and
α ∈ L1([0,∞),R) such that ‖etAl‖e−2m(Al)t ≤ α(t), for all t ≥ 0 and l ≥ l0. In

particular, k+(Al) < 2m(Al), by [9, Remark 2.8], and thus ŜAl
(Bn) is compact, for

all l ≥ l0, by [35, Theorem 3.1] (cf. [13]).
Finally, since every spirallike mapping is generated by a Herglotz vector field that

is constant in time (see [13]; cf. [10]), we may adapt all arguments in the proof of

Theorems 3.1 and 3.2 and deduce that liml→∞ ρ(ŜAl
(Bn), ŜA(B

n)) = 0, as desired.
�

Question 3.8. In connection with [1] and [35], would be possible to generalize
Theorem 3.4 and Proposition 3.7 to the case of non-resonant linear operators?
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4. Analytical characterizations of mappings in S̃
t

A
(Bn)

In this section we obtain some sufficient conditions related to A ∈ Ã, which

guarantee the equality S̃t
A(B

n) = S0(Bn), for t ≥ 0. The first result is a generalization
of [13, Theorem 3.12].

Proposition 4.1. Let k ∈ N, α1, . . . , αk > 0, and let E1, . . . , Ek ∈ L(Cn) be

such that Ei + E∗
i = 2αiIn, for all i ∈ {1, . . . , k}. Also, let 0 = T0 < T1 < . . . <

Tk−1 < Tk = ∞ and let A : [0,∞) → L(Cn) be given by

A(t) =





E1, for t ∈ [T0, T1),
...

Ek, for t ∈ [Tk−1, Tk).

Then S̃T
A(B

n) = S0(Bn), for all T ≥ 0.

Proof. We shall use arguments similar to those in the proof of [13, Theorem 3.12].
Fix T ≥ 0 and let i ∈ {1, . . . , k} be such that T ∈ [Ti−1, Ti).

First, we prove that S0(Bn) ⊆ S̃T
A(B

n). To this end, let f ∈ S0(Bn). Then there
exists a Herglotz vector field h : Bn × [0,∞) → Cn (with Dh(0, ·) ≡ In) such that
f = limt→∞ etv(·, 0, t) locally uniformly on Bn, where v(z, 0, ·) is the unique locally
absolutely continuous solution of the initial value problem

∂v

∂t
(z, 0, t) = −h(v(z, 0, t), t), a.e. t ∈ [0,∞), v(z, 0, 0) = z,

for all z ∈ Bn. For each j ∈ {i, . . . , k}, let Fj : [0,∞) → L(Cn) be recursively given
by

Fi(t) = e(t−T )(αiIn−Ei), t ≥ 0,

and
Fj(t) = e(t−Tj−1)(αjIn−Ej)Fj−1(Tj−1), j 6= i, t ≥ 0.

Also, let βj : [0,∞) → R be given

βi(t) = αi(t− T ) and βj(t) = αj(t− Tj−1) + βj−1(Tj−1), j 6= i, t ≥ 0.

Let q : Bn × [0,∞) → Cn be given by

q(z, t) =





A(t)z, t ∈ [0, T ),

αiFi(t)h(Fi(t)
−1z, βi(t))− (αiIn −Ei)z, t ∈ [T, Ti),

αi+1Fi+1(t)h(Fi+1(t)
−1z, βi+1(t))− (αi+1In − Ei+1)z, t ∈ [Ti, Ti+1),

...

αkFk(t)h(Fk(t)
−1z, βk(t))− (αkIn − Ek)z, t ∈ [Tk−1, Tk),

for all z ∈ Bn. Since Ej + E∗
j = 2αjIn, for all j ∈ {i, . . . , k}, we deduce by an

inductive argument that Fj(t)
∗ = Fj(t)

−1 and ‖Fj(t)
−1‖ ≤ 1, for all t ∈ [Tj−1, Tj)

and j ∈ {i, . . . , k} (cf. [13]). Then it is not difficult to prove that q is well defined
and is a Herglotz vector field with respect to A.

Let

u(z, T, t) =





Fi(t)v(z, 0, βi(t)), for z ∈ Bn, t ∈ [T, Ti),

Fi+1(t)v(z, 0, βi+1(t)), for z ∈ Bn, t ∈ [Ti, Ti+1),
...

