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Abstract. Let §f4 (B™) be the family of normalized univalent mappings on the Euclidean unit
ball B” in C™, which have generalized parametric representation with respect to time-dependent
operators A € A, where Ais a family of measurable mappings from [0, c0) into L(C"™) with some
particular properties. Also, let ﬁT(idBn, (N, A(t))temy, 7)) be the time-T-reachable family of the
control system C([To,T], (Naw))ie[r, ), where A € A and Ty > 0. In this paper we obtain
certain convergence results for the families S’ (B™) and Ry (idgn, (N, A(t))te[To, 1)) With respect to
the Hausdorff metric p on H(B™). These results may be seen as dominated convergence type
theorems for time-dependent operators A € A. In particular, we obtain related convergence results
for the family S (B™) (resp. for the family S 'A(B™)) of mappings with A-parametric representation
on B™ (resp. of spirallike mappings on B™ with respect to A), in the case that A € L(C") is a
linear operator with ky(A) < 2m(A), where ky(A) is the Lyapunov index of A and m(A) =
min =1 R(A(z),z). We also obtain a convergence result for the Carathéodory family Na, where
m(A) > 0. Finally, we obtain some sufficient conditions related to A € A, which yield the equality
St (B™) = SO(B™), for all > 0, where S°(B™) is the family of normalized univalent mappings with
usual parametric representation on B™. Certain consequences are also provided.

1. Introduction

Since the early works devoted to Loewner chains and the Loewner differential
equation in higher dimensions due to Pfaltzgraff [27] and Poreda [28, 29|, many
results in this field have been obtained (see [1, 5, 6, 9, 11, 13, 14, 15, 20, 21, 35]). We
also mention the main contributions of Bracci [5] related to the existence of bounded
support points for the family S°(B"), n > 2, and of Roth [31] concerning the n-
dimensional version of the well known Pontryagin maximum principle. Other recent
contributions in the Loewner theory in C" may be found in (2, 3, 4, 7, 16, 17, 23, 24,
25, 32].
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Let A be the family of all measurable mappings A: [0,00) — L(C"), which
satisfy the following conditions:

(i) m(A(7)) > 0, for a.e. 7 > 0;
(ii) esssupgsol A(s)| < o0;
(ili) sup,so [ |V (s,8) 7 e~ JimAm) AT gt < o0, where V (s, t) is the unique solu-
tion on [s, 00) of the initial value problem (2.1).

The authors in [22] have investigated various extremal properties of compact
families gg(B") (t > 0) consisting of normalized biholomorphic mappings on the
Euclidean unit ball B” in C™ which have generalized parametric representation with
respect to time-dependent linear operators A € A. We have considered examples and
applications which yield that the study of the family §f4(B”) for time-dependent op-
erators A € A is basically different from that in the case of constant time-dependent
linear operators (see [22]). In the case that A(t) = A, for all ¢ > 0, where A € L(C")
with k4 (A) < 2m(A), then S4(B") = S (B"), for all ¢ > 0, where S (B") is the
family of mappings with A-parametric representation (see [13|). Note that £, (A) is
the Lyapunov index of A and m(A) = minj, = R(A(z2),2). If n =1and a € A, then
Si(U) = 8, for all t > 0 (see [22]), where S is the family of normalized univalent
functions on the unit disc U.

In this paper we consider a certain dependence of the family gg(B") on A € fT,
where 7" > 0. The main results of this paper can be summarized as follows. The
notations in the following results will be explained in the next sections.

Theorem 1.1. Let T > 0 and A € A be such that essinf,spm(A(t)) > 0. Also,
let M >0, a € L}[T,00),R) and (Az)ren be a sequence in A such that || A(t)]| < M
and ||Vi(T, t)~Y||e=2JrmAe™)dr < (1), for a.e.t > T and for all k € N, where Vi(T, -)
is the unique solution on [T, 00) of the initial value problem (2.1) related to Ay. If
limy_,oo Ay(t) = A(t) for a.e. t > T, then limy_,o, p(S%, (B™), ST (B™)) = 0.

Theorem 1.2. Let A € L(C") be such that ki (A) < 2m(A), and let (A;)en
be a sequence in L(C") such that A; — A, as | — oo. Then there is [y € N such
that Sy, (B") is compact for | > ly, and p(Sy,(B"), Sa(B")) — 0, as | — oc.

In view of the definition of the family ./T, it follows that Theorem 1.1 may be
seen as a dominated convergence type theorem. In particular, we obtain a related
convergence result for the compact family S 'A(B™) consisting of spirallike mappings
on B" with respect to A, in the case that A € L(C™) is a constant time-dependent
linear operator with &, (A) < 2m(A). We also obtain a convergence result related
to the Carathéodory family NV, where m(A) > 0.

The authors in [22] obtained extremal properties for the family gZ(B") con-
sisting of normalized univalent mappings on B™ which have generalized parametric
representation with respect to time-dependent operators A € A, and deduced cer-
tain applications by considering examples of time-dependent normalizations that are
step functions. In this paper we shall apply Theorem 1.1 to obtain other results
which involve time-dependent operators that are step functions. For example, in the
last section we shall obtain some sufficient conditions for a time-dependent operator
A € A such that S4(B") = S°(B"), for all ¢ > 0, where S°(B") is the family of
normalized univalent mappings with usual parametric representation on B™.
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2. Preliminaries

Let C™ be the space of n complex variables z = (z1, ..., z,) with the Euclidean
inner product (z,w) = "7, 2;; and the Euclidean norm ||z|| = (z, z)1/2. The open
ball {z € C™: ||z|| < r} is denoted by B! and the unit ball B} is denoted by B".
The closed ball {z € C": ||z|| < r} is denoted by B™. In the case n = 1, the unit
disc B! is denoted by U.

