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Abstract. Hamenstädt gave a parametrization of the Teichmüller space of punctured surfaces
such that the image under this parametrization is the interior of a polytope. In this paper, we study
the Hilbert metric on the Teichmüller space of punctured surfaces based on this parametrization.
We prove that every earthquake ray is an almost geodesic under the Hilbert metric.

1. Introduction

Let Sg,n be an orientable surface of genus g with n punctures. In this paper, we
consider the surfaces of negative Euler characteristic with at least one puncture. A
marked hyperbolic structure on Sg,n is pair (X, f) where X is a complete hyperbolic
metric on a surface S and f : Sg,n → S is a homeomorphism. Two marked hyperbolic
structures (X1, f1) and (X1, f2) are called equivalent if there is an isometry in the
isotopy class of f−1

1 ◦f2. For simplicity, we usually denote a marked hyperbolic metric
by X instead of the pair (X, f). The Teichmüller space Tg,n is defined as the space
of equivalent classes of marked hyperbolic structures on Sg,n. It is well known that
Tg,n, equipped with the natural topology is homeomorphic to a ball in R6g−6+2n.

Given an open convex domain D ⊂ Rm, Hilbert defined a natural metric on
D, now called the Hilbert metric, such that the straight line segments are geodesic
segments under this metric. In [15], Papadopoulos raised a problem: “Realize Teich-
müller space as a bounded convex set somewhere and study the Hilbert metric on
it”. In this paper, we will study this problem.

For the case of closed surfaces, Yamada [29] constructed a space which he called
the Teichmüller–Coxeter complex within which the original Teichmüller space sits as
an open convex but unbounded subset, based on the Weil–Petersson completion of the
Teichmüller space. Then in [30], after introducing a new variational characterization
of the Hilbert metric, he defined the Weil–Petersson Hilbert metric on the Teichmüller
space, where the background geometry is the one induced by the Weil–Petersson
geometry instead of the Euclidean geometry.

For the case of punctured surfaces, Hamenstädt [5] provided a parametrization of
the Teichmüller space into RP 6g−6+2n by length functions such that the image of Tg,n
is the interior of a finite-sided polyhedron (see §2.3). Therefore the Hilbert metric
is well defined on Tg,n. Hamenstädt’s parametrization depends on the choice of a
preferred triangulation Γ of Sg,n. More precisely, fix a puncture of Sg,n and denote it
as O, let Γ = {η1, η2, . . . , η6g−5+2n} be a set of bi-infinite simple curves on Sg,n such
that for any marked hyperbolic metric X the two ends of ηi, i = 1, 2, . . . , 6g−5 +2n,
go into the puncture O and such that Sg,n\Γ consists of 4g − 3 + n ideal triangles
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and n − 1 once punctured discs. Such a set Γ is called a preferred triangulation of
Sg,n. There are countably many choices of preferred triangulations.

In this paper, we study the Hilbert metric dΓ
h on Tg,n based on Hamentädt’s

parametrization. Before stating our main result, we briefly explain a deformation of
hyperbolic metric introduced by Thurston in [23], namely, the earthquake.

Let α be a simple closed curve on Sg,n, and X ∈ Tg,n be a marked hyperbolic
metric. Denote by α∗ the geodesic representative of α on X. Cutting X along α∗
and twisting to the left about distance t, we obtain a new marked hyperbolic metric,
denoted by E tαX. Note that the notion of “left” twist depend only on the orientation
of X (no orientation of α∗ is necessary). Thurston extended this construction to any
measured geodesic lamination. He proved the following result, one of whose proof
can be found in [9].

Proposition 1.1. There is a (unique) continuous mapML×R× Tg,n → Tg,n,
associating an element E tαX ∈ Tg,n to (α, t,X), such that E tλαX = Eλtα X for all λ > 0
and all α ∈ML, and such that when α is a simple closed geodesic, E tαX is obtained
from X by the earthquake defined above.

The metric E tαX defined in Proposition 1.1 is said to be obtained from X by a
(left) earthquake of amplitude t along the measured geodesic lamination α, and the
orbits {E tαX}∞t=−∞, {E tαX}0

t=−∞ and {E tαX}∞t=0 are called the earthquake line directed
by α and starting at X, the anti-earthquake ray directed by α and starting at X, and
the earthquake ray directed by α and starting at X, respectively.

Recall that for a metric space (X, d), an unbounded path γ : [0,∞)→ X is called
an almost-geodesic if for any ε > 0, there exists T > 0, such that

|d(γ(0), γ(s)) + d(γ(s), γ(t))− t)| < ε

for any t ≥ s ≥ T.
Now we state our main result.

Main Theorem. After reparametrization, every (anti-)earthquake ray is an
almost-geodesic in (Tg,n, d

Γ
h).

In fact, the image of an earthquake ray under Hamenstädt’s parametrization
eventually looks like a projective line (see §3).

Outline. This paper is organized as the following. In Section 2, we recall
some basic properties of the Hilbert metric and express the Hilbert metric dΓ

h on the
Teichmüller space based on Hamenstädt’s parametrization. In Section 3, we prove
our main theorem. In Section 4, we study the dependence of the Hilbert metric dΓ

h

on the choice of the preferred triangulation Γ. We will show that a sphere B(X0, R)
centered at X0 ∈ Tg,n of radius R with respect to dΓ

h for a preferred triangulation Γ
is again a sphere up to an additive constant with respect to dΓ′

h for another preferred
triangulation Γ′, provided that Γ′ can be obtained from Γ by a diagonal-flip (to
be defined in §4). But the additive constant depends on the center point X0. In
Section 5, we study the actions of the mapping class group on (Tg,n, d

Γ
h). It is well

known that when the Teichmüller space is endowed with the Teichmüller metric,
the Thurston metric or the Weil-Petersson metric, the mapping class group acts by
isometries. But here, we will show that the action of a positive Dehn twist is not
isometric (see Corollary 5.4). Instead, it is an almost isometry on an unbounded
subset of (Tg,n, d

Γ
h) (see Corollary 5.2).
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2. The Hilbert metric on the Teichmüller space

2.1. The Hilbert metric. There are two versions of the Hilbert’s metric. The
first version is the original one due to Hilbert which is defined on a bounded convex
domain Ω (see Fig. 1(a)) in Rm. Let x, y be two points in the interior of Ω, the
line passing through x, y intersects the boundary ∂Ω at two points a, b, where x lies
between a and y. Then the Hilbert metric is defined as:

(1) dH(x, y) =
1

2
log [a, b, y, x] =

1

2
log
|a− y||b− x|
|a− x||b− y|

,

where [a, b, y, x] represents the cross-ratio of a, x, y, b.
The second version is due to Birkhoff which is defined on the cone C over a

bounded convex domain Ω (see [11], [10] and [12] for more details about this version).
Recall that a cone C is called pointed if C∩−C = 0. Let C be a closed, pointed (convex)
cone over a convex bounded domain Ω in Rm. Given two nonzero vectors x and y
in C (see Fig. 1(b)), the Birkhoff’s version of the Hilbert metric, denoted as dh is
defined as:

(2) dh(x, y) =
1

2
logM(x, y)/m(x, y),

where

M(x, y) = inf{λ ≥ 0: λy − x ∈ C},
m(x, y) = sup{λ ≥ 0: x− λy ∈ C}.

