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Abstract. The unified equation P4,34 is closely related to the well-known Painlevé equations

P2 and P4. We discuss various properties of solutions of P4,34, including one-parameter families

of solutions, Bäcklund transformations, regular systems for expansions around zeros and poles and

value distribution. In particular, we give estimates of defects and multiplicity indices of transcen-

dental meromorphic solutions of this equation. Moreover, we study solutions of P4,34 from the

perspective of Petrenko’s theory, which is also new for P2, P4 and P34. We give estimates of devi-

ations and analyse the sets of exceptional values in the sense of Petrenko for equations P2, P4, P34

and the unified equation P4,34.

Introduction

In this paper we begin with elementary notions of value distribution theory pay-
ing special attention to the notion of deficiency. Then we present results of Clunie
type and Mohon’ko–Mohon’ko type. Next we give an overview of the known results
concerning value distribution of the Painlevé equations P2 and P4 and we move on
to new results stated for P2, P4 and the unified equation P4,34. The paper ends with
the Appendix, where further properties of P4,34 are discussed. Some of the results
given there are new and, to our knowledge, did not appear in any paper. Thus we
present them to make the description of properties of P4,34 complete.

1. Preliminaries

Let us start with the basic results of Nevanlinna theory. We apply the stan-
dard notations [9]. The following theorem is known as the first main theorem of
Nevanlinna.

Theorem 1.1. [19] For any function f meromorphic in the disc |z| < R ≤ ∞
the equality

(1) m(r, a, f) +N(r, a, f) = T (r, f) + φ(r, a),

holds for each a ∈ C, where |φ(r, a)| ≤ log+ |a| + | log |c|| + log 2 and c is the first
nonvanishing coefficient of the Laurent expansion of f − a at zero.

In the standard way we define δ(a, f), the defect of f at a value a ∈ C,

δ(a, f) = lim inf
r→∞

m(r, a, f)

T (r, f)
= 1− lim sup

r→∞

N(r, a, f)

T (r, f)
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and ϑ(a, f), the index of multiplicity of a value a,

ϑ(a, f) = lim inf
r→∞

N1(r, a, f)

T (r, f)
,

where N1(r, a, f) := N(r, a, f)−N(r, a, f). If δ(a, f) > 0, then we say that the value
a is defective (in the sense of Nevanlinna), and if ϑ(a, f) > 0 we call a a ramified
value of f . Let us remind that as a result of the first and the second main theorems
of Nevanlinna, the set EN(f) of defective values of a meromorphic function f is at
most countable and the following relations are true:

0 ≤ δ(a, f) + ϑ(a, f) ≤ 1,
∑

a∈C

(δ(a, f) + ϑ(a, f)) ≤ 2.

The order and the lower order of a meromorphic function f are defined by

̺(f) := lim sup
r→∞

log T (r, f)

log r
, µ(f) := lim inf

r→∞

log T (r, f)

log r
.

If ̺(f) = µ(f) then f is called a function of a regular growth.
In 1969 Petrenko introduced the quantity (see [22])

β(a, f) = lim inf
r→∞

L(r, a, f)
T (r, f)

called deviation of a meromorphic function with respect to the value a ∈ C, where

L(r, a, f) :=











max
|z|=r

log+ |f(z)| for a = ∞,

max
|z|=r

log+
∣

∣

∣

1
f(z)−a

∣

∣

∣
for a 6= ∞.

For a ∈ C the inequality

δ(a, f) ≤ β(a, f)

follows easily from the definition of β(a, f). Thus we have EN(f) ⊂ EΠ(f), where
EΠ(f) : {a ∈ C : β(a, f) > 0}. For meromorphic functions of finite lower order we
have upper bounds of deviations similar to those following from the first and second
main theorems of Nevanlinna. Namely, it was proved by Petrenko in [22] that the
set EΠ(f) of exceptional values in the sense of Petrenko is at most countable and

β(a, f) ≤ B(µ) :=

{

πµ
sinπµ

if µ ≤ 0.5,

πµ if µ > 0.5.

In [15] Marchenko and Shcherba proved that
∑

a∈C

β(a, f) ≤ 2B(µ).

Both estimates are sharp. Let us mention here that the hypothesis that for entire
functions of order ̺, 0.5 ≤ ̺ < ∞, the inequality β(∞, f) ≤ π̺ holds, was long-
standing. Stated by Paley in 1932, it was proved in 1969 by Govorov [7].

Considering f(z) = exp(z) as an easy example, we have

̺(f) = µ(f) = 1, EN (f) = EΠ(f) = {0,∞},
and for exceptional values:

δ(0, f) = δ(∞, f) = 1, β(0, f) = β(∞, f) = π,
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so
∑

a∈C

δ(a, f) = 2 and
∑

a∈C

β(a, f) = 2π.

In general the sets EN (f) and EΠ(f) may differ. In 1987 Gol’dberg, Eremenko
and Sodin proved that for any fixed positive number ̺ and any given two sets E1 ⊂
E2 ⊂ C, which are at most countable, there is a meromorphic function of order ̺
such that

EN(f) = E1, EΠ(f) = E2

[5, 6]. It is interesting to notice that such a function may even be a function of a
regular growth. For functions of infinite order the deviation may be infinite and the
set EΠ(f) may be uncountable.

2. Theorems of Clunie type and of Mohon’ko–Mohon’ko type

In this section we recall the well-known theorems of Clunie and of Mohon’ko,
Mohon’ko. We also present new theorems of similar character concerning Petrenko’s
deviation.

We use the notation S(r, f) for φ : (0,+∞) → R such that

φ(r) = o(T (r, f)), r → ∞, r /∈ E,

where E is a set of finite linear measure. For meromorphic functions g, f we say that
g is small with respect to f if T (r, g) = S(r, f).

In our considerations below we apply the following result, which is a more general
version of the original lemma by Clunie (see [3]).

Theorem 2.1. [14] Let f be a transcendental meromorphic solution of

fnP (z, f) = Q(z, f),

where n is a positive integer, P (z, f), Q(z, f) are polynomials in f and its derivatives
with meromorphic coefficients {aλ : λ ∈ I}, such that m(r, aλ) = S(r, f) for all λ ∈ I.
If the total degree d of Q(z, f) as a polynomial in f and its derivatives is d ≤ n, then

m(r, P (z, f)) = S(r, f).

It should be noticed that in the original Clunie lemma, by assumption, the con-
dition T (r, aλ) = S(r, f) (λ ∈ I) holds for the coefficients of the equation, while in
Theorem 2.1 it is only assumed that the proximity function of the coefficients fulfills
this condition.

We shall prove the following generalisation of the lemma on the logarithmic
derivative for L(r,∞, f (k)/f) by induction.

Proposition 2.2. Let f be a meromorphic function. Then, possibly except for
r in a set of finite linear measure, for k = 1, 2, . . . we have

L
(

r,∞,
f (k)

f

)

= O(log(rT (r, f))), r → ∞,

where f (k) means the k-th derivative of f .

Proof. Lemma 4 in [16] states that

L
(

r,∞,
f ′

f

)

= O(log(T (r, f)) +O(log r), r → ∞,
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possibly outside a set E of finite linear measure. Let us assume that the statement
is true for an integer k ≥ 1 outside a set E1 of finite linear measure. We know that

f (k+1)

f
=

f (k+1)

f (k)
· f

(k)

f
,

and

L
(

r,∞,
f (k+1)

f (k)

)

= O(log(T (r, f (k))) +O(log r), r → ∞, r /∈ E2.