Let L(C"™) denote the space of linear operators from C™ into C™ with the standard
operator norm. Also, let [, be the identity operator in L(C"). If A € L(C"), we
denote by A* the adjoint of the operator A. Let H(B™) be the family of holomorphic
mappings from B" into C™ with the compact-open topology. If f € H(B"), we
say that f is normalized if f(0) = 0 and Df(0) = I,,. Let S(B") be the family
of normalized biholomorphic mappings on B™. If n = 1, then the family S(U) is
denoted by S.

Next, we use the following notations for an operator A € L(C") (see e.g. [10, 13]):

m(A) = min{R(A(z), 2): ||z[| = 1},
k(A) = max{R(A(2), z): ||z]| = 1},
[V(A)| = max{[{A(z), 2)|: |[=]| = 1},
ki(A) = max{R\: A € 0(A)},
where o(A) is the spectrum of A. Note that |V (A)| is the numerical radius of the
operator A and ky(A) is the upper exponential index (Lyapunov index) of A. Then
m(A) <k (A) < |[V(A)| < ||A|l (see e.g. [16]) and it is known that [|A| < 2|V (A)]
and ky (A) = limy_, l(ygﬂtietAH (see e.g. [10]).
The following families of holomorphic mappings on the unit ball B™ play the role
of the Carathéodory family in C" (see [33]):

N = {h e HB"): h(0) =0, R(h(2),2) >0, z € B"},
N ={heN:R(h(z),2) >0, € B\ {0}}.
If Ae L(C") with m(A) >0, let (see e.g. [13])
Ni = {h € N': Dh(0) = A}.

Also, let M = N7 . In view of the minimum principle for harmonic mappings, it is
casily seen that (see [33])

M ={heN:Dh0)=1I,}

The following growth result was obtained by Graham, Hamada, and Kohr [11]

for the family M (see [13, Lemma 1.2] in the case of mappings h € N; see also [34,
Proposition 1.2.3| for the family N).

Lemma 2.1. If h € N, then

4l n
< — .
[R(2)]] < - ||Z||)2|V(Dh(0))|> z€B
Next, let A: [0,00) — L(C") be a measurable mapping which is locally integrable
on [0,00). For every s > 0, let V(s,-): [s,00) — L(C") be the unique locally
absolutely continuous solution of the initial value problem (cf. [34])
oV

(2.1) E(s,t) =—A(t)V(s,t), ae. t€[s,00), V(s,s)=1,.
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Also, let V(t) = V(0,t), for all t > 0. Then V(s,t) = V(t)V(s) ™ for 0 < s <t < 00
(see [8]; cf. [34]).

Remark 2.2. Let s > 0. If A(¢) and f: A(7) dr commute for t > s, then

V(s,t) = e iAmdT gy e [, 00),
by [8, Exercise VII.2.22|.

The following estimates related to a measurable and locally integrable mapping
A:[0,00) — L(C™) will be useful in the forthcoming sections (see [34, Proposi-
tion 1.2.1, Remark 1.2.2]; cf. [14, Remark 1.6 (v)]).

Lemma 2.3. Let A: [0,00) — L(C") be a measurable mapping that is locally
integrable, and let V (s, t) be the unique solution on [s, o) of the initial value problem
(2.1) related to A. Then

el mAG) dr < [V(s,0)7| < s KA() dr

and
o= Ji A(T) dr < HV(5>t)H < 6—‘/‘;m(A(T))dT’

for allt > s > 0.

Next, we recall the notion of generalized parametric representation with respect
to a time-dependent linear operator (see [22]; cf. [14, Definition 1.5, [34, Proposi-
tion 1.5.1]).

Definition 2.4. Let A: [0,00) — L(C™) be a measurable mapping, which is
locally integrable, such that m(A(t)) > 0 for a.e. t > 0, and let 7" > 0. Also, let
V(s,t) be the unique solution on [s, 00) of the initial value problem (2.1) related to
A. We say that a mapping f: B" — C" has generalized parametric representation
with respect to A on [T, 00) if there exists a mapping h = h(z,t): B" x [0, 00) — C"
which satisfies the following conditions:

(i) h(z,-) is measurable on [0, c0), for all z € B™;

(i) h(-,t) € N, for all t > 0;

(iii) Dh(0,t) = A(t), for all t > 0;
and such that
f(z) = lim V(. t)"tu(z, T,t)

locally uniformly on B", where v(z,7,-): [T,00) — C" is the unique locally abso-
lutely continuous solution of the initial value problem

0
a—:(z,T, t) = —h(v(z,T,t),1), ae. te[T,00), v(zT,T) =z
for all z € B". Let ST(B") be the family of mappings with generalized parametric

representation with respect to A on [T, 00).

Obviously, ST(B") # 0, since idg» € S%(B"), for T' > 0 and every measurable
and locally integrable mapping A: [0,00) — L(C") such that m(A(t)) > 0, for a.e.
t > 0.