Denote by o the cone point of C, and suppose that the line xy passing through x, y
intersects the boundary ∂C at a, b. To calculate M(x, y) explicitly, we distinguish
two cases. The first case is that the points o, y, x are collinear. In this caseM(x, y) =
m(x, y) = |x|/|y|, hence dh(x, y) = 0. The second case is that the points o, x, y are
not collinear. We draw an auxiliary line xp from x which is parallel to the line ob
and intersects the line oy at p. Then

M(x, y) =
|p− o|
|y − o|

=
|x− b|
|y − b|

.

Similarly we get

m(x, y) =
|x− a|
|y − a|

.

Hence
M(x, y)

m(x, y)
=
|a− y||b− x|
|a− x||b− y|

= [a, b, y, x].

By the property of cross-ratio, we have dh(λx, µy) = dh(x, y) for any λ > 0, µ > 0.
It is clear that dh is not a metric on C since it does not separate x and λx for any
λ > 0. In fact, dh is a metric on the projective space C/R+.

Yamada [30] gave an alternate definition of the Hilbert metric by supporting hy-
perplanes. Recall that a convex set Ω can be represented as ∩π(b)∈PHπ(b) where Hπ(b)

is the half space bounded by a supporting hyperplane π(b) of Ω at the boundary point
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b, containing the convex set Ω. Let P be the set of all the supporting hyperplanes
of Ω (see Fig. 1(c)). Yamada showed that the Hilbert metric can be represented as:

(3) dH(x, y) =
1

2

(
sup
π∈P

log
d(x, π)

d(y, π)
+ sup

π∈P
log

d(y, π)

d(x, π)

)
.

(a)
(b)

(c)

Figure 1. The Hilbert metric.

We briefly explain Yamada’s idea here. Let the line xy intersects Ω at a, b in
the order a, x, y, b. Let π(b) be a supporting hyperplane of Ω at b, and let π(c) be
a hyperplane of Ω at an arbitrary point c ∈ Ω. Denote by b′ the intersection point
between xy and π(c). It is clear that

d(x, π(c))

d(y, π(c))
=
|x− b′|
|y − b′|

≤ |x− b|
|y − b|

=
d(x, π(b))

d(y, π(b))
, for any c ∈ Ω.

Similarly, we have
d(y, π(c))

d(x, π(c))
≤ d(y, π(a))

d(x, π(a))
, for any c ∈ Ω.

Since a cone over a bounded convex set is again a convex set, Yamada’s idea also
applies to the Birkhoff’s version of the Hilbert metric. Therefore

(4) dh(x, y) =
1

2

(
sup
π∈P

log
d(x, π)

d(y, π)
+ sup

π∈P
log

d(y, π)

d(x, π)

)
, for any x, y ∈ C with [x] 6= [y],

where [x] = {λx ∈ C : λ > 0}, and P is the set of supporting hyperplanes of the cone
C.

Remark. It is easy to see that these two versions of Hilbert metric coincide
on the convex bounded domain Ω, i.e. dH(x, y) = dh(x, y) for any x, y ∈ Ω. In this
paper, we adopt the Birkhoff’s version of the Hilbert metric.

2.2. Measured geodesic lamination. Given a reference metric X0, a geodesic
lamination L is a closed subset of Sg,n consisting of mutually disjoint simple geodesics
which are called leaves of this geodesic lamination. A transverse invariant measure
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µ of a geodesic lamination L is a Radon measure defined on every arc k transverse to
the support of L such that µ is invariant with respect to any homotopy of k relative
to the leaves of L. A measured geodesic lamination is a lamination L endowed with
a transverse invariant measure µ. The simplest example of a measured geodesic
lamination is a simple closed geodesic, where the transverse invariant measure is the
Dirac measure. Each measured geodesic lamination µ induces a functional on the
space S of isotopy classes of nontrival simple closed curves on Sg,n, which assigns
inf γ̃∈[γ]

´
γ̃
dµ to any [γ] ∈ S. The amount inf γ̃∈[γ]

´
γ̃
dµ is called the intersection

number of µ with [γ] and is denoted by i(µ, [γ]). Two measured geodesic laminations
µ, µ′ are called equivalent if i(µ, [γ]) = i(µ′, [γ]) for any [γ] ∈ S. Denote by ML
the space of equivalent classes of measured geodesic laminations on Sg,n, and equip
ML with the weak topology of the functional space over S. With this topology,
the set of weighted simple closed curves, R+ × S, is dense in ML. The Thurston
boundary ∂Tg,n of the Teichmüller space Tg,n consists of the projective classes of
measured geodesic laminations and is homeomorphic to the unit sphere S6g−6+2n (for
more details about measured geodesic laminations we refer to [3] and [17]).

2.3. Geometric parametrization of the Teichmüller space. Hamenstädt
[5] gave a geometric parametrization of the Teichmüller space Tg,m. We briefly recall
this parametrization. Let n ≥ 1 and let X ∈ Tg,n. Fix one of the punctures of X and
denote it by O. As we explained in the introduction, a preferred triangulation Γ is a
set of 6g − 5 + 2n mutually disjoint simple geodesics η1, . . . , η6g−5+2n on S with the
two ends of each simple geodesic going into the puncture O and which decompose
X into 4g − 3 + n ideal triangles and n − 1 once-punctured discs. The space of
measured lamination ML(S) on X can be parameterized by the 6g − 5 + 2n-tuple
(i(η1, µ), . . . , i(η6g−5+2n, µ)) ∈ R6g−5+2n, where µ is a measured geodesic lamination
with compact support and i(ηi, µ) represents the intersection number of µ with ηi.
Let A be the set of all 6g−5+2n-tuples(a1, . . . , a6g−5+2n) of nonnegative real numbers
with the following properties:

(1) ai ≤ aj + ak if the geodesics ηi, ηj, ηk are the sides of an ideal triangle on S.
(2) There is at least one ideal triangle on S with sides ηi, ηj, ηk such that ai =

aj + ak.