Applying the properties of log+ and by assumption, we get

L
(

r,∞,
f (k+1)

f

)

≤ L
(

r,∞,
f (k+1)

f (k)

)

+ L
(

r,∞,
f (k)

f

)

= O(log(T (r, f (k))) +O(log(T (r, f)) +O(log r), r → ∞, r /∈ E1 ∪ E2.

By a generalisation of the lemma on the logarithmic derivative (see: [14]), apart from
the set E3 of finite linear measure we have

T (r, f (k)) ≤ (k + 1)T (r, f) +O(log(T (r, f)) +O(log r).

This way we obtain

L
(

r,∞,
f (k+1)

f (k)

)

= O(log(T (r, f)) +O(log r), r → ∞, r /∈ E,

where E =
⋃3

i=1Ei is of finite linear measure. �

Applying Proposition 2.2, it is possible to prove the following analogue of Theo-
rem 2.1.

Theorem 2.3. Let f be a transcendental meromorphic solution of

(2) fnP (z, f) = Q(z, f),

where n is a positive integer, P (z, f), Q(z, f) are polynomials in f and its derivatives
with meromorphic coefficients aν , bν , respectively, which are small with respect to f
in the sense that

L(r,∞, aν) = S(r, f), L(r,∞, bν) = S(r, f).

If the total degree d of Q(z, f) as a polynomial in f and its derivatives is d ≤ n, then

L(r,∞, P (z, f)) = S(r, f).

Proof. In the proof we apply ideas from the proof of Lemma 2.4.2 in [14]. Let

fnP (z, f) = Q(z, f),

where

P (z, f) =

t
∑

ν=0

aν(z)f
lν
0 · (f ′)l

ν
1 · . . . · (f (k))l

ν
k , lνi ∈ N0 (i = 0, . . . , k, ν = 0, . . . , t),

Q(z, f) =

s
∑

ν=0

bν(z)f
jν
0 · (f ′)j

ν
1 · . . . · (f (k))j

ν
k , jνi ∈ N0 (i = 0, . . . , k, ν = 0, . . . , s),

aν(ν = 0, . . . , t), bν(ν = 0, . . . , s) are small with respect to f in the sense that
L(r,∞, aν) = S(r, f), L(r,∞, bν) = S(r, f), and

jν0 + jν1 + . . .+ jνk ≤ d ≤ n (ν = 0, . . . , s).
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First, we consider the case when 0 < |f(z)| ≤ 1, so 1
|f(z)|

≥ 1 and there are no

poles of aν (ν = 0, . . . , t) on the circle of radius |z| = r. Then

|P (z, f)| = |
t
∑

ν=0

aν(z)f
lν
0 · (f ′)l

ν
1 · . . . · (f (k))l

ν
k | ≤

t
∑

ν=0

|aν(z)||f |l
ν
0 · |f ′|lν1 · . . . · |f (k)|lνk

≤
t
∑

ν=0

|aν(z)|
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

lν
1

· . . . ·
∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

lν
k

.

It follows that

log+ |P (z, f)| ≤
t
∑

ν=0

(

log+ |aν(z)| + log+
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

lν
1

+ . . .+ log+
∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

lν
k

)

+ log t

≤
t
∑

ν=0

(

L(r,∞, aν) +
k
∑

i=1

lνi L(r,∞,
f (i)

f
)

)

+ log t := M1(|z|).

Next, let 1 ≤ |f(z)| < ∞, so 1
|f(z)|

≤ 1 and assume that there are no poles of

bν (ν = 0, . . . , s) on the circle of radius |z| = r. From (2) we have

P (z, f) =
1

fn
Q(z, f),

so

|P (z, f)| =
∣

∣

∣

∣

∣

1

fn

s
∑

ν=0

bν(z)f
jν
0 · (f ′)j

ν
1 · . . . · (f (k))j

ν
k

∣

∣

∣

∣

∣

≤
s
∑

ν=0

|bν(z)|
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

jν
1

· . . . ·
∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

jν
k

·
(

1

|f |

)n−(jν
0
+...+jν

k
)

≤
s
∑

ν=0

|bν(z)|
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

jν
1

· . . . ·
∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

jν
k

.

It follows that

log+ |P (z, f)| ≤
s
∑

ν=0

(

L(r,∞, bν) +

k
∑

i=1

jνi L(r,∞,
f (i)

f
)

)

+ log s := M2(|z|).

This way, apart from the circles where f has zeros or f, aν , bν have poles, we have

L(r,∞, P (z, f)) ≤ max(M1(|z|),M2(|z|)).
Since L(r,∞, aν) = S(r, f) (ν = 0, . . . , t) and L(r,∞, bν) = S(r, f) (ν = 0, . . . , s),
applying Proposition 2.2 we get

Mj(r) = S(r, f) (j = 1, 2),

which completes the proof. �

Let us now recall a well-known result of A. Z. Mohon’ko and V.D. Mohon’ko.

Theorem 2.4. [17] Let

(3) P (z, f, f ′, . . . , f (n)) = 0

be an algebraic differential equation (P (z, u0, u1, . . . , un) is a polynomial in all argu-
ments) and let f be its transcendental meromorphic solution. If a constant a does
not solve the equation, then m(r, 1

f−a
) = S(r, f) and δ(a, f) = 0.

Next we shall prove an analogue of Theorem 2.4 for L(r, a, f).
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Theorem 2.5. If f is a transcendental meromorphic solution of equation (3) and
a constant a does not solve this equation, then L(r, a, f) = S(r, f) and β(a, f) = 0.

Proof. We prove the statement in a similar way as Proposition 9.2.3 in [14]. Let
f be a transcendental meromorphic solution of equation (3). Then, for any constant
a ∈ C the function F (z) := f(z) − a is also a transcendental solution of a similar
algebraic equation P (z, f, f ′, . . . , f (n)) = 0. Thus, we shall consider F and a constant
a = 0. Let us assume that a = 0 does not solve P (z, f, f ′, . . . , f (n)) = 0. We put

(4) P (z, f, f ′, . . . , f (n)) = D(z) +Q(z, f, f ′, . . . , f (n)),

where

Q(z, f, f ′, . . . , f (n)) =
t
∑

ν=0

pν(z)f
lν
0 · (f ′)l

ν
1 · . . . · (f (n))l

ν
n ,

lνi ∈ N0 (i = 0, . . . , n, ν = 0, . . . , t), lν0 + . . .+ lνt ≥ 1 (ν = 0, . . . , t)

all pν (ν = 0, . . . , t) are polynomials,

D(z) := P (z, 0, 0, . . . , 0)

and, by our assumption, D(z) 6≡ 0.
In case |F (z)| > 1 we have | 1

F (z)
| < 1, so log+ | 1

F (z)
| = 0.