Definition 2.5. Let A: [0,00) — L(C™) be a measurable mapping, which is
locally integrable on [0,00), such that m(A(t)) > 0, for a.e. ¢ > 0. A mapping
h: B" x [0,00) — C" which satisfies the conditions (i)—(iii) of Definition 2.4 will be
called a Herglotz vector field (or a generating vector field) with respect to A (cf. [6]
and [9]).
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Remark 2.6. Let A € L(C") be such that m(A) > 0 and let A: [0, 00) — L(C")

be such that A(t) = A, for all ¢ > 0. In this case, the family S%(B™) reduces to the
family SQ (B") of mappings with A-parametric representation on B, for all ¢ > 0
(see [13]). If A = I,,, then S (B") = S°(B"), where S°(B™) is the family of mappings
with the usual parametric representation on B” (see [11]| and [13]).

Various properties of mappings with generalized parametric representation may
be found in [12], [14], and [22].

Definition 2.7. (see [33]) Let A € L(C") be such that m(A) > 0. A mapping
f € S(B") is said to be spirallike with respect to A (denoted by f € S4(B")) if
et f(B") C f(B"), for all t > 0.

Next we recall the notion of a univalent subordination chain whose normalization
is given by a time-dependent linear operator in C" (see [14]; cf. [18, Chpater 8]).

Definition 2.8. A mapping f: B™ x [0,00) — C" is called a univalent subordi-
nation chain if f(-,¢) is univalent on B, f(0,¢) = 0fort > 0, and f(B",s) C f(B", )
for 0 < s < t. If, in addition, Df(0,t) = V(¢)~! for t > 0, and {V(¢)f(-,t)}+>0 is
a normal family on B", then we say that f is a normal Loewner chain with respect
to A, where A: [0,00) — L(C") is a measurable and locally integrable mapping and
V(t) = V(0,t) is the unique solution on [0,00) of the initial value problem (2.1)
related to A.

Note that if f = f(z,t) is a univalent subordination chain, then there exists
a unique univalent Schwarz mapping v = v(z,s,t), called the transition mapping
associated with f, such that

f(z,8) = f(v(z,s,t),t), 2z€B", 0<s<t<o0.

The family (vs,) is also called the evolution family associated with f(z,t), where
vst(2) = v(z,s,t) (cf. [6]).

Remark 2.9. It is easily seen that if A € L(C") and f € H(B") is a normalized
mapping, then f € S (B") if and only if f(2,t) = e f(2) is a normal Loewner chain
with respect to A (see [13]).

In this paper we are concerned with normal Loewner chains whose normalizations

depend on operators A € A, where A is the family of operators A: [0,00) — L(C")
given in Definition 2.10 below (see [22]):

Definition 2.10. Let A be the family of all measurable mappings A: [0, 00) —
L(C™), which satisfy the following conditions:

(i) m(A(7)) > 0, for a.e. 7> 0;
(ii) esssup,sollA(s)| < oo
(iii) supysq [ |V (s,8)~ Uje=2Js mAm)dr gt < oo,

where V (s, 1) is the unique solution on [s, 00) of the initial value problem (2.1) related
to A.

Remark 2.11. Let 77> 0, A € L(C") and let A: [0,00) — L(C") be such that
m(A(t)) > 0, for a.e. t € [0,T], esssup,cjoml|A(t)|| < oo and A(t) = A, for a.e.
t>T. Then A € A if and only if k,(A) < 2m(A), by Lemma 2.3, 9, Remark 2.8
and [14, Remark 2.2|. In particular, I, € A.
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Remark 2.12. (i) The authors in [22] proved that if T > 0, A € A, and g €
H(B") is a normalized mapping, then g € S%(B") if and only if there exists a
normal Loewner chain f = f(z,t) with respect to A such that ¢ = V(T)f(-,T),
where V(t) = V/(0,¢) is the unique locally absolutely continuous solution on [0, c0) of
the initial value problem (2.1) related to A. In particular, if A € L(C") is a constant
time-dependent operator such that k,(A) < 2m(A), then f € S (B") if and only if
there is a normal Loewner chain f(z,t) with respect to A such that f = f(-,0) (see
[13]).

(ii) If A € L(C") with k;(A) < 2m(A), then S5 (B") is a compact family in
H(B") (see [35]; cf. [13]) and Sx(B") C S9(B") (see [13] and [35]).

The results contained in Proposition 2.13 and Lemma 2.14 were obtained in [22].

Proposition 2.13. Let a: [0,00) = R be a measurable function such that
(2.2) essinfy>ga(t) >0 and esssup;sga(t) < oo.

Also, let A € L(C") be such that ky(A) < 2m(A) and let A: [0,00) — L(C") be
given by A(t) = a(t)A for a.e.t > 0. Then A € A and S4(B") = S (B") for T > 0.

Lemma 2.14. Let T > 0 and A € A. Also, let f be a normal Loewner
chain with respect to A, and let v be the transition mapping associated with f.
If h € ST(B™), then V(t,T) ‘h(v(-,t,T)) € S4(B"), for all t € [0,T). In particular,
V(t,T) (-, t,T) € S4(B"), for all t € [0,T), where V(t) = V(0,¢) and V (s, t) is the
unique solution on [s,00) of the initial value problem (2.1) related to A.

Next, we mention the following growth result for the transition mappings of

normal Loewner chains with respect to A € A (see the proof of [22, Proposition 3.10];
cf. [34, Proposition 1.5.2]).

Lemma 2.15. Let A € A and let f be a normal Loewner chain with respect to
A. Also, let v be the transition mapping associated to f. Then for every r € (0, 1),
there exists some C, > 0 such that

[V (s,t2)"M0(z, 5, t0) = Vs, t1) " o(z, 5, 11))|

to "
<C0 [T IAWIIVEs. B e e
t1
for all z € B, s > 0 and s < t; < ty < 0o, where V(s) = V(0,5s) and V (s, t) is the
unique solution on [s,00) of the initial value problem (2.1) related to A.