In particular, A is a cone with vertex at the origin over the boundary of a
convex finite-sided polyhedron P in the sphere S6g−6+2n. And A is homeomorphic to
R6g−6+2n.

Theorem 2.1. [5] The map µ ∈ ML(S) → (i(η1, µ), . . . , i(η6g−5+2n, µ)) ∈
R6g−5+2n is a homeomorphism ofML(S) onto A.

Since for any marked hyperbolic metric X ∈ Tg,m, the length of ηi is infinite
for any i = 1, 2, . . . , 6g − 5 + 2n, we need a little modification to parameterize the
Teichmüller space Tg,m. Recall that every puncture of S admits a standard cusp
neighbourhood which is isometric to a cylinder [− log 2,∞)× S1 equipped with the
metric dρ2+e−2ρdt2 ([2]). The ρ-coordinate in this representation is called the height.
Let ∆∞ be an ideal triangle on the upper half plane (see Fig. 2) with sides η1, η2, η3.
Each corner of ∆∞ can be foliated by horocycles. Extend these foliations until they
fill all but in the center bounded by three horocycles M1M2,M2M3,M3M2. We call
Mi the midpoint of ηi with respect to the ideal triangle ∆∞ for i = 1, 2, 3. Choose the
height ρ0 small enough such that e−ρ0 is much smaller than the length of the horocycle
M1M2 (note that the three horocycles M1M2,M2M3,M3M2 have the same length).
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Every geodesic going into the cusp meets the horocycles ρ=constant orthogonally.
Hence each choice of a height ρ0 cuts from ηi a unique compact arc of finite length
since both ends of the geodesic ηi go into the cusp for any i = 1, 2, . . . , 6g − 5 + 2n.
Denote by lηi(X) the length of this subarc of ηi for a marked hyperbolic metric X
for any i = 1, 2, . . . , 6g − 5 + 2n.

Theorem 2.2. [5] Let Π: R6g−5+2n\{0} → RP 6g−6+2n be the canonical projec-
tion. The map

Λ: S ∈ Tg,n → (lη1(S), . . . , lη6g−5+2n(S)) ∈ R6g−5+2n

is a diffeomorphism of Tg,n onto a hypersurface in R6g−5+2n. And the map Π ◦ Λ is
a diffeomorphism of Tg,n onto the interior of a finite-sided closed convex polyhedron
P in RP 6g−6+2n which extends to a homeomorphism of Tg,n ∪ ∂Tg,n onto P .

Figure 2. The ideal triangle ∆∞.

2.4. The Hilbert metric on the Teichmüller space. Now we give the
Hilbert metric on the Teichmüller space. Let πijk be the hyperplane in R6g−5+2n =
{(a1, a2, . . . , a6g−5+2n) : ai ∈ R} defined by

(5) πijk : ai − aj + ak = 0,

where the indices i, j, k satisfy the condition that the corresponding simple geodesics
ηi, ηj, ηk bound an ideal triangle on the surface. Let P be the set of all such
hyperplanes. By Theorem 2.1 and Theorem 2.2, we know that the image of Tg,n∪∂Tg,n
under the map Π ◦ Λ is a polyhedron P . Following Yamada’s idea, we define the
Hilbert metric on Tg,n by (4):

dΓ
h(X1, X2) := dh(Λ(X1),Λ(X2))

=
1

2

(
sup
π∈P

d(Λ(X1), πijk)

d(Λ(X2), πijk)
+ sup

π∈P

d(Λ(X2), πijk)

d(Λ(X1), πijk)

)
,

(6)

for all X1, X2 ∈ Tg,n, where d( , ) represents the Euclidean distance. From (5), we
have

d(Λ(X), πijk) =
lηi(X)− lηj(X) + lηi(X)

31/2
.

Hence

dΓ
h(X1, X2) =

1

2

(
sup
πijk∈P

log
lηi(X1)− lηj(X1) + lηk(X1)

lηi(X2)− lηj(X2) + lηk(X2)

+ sup
πijk∈P

log
lηi(X2)− lηj(X2) + lηk(X2)

lηi(X1)− lηj(X1) + lηk(X1)

)
.

(7)
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Now we give some explanations for (7). Since the surface Sg,n is orientable, we fix
an orientation. Denote by ∆ijk the ideal triangle with three sides {ηi, ηj, ηk} such that
ηi, ηj, ηk appears in the counterclockwise order. Obviously ∆ijk = ∆jki = ∆kij. Let
TΓ be the collection of all such triangles corresponding to Γ. The two ends of each of
ηi, ηj, ηk go into the cusp O and the intersection of the horocycle ρ = ρ0 with the ideal
triangle ∆ijk consists of three components, denoted as hijki , hijkj , hijkl (the red lines in
Fig. 2). It is clear that the sum of the lengths lhijki (X) + lhijkj

(X) + lhijkk
(X) over all

these 4g−3+n ideal triangles is less than the length of the horocycle ρ = ρ0. Denote
by M ijk

i the midpoint of ηi with respect to the ideal triangle ∆ijk. Mi together with
hijkj , hijkk cuts ηi into four connected components, two of which are compact, denoted
by ηijki1 and ηijki2 with respect to the counterclockwise order (see Fig. 2). It follows
that

lηijki2
(X) = lηijkj1

(X); lηijkj2
(X) = lηijkk1

(X); lηijkk2
(X) = lηijki1

(X).

Hence

lηi(X)− lηj(X) + lηk(X) = 2lηijki1
(X) = 2lηijkk2

(X),

lηj(X)− lηk(X) + lηi(X) = 2lηijkj1
(X) = 2lηijki2

(X),

lηk(X)− lηi(X) + lηj(X) = 2lηijkk1
(X) = 2lηijkj2

(X).

(8)

Now (7) can be rewritten as

dΓ
h(X1, X2) =

1

2
sup

∆ijk∈TΓ

max

{
log

lηijki1
(X1)

lηijki1
(X2)

, log
lηijkj1

(X1)

lηijkj1
(X2)

, log
lηijkk1

(X1)

lηijkk1
(X2)

}

+
1

2
sup

∆ijk∈TΓ

max

{
log

lηijki1
(X2)

lηijki1
(X1)

, log
lηijkj1

(X2)

lηijkj1
(X1)

, log
lηijkk1

(X2)

lηijkk1
(X1)

}
.