If |F (z)| ≤ 1, on the other hand, we have

(5)

∣

∣

∣

∣

1

F
Q(z, F, F ′, . . . , F (n))

∣

∣

∣

∣

≤
t
∑

ν=0

∣

∣

∣

∣

1

F
pν(z)F

lν
0 · (F ′)l

ν
1 · . . . · (F (n))l

ν
n

∣

∣

∣

∣

=

t
∑

ν=0

|pν(z)| ·
∣

∣

∣

∣

F ′

F

∣

∣

∣

∣

lν
1

· . . . ·
∣

∣

∣

∣

F (n)

F

∣

∣

∣

∣

lνn

· |F |lν0+...+lνn−1

≤
t
∑

ν=0

|pν(z)| ·
∣

∣

∣

∣

F ′

F

∣

∣

∣

∣

lν
1

· . . . ·
∣

∣

∣

∣

F (n)

F

∣

∣

∣

∣

lνn

.

In all cases, since by (4) we have D(z) = −Q(z, f, f ′, . . . , f (n)),

L
(

r,∞,
1

F

)

= L
(

r,∞,
D

F
· 1

D

)

≤ L
(

r,∞,
D

F

)

+ L
(

r,∞,
1

D

)

= L
(

r,∞,
Q

F

)

+ L
(

r,∞,
1

D

)

.

By inequality (5) and Proposition 2.2, apart from a set of finite linear measure, we
have

L
(

r,∞,
Q

F

)

= O(log T (r, F )) +O(log r) = O(log T (r, f)) +O(log r).

Since f is transcendental we get

L
(

r,∞,
1

f − a

)

= L
(

r,∞,
1

F

)

= S(r, f). �

Remark 2.6. Theorem 2.5 is a (weaker) version of a result proved by V.D. Mo-
hon’ko in [18]. The original proof is based on a method introduced by Petrenko.
Applying Proposition 2.2 it is also possible to prove that algebraic equations with
coefficients not necessarily polynomial, but meromorphic and small with respect to
f in the same sense as in Theorem 2.3, also have a similar property.
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3. Painlevé equations and value distribution theory

The six Painlevé equations have many applications in modern mathematics and
mathematical physics and a number of remarkable properties (e.g., Hamiltonian
structure, Bäcklund transformations). Their solutions have no movable branch points
(so the equations possess the Painlevé property). These equations can also be ob-
tained by similarity reductions from certain integrable partial differential equations
(e.g., KdV, mKdV and others) [1, 2, 8, 12]. There are six Painlevé equations. They
appeared as a result of the classification of second order ordinary differential equa-
tions with the Painlevé property

f ′′ = F (z, f, f ′), f = f(z), ′ = d/dz,

where F is rational in f , algebraic in f ′ and analytic in z. As a result of the classifica-
tion only six equations were irreducible. Others were either transformed to them or
to linear equations or to the first order equations or were integrated by quadrature.
New functions, the Painlevé transcendents, were thus found. Later on it was shown
that they are meromorphic functions on the universal cover of C with certain fixed
singular points removed for some equations (see [25] and the references therein).

The second and the fourth Painlevé equations are given by

(P2) f ′′ = 2f 3 + zf + α,

(P4) f ′′ =
f ′2

2f
+

3f 3

2
+ 4zf 2 + 2(z2 − α)f +

β

f
,

where α, β are arbitrary complex parameters and f = f(z). Their solutions are
meromorphic functions in the sense that every local solution has a continuation to a
function meromorphic in C. For recent proofs see Hinkkanen and Laine in [10] for P2

or Steinmetz in [29] for both equations. The solutions are also known to be of finite
order [26, 27, 30]. The deficiencies and ramification indices of solutions have been
estimated both in case of P2 and P4. The estimates of deficiencies for P2 are due to
Schubart and Schubart and Wittich. The estimates of the ramification indices are
due to Kieling.

Theorem 3.1. [23, 24, 13] Transcendental solutions of P2 fulfill the conditions:

1. m(r, f) = O(log r) and δ(∞, f) = 0;
2. if α 6= 0, then, for every a ∈ C, we have m(r, 1

f−a
) = O(log r) and δ(a, f) = 0;

3. in the case of α = 0 for every a ∈ C \ {0} we have m(r, 1
f−a

) = O(log r)

and δ(a, f) = 0, and for a = 0 we have m(r, 1
f
) ≤ 1

2
T (r, f) + O(log r) and

δ(0, f) ≤ 1
2
.

4. for every a ∈ C\{0} we have N1(r,
1

f−a
) ≤ 1

4
T (r, f)+O(log r) and ϑ(a, f) ≤ 1

4
;

5. if α 6= 0, then N1(r,
1
f
) ≤ 1

5
T (r, f) + O(log r) and ϑ(0, f) ≤ 1

5
, and if α = 0,

then N1(r,
1
f
) = 0 and ϑ(0, f) = 0;

6. N1(r, f) = 0 and ϑ(∞, f) = 0.

Let us recall the estimates for transcendental solutions of P4 which were originally
given by Steinmetz.

Theorem 3.2. [28] Transcendental solutions of P4 fulfill the conditions:

1. m(r, f) = O(log r) and δ(∞, f) = 0;
2. if β 6= 0, then for a ∈ C we have m(r, 1

f−a
) = O(log r) and δ(a, f) = 0;

3. if β = 0 and a 6= 0, then we have m(r, 1
f−a

) = O(log r) and δ(a, f) = 0;
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4. if β = 0 and if f does not satisfy the Riccati differential equation f ′ =
±(f 2 + 2zf), then m(r, 1

f
) ≤ 1

2
T (r, f) +O(log r) and δ(0, f) ≤ 1

2
;

5. for every a ∈ C \ {0}, N1(r,
1

f−a
) ≤ 1

4
T (r, f) +O(log r) and ϑ(a, f) ≤ 1

4
;

6. if β 6= 0, then N1(r,
1
f
) = 0 and ϑ(0, f) = 0;

7. if β = 0, then N1(r,
1
f
) = 1

2
T (r, f) +O(log r) and ϑ(0, f) = 1

2
;

8. N1(r, f) = 0 and ϑ(∞, f) = 0.

We can formulate results similar to the estimates of defects, but concerning de-
viations of the transcendental meromorphic solutions of P2 and P4.

Theorem 3.3. Transcendental meromorphic solutions of P2 and P4 have the
following properties.

1. For solutions of P2(α) the equalities L(r, a, f) = S(r, f) and β(a, f) = 0 hold
for all a ∈ C \ {0}. If α 6= 0 we also have L(r, 0, f) = S(r, f) and β(0, f) = 0.

2. If f is a solution of P4(α, β), then the equalities L(r, a, f) = S(r, f) and
β(a, f) = 0 hold for all a ∈ C \ {0}. If β 6= 0, then we also have L(r, 0, f) =
S(r, f) and β(0, f) = 0.

Proof. 1. We consider transcendental meromorphic solutions of the equation
P2(α) and we write the equation in the form

f 2P (z, f) = Q(z, f),

with P (z, f) = f and Q(z, f) = 1
2
(f ′′ − zf − α). By Theorem 2.3 we have

L(r, f) = L(r, P (z, f)) = S(r, f).

The assumption that a constant a ∈ C is a solution of P2 leads to the equation

az + 2a3 + α ≡ 0.

It follows that we have a constant solution a = 0 of P2 only when α = 0. Applying
Theorem 2.5 we may conclude that if α 6= 0 we have L(r, a, f) = S(r, f) for all a ∈ C,
and if α = 0 we have L(r, a, f) = S(r, f) for a ∈ C \ {0}.