We recall the following definitions that have been recently introduced in [22] (cf.
[15, 16, 24, 25]; cf. [30], in the case n = 1).

Definition 2.16. Let I be an interval and A € A. A mapping h: B" x [ — C"
is called a Carathéodory mapping on I with respect to A if the following conditions
hold:

(i) h(-,t) € NA(t), for all t € I;
(ii) h(z,-) is measurable on I, for all z € B".

Let C(1, (Nagw))ter) denote the family of Carathéodory mappings on I with respect
to A. We say that the Carathéodory mappings on [ with respect to A represent
the controls of the control system C(I, (Nagw))ier), and (Nag))ier represents the input
family.
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Definition 2.17. Let [ be either the interval [Ty, 7|, where 77 > Ty > 0, or the

interval [Tp, 00), where Ty > 0, and A € A. For every h € C(I, (Naw))ier) we denote
by v(z,Tp, -; h) the unique locally absolutely continuous solution on I of the initial
value problem

%(Z’,Tg,t; h) = —h(v(z, Ty, t; h),t), forae. tel,

U(Za TOaTO; h’) 2
for all z € B™.
Note that v(-,To,t;h) is a univalent Schwarz mapping with Dv(0, Ty, t;h) =
V(Ty,t), for all t € I (cf. [34] and [22]), where V (T, ) is the unique solution on
[To, o) of the initial value problem (2.1) related to A.

Now, we consider the notion of the reachable family with respect to time-dependent
linear operators (see [22]).

Definition 2.18. Let T, > 0 and A € A. For every T' > Ty we denote the
normalized time-T-reachable family of the control system C([Tg, T], (NA(t))te[TmT}) by

RT(idBn, (NA(t))tE[Tg,T]) - {V(T0> T)_l,U('a TOa Ta h') : h € C([TO’ T]? (NA(t))tE[To,T}) }

We also denote the normalized infinite-time-reachable family of the control system
C([T07oo)7 (NA(t)>t2To) by
ﬁoo(idBn, (NA(t)>t2To> = { tli)rglo V(To, t)_l’(J(', T(], t; h) . h € C([To, OO), (NA(t))tzTo)}-
Remark 2.19. In view of Definition 2.4 and Lemma 2.14 (ii), we have that
Roo(idn, (Naw)ismy) = Sy (B") and Ry (idgn, (Naw)tem.r)) € S5 (B"), for all
T € (Ty, o) (see [22]).
Using arguments similar to those in the proofs of |16, Lemmas 4.12 and 4.13] (see

[30, Theorem 1.29, Lemma [.37] and [25, Proposition 2.3, Lemmas 3.1 and 3.2]), we
obtain the following lemmas. We omit the proofs of Lemmas 2.20 and 2.21.

Lemma 2.20. Let I be the interval [Ty, T|, where T > Ty > 0, and let A € A.
Also, let (hi)ren be a sequence in C(I,(Naw)ier). Then there exist a subsequence
(hkm>m€N of (hk>k€N and h € C(I, (NA(t))te[) such that

t t
/ hi,, (v(-, Ty, 75 h), 7) dT — h(v(-, To, T3 h), T)dT, asm — oo,

To To
locally uniformly on B", for allt € I.
Lemma 2.21. Let I be the interval [Ty, T], where T > Ty > 0, let A € ,1,
M > 0, and let (Ax)ren be a sequence in A such that ||Ax(t)|| < M, for a.e. t € 1

and for all k € N. Let h € C(I,(Naw))er) and (hi)ren be a sequence such that
hi € C(I, (Nayw))ier), for k € N, and

t t
/ hi(v(-, To, 75 h), 7)dT — h(v(-, Ty, T;h), T)dr, ask — oo,
To TO
locally uniformly on B", for allt € I. Then
'U('a TOa l; h'k) — U('7T07t; h)a as k — o0,

locally uniformly on B", for allt € I.



608 Hidetaka Hamada, Mihai Iancu and Gabriela Kohr

Remark 2.22. Recently, the authors [22] proved that if Ty > 0 and A € A, then
Rr(idgn, (Nag))iemm, 1)) is a compact family, for all T > T;. Moreover, the family
Roo(idpr, (Nag))i>m,) is also compact.

Now, we give the definition of the Hausdorff metric on H(B") (cf. [30]).

Definition 2.23. Let 0 be the well known metric on H(B™) such that (H(B"), )
is a Fréchet space with respect to the compact-open topology. For all nonempty
subsets V and W of H(B"), let

§(V,W) = sup inf 4(f,g).
(V:W) = sup inf o(/.9)

Also, let p be the Hausdorff metric on H(B™) given by
p(V,W) = max{6(V, W), (W, V)},
for all nonempty compact subsets V' and W of H(B").

We close this section with the notions of extreme/support points associated with
compact subsets of H(B") (see e.g. [8], [30]).

Definition 2.24. Let £ C H(B™) be a nonempty compact set.

(i) A point f € E is called an extreme point of E (denoted by f € exE) if
f=Xg+ (1 —=X)h, for some X € (0,1), g,h € E, implies that f =g = h.

(ii) A point f € E is called a support point of E (denoted by f € supp E) if

there exists a continuous linear functional L: H(B™) — C such that RL is
nonconstant on E and RL(f) = maxyep RL(g).