(9)

And the length of the horocycle hijki can be expressed in terms of lηijkj2 and lηijkk1
as

lhijki
(X) = exp(−lηijkk1

(X)) = exp(−lηijkj2 (X)). Therefore

(10) lηijki1
≥ ρ0, lηijkj1

≥ ρ0, lηijkk1
≥ ρ0, for any ideal triangle ∆ijk ∈ TΓ.

We summarize our discussions above as the following proposition.

Proposition 2.3. With the notations above, the Hilbert metric dΓ
h on the Te-

ichmüller space Tg,n can be expressed as the following two forms.

• For any X1, X2 ∈ Tg,n,

dΓ
h(X1, X2) =

1

2

(
sup

∆ijk∈TΓ

log
lηi(X1)− lηj(X1) + lηk(X1)

lηi(X2)− lηj(X2) + lηk(X2)

+ sup
∆ijk∈TΓ

log
lηi(X2)− lηj(X2) + lηk(X2)

lηi(X1)− lηj(X1) + lηk(X1)

)
,

(11)

where, lηi(X)− lηj(X) + lηk(X) ≥ 2ρ0 for any X ∈ Tg,n and any ideal triangle
∆ijk ∈ TΓ.
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• For any X1, X2 ∈ Tg,n,

dΓ
h(X1, X2) =

1

2
sup

∆ijk∈TΓ

max

{
log

lηijki1
(X1)

lηijki1
(X2)

, log
lηijkj1

(X1)

lηijkj1
(X2)

, log
lηijkk1

(X1)

lηijkk1
(X2)

}

+
1

2
sup

∆ijk∈TΓ

max

{
log

lηijki1
(X2)

lηijki1
(X1)

, log
lηijkj1

(X2)

lηijkj1
(X1)

, log
lηijkk1

(X2)

lηijkk1
(X1)

}
,

where lηijki1 ≥ ρ0, lηijkj1
≥ ρ0, lηijkk1

≥ ρ0 for any ideal triangle ∆ijk ∈ TΓ.

Remark. The reason that we do not consider the Funk metric is that the Funk
metric is not projectively invariant while the Hilbert metric is. If we choose a fixed
homogenous coordinate for RP 6g−6+2n, we can define a Funk metric on Tg,n.

3. Earthquake

3.1. Earthquake. For any X ∈ Tg,n, β ∈ S, denote by lβ(X) the length of
the geodesic representative of β on X. In [9], Kerckhoff proved that for any simple
closed curve β, lβ(E tαX) is a convex function of t along the earthquake line {E tαX}t∈R.
Based on this result, Bonahon proved [1] that each (anti-)earthquake ray converges
to a unique point in the Thurston boundary ∂Tg,n.

Lemma 3.1. [9] For any X ∈ Tg,n, α ∈ML and β ∈ S, with i(α, β) > 0, then

d

dt
lβ(E tαX) =

ˆ
β

cos θt dα,

where θt represents the angle at each intersection point between (the geodesic repre-
sentatives of) β and α on E tαX measured counter-clockwise from β to α. Moreover,
as t tends to +∞ (resp. −∞), the function t 7→ cos θt is strictly increasing (resp.
decreasing).

Lemma 3.2. [1] For every X ∈ Tg,n and every α ∈ML,

lim
t→±∞

1

|t|
i(E tαX, β) = i(α, β), for any β ∈ S.

By applying similar arguments as in [9] and [1], we get similar results for lηi(E tαX)
(note that lηi(E tαX) is the length of a particular compact subarc of ηi).

Lemma 3.3. For any X ∈ Tg,n, α ∈ML and ηi ∈ Γ,

d

dt
lηi(E tαX) =

ˆ
ηi

cos θtdα,

where θt represents the angle at each intersection point between (the geodesic repre-
sentatives of) ηi and α on E tαX measured counter-clockwise from ηi to α. Moreover,
as t tends to +∞ (resp. −∞), the function t 7→ cos θt is strictly increasing (resp.
decreasing).

Proof. The proof is exactly the same as that of Lemma 3.1 in [9]. �

Lemma 3.4. For every X ∈ Tg,n and every α ∈ML,

lim
t→±∞

1

|t|
lηi(E tαX) = i(α, ηi), for any ηi ∈ Γ.
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Proof. The proof is exactly the same as that of Lemma 3.2 in [1]. Also, it follows
from Lemma 3.5. �

In fact, we can prove a stronger result.

Lemma 3.5. For every X ∈ Tg,n and every α ∈ML,
|lηi(E tαX)− |t|i(α, ηi)| ≤ lηi(X) + e−ρ0 , for any ηi ∈ Γ and t ∈ R,

where e−ρ0 represents the length of the horocycle centered at the puncture O with
height ρ0. Moreover, there is a constant c+

i , c
−
i ∈ [−lηi(X) − e−ρ0 ,+lηi(X) + e−ρ0 ]

such that

lim
t→+∞

[lηi(E tαX)− ti(α, ηi)] = c+
i , lim

t→−∞
[lηi(E tαX)− |t|i(α, ηi)] = c−i .

Proof. By symmetry, it suffices to prove the lemma for t ≥ 0. We start with the
case that α is a simple closed geodesic. Let fi(t) , lηi(E tαX)− ti(ηi, α). We will show
that,

(12) |fi(t)| ≤ lηi(X) + e−ρ0 , for any ηi ∈ Γ and t ≥ 0.

From Lemma 3.3,
dfi(t)

dt
< 0, for any t ≥ 0.

As a consequence, we get our first inequality immediately,

fi(t) ≤ fi(0) = lηi(X).

By the monotonicity of fi(t), for any positive integer m, we have

fi(t) ≥ fi(mlα(X)), for any t ∈ [0,mlα(X)].

Therefore, to prove fi(t) ≥ −lηi(X)−e−ρ0 for all t ≥ 0, it suffices to prove fi(mlα(X)) ≥
−lηi(X)− e−ρ0 for all m ∈ N+.

Figure 3. Dehn twist. T 2
αβ is obtained from β by two times Dehn twist along α.