2. We consider transcendental meromorphic solutions of P4(α, β) (α, β ∈ C) and
write the equation in the form

f 3P (z, f) = Q(z, f),

with P (z, f) = f and Q(z, f) = 1
3
(2ff ′′ − (f ′)2 − 8zf 3 − 4(z2 − α)f 2 − 2β). By

Theorem 2.3 we have

L(r, f) = L(r, P (z, f)) = S(r, f).

If we assume that a constant a ∈ C solves the equation P4(α, β) we get the
equality

4a2z2 + 8a3z + 3a4 − 4αa2 + 2β ≡ 0.

If β 6= 0, then this equality does not hold. If β = 0, then the only solution is a = 0.
By Theorem 2.5 and our previous considerations, if β 6= 0 we have L(r, a, f) = S(r, f)
for all a ∈ C, and if β = 0 we have L(r, a, f) = S(r, f) for a ∈ C \ {0}. �

In this paper we are particularly interested in the so-called unified equation of
P4 and P34. Equation P34, also called equation XXXIV in [11, Ch. 14], is the second
order equation of the form

(6) f ′′ =
(f ′)2

2f
+Bf(2f − z)− A

2f
,
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where A and B are fixed complex parameters. It follows from the relationship with
P2 that the solutions of P34 are meromorphic (see the Appendix).

The unified equation of P34 and P4 was introduced in [20]. This equation has the
following form:

(7) f ′′ =
(f ′)2

2f
− α

2f
+ βf(2f + z) + γf(f + z)(3f + z).

We shall use the notation P4,34 (or P4,34(α, β, γ) to underline the dependence on the
parameters) for this equation. Equation P4,34 admits the following scaling transforma-
tion: if f(z) is a solution of P4,34(α, β, γ), then f(cz)/c is a solution of P4,34(α, c

3β, c4γ)
[20]. It is shown in [20] that if β = 0, γ = 0, then equation (7) can easily be integrated
with polynomial solutions

f(z) =
(C2

1 − α)z2

4C2
+ C1z + C2.

In the following, we shall not consider the case β = γ = 0.
If γ = 0, β 6= 0, then, by changing the independent variable t → −t in (7) one

obtains (6) with parameters A = α and B = β. If γ 6= 0, α = −β/2, β = b3, γ = 2d4

in (7), then 2df(t), where t = (z+b3/(4d4))d is a solution of P4(α̃, β̃) with parameters

α̃ = b6d−6/16 = β2/(4
√
2γ3/2) and β̃ = β [20]. The properties of P4,34 and P34 not

connected directly to the Nevanlinna theory will be discussed in the Appendix.
In the following we shall present some properties of the solutions of P4,34 in two

cases:

(C1) γ = 0, β 6= 0;
(C2) γ 6= 0.

Equation P4,34 admits singular values 0 and ∞. Let us consider ∞ as the singular
value of f , i.e., consider expansions of solutions around a movable pole z0.

Theorem 3.4. The equation P4,34 has the following polar behavior.

1. If γ = 0, then an arbitrary solution of P4,34(α, β, 0) has double poles. More-
over, equation P4,34(α, β, 0) can be re-written in the form of a regular system
at a pole z = z0 for the variables u(z)2 = 1/f(z) and v(z) defined by

f ′(z) = −1−
√
2β

u(z)3
−

√
βz√

2u(z)
− u(z)(

√
2βz2 − 120

√
2v(z))

24
√
β

such that the functions u(z) and v(z) are analytic in the neighborhood of
z = z0 and u(z0) = 0 and v(z0) = a2, where a2 is arbitrary.

2. If γ 6= 0, then an arbitrary solution of P4,34(α, β, γ) has simple poles. More-
over, equation P4,34(α, β, γ) can be re-written in the form of a regular system
at a pole z = z0 for the variables u(z) = 1/f(z) and v(z) defined by

f ′(z) = −
√
2γ

εu(z)2
− β + 2zγ√

2γεu(z)
+

√
2β2 − 8ε

√
γγ

8ε
√
γγ

+
(8
√
2γv(z)− εβ − 2zεγ)u(z)

4εγ

such that the functions u(z) and v(z) are analytic in the neighborhood of
z = z0 and u(z0) = 0 and v(z0) = a2, where a2 is arbitrary.

Proof. Case (C1). Around a pole z = z0 we have the following Laurent series
expansion with ξ = z − z0:

(8) f(z) =
2

βξ2
− z0

3
− ξ

2
+ a2ξ

2 +
βz0ξ

3

18
+ . . . ,
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where a2 is arbitrary. Then it can be shown that, fixing one of the two branches in
the definition of u, the system is given by

48
√

βu′(z) = 24
√
2β + 12

√
2βzu(z)2 + 24

√

βu(z)3 +
√
2βz2u(z)4−120

√
2u(z)4v(z),

1440
√

2βv′(z) = 96
√

2ββz + 18
√

2βu(z)2(βz2 − 120v(z)) + (βz2 − 120v(z))2u(z)3

+ 12βu(z)(12− 12α+ βz3 − 120zv(z)).

Computing the expansions of u and v using (8) we show that u(z0) = 0 and v(z0) = a2.

Case (C2). Let γ 6= 0 and f(z) be an arbitrary solution of P4,34(α, β, γ). Then
around a pole z = z0 we have the following Laurent series expansion with ξ = z − z0
and ε2 = 1:

(9) f(z) =
ε√
2γξ

− β + 2z0γ

4γ
+

(4z20γ
2ε+ 4z0βγε+ 3β2ε− 16

√
2γγ)ξ

24
√
2γγ

+ a2ξ
2+ . . . ,

where a2 is arbitrary. Since z0 = z − ξ, we have the following expansion for the
function u(z) = 1/f(z):

u(z) =
√

2γεξ +
(β + 2zγ)ξ2

2
+

√
γ(2βz + 2γz2 + ε

√
2γ)ξ3

3ε
√
2

+ . . . .

Then

ξ =
εu(z)√

2γ
− (β + 2zγ)εu(z)2

4
√
2γγ

+
(3β2 + 8zβγ + 8z2γ2 − 2ε

√
2γγ)εu(z)3

24
√
2γγ2

+ . . . .

Substituting this into the expansion for f ′(z) yields

f ′(z) = −
√
2γ

εu(z)2
− β + 2zγ√

2γεu(z)
+

√
2β2 − 8ε

√
γγ

8ε
√
γγ

+
(8
√
2γa2 − εβ − 2zεγ)u(z)

4εγ
+ . . . .

Thus, introducing the function v(z) as in the theorem in the second case, we get a
regular system

8
√
γγεu′(z) = 8

√
2γ2 + 4

√
2γ(β + 2γz)u(z) + (8ε

√
γγ −

√
2β2)u(z)2

+ 2u(z)3(
√
γ(β + 2γz)ε− 8

√
2γv(z)),

128ε
√

2γγ2v′(z) = β4 + 64γ3 − 32αγ3 + 32ε
√

2γγ2βz + 32ε
√

2γγ3z2

− 128γ2(β + 2γz)v(z)−−4u(z)(
√
γ(
√
2β2 − 8ε

√
γγ)ε(β + 2γz)

− 16γ(β2 − 4ε
√

2γγ)v(z)) + +6γu(z)2((β + 2γz)2

− 16ε
√

2γ(β + 2γz)v(z) + 128γv(z)2).