Remark 2.25. Let A € L(C") be such that ki (A) < 2m(A). In view of
[13, Theorem 2.15|, the family S (B") is compact. Thus exS$(B") # 0 and
supp Sa (B") # 0.

3. Convergence results for §£(B") and for reachable
families generated by time-dependent operators

In this section we consider a dependence of §£(B") on A € A, where T > 0
(cf. [22, Proposition 3.15|; cf. [30] for n = 1). Note that the following results may
be seen as dominated convergence type theorems. In the next section we shall apply
Theorem 3.2 to obtain other results which involve time-dependent operators that are
step functions (cf. Propositions 4.1 and 4.3).

Theorem 3.1. Let I be the interval [Ty, T], where T > Ty > 0, and A € A be
such that essinf,c;m(A(t)) > 0. Also, let M > 0 and let (Ay)ren be a sequence in

A such that ||A,(t)|| < M, for a.e. t € I and for all k € N. If
Ai(t) = A(t), ask — oo, fora.e te€l,

then
p(Rp(idgn, (Na,))ier), Rr(idgn, (Nag )ier)) — 0, as k — oo.

Proof. First, we prove that 5(ﬁT(idBn, (NAk(t))tej),ﬁT(idBn, (NMaw)ter)) — 0,
as k — oo. Suppose that there are ¢ > 0 and a nondecreasing sequence of indices
(km)men such that for every m € N we have

§(Rr(idpn, (Na, 0))ier), Re(idgn, (Nag)ier)) > €
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i.e. for every m € N there exists f,, € ﬁT(idBn, (Na,, ))ter) such that for every
g € Re(idn, (Naw))ier) we have 6(fm, g) > €.

Let m € N be arbitrary. Since f,, € Rr(idpn, (Na, ))ter), there exists h,, €
C([, (NAkm(t))tej) such that f,, = V,,,(To, T) " v(-, Ty, T; hyn), where V,,,(Tp, -) is the
unique solution on [Ty, 00) of the initial value problem (2.1) related to Ay, . By [19,
Lemma 3], for every r € (0,1) we have

1—r

R{ o (12,1) = (A, ()2 = A)), 2) 2 (1A ()7 — | 44, (6 = AO)] )41

z € B", t € I. For every [ € N, by Egorov’s Theorem, there exists a measurable
set N; C I such that A\(N;) < % and (Ag,, )men converges to A uniformly on I\ N,.
Since essinfyeym(A(t)) > 0, we deduce that for every I € N there is m; € N such
that ¢;: B" x I — C" given by

1
ql(z,t) _ T—lhml(’/’lz,t) —Akml(t)Z+A(t)Z, te [\Nl ’
A(t)z, t € N,
for all z € B", satisfies ¢ € C(I, (Na))rer), where ry =1 — 1.
For every [ € N and t € I the following equality holds:

/0 (Dhp, (Tr124+ (1 =7)2,t)(2) = hpy, (2, 1)) dT.

Since [|Ay,, (t)|| < M, for a.e. t € I and for all I € N, we deduce in view Lemma 2.1
that there is a null set J C I such that {h, (-, t) }ienJien is a normal family. Hence,
using (3.1) and the fact that r; — 1 as [ — oo, we obtain for a.e. t € I that

7’1—1

(B.1) St (riz, ) — B, (2, 1) =
T

r

(3.2) (-, t) = hp,(-,t) = 0, as — oo, locally uniformly on B".

Using Lemma 2.20, we deduce that there is ¢ € C(I, (Naw))wer) such that up to
a subsequence, we have

¢ t

(3.3) / q (-, To,759),7)dr — | q(v(-,To,T;q),7)dr, asl— oo,
To TO

locally uniformly on B™, for all t € I. Since esssup,;||A(t)|| < oo, we deduce by

Lemma 2.1 that there is a null set J’ C I such that {¢(-,?)}+er\ 7 1en is a normal fam-

ily. Hence, in view of (3.2), (3.3) and the Lebesgue dominated convergence theorem,

we obtain that

t t

(34) / hml(v('>T0a7—; Q),T) dr — Q(U(',To,T; Q),T) d7-> as [ — o0,
T() TO

locally uniformly on B”, for all t € I. In view of (3.3) and (3.4), we apply Lemma

2.21 to deduce that

(35) U(',Tg,T; hml) — U('>TO>T;Q) and 'U('aTOaT; Ql) — U('>TO>T;Q)> as [ — oo,

locally uniformly on B™.

Let V(s,t) be the unique solution on [s,00) of the initial value problem (2.1)
related to A. In view of (3.5) and Weierstrass’ convergence theorem, we deduce that
Dv(0, Ty, T; hy,) = Dv(0,15,T5q), as | — oo. Since Dv(0,To, T hyn,) = Vi, (10, T),
for I € N, and Dv(0,75,7T;q) = V(To,T) (see [22]), it follows that V,,, (1, T) —
V(T5,T), as | — oo. Since V(1y,T) and V,,,,(1p,T), for | € N, are invertible opera-
tors, it is easy to prove that (cf. [9, Theorem 2.17])

(3.6) Vi, (To, T) ' = V(T, T) ™Y, as | — oo,
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Let g = V(To, T) (-, To, T3 q) and g, = V(1o T) " o(-, Ty, T qi), for [ € N. In
view of (3.5) and (3.6), we deduce that g, — g and f,,, — g locally uniformly on B",
as [ — oo. Hence 0(fm,,9) — 0, as | — oco. However, this is a contradiction, since

g € Rr(idpn, (Nag)er), for all L€ N.
To prove that 0(Rr(idgn, (Naw)ier), Rr(ider, (Nay@))er)) — 0, as k — oo, it
suffices to use similar arguments as before. This completes the proof. O