Recall that Emlα(X)
α X is obtained from X by m times Dehn twist along α. De-

note by Tmα the m times Dehn twist along α. Hence lηi(E
mlα(X)
α X) = lT−mα ηi

(X).
Denote by hρ0 the horocycle centered at the puncture O with height ρ0, and denote
by η∗i , (T−mα ηi)

∗ the geodesic representatives of ηi, T−mα ηi on X, respectively. It is
clear that η∗i and (T−mα ηi)

∗ have mi(ηi, α) intersection points, one of which is the
puncture O. The remaining mi(ηi, α) − 1 intersection points cut the restrictions of
η∗i and (T−mα ηi)

∗ on X\Cuspn(O) into 2mi(ηi, α) segments ηi1, η′i1, . . . , ηil, η′il, where
l = mi(ηi, α) and Cuspn(O) represents the cusp neighbourhood of O with bound-
ary horocycle hρ0 . On the other hand, η∗i and (T−mα ηi)

∗ cut the horocycle hρ0 into
four segments h1

ρ0
, h2

ρ0
, h3

ρ0
, h4

ρ0
. Two of these four segments, say h1

ρ0
, h3

ρ0
, together
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with above mentioned 2mi(ηi, α) segments ηi1, η′i1, . . . , ηil, η′il consist mi(ηi, α) simple
closed curves, and all of them are homotopic to α (see Fig. ??). More precisely, let
γ1 = ηi1 ∗ η′i1 ∗h1

ρ0
, γ2 = ηi2 ∗ η′i2, · · · , γl−1 = ηi,l−1 ∗ η′i,l−1, γl = ηil ∗ η′il ∗h3

ρ0
. γ1, · · · , γl

are simple closed curves, and all of them are isotopic to α. It follows that

mi(ηi, α)lα(X) ≤ lT−mα ηi
(X) + lηi(X) + e−ρ0 , for any m ∈ N+,

which means that

fi(mlα(X)) ≥ −lηi(X)− e−ρ0 , for any m ∈ N+.

This completes the proof of (12).
Now we extend these estimates to an arbitrary measured geodesic lamination µ.

Recall that R+ × S is dense in ML. There exists (sm, αm) ∈ R+ × S such that
smαm → µ, as m → ∞. It follows from Proposition 1.1 that for any given t ∈ R,
E tsmαmX → E

t
µX as m→∞. Hence for any given t ∈ R, lηi(E tsmαmX)→ lηi(E tµX) as

m→∞. From (12), we have

|tsmi(αm, ηi)− lηi(E tsmαmX)| ≤ lηi(X) + e−ρ0 for any m ∈ N+, ηi ∈ Γ and t ≥ 0.

Let m tend to infinity, we have

|lηi(E tµX)− ti(µ, ηi)| ≤ lηi(X) + e−ρ0 , for any ηi ∈ Γ and t ≥ 0.

The existence of the limit limt→+∞[lηi(E tµX)− ti(µ, ηi)] follows from the bound-
edness and the monotonicity of lηi(E tµX)− ti(µ, ηi). �

Based on the estimates in Lemma 3.5, we can describe the coordinates of an
earthquake line {E tµX}t∈R. Denote by P1 the hyperplane

{(x1, x2, . . . , x6g−5+2n) : x1 + x2 + . . .+ x6g−5+2n = 1},
and denote by π the projective map

π : R6g−5+2n
+ −→ P1

(x1, x2, . . . , x6g−5+2n) 7−→ (x1, x2, . . . , x6g−5+2n)

x1 + x2 + . . .+ x6g−5+2n

.

For a measured geodesic lamination µ, let I(µ) = Σ6g−5+2n
i=1 i(ηi, µ). It is clear that

π ◦ Λ(µ) = I(µ)−1(i(η1, µ), . . . , i(η6g−5+2n, µ)). Moreover, it follows from Lemma 3.5
that for large enough |t|,

π ◦ Λ(E tµX) = π ◦ Λ(µ) +
1

|t|
ci
I(µ)

+ o

(
1

|t|

)
.

In other words, the images of the earthquake rays {E tµX}t≥T and {E tµX}t≤−T in P1

look like straight line segments when T is large enough.
Now we prove the main theorem of this paper.

Main Theorem. After reparametrization, every (anti-)earthquake ray is an
almost-geodesic in (Tg,n, d

Γ
h).

Proof. By symmetry, it suffices to prove the theorem for every earthquake ray.
Let {E tµ(X)}t≥0 be an earthquake ray directed by µ and starting at X. Set Xt =
E tµ(X). Let fi(t) = lηi(E tµX)− ti(µ, ηi). It follows from Lemma 3.5 that

|fi(t)| < lηi(X) + e−ρ0 ,

and that for any ε > 0 there is a constant T1 > 0 depending on ε, X, Γ and µ such
that

|fi(t)− ci| < ε, for any t > T1.
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Moreover, if i(µ, ηj) = 0 for some j, lηj(E tµX) ≡ lηj(X).
Next we divide the set of ideal triangles corresponding to the preferred triangu-

lation Γ into three types:
• Type A consists of ideal triangles ∆ijk which do not intersect µ, i.e. i(ηi, µ) =
i(ηj, µ) = i(ηk, µ) = 0;
• Type B consists of ideal triangles ∆ijk whose two sides , say ηi, ηj, intersect
α and whose remaining side does not intersect µ, i.e. i(ηi, µ) = i(ηj, µ) > 0
and i(ηk, µ) = 0;
• Type C consists of ideal triangles ∆ijk with each side intersecting µ, i.e.
i(ηi, µ) > 0, i(ηj, µ) > 0, i(ηk, µ) > 0.

For each triangle ∆ijk, set

(13) dijk =
ci − cj + ck

lηi(X0)− lηj(X0) + lηk(X0)
and d̄ijk =

i(ηi, µ)− i(ηj, µ) + i(ηk, µ)

lηi(X0)− lηj(X0) + lηk(X0)
.

Now we discuss case by case.

Type A. In this case, i(ηi, µ) = i(ηj, µ) = i(ηk, µ) = 0.
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(Xt)− lηj(Xt) + lηk(Xt)
≡
lηi(X0)− lηj(X0) + lηk(X0)

lηi(X0)− lηj(X0) + lηk(X0)
≡ 1, for any s, t ≥ 0.

Type B. In this case, i(ηi, µ) = i(ηj, µ) > 0 and i(ηk, µ) = 0. Recall that for any
ideal triangle ∆i′j′k′ (see Proposition 2.3),

lηi′ (Xs)− lηj′ (Xs) + lηk′ (Xs)

2
≥ ρ0 > 0.