Thus we can easily check the analyticity of u and v and by direct computation using
(9) we can show that u(z0) = 0 and v(z0) = a2. �

Next consider 0 as the singular value of f . This case is even simpler and we shall
only present expansions and regular systems for the appropriately chosen functions
u(z) and v(z).

Case 1. Assume α 6= 0. Around a zero z = z0 we have

(10) f(z) = ε
√
α(z − z0) + a2(z − z0)

2 + . . . ,



Meromorphic solutions of P4,34 and their value distribution 627

where a2 is an arbitrary constant. We have f(z) = u(z), f ′(z) = ε
√
α(1 + u(z)v(z)),

ε2 = 1, and

u′(z) = ε
√
α(1 + u(z)v(z)),

2ε
√
αv′(z) = 2z(β + γz) + 4(β + 2γz)u(z) + 6γu(z)2 − αv(z)2.

Note that v(z0) = 2a2/α.

Case 2. If α = 0, then f(z) = u(z)2, f ′(z) = 2u(z)v(z) and, hence,

u′(z) = v(z),

2v′(z) = z(β + γz)u(z) + 2(β + 2γz)u(z)3 + 3γu(z)5.

We also have v(z0) =
√
a2.

We remark that the regular systems written above can be used not only for
proving convergence of expansions, but also for the proof of the Painlevé property
(see, for instance, [25]). The computational part of the proof consists of finding the
Laurent series expansion around a movable zero or a pole of an arbitrary solution,
constructing a regular system for two auxiliary functions using this expansion and
finding the so-called Lyapunov function with certain properties. The remaining de-
tails can be found in [25]. We shall present some more properties of equation P4,34

in the Appendix.
Let us now formulate the main results concerning the distribution of a-points

(a ∈ C) of a transcendental solution of (7).

Theorem 3.5. Transcendental meromorphic solutions of P4,34(α, β, γ) satisfy
the conditions

1. m(r, f) = S(r, f);
2. m(r, 1

f−a
) = S(r, f) for all a ∈ C \ {0};

3. if α 6= 0, then m(r, 1
f
) = S(r, f);

4. if α = 0 and γ 6= 0, then m(r, 1
f
) ≤ 1

2
T (r, f) + S(r, f) unless f fulfills the

Riccati differential equation

(11) f ′ = ε
√

2γf(f + z + β/(2γ)) with β2 + 4εγ
√

2γ = 0 (ε2 = 1),

in which case m(r, 1
f
) ≤ T (r, f) +O(1);

5. if α = 0 and γ = 0, then m(r, 1
f
) ≤ 1

2
T (r, f) + S(r, f).

As a consequence of the Clunie lemma we obtain point 1 of Theorem 3.5 and the
following conclusion.

Corollary 3.6. The equation P4,34 does not admit transcendental entire solu-
tions.

Corollary 3.7. If f is a transcendental meromorphic solution of P4,34(α, β, γ)

with α 6= 0, then both in case (C1) and (C2) for all a ∈ C we have

δ(a, f) = 0,

so the set EN(f) of Nevanlinna’s defective values of f is empty. For P4,34(0, β, γ),
both in case (C1) and (C2), we have EN(f) ⊆ {0}. Moreover, δ(0, f) ≤ 1/2, unless
in case (C2) f fulfills (11) and then δ(0, f) = 1.

Corollary 3.8. For a transcendental meromorphic solution f of P34(A,B), we
have EN (f) = ∅ if A 6= 0 and EN(f) ⊆ {0} with δ(0, f) ≤ 1/2 if A = 0.
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We should notice here that Theorem 3.5 agrees with the estimates from Theo-
rem 3.2 for transcendental solutions of P4 with an appropriate choice of parameters.

The following result gives estimates for deviations of solutions of P4,34.

Theorem 3.9. Transcendental meromorphic solutions of P4,34 satisfy the condi-
tions

1. L(r,∞, f) = S(r, f),
2. L(r, a, f) = S(r, f) for all a ∈ C \ {0}.

If α 6= 0 we also have L(r, 0, f) = S(r, f).

Corollary 3.10. If f is a transcendental meromorphic solution of P4,34, then for
all a ∈ C \ {0}

β(a, f) = 0.

If α 6= 0 also β(0, f) = 0, so in this case the set EΠ(f) of Petrenko’s exceptional
values of f is empty.

In a particular case of P34 we can also arrive at the following conclusions.

Corollary 3.11. A transcendental meromorphic solution f of the equation
P34(A,B) does not possess exceptional values in the sense of Petrenko if A 6= 0. If
A = 0 then EΠ(f) ⊆ {0}.

The following result describes multiplicity of a-points of a solution of (7) depend-
ing on the parameters α, β, γ.

Theorem 3.12. Let f be a transcendental solution of P4,34.

1. For P4,34 in case (C1), all the poles of f are double and ϑ(∞, f) = 1/2. For
P4,34(α, β, γ) in case (C2) all the poles of f are simple and ϑ(∞, f) = 0.

2. For P4,34(α, β, γ), (α 6= 0) all the zeros of f are simple and ϑ(0, f) = 0.
For P4,34(0, β, γ), the zeros of non-zero solutions are double. Thus we have
ϑ(0, f) ≤ 1

2
in case (C1) and in case (C2) unless f fulfills the equation (11),

which then means that ϑ(0, f) = 0.
3. For a 6= 0, we have ϑ(a, f) ≤ 1

4
.

The following conclusion concerning solutions of P34 follows from Theorem 3.12.

Corollary 3.13. A transcendental meromorphic solution f of P34 satisfies the
conditions:

1. all the poles of f are double and ϑ(∞, f) = 1/2;
2. for P34(A,B), (A 6= 0) all the zeros of f are simple and ϑ(0, f) = 0, for

P34(0, B), the zeros are double and ϑ(0, f) ≤ 1
2
;

3. if a ∈ C \ {0}, we have ϑ(a, f) ≤ 1
4
.

Moreover, Theorem 3.12 agrees with the estimates in Theorem 3.2 for an appro-
priate choice of parameters.

4. Proof of Theorem 3.5

1. Let f be a transcendental meromorphic solution of the equation (7). In case
(C2) we write the equation in the form

f 3P (z, f) = Q(z, f),

where

P (z, f) = f, Q(z, f) =
1

3γ
ff ′′ − 1

6γ
(f ′)2 −

(

4

3
z +

2β

3γ

)

f 3 −
(

1

3
z2 +

β

3γ
z

)

f 2 +
α

6γ
.
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As we can see both P and Q have constant or polynomial coefficients which are small
comparing to f, and the degree of Q with respect to f and its derivatives equals 3.
In case (C1) we put (7) in the form

f 2P (z, f) = Q(z, f),

with

P (z, f) = f, Q(z, f) =
1

2β
ff ′′ − 1

4β
(f ′)2 − 1

2
zf 2 +

α

4β

and degQ = 2. Thus the conditions of Theorem 2.1 are fulfilled in both cases, so we
obtain

m(r, f) = m(r, P (z, f)) = S(r, f).