Theorem 3.2. Let T > 0 and A € A be such that ess inf;>rm(A(t)) > 0.
Also, let M > 0, o € L*([T,00),R) and (Ay)ren be a sequence in A such that
14| < M and ||Vi(T, t)"Y|e 2 Irm@Acmdr < (), for a.e. t > T and for all
k € N, where Vi(T,-) is the unique solution on [T, 00) of the initial value problem
(2.1) related to Ay. If

Ai(t) — A(t), ask — oo, fora.e t > T,
then B B
p(S:;Ck(B"), ST(B™) =0, ask — co.

Proof. First, we prove that for every sequence (Tj)ren in (7', 00) such that
T, — 00, as k — oo, we have

(3.7) p(ﬁTk(idB"7 (Nay@)erz,)) §£k(Bn)) — 0, as k — oo.

Fix a sequence (T)ren in (T, 00) such that T, — oo, as k — oo. Let k € N
and fi € §§k(B") be arbitrary. Then there is hy € C([T,00), (Na, @) )i>r) such
that fi = limg_ oo Vi(T,t) " 20(-, T, t; hy). Let gp = Vi(T, Ty) *v(-, T, Ty; hy,). Then
gr € ﬁTk(idBn, (N, Ak(t))te[T,Tk]). Taking into account Lemma 2.15, we deduce that
for every r € (0, 1) there is C; > 0 such that

57 < Cr/ AL [Ve(T, ) e 2 e mADdr g < oM [ aft) dt.

Tk Tk

| fr — gl

Hence B N
6(S%, (B™), R, (idgr, (Nay@)eerrry))) — 0, as k — oo.
By Remark 2.19
5(7:\;/Tk(idB”a (NAk(t))te[T,Tk]), §f§k(B")) =0, forall £k € N,

and thus we obtain (3.7).

In the same manner, since A € .2(, we can also prove that for every sequence
(Tk)ken in (T, 00) such that T — oo, as k — oo, we have

(3.8) p(R, (idgn, (Nag)ieirny), S3(B™) — 0, as k — oo.

Let (Ay,, )men be an arbitrary subsequence of (Ay)ren. Let (T})en be a sequence
in (T, 00) such that T} — oo, as | — co. By Theorem 3.1, we deduce that for every
[ € N there is m; € N such that

p(Ra; (idpn, (Nay,,, 0)ieirin), R (idpo, (Wa)rer)) <
Taking into account (3.7) and (3.8), we deduce that
p(Sh (B"),ST(B™) =0, asl— oc.
77ll

~| =

Since every subsequence of (:S’Zk (B"))ren contains a subsequence that converges
to S} (B"), we deduce that (S} (B"))ren converges to S} (B"). O
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Corollary 3.3. Let T > 0 and A € A be such that essinf;>rm(A(t)) > 0. Also,
let T" > T, M > 0 and (Ag)ren be a sequence in A such that ||Ax(t)|| < M, for a.e.
t € [I,1"], and Ai(t) = A(t), for a.e. t > T, and for all k € N. If
Ap(t) = A(t), ask — oo, for ae. t € [T, T,
then N N
p(Sh, (B™),S5(B") =0, ask — oo.

Proof. Let V(T,-) be the unique solution on [T, 00) of the initial value problem
(2.1) related to A and for every k € N let Vi (T, -) be the unique solution on [T, c0)
of the initial value problem (2.1) related to Ag. For every k& € N we have (see
Lemma 2.3)

[Vi(T, £)~ =2 Jr mAx(r) dr
< VAT, 7)o Dy () 2 f e o
< 6 (T"— MHV(T/ ) 1||e—2jT;m (T))dq—’

for all t > T". Let a: [T, 00) — R be given by

(t T)M te [T Tl)
t - ot ’ .
Oé( ) e MHV(T/ ) 1H€_2‘/T, m(A(T))dT’ t e [T/, OO)

Since A € A, we have a € LY([T,00),R). By Theorem 3.2, the proof is done. O

For constant time-dependent operators (cf. Remark 2.11), we have the following
result.

Theorem 3.4. Let A € L(C") be such that ki (A) < 2m(A), and let (A;)en
be a sequence in L(C") such that A; — A, as | — oo. Then there is [y € N such
that Sy, (B") is compact for | > ly, and p(Sy,(B"), Sa(B")) — 0, as | — oc.

Proof. First, we observe that for every [ € N we have
m(A;) — |A = Ayl < m(A) <m(A) + |A = A

Hence
limsupm(A;) <m(A) < lilm inf m(A;)
—00

l—00
and thus lim;_,., m(A;) = m(A).
Let € = 2m(A) — k+(A). In view of [13, Remark 2.2|, there exists 6 > 0 such
that

(3.9) ||| < semAI=e/2t ¢ >
Let Iy € N be such that for every [ > [, we have
(3.10) 2m(A) — 2m(A;) + 0||A — Aj|| < £/4.
Taking into account the proof of |26, Theorem 2.1, pp. 497-498|, and using (3.9)
and (3.10), we deduce that for every [ > lo we have

Let a: [0,00) — R be given by a(t) = 56_t€/4, for all t > 0. Then o €
L'([0,0),R) and ||eAt||e=2m(A)t < o(t), for all + > 0 and [ > ly. So, by [9, Re-
mark 2.8], we have that ki (A;) < 2m(A;), and thus S} (B") is compact, for all
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I > lp. Moreover, by Theorem 3.2, we have p(S},(B"), S3(B")) — 0, as | — oo.