Hence for any ε > 0, there is a constant T2 > 0 depending on ε, Γ, X and µ such
that for any s, t > T2, we have

lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(Xt)− lηj(Xt) + lηk(Xt)
=
fi(s)− fj(s) + lηk(X)

fi(t)− fj(t) + lηk(X)
∈ (1− ε, 1 + ε),

lηk(Xs)− lηi(Xs) + lηj(Xs)

lηk(Xt)− lηi(Xt) + lηj(Xt)
∈ (1− ε, 1 + ε),

and
lηj(Xs)− lηk(Xs) + lηi(Xs)

lηj(Xt)− lηk(Xt) + lηi(Xt)
=
i(ηj, µ)s+ i(ηi, µ)s+ fi(s) + fj(s)− lηk(X)

i(ηj, µ)t+ i(ηi, µ)t+ fi(s) + fj(s)− lηk(X)

∈ ((1− ε)s
t
, (1 + ε)

s

t
).

Moreover, there is T ′2 > 0 depending on ε, Γ, X and µ such that for any s, t > T ′2,
we have

lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(X0)− lηj(X0) + lηk(X0)
=

fi(s)− fj(s) + lηk(X)

lηi(X0)− lηj(X0) + lηk(X0)

∈ ((1− ε)dijk, (1 + ε)dijk),

lηk(Xs)− lηi(Xs) + lηj(Xs)

lηk(X0)− lηi(X0) + lηj(X0)
∈ ((1− ε)dkij, (1 + ε)dkij),

and
lηj(Xs)− lηk(Xs) + lηi(Xs)

lηj(X0)− lηk(X0) + lηi(X0)
∈ ((1− ε)sd̄jki, (1 + ε)sd̄jki),
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where dijk and d̄ijk are defined by (13).

Type C. In this case, i(ηi, µ) > 0, i(ηj, µ) > 0, i(ηk, µ) > 0. We distinguish two
subcases.

If i(ηi, µ)−i(ηj, µ)+i(ηk, µ) > 0, it follow from Lemma 3.5 that there is a constant
T3 > 0 depending on ε, Γ, X and µ such that for any s, t > T3, we have
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(Xt)− lηj(Xt) + lηk(Xt)
=
i(ηi, µ)s− i(ηj, µ)s+ i(ηk, µ)s+ fi(s)− fj(s) + fk(s)

i(ηi, µ)t− i(ηj, µ)t+ i(ηk, µ)t+ fi(s)− fj(s) + fk(s)

∈ ((1− ε)s
t
, (1 + ε)

s

t
),

and
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(X0)− lηj(X0) + lηk(X0)
∈ ((1− ε)sd̄ijk, (1 + ε)sd̄ijk).

If i(ηi, µ)− i(ηj, µ) + i(ηk, µ) = 0, there is a constant T ′3 > 0 depending on ε, Γ,
X and µ such that for any s, t > T ′3, we have

lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(Xt)− lηj(Xt) + lηk(Xt)
=
i(ηi, µ)s− i(ηi, µ)s+ i(ηk, µ)s+ fi(s)− fj(s) + fk(s)

i(ηi, µ)t− i(ηi, µ)t+ i(ηk, µ)t+ fi(s)− fj(s) + fk(s)

=
fi(s)− fj(s) + fk(s)

fi(t)− fj(t) + fk(t)
∈ (1− ε, 1 + ε),

and
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(X0)− lηj(X0) + lηk(X0)
∈ ((1− ε)dijk, (1 + ε)dijk).

Therefore, for any t ≥ s ≥ max{T1, T2, T
′
2, T3, T

′
3},

dΓ
h(Xs, Xt) =

1

2

(
sup

∆ijk∈TΓ

log
lηi(Xt)− lηj(Xt) + lηk(Xt)

lηi(Xs)− lηj(Xs) + lηk(Xs)

+ sup
∆ijk∈TΓ

log
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(Xt)− lηj(Xt) + lηk(Xt)

)
∈
(

1

2
log(1− ε) t

s
,
1

2
log(1 + ε)

t

s
+

1

2
log(1 + ε)

)
,

(14)

and

dΓ
h(Xs, X0) =

1

2

(
sup

∆ijk∈TΓ

log
lηi(Xs)− lηj(Xs) + lηk(Xs)

lηi(X0)− lηj(X0) + lηk(X0)

+ sup
∆ijk∈TΓ

log
lηi(X0)− lηj(X0) + lηk(X0)

lηi(Xs)− lηj(Xs) + lηk(Xs)

)
∈
(

1

2
log

(1− ε)sd̄
(1 + ε)d

,
1

2
log

(1 + ε)sd̄

(1− ε)d

)
,

(15)

where d , min{dijk : i(ηi, µ)− i(ηj, µ)+ i(ηk, µ) = 0, i(ηi, µ)+ i(ηj, µ)+ i(ηk, µ) > 0},
and d̄ , max{d̄ijk : i(ηi, µ)− i(ηj, µ) + i(ηk, µ) > 0}.

Now, reparametrize the earthquake ray {E tµX}t≥0 as {Et
µX}t≥0 by setting Et

µX =

E (d/d̄) exp(2t)
µ X. It follows from (14) and (15) that for any ε > 0 there is a T > 0

depending on ε, Γ, X and µ such that

|dΓ
h(X,Es

µX)− s| < ε, for any s > T,
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and
|dΓ
h(Et

µX,E
s
µX)− (t− s)| < ε, for any t ≥ s > T.

Therefore {Et
µX}t≥0 is an almost geodesic in (Tg,n, d

Γ
h). �

3.2. The horofunction boundary of (Tg,n, d
Γ
h). Let (M,d) be a proper

geodesic metric space, which is endowed with the topology induced by the metric
d. We embed (M,d) into C(M), the space of continuous real-valued functions on
X endowed with the topology of uniform convergence on bounded sets, by the map
below:

h : M −→ C(M)

z 7−→ [M 3 x 7→ d(x, z)− d(b, z)],

where b ∈M is a base point. The horofunction boundary of (M,d) is defined to be

∂Mb
horo
, h(M)\h(M),

where h(M) represents the closure of h(M) in C(M). The horofunction boundary is
independent of the base point, i.e. ∂Mb

horo is homeomorphic to ∂Mb′
horo for b, b′ ∈M .

A function in ∂Mhoro is called a horofunction.
Rieffel ([18]) observed that every almost geodesic converges to a unique point in

the horofunction boundary of (X, d). Therefore, we have the following corollary.

Corollary 3.6. Every (anti-)earthquake ray converges to a unique point in the
horofunction boundary of (Tg,n, d

Γ
h).