2. and 3. Assuming that a constant a ∈ C is a solution of (7) we obtain the
equation

2γa2z2 + (2βa2 + 8γa3)z + 6γa4 + 4βa3 − α ≡ 0.

This equation has solutions only in two cases:
Case 1. (α, β, γ) = (0, 0, 0). This is the case which we leave out of our consider-

ations.
Case 2. α = 0, (β, γ) 6= (0, 0). Then the only solution is a = 0.
This way, if we assume that α 6= 0 then in cases (C1) and (C2) no constant solves

(7) so then by Theorem 2.4 for any a ∈ C we have

m

(

r,
1

f − a

)

= S(r, f).

4. Let us now estimate m(r, 1
f
) when f is a solution of (7) with α = 0 in case

(C2). We follow the ideas from [28]. Consider an auxiliary function

F (z) :=
(f ′(z))2

2f(z)
− γ(f(z))3 − (2γz + β)(f(z))2 − (γz2 + βz)f(z).

Differentiating and applying (7) we get

F ′(z) = −2γf 2(z)− (2γz + β)f(z).

As in case (C2) the poles of f are simple (see the expansion (9)), it follows that the
poles of F are also simple. In fact, the expansion of F around a pole z0 is of the form

F (z) =
1

z − z0
+

∞
∑

n=0

an(z − z0)
n, an ∈ C.

Moreover, the poles of F appear only at the poles of f .

We put Ξ(z) := F (z)
f(z)

. Then

(12)
f ′(z)

f(z)
Ξ(z) + Ξ′(z) =

F ′(z)

f(z)
= −2γf(z)− 2γz − β.

The function Ξ is analytic at the poles of f and, again by the expansion (9), if
z0 is a pole of f then Ξ(z0) = ε

√
2γ (ε2 = 1). Assume that Ξ(z) 6≡ ε

√
2γ, so

Nevanlinna theory is applicable to Ξ. We have shown that m(r, f) = S(r, f), so from
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the properties of log+ and from the lemma on logarithmic derivative we can estimate
m(r,Ξ):

m(r,Ξ) = m

(

r,
1

2

(

f ′

f

)2

− γf 2 − (2γz + β)f − (γz2 + βz)

)

≤ 2m

(

r,
f ′

f

)

+ 3m(r, f) +O(log r) = S(r, f).

Since at every pole z0 of f we have Ξ2(z0) = 2γ, by the first main theorem of
Nevanlinna we get

N(r, f) ≤ N

(

r,
1

Ξ2 − 2γ

)

≤ T

(

r,
1

Ξ2 − 2γ

)

≤ 2T (r,Ξ) +O(1) = 2N(r,Ξ) + S(r, f).

(13)

Poles of Ξ may appear only at the zeros of f as Ξ is analytic at the poles of f .
As both the poles of Ξ and the zeros of f are double, by the first main theorem of
Nevanlinna,

(14) N(r,Ξ) ≤ N

(

r,
1

f

)

= T (r, f)−m

(

r,
1

f

)

+O(1).

Applying (14) and (13) we obtain

m

(

r,
1

f

)

≤ T (r, f)−N(r,Ξ)+O(1) ≤ T (r, f)−1

2
N(r, f)+S(r, f) ≤ 1

2
T (r, f)+S(r, f).

Assume now that Ξ(z) ≡ ε
√
2γ. Then, by (12) a solution of (7) fulfills the Riccati

differential equation

f ′ = ε
√

2γf(f + z + β/(2γ)) with β2 + 4εγ
√

2γ = 0 (ε2 = 1).

In this case for a non-zero solution we have f(z) 6= 0, so N(r, 1
f
) = 0 (see Theo-

rem 9.1.12 in [14]). The conclusion then follows by applying the first main theorem
of Nevanlinna.

5. Let now f be a transcendental solution of (7) with α = 0 in case (C1). Then
P4,34 has the form

f ′′ =
(f ′)2

2f
+ 2βf 2 + βzf.

As in point 4, we consider an auxiliary function

F (z) :=
(f ′(z))2

2f(z)
− β(f(z))2 − βzf(z).

Differentiating and applying (7) we get

F ′(z) = −βf(z).

From (8) we know that all the poles of f are double, so all the poles of F ′ are also

double. We put Ξ(z) := F (z)
f(z)

. Then

f ′(z)

f(z)
Ξ(z) + Ξ′(z) =

F ′(z)

f(z)
= −β.
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Thus Ξ is analytic at each pole z0 of f, with the expansion

Ξ(z) = β(z − z0) +
∞
∑

n=2

an(z − z0)
n, an ∈ C.

Notice that Ξ(z) 6≡ 0. The only singularities of Ξ are poles, which appear at zeros of
f with the expansion

Ξ(z) =
2

(z − z0)2
+

∞
∑

n=−1

an(z − z0)
n, an ∈ C

for a zero z0 of f. As m(r, f) = S(r, f), applying properties of log+ and the lemma
on logarithmic derivative we get

m(r,Ξ) = m

(

r,
1

2
(
f ′

f
)2 − βf − βz

)

≤ 2m

(

r,
f ′

f

)

+m(r, f) +O(log r) = S(r, f).

Then, as the zeros of Ξ at the poles of f are simple,

(15)
1

2
N(r, f) ≤ N

(

r,
1

Ξ

)

≤ T (r,Ξ) +O(1) = N(r,Ξ) + S(r, f).

Poles of Ξ appear only at the zeros of f , so by the first main theorem of Nevanlinna,

(16) N(r,Ξ) ≤ N

(

r,
1

f

)

= T (r, f)−m

(

r,
1

f

)

+O(1).

It follows from (16) and then (15) that

m

(

r,
1

f

)

≤ T (r, f)−N(r,Ξ) +O(1) ≤ T (r, f)− 1

2
N(r, f) + S(r, f)

= m(r, f) +
1

2
N(r, f) + S(r, f) ≤ 1

2
T (r, f) + S(r, f).

5. Proof of Theorem 3.9

1. Let f be a transcendental meromorphic solution of the equation (7). We
proceed as in point 1 of Theorem 3.5. In case (C2) we write the equation in the form
f 3P (z, f) = Q(z, f) with

P (z, f) = f, Q(z, f) =
1

3γ
ff ′′ − 1

6γ
(f ′)2 −

(

4

3
z +

2β

3γ

)

f 3 −
(

1

3
z2 +

β

3γ
z

)

f 2 +
α

6γ
.

This way degQ = 3 with respect to f and its derivatives. Both P and Q have
constant or polynomial coefficients, which are small with respect to f . By Theorem
2.3, we obtain L(r, f) = S(r, f). In case (C1) we put (7) in the form

f 2P (z, f) = Q(z, f),

with

P (z, f) = f, Q(z, f) =
1

2β
ff ′′ − 1

4β
(f ′)2 − 1

2
zf 2 +

α

4β
,

so we can see that degQ = 2. f 2P (z, f) = Q(z, f) with P (z, f) = f and degQ = 2.
Thus, again, the conditions of Theorem 2.3 are fulfilled, so we obtain

L(r, f) = L(r, P (z, f)) = S(r, f).
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2. As we have already noticed in the proof of Theorem 3.5, if a constant a ∈ C

were a solution of (7) we would obtain the equation

2γa2z2 + (2βa2 + 8γa3)z + 6γa4 + 4βa3 − α ≡ 0.