This completes the proof. O
Taking into account Theorem 3.4, it is natural to ask the following question.
Question 3.5. Under the assumptions of Theorem 3.4, is it true that

llim plex Sy (B"),ex SR (B")) =0 and llim p(supp Sy, (B"),supp Sy (B")) = 07
—00 —00

In view of Theorem 3.4, we obtain the following convergence result related to the
Carathéodory family Na, where A € L(C") with m(A) > 0. This result is motivated
by the fact that every mapping f € S (B") is generated by a Herglotz vector field
h: B™ x [0,00) — C" with respect to A.

Proposition 3.6. Let A € L(C™) be such that m(A) > 0, and let (Ag)ren be
a sequence in L(C™) such that Ay — A, as k — oo. Then there is ky € N such that
m(Ay) > 0, for all k > ko, and p(Na,,Na) = 0, as k — occ.

Proof. Since limy_,oo m(Ay) = m(A) by the proof of Theorem 3.4, and since
m(A) > 0, it follows that there is kg € N such that m(Ay) > 0, for all & > k.
Hence, Na, is well defined, for all k& > k.

The fact that p(Na,,Na) — 0, as k — oo, follows by arguments similar to those
in the proof of Theorem 3.1. Indeed, suppose that there exist ¢ > 0, a sequence
of indices (kp,)men With k,, > ko, m € N, and a sequence of mappings (h.,)men
with h,, € Na,, ., m € N, such that 6(hy,,h) > ¢, for all h € Na. In view of [19,
Lemma 3|, we deduce that for every [ € N, there exists m; € N such that ¢, € Na,
where ¢(z) = T,—llhml (riz) — Ay, z+ Az foral 2 € B", and r, = 1 — % Since
Ay, — A, as | — oo, we deduce that there is M > 0 such that [[Ay,, || < M,
for all [ € N. Hence, as in the proof of Theorem 3.1, we get that h,,, — ¢ — 0, as
[ — 00, locally uniformly on B™, which is a contradiction. Thus, §(Na,,Na) — 0, as
k — oo. The fact that 6(Na, Na,) — 0, as k — oo, follows by the same arguments
as above. 0

We close this section with the following convergence result for the family Sa (B™)
of spirallike mappings with respect to A € L(C"), where k,(A) < 2m(A).

Proposition 3.7. Let A € L(C") be such that k. (A) < 2m(A), and let (A})en
be a sequence in L(C") such that A; — A, as | — oo. Then there is ly € N such

that §AZ(B") is compact for | > ly, and p(§Al (B"), Sa(B")) — 0, as | — .

Proof. By the proof of Theorem 3.4, we have that there exist l[j € N and
a € LY(][0,00),R) such that ||etA:||e=2m(AJt < o(t), for all + > 0 and | > ly. In
particular, ky(A;) < 2m(A;), by |9, Remark 2.8|, and thus §A1(Bn) is compact, for
all [ > ly, by |35, Theorem 3.1] (cf. [13]).

Finally, since every spirallike mapping is generated by a Herglotz vector field that
is constant in time (see [13]; cf. [10]), we may adapt all arguments in the proof of
Theorems 3.1 and 3.2 and deduce that lim;_,, p(§Al (B"), So(B")) = 0, as desired.

O

Question 3.8. In connection with [1] and [35], would be possible to generalize
Theorem 3.4 and Proposition 3.7 to the case of non-resonant linear operators?
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4. Analytical characterizations of mappings in §f4(B")

In this section we obtain some sufficient conditions related to A € .Z(, which
guarantee the equality S (B") = S°(B"), for t > 0. The first result is a generalization
of [13, Theorem 3.12].

Proposition 4.1. Let k € N, ay,...,ap > 0, and let Ey,..., E, € L(C™) be
such that E; + Ef = 2a;1,, for alli € {1,...,k}. Also, let 0 =Ty < T} < ... <
Ty—1 < Ty =00 and let A: [0,00) — L(C™) be given by
El, fort € [T(),Tl),

Alt) =9
Ey, forte [Tk—laTk)-

Then S%(B") = S9(B"), for all T > 0.

Proof. We shall use arguments similar to those in the proof of [13, Theorem 3.12].
Fix T'> 0 and let i € {1,...,k} be such that T € [T;_1,T;).

First, we prove that S°(B") C ST(B"). To this end, let f € S°(B"). Then there
exists a Herglotz vector field h: B™ x [0,00) — C™ (with Dh(0,-) = I,,) such that
f = lim;_, e'v(-,0,t) locally uniformly on B", where v(z,0,-) is the unique locally
absolutely continuous solution of the initial value problem

0
a—:(z,O,t) = —h(v(2,0,t),1), ae. te0,00), v(z,0,0) =z,
for all z € B". For each j € {i,...,k}, let F}: [0,00) — L(C™) be recursively given
by
Fy(t) = el Dlean=E0 - >,
and
F(t) = 6(t—Tj71)(aﬂn—EJ)Fj_1(Tj_l)’ j#i, t>0.