Remark. As we mentioned in the beginning of this section, Bonahon proved [1]
that each (anti-)earthquake ray converges to a unique point in the Thurston bound-
ary ∂Tg,n. It follows from Theorem 2.2 that each (anti-)earthquake ray converges to
a point in the Euclidean boundary of the polytope P . In general, let D be a bounded
convex domain in the Euclidean space. Foertsch–Karlsson ([4]) proved that every
geodesic under the Hilbert metric converges to a boundary point in ∂D in the Eu-
clidean sense. Walsh ([27]) proved that every sequence converging to a point in the
horofunction boundary of the Hilbert geometry converges to a point in the Euclidean
boundary ∂D. Hence every almost geodesic under the Hilbert metric converges to a
boundary point in ∂D.

4. Dependence of dΓ
h on the preferred triangulation Γ

In this section, we investigate the dependence of the Hilbert metric dΓ
h on the

choice of triangulation Γ. First of all, we define a basic operation for a triangulation,
namely, diagonal-flip.

Let Q be an ideal quadrilateral with sides η1, η2, η3, η4 and ideal vertices (corners)
O1, O2, O3, O4. Let Hi be a horocycle around the corner Oi whose length is smaller
than e−ρ0 , i = 1, 2, 3, 4, where ρ0 is chosen in Section 2.3. Let α be a diagonal
geodesic connecting O2, O4 which triangulates Q into two triangles ∆1 and ∆2, and
M1,M2,M3,M4 the “midpoint” of η1, η2, η3, η4 with respect to these two triangles.
Further, letMα andM ′

α be the midpoints of α with respect to ∆1 and ∆2 respectively.
Denote by li1 and li2 the distances from Mi to Hi−1 and from Mi to Hi respectively.
Let β be the other diagonal geodesic, and the notations M ′

1,M
′
2,M

′
3,M

′
4, Mβ,M

′
β, l′i1

and l′i2 are defined similarly. (see Fig. 4.)
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Definition 1. With notations described above, we say that β is obtained from
α by a diagonal-flip with respect to Q. A triangulation Γ′ is said to be obtained
from Γ by a diagonal-flip if Γ′\{α′} = Γ\{α} and that α′ can be obtained from α by
a diagonal-flip with respect to some quadrilateral whose four sides are contained in
Γ′\{α′} = Γ\{α}.

(a)

diagonal-flip

(b)

Figure 4. Flip.

(a)

z 7→ −z
z−1−R

(b)

Figure 5. Shearing.

Definition 2. We define the shearing of Q with respect to α, denoted by shr(α,Q),
in the following way. The absolute value of shr(α,Q) is defined to be the distance
between Mα and M ′

α, and the sign of shr(α,Q) is defined to “+” if M ′
α sits on the

left side of Mα observed from ∆1, otherwise the sign is defined to be “-”.

Remark. The “left” notation in the definition of the shearing depends only on
the orientation of the ideal quadrilateral.

The lemma below describes some basic properties of a diagonal-flip.

Lemma 4.1. (1) For the shearing of the ideal quadrilateral Q along β, shr(β;
Q) = −shr(α;Q).

(2) Suppose l11 ≥ l42, then shr(α;Q) > 0 and
|l′i1 − li1 + shr(α;Q)| ≤ log 2, |l′i2 − li1 − shr(α;Q)| ≤ log 2, i = 1, 3;

|l′i1 − li1| ≤ log 2, |l′i2 − li2| ≤ log 2, i = 2, 4.

Proof. Here we adopt the upper half-plane model for the hyperbolic geometry (see
Fig. 5). Since the map z 7→ kz is an isometry of the hyperbolic metric, we suppose
that the Euclidean coordinates of O1, O2, O3 are (0, 0), (1, 0), (0, 1 +R) respectively.
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(1) The shearing of Q along α is logR. To calculate the shearing of Q along β,
we perform the fractional linear map f : z 7→ −z

z−1−R on the upper half plane which
sends O1, O2, O3,∞ to (0, 0), (1/R, 0),∞,−1 respectively . It is clear in this case
that the shearing of f(Q) along β̃ = f(β) is log(1/R), which means the shearing of
Q along β is also log(1/R) since f is an orientation preserving isometry.

(2) By assumption l11 ≥ l42, hence R ≥ 1. It is clear that l41 + l42 = l′41 + l′42. The
coordinates of M4,M

′
4 are (R+ 1, R) and (1 +R, 1 +R) respectively. In addition, the

coordinate of the intersection point between η4 and H4 is (1 + R, el42R). Therefore
l′42 = log el42R

1+R
∈ [l42 − log 2, l42], hence l′41 ∈ [l41, l41 + log 2]. Similarly we get l′22 ∈

[l22 − log 2, l22] and l′21 ∈ [l21, l22 + log 2].
For the remaining inequalities, note that l12 = l21 and l11 + l12 = l′11 + l′42, hence

l′12 = l′21−shr(β;Q) ∈ [l12+shr(α;Q), l12+shr(α;Q)+log 2], and l′11 ∈ [l11−shr(α;Q)−
log 2, l11 − shr(α;Q)]. Similarly we get l′32 ∈ [l32 + shr(α;Q), l32 + shr(α;Q) + log 2],
and l′31 ∈ [l31 − shr(α;Q)− log 2, l31 − shr(α;Q)]. �

The estimates from the lemma above describe a close relationship between the
changes of the lengths of preferred arcs and the shearing along each simple geodesic ηi
after a diagonal-flip operation. This relationship provides a clue for investigating the
effect of the triangulation Γ on the Hilbert metric dΓ

h, i.e. investigating the relationship
between dΓ

h(X, Y ) and dΓ′

h (X, Y ) for two different triangulations Γ, Γ′. If we fix a
point X0 ∈ Tg,n, the sphere BΓ(X0, R) centered at X0 of radius R with respect to
dΓ
h is an almost-sphere, i.e. a sphere up to an additive constant, with respect to dΓ′

h ,
where Γ′ can be obtained from Γ by a diagonal-flip.

Proposition 4.2. Fix X0 ∈ Tg,n. Let Γ,Γ′ be two preferred triangulations of
Sg,n such that one can be obtained from the other by a diagonal-flip, then there is a
constant CΓ,Γ′,X0,ρ0 depending on Γ,Γ, X0, ρ0 such that

|dΓ
h(X0, X)− dΓ′

h (X0, X)| ≤ CΓ,Γ′,X0,ρ0 , for any X ∈ Tg,n.
Proof. Set Γ = {α, η1, . . . , η6g−6+2n}, Γ′ = {α′, η1, . . . , η6g−6+2n}. First, we prove

an inequality which holds for any preferred triangulation Γ,

(16) sup
η∈Γ\α

lη(X) ≤ sup
η∈Γ

lη(X) ≤ 2 sup
η∈Γ\α

lη(X), for any X ∈ Tg,n.