Thus a fulfills (7) only if a = 0 for α = 0. If α 6= 0 then no constant solves (7) so by
Theorem 2.5, for any a ∈ C we have

L
(

r,
1

f − a

)

= S(r, f).

6. Proof of Theorem 3.12

1. It follows from Theorem 3.5 that a transcendental solution of P4,34(α, β, γ)
has an infinite number of poles as m(r, f) = S(r, f). For P4,34(α, β, 0) we have

ϑ(∞, f) = lim inf
r→∞

N1(r, f)

T (r, f)
= lim inf

r→∞

N(r, f)−N(r, f)

T (r, f)

= lim inf
r→∞

1
2
N(r, f)

T (r, f)
= lim inf

r→∞

1
2
T (r, f) + S(r, f)

T (r, f)
=

1

2

as, by (8), all the poles are double. In case (C2) each pole is simple, as the expansion
(9) shows. Therefore the index of multiplicity of poles

ϑ(∞, f) = lim inf
r→∞

N1(r, f)

T (r, f)
= lim inf

r→∞

N(r, f)−N(r, f)

T (r, f)
= 0

in this case.

2. Let α 6= 0. It follows from (10) that if f is a solution of P4,34 then all the zeros
of f are simple. Thus N(r, 0, f) = N(r, 0, f) and ϑ(0, f) = 0.

For P4,34(0, β, γ) all the zeros of a non-zero solution are double. It follows from
point 5 in Theorem 3.5 and by the first main theorem, that in case (C1) we get

ϑ(0, f) = lim inf
r→∞

N(r, 1
f
)−N(r, 1

f
)

T (r, f)
= lim inf

r→∞

1
2
N(r, 1

f
)

T (r, f)
≤ 1

2
.

In case (C2), by point 4 in Theorem 3.5 and by the first main theorem, we have

N

(

r,
1

f

)

−N

(

r,
1

f

)

=
1

2
N

(

r,
1

f

)

≤ 1

2
T (r, f) + S(r, f),

so ϑ(0, f) ≤ 1
2
, provided that f does not fulfill the Riccati differential equation (11).

If (11) holds, then ϑ(0, f) = 0.

3. We again follow the ideas from [28]. Let f be a transcendental meromorphic
solution of P4,34(α, β, γ). If for a fixed a ∈ C \ {0} we assume that all but possibly
a finite number of a-points are single, then we instantly get ϑ(a, f) = 0. If, on the
other hand we assume that at a point z0 the equalities f(z0) = a, f ′(z0) = 0 and
f ′′(z0) = 0 hold, we get

2γa2z20 + (8γa3 + 2βa2)z0 + 6γa4 + 4βa3 − α = 0.

Since β, γ 6= 0, it means that for each fixed value a only at most two a-points may
have multiplicity 3 or higher. We now put

A = {z ∈ C : f(z) = a, f ′(z) = 0}
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and consider the set

A∗ := {z ∈ A : 2γa2z2 + (8γa3 + 2βa2)z + 6γa4 + 4βa3 − α 6= 0, 2γ(2a+ z) + β 6= 0}
of double a-points of f . We have the following expansion around an a-point z0:

f(z) = a +

(

1

2
az20γ + 2a2z0γ +

3

2
a3γ +

1

2
az0β + a2β − α

4a

)

(z − z0)
2

+
1

6
(aβ + 4a2γ + 2az0γ)(z − z0)

3 + . . . .

Let us assume that A∗ is not finite, otherwise we trivially get ϑ(a, f) = 0 since
then the whole set of multiple a-points would be finite. Similarly as in the proof of
Theorem 3.5 we consider an auxiliary function

F (z) :=
(f ′(z))2

2f(z)
− α

2f(z)
− γ(f(z))3 − (2γz + β)(f(z))2 − (γz2 + βz)f(z).

Then, after applying P4,34(α, β, γ), we get

F ′(z) = −2γf 2(z)− (2γz + β)f(z).

We introduce another auxiliary function

Fa(z) :=
(f ′(z))2

2f(z)
− α

2

(

1

f(z)
− 1

a

)

− γ((f(z))3 − a3)

− (2γz + β)((f(z))2 − a2)− (γz2 + βz)(f(z)− a).

Thus

Fa(z) = F (z) +
α

2a
+ γa3 + (2γz + β)a2 + (γz2 + βz)a,

F ′
a(z) = F ′(z) + 2γa2 + (2γz + β)a = −2γ((f(z))2 − a2)− (2γz + β)(f(z)− a),

F ′′
a (z) = −4γf(z)f ′(z)− 2γ(f(z)− a)− (2γz + β)f ′(z),

F ′′′
a (z) = −4γf ′(z)(f ′(z) + 1)− f ′′(z)(4γf(z) + 2γz + β).

For ξ ∈ A∗ we have

Fa(ξ) = 0, F ′
a(ξ) = 0, F ′′

a (ξ) = 0 and F ′′′
a (ξ) 6= 0,

so all the elements in A∗ are zeros of Fa of multiplicity 3. Consider

(17) Ξa(z) :=
Fa(z)

f(z)− a
.

Then each ξ ∈ A∗ is a simple zero of Ξa and

Ξ′
a(z)(f(z)− a) + Ξa(z)f

′(z) = F ′
a(z) = −(f(z)− a)(β + 2(a+ z)γ + 2γf(z)).

Case (C1). The auxiliary functions take the form:

F (z) =
(f ′(z))2

2f(z)
− α

2f(z)
− β(f(z))2 − βzf(z),

so

F ′(z) = −βf(z),

Fa(z) =
(f ′(z))2

2f(z)
− α

2

(

1

f(z)
− 1

a

)

− β((f(z))2 − a2)− βz(f(z)− a)

= F (z) +
α

2a
+ βa2 + βza,
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F ′
a(z) = F ′(z) + βa = −β(f(z)− a), F ′′

a (z) = −βf ′(z) and F ′′′
a (z) = −βf ′′(z).

By (8), each pole z0 of f is double, so we conclude that Ξa(z) is analytic at z0,
Ξa(z0) = 0 and the zero is simple. Thus the poles of Fa may appear only at the poles
of f . If a is a multiple a-point of f then, by (17) and properties of Fa, it is a zero
of Ξa. Therefore the only singularities of Ξa are poles, which may appear at simple
a-points of f . Using (17) and the first main theorem,

N(r,Ξa) ≤ N(r, a, f)− 2N1(r, a, f) +O(log r) ≤ T (r, f)− 2N1(r, a, f) +O(log r).

By the definition of Ξa,

m(r,Ξa) = m

(

r,
1

2

(f ′)2

f(f − a)
+

α

2a

1

f
− β(f + a)− βz

)

.

Applying properties of log+ we get

m(r,Ξa) ≤ m

(

r,
f ′

f

)

+m

(

r,
f ′

f − a

)

+m

(

r,
1

f

)

+m(r, f) +O(log r)

if α 6= 0, and

m(r,Ξa) ≤ m

(

r,
f ′

f

)

+m

(

r,
f ′

f − a

)

+m(r, f) +O(log r)

if α = 0.
For α 6= 0 we apply lemma on the logarithmic derivative, points 1 and 3 in

Theorem 3.5, and for α = 0 we just apply lemma on the logarithmic derivative and
point 1 in Theorem 3.5. In both cases we obtain

m(r,Ξa) = S(r, f).