Also, let f3;: [0,00) — R be given
Bi(t) = ou(t = T) and B;(t) = a(t — Tj-1) + Bj-1(Tj-1), j#4, t=0.
Let ¢: B™ x [0, 00) — C" be given by
(A(t)z, tel0,7T),
a; F;()h(F;(t) 2, Bi(t)) — (i1, — E;)z, tel[T,T;),
q(z,t) = Qi1 Fin(OR(Fi (672, Bia (8) — (g1 ln — Eiy1)z, t € [T, Tisq),

L anF%(O)R(Fr(t) "2, Bi(t)) — (arl, — Ey)z, t € [Th-1,T),
for all 2 € B". Since E; + £ = 2a;l,, for all j € {i,...,k}, we deduce by an
inductive argument that F;(¢)* = F;(¢t)~' and ||[F;(t)7Y| < 1, for all t € [T;_1,T})
and j € {i,...,k} (cf. [13]). Then it is not difficult to prove that ¢ is well defined
and is a Herglotz vector field with respect to A.
Let
Fi(t)v(z,0, Bi(t)), for ze B", t € [T,T;),
i (t)v(z,0, Bia (1), for z € B, t € [T}, Tita),
u(z, T,t) =< .

Fi.(t)v(z,0, Bk(t)), for ze B", t € [Tj—1,Tk).
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We observe that 4 Fj(t) = (a;I, — E;)F;(t), for all j € {i,...,k} and every ¢t €
[T5-1,T;), and thus u(z,T,-) is the unique locally absolutely continuous solution of
the initial value problem

g—?(z,T, t) = —q(u(z,T,t),t), ae. te[l,00), ulz,T,T) = z,

for all z € B".

Let V(T,-) be the unique solution on [T, 00) of the initial value problem (2.1)
related to A. Since V(T,t) = e PO F(t), for all t > Ty_1, and lim,_,. B(t) =
00, we deduce that f = limy_. e®*®v(-,0, B(t)) = limy_so V (T, t) " *u(-, T, t) locally
uniformly on B". Hence f € S5(B"). So S°(B") C ST (B™).

Using similar arguments as above, we may prove that 5% (B") C S°(B") (cf. [13,
Remark 3.13]). This completes the proof. O

In view of Propositions 2.13 and 4.1, we obtain the following example.

Example 4.2. Let £ = ( 1 i

Alt) = E, fortel0,T),
I, forte [T, 00).

) and T > 0. Let A € A be given by

Then S$%(B2) = S9(B?), for all s > 0, but there do not exist A € L(C?) with
k+(A) < 2m(A) and a measurable function a: [0,00) — R such that (2.2) holds and
A(t) = a(t)A for a.e. t > 0.

Proof. Let s > 0. Since E 4+ E* = 2I,, it follows that S5(B2) = S°(B?), by
Proposition 4.1. Also, it is elementary to see that there do not exist A € L(C?) with
ky+(A) < 2m(A) and a measurable function a: [0, 00) — R such that (2.2) holds and
A(t) = a(t)A for a.e. t > 0. O

Using Theorem 3.2 and Proposition 4.1, we may prove the following result. This
result is also an improvement of Proposition 4.1 (cf. Proposition 2.13 for A = I,, and
[13, Theorem 3.12]).

Proposition 4.3. Let A: [0,00) — L(C™) be a measurable mapping such that
ess infy>om(A(t)) > 0, esssup,o||A(t)|| < oo, and for a.e. t > 0 there is a(t) > 0
such that A(t)+ A(t)* = 2a(t)I,. Then A € A and S%(B") = S°(B"), for all T > 0.

Proof. Let o, € (0,00) be such that m(A(t)) > o and ||A(t)| < B, for a.e.
t > 0. In view of the hypothesis, we deduce that there is a measurable function
a: [0,00) — R such that «(t) > 0 and A(t) + A(t)* = 2a(t)l,, for a.e. t > 0. We
observe that k(A(t)) = m(A(t)) = a(t) > o, for a.e. t > 0 (cf. [13]).

Fix T > 0. In view of Lemma 2.3, we have

HV(T, t)_1||e—2fqt“m(A(T))dT S e~ [;1 a(r)dr S e(T_t)o

Y

for all ¢ > T, where V(T,-) is the unique solution on [T’,00) of the initial value

problem (2.1) related to A. Thus, we deduce that A € A. Since A is measurable,
there exists a sequence of step functions (Ay)ren defined on [0, 00) and with values
in the set

{E € L(C") | there is A > ¢ such that £ + E* = 2XI, and | E|| < 3}
such that Ag(t) — A(t), as k — oo, for a.e. t € [0, 00).



Convergence results for families of univalent mappings on the unit ball in C™ 615

Using similar arguments as above, we may prove that for every k € N, we have
||Vk(T, t)_1||6—2fqt“ m(Ag (7)) dr < e(T_t)O"

for all t > T, where V4(T,-) is the unique solution on [T’,00) of the initial value
problem (2.1) related to A,. In particular, we deduce that A, € A, for all k € N.
Moreover, if we let a: [T,00) — R be given by a(t) = eT=97 for all t > T, then
a € LY(|T, ), R) and thus, by Theorem 3.2, we deduce that

p(ggk(B"), ST(B™) —= 0, as k — oco.
Taking into account Proposition 4.1, we conclude that S%(B") = S°(B"). O

In view of Proposition 4.3 and [13, Theorem 3.12], it would be interesting to give
an answer to the following question:

Question 4.4. Let A € L(C") be such that ky(A) < 2m(A). Also, let A e A
be such that ki (A(t)) < 2m(A(t)) and S%(t) (B") = S4(B"), for a.e. t > 0. Is it true
that ST (B") = S (B"), for all T > 07?
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