Fk(t)v(z, 0, βk(t)), for z ∈ Bn, t ∈ [Tk−1, Tk).
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We observe that d
dt
Fj(t) = (αjIn − Ej)Fj(t), for all j ∈ {i, . . . , k} and every t ∈

[Tj−1, Tj), and thus u(z, T, ·) is the unique locally absolutely continuous solution of
the initial value problem

∂u

∂t
(z, T, t) = −q(u(z, T, t), t), a.e. t ∈ [T,∞), u(z, T, T ) = z,

for all z ∈ Bn.
Let V (T, ·) be the unique solution on [T,∞) of the initial value problem (2.1)

related to A. Since V (T, t) = e−βk(t)Fk(t), for all t ≥ Tk−1, and limt→∞ βk(t) =
∞, we deduce that f = limt→∞ eβk(t)v(·, 0, βk(t)) = limt→∞ V (T, t)−1u(·, T, t) locally

uniformly on Bn. Hence f ∈ S̃T
A(B

n). So S0(Bn) ⊆ S̃T
A(B

n).

Using similar arguments as above, we may prove that S̃T
A(B

n) ⊆ S0(Bn) (cf. [13,
Remark 3.13]). This completes the proof. �

In view of Propositions 2.13 and 4.1, we obtain the following example.

Example 4.2. Let E =

(
1 i
i 1

)
and T > 0. Let A ∈ Ã be given by

A(t) =

{
E, for t ∈ [0, T ),

I2, for t ∈ [T,∞).

Then S̃s
A(B

2) = S0(B2), for all s ≥ 0, but there do not exist A ∈ L(C2) with
k+(A) < 2m(A) and a measurable function a : [0,∞) → R such that (2.2) holds and
A(t) = a(t)A for a.e. t ≥ 0.

Proof. Let s ≥ 0. Since E + E∗ = 2I2, it follows that S̃s
A(B

2) = S0(B2), by
Proposition 4.1. Also, it is elementary to see that there do not exist A ∈ L(C2) with
k+(A) < 2m(A) and a measurable function a : [0,∞) → R such that (2.2) holds and
A(t) = a(t)A for a.e. t ≥ 0. �

Using Theorem 3.2 and Proposition 4.1, we may prove the following result. This
result is also an improvement of Proposition 4.1 (cf. Proposition 2.13 for A = In and
[13, Theorem 3.12]).

Proposition 4.3. Let A : [0,∞) → L(Cn) be a measurable mapping such that

ess inft≥0m(A(t)) > 0, ess supt≥0‖A(t)‖ < ∞, and for a.e. t ≥ 0 there is α(t) > 0

such that A(t) +A(t)∗ = 2α(t)In. Then A ∈ Ã and S̃T
A(B

n) = S0(Bn), for all T ≥ 0.

Proof. Let σ, β ∈ (0,∞) be such that m(A(t)) > σ and ‖A(t)‖ < β, for a.e.
t ≥ 0. In view of the hypothesis, we deduce that there is a measurable function
α : [0,∞) → R such that α(t) > 0 and A(t) + A(t)∗ = 2α(t)In, for a.e. t ≥ 0. We
observe that k(A(t)) = m(A(t)) = α(t) > σ, for a.e. t ≥ 0 (cf. [13]).

Fix T ≥ 0. In view of Lemma 2.3, we have

‖V (T, t)−1‖e−2
´ t
T
m(A(τ)) dτ ≤ e−

´ t
T
α(τ) dτ ≤ e(T−t)σ,

for all t ≥ T , where V (T, ·) is the unique solution on [T,∞) of the initial value

problem (2.1) related to A. Thus, we deduce that A ∈ Ã. Since A is measurable,
there exists a sequence of step functions (Ak)k∈N defined on [0,∞) and with values
in the set

{
E ∈ L(Cn) | there is λ > σ such that E + E∗ = 2λIn and ‖E‖ < β

}

such that Ak(t) → A(t), as k → ∞, for a.e. t ∈ [0,∞).
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Using similar arguments as above, we may prove that for every k ∈ N, we have

‖Vk(T, t)
−1‖e−2

´ t

T
m(Ak(τ)) dτ ≤ e(T−t)σ,

for all t ≥ T , where Vk(T, ·) is the unique solution on [T,∞) of the initial value

problem (2.1) related to Ak. In particular, we deduce that Ak ∈ Ã, for all k ∈ N.
Moreover, if we let α : [T,∞) → R be given by α(t) = e(T−t)σ , for all t ≥ T , then
α ∈ L1([T,∞),R) and thus, by Theorem 3.2, we deduce that

ρ(S̃T
Ak
(Bn), S̃T

A(B
n)) → 0, as k → ∞.

Taking into account Proposition 4.1, we conclude that S̃T
A(B

n) = S0(Bn). �

In view of Proposition 4.3 and [13, Theorem 3.12], it would be interesting to give
an answer to the following question:

Question 4.4. Let A ∈ L(Cn) be such that k+(A) < 2m(A). Also, let A ∈ Ã
be such that k+(A(t)) < 2m(A(t)) and S0

A(t)(B
n) = S0

A
(Bn), for a.e. t ≥ 0. Is it true

that S̃T
A(B

n) = S0
A
(Bn), for all T ≥ 0?
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