This way we have

(18) T (r,Ξa) ≤ T (r, f)− 2N1(r, a, f) + S(r, f).

Since Ξa 6≡ 0,

(19) N(r, f) ≤ N

(

r,
1

Ξ2
a

)

≤ 2T (r,Ξa) +O(1).

Applying (19) and then (18), we have

T (r, f) ≤ 2T (r,Ξa) + S(r, f) ≤ 2T (r, f)− 4N1(r, a, f) + S(r, f),

so finally,

N1(r, a, f) ≤
1

4
T (r, f) + S(r, f).

Case (C2). If γ 6= 0 then each pole z0 of f is simple. By the Laurent expansion
(9), we conclude that Ξa(z) is analytic at z0 and Ξa(z0) = ε

√
2γ, (ε = ±1). If

Ξa ≡ ε
√
2γ, by similar considerations as in the proof of point 4 of Theorem 3.5 we

obtain N(r, 1
f−a

) = 0. Let then Ξa 6≡ ε
√
2γ. The poles of Fa may appear only at the

poles of f . Therefore, by the definition of Ξa, we can see that the only singularities
of Ξa are poles, which may appear at simple a-points of f . Applying (17) and the
first main theorem,

N(r,Ξa) ≤ N(r, a, f)− 2N1(r, a, f) +O(log r) ≤ T (r, f)− 2N1(r, a, f) +O(log r).
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By definition of Ξa,

m(r,Ξa) = m

(

r,
1

2

(f ′)2

f(f − a)
+

α

2a

1

f
− γf 2 − (2γz + γa+ β)f

− γz2 − (β − 2γa)z − γa2 − aβ

)

.

Applying properties of log+ we get

m(r,Ξa) ≤ m

(

r,
f ′

f

)

+m

(

r,
f ′

f − a

)

+m

(

r,
1

f

)

+ 3m(r, f) +O(log r)

if α 6= 0, and

m(r,Ξa) ≤ m

(

r,
f ′

f

)

+m

(

r,
f ′

f − a

)

+ 3m(r, f) +O(log r)

if α = 0.
For α 6= 0 we apply lemma on the logarithmic derivative, points 1 and 3 in

Theorem 3.5, and for α = 0 we just apply lemma on the logarithmic derivative and
point 1 in Theorem 3.5. In both cases we obtain

m(r,Ξa) = S(r, f).

This way we have

(20) T (r,Ξa) ≤ T (r, f)− 2N1(r, a, f) + S(r, f).

Since Ξa 6≡ ε
√
2γ,

(21) N(r, f) ≤ N

(

r,
1

Ξ2
a − 2γ

)

≤ 2T (r,Ξa) +O(1).

Applying (21) and then (20), we have

T (r, f) ≤ 2T (r,Ξa) + S(r, f) ≤ 2T (r, f)− 4N1(r, a, f) + S(r, f),

so finally,

N1(r, a, f) ≤
1

4
T (r, f) + S(r, f).

7. Appendix

Equation P34. Equation (6), referred to as P34 is related to the second Painlevé
equation P2 in the following way [4]. Equation P2 admits a Hamiltonian formulation
[21]. If

H = 1/2y2 − (x2 + z/2)y − (α + 1/2)x

is a Hamiltonian of the system

dx

dz
=

∂H

∂y
,

dy

dz
= −∂H

∂x
,

then by eliminating the function y = (z + 2x2 + 2x′)/2, the function x satisfies P2.
By eliminating x = (2y′ − 2α − 1)/(4y) between these equations, it is easy to show
that the function y satisfies the equation (6) with A = (2α + 1)2/4, B = 1. Clearly,
since solutions of P2 are meromorphic in C, then the solutions of P34(A, 1) are also
meromorphic.

Equation P34 has a scaling symmetry: if f(z) is a solution of P34 with the pa-
rameters A, B = 1, then B−1/3f(B1/3z) is a solution of P34 with the parameters A
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and B. Thus it follows from our previous considerations that the solutions of P34 are
meromorphic for any choice of parameters.

Let us demonstrate how to obtain the Bäcklund transformation for P34 by using
equation P2. For P2 if f = f(z) is a solution of P2 with the parameter α, then the
function

f1(z) = −f + (αε− 1/2)/(f ′ − εf 2 − εz/2), ε2 = 1,

is a solution of equation P2 with the parameter α−ε. Using the Hamiltonian system,
we obtain that if f = f(z) is a solution of P34 with the parameters A = (2α+ 1)2/4,
B = 1, then the functions

f1(z) =
(2α+ 1)2 + 8zf 2 − 8f 3 − 4f ′ − 8αf ′ + 4f ′2

8f 2

and

f2(z) =
(2α + 1)2 + 8zf 2 − 8f 3 + 4f ′ + 8αf ′ + 4f ′2

8f 2

are the solutions of P34 with the parameters

A1 = (2α− 1)2/4, B1 = 1

and

A2 = (2α+ 3)2/4, B2 = 1,

respectively.
When A = 1, B = 1 equation P34 has a one-parameter family of solutions

(f ′)2 − 2f ′ − 2f 3 + 2zf 2 + 1 = 0.

It can be obtained from the Riccati solution f ′ = f 2 + z/2 of P2 with α = 1/2 by
using the Hamiltonian system.

Equation P4,34. It is convenient to treat equations P4 and P34 simultaneously
[20].

As we have already mentioned, in case (C2), putting α = −β/2, β = b3, γ = 2d4

in (7) we obtain that 2df(t), where t = (z + b3/(4d4))d is a solution of P4(α̃, β̃) with

parameters α̃ = b6d−6/16 = β2/(4
√
2γ3/2) and β̃ = β [20]. Clearly, by this change

of variables one can find the Bäcklund transformations, one-parameter and rational
solutions for special values of the parameters of P4,34(−β/2, β, γ) coming from the
corresponding transformations and solutions of P4 [8].

By direct calculations we get that in case (C1) the equation P4,34 admits a one-
parameter family of solutions of the form

f ′(z) =
√

2γδf(z)2 +
β + 2γz√

2γδ
f(z) +

√
αε,

where ε2 = δ2 = 1, γ 6= 0 and the parameters are related by

β2 + 4
√

2γγδ(1 +
√
αε) = 0.

From equation P34 we can get that the solutions of

(f ′)2 + 2f ′ − 2βf 3 − 2βzf 2 + 1 = 0

are also solutions of P4,34(1, β, 0).
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The Bäcklund transformation for P4,34 in case (C2) can be obtained as follows. If

f(z) is a solution of P4,34(α, β, γ), where α = (3
√
2β2+8δ

√
γγ)2/(576γ3) and δ2 = 1,

then the function

f1(z) = −
(

f ′(z) +
√

2γδf(z)2 +
(β + 2γz)√

2γδ
f(z) +

3
√
2β2 + 8

√
γγδ

24
√
γγδ

)

/(2
√

2γδf(z))

is a solution of P4,34(α1, β, γ) with

α1 = α− β2/(3δ
√

2γγ) = 1/9 + β4/(32γ3)− β2/(6δ
√

2γγ).
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