Indeed, there are two simple geodesics ηi, ηj ∈ Γ such that ηi, ηj, α bound an ideal
triangle. Recall that

lηj(X)− lα(X) + lηi(X) ≥ 2ρ0 > 0,

then
lα(X) ≤ 2 max{lηi(X), lηj(X)}.

Hence
sup
η∈Γ

lη(X) ≤ 2 sup
η∈Γ\α

lη(X).

The first inequality is obvious. Now the proposition follows immediately from Propo-
sition 4.3 and (16). �

Proposition 4.3. Fix X0 ∈ Tg,n, then there is a constant CΓ,X0,ρ0 depending on
Γ, X0, and ρ0 such that∣∣∣∣dΓ

h(X0, X)− 1

2
sup
η∈Γ

log lη(X)

∣∣∣∣ ≤ CΓ,X0,ρ0 , for any X ∈ Tg,n.
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Proof. Set Γ = {η1, . . . , η6g−5+2n}. By (11),

dΓ
h(X1, X2) =

1

2

(
sup

∆ijk∈TΓ

log
lηi(X1)− lηj(X1) + lηk(X1)

lηi(X2)− lηj(X2) + lηk(X2)

+ sup
∆ijk∈TΓ

log
lηi(X2)− lηj(X2) + lηk(X2)

lηi(X1)− lηj(X1) + lηk(X1)

)
.

Note that

(17) 2lηi(X) = [lηi(X)− lηj(X) + lηk(X)] + [lηj(X)− lηk(X) + lηi(X)]

for any ideal triangle ∆ijk, and

[lηi(X)− lηj(X) + lηk(X)] ≥ 2ρ0, for any ∆ijk.

Therefore

dΓ
h(X0, X) ≤ 1

2

[
log

supη∈Γ lη(X)

ρ0

+ log
supη∈Γ lη(X0)

ρ0

]
=

1

2
sup
η∈Γ

log lη(X) +
1

2
sup
η∈Γ

log lη(X0)− log ρ0.

Next we deal with the inverse inequality. Without loss of generality, we assume
that lη1(X) = supη∈Γ lη(X) and that η1, η2, η3 bounds an ideal triangle. By (17), at
least one of lη1(X)− lη2(X) + lη3(X) and lη2(X)− lη3(X) + lη1(X) is not less than
supη∈Γ lη(X). Then

dΓ
h(X0, X) ≥ 1

2
[log

supη∈Γ lη(X)

2 supη∈Γ lη(X0)
] =

1

2
sup
η∈Γ

log lη(X)− 1

2
[log 2 + sup

η∈Γ
lη(X0)].

Set CΓ,X0,ρ0 , max{1
2

supη∈Γ log lη(X0)− log ρ0,
1
2

supη∈Γ lη(X0) + 1
2

log 2}, the propo-
sition follows. �

5. Actions of mapping class group

The mapping class groupMCG(Sg,n) consists of the isotopy classes of orientation-
preserving self homeomorphisms of Sg,n. In this section, we study the actions of
mapping class groupMCG(Sg,n) on the metric space (Tg,n, d

Γ
h). The action is defined

as following. For g ∈MCG(Sg,n) and (X, f) ∈ Tg,n, g◦(X, f) is defined as the marked
hyperbolic surface (X, f ◦ g−1).

Denote by PMCG(Sg,n) the subgroup of MCG(Sg,n) consisting of elements that
fix each puncture individually. It is well known that PMCG(Sg,n) can be generated
by finitely many Dehn twists about nonseparating simple closed curves, where a
nonseparating simple closed curve α is a closed curve such that Sg,n\α is connected
(see [2, Chap. 5]).

The lemma below describes the changes of lηi(X) under a Dehn twist.

Lemma 5.1. Assume that ∆123 is an ideal triangle on X ∈ Tg,n with three sides
η1, η2, η3, and that g is a positive Dehn twist of Sg,n along an essential simple closed
curve α. Denote by ∆′123, η′1, η′2, η′3, the images of ∆123 , η1, η2, η3, respectively, under
the action of g. Then, there is a constant C depending on the length lα(X), the
reference height ρ0 and the isotopy classes of α,η1, η2, η3 such that

1

C
≤
lη′i+1

(X) + lη′i−1
(X)− lη′i(X)

lηi+1
(X) + lηi−1

(X)− lηi(X)
≤ C, i = 1, 2, 3.
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Proof. Note that

|lη′i(X)− lηi(X)| ≤ i(ηi, α)lα(X), i = 1, 2, 3,

i(η′i, α) = i(ηi, α), i = 1, 2, 3.

On the other hand, from (10),

lη′i+1
(X) + lη′i−1

(X)− lη′i(X) > 2ρ0, i = 1, 2, 3;

lηi+1
(X) + lηi−1

(X)− lηi(X) > 2ρ0, j = i− 1, i, i+ 1.

Hence
lη′i+1

(X) + lη′i−1
(X)− lη′i(X)

lηi+1
(X) + lηi−1

(X)− lηi(X)
≤ 1 +

[i(ηi+1, α) + i(ηi, α) + i(ηi−1, α)]lα(X)

lηi+1
(X) + lηi−1

(X)− lηi(X)

≤ 1 +
[i(ηi+1, α) + i(ηi, α) + i(ηi−1, α)]lα(X)

2ρ0

.

Interchange ηi with η′i, we get the inverse inequality

lηi+1
(X) + lηi−1

(X)− lηi(X)

lη′i+1
(X) + lη′i−1

(X)− lη′i(X)
≤ 1 +

[i(ηi+1, α) + i(ηi, α) + i(ηi−1, α)]lα(X)

2ρ0

. �

As an application, we have the following.

Corollary 5.2. Let Γ be a preferred triangulation of Sg,n. Let g be a positive
Dehn twist of Sg,n along an essential simple closed curve α. Set Mα,l , {X ∈ Tg,n :
lα(X) ≤ l}. Then there is a constant CΓ,α,ρ,l depending on Γ, the isotopy class of α,
the reference height ρ0 and l such that

|dΓ
h(X, Y )− dΓ

h(gX, gY )| ≤ CΓ,α,ρ0,l, for any X, Y ∈Mα,l.

Proof. It follows from Lemma 5.1 that
1

CΓ,α,ρ

lηi+1
(Y ) + lηi−1

(Y )− lηi(Y )

lηi+1
(X) + lηi−1

(X)− lηi(X)
≤

lηi+1
(gY ) + lηi−1

(gY )− lηi(gY )

lηi+1
(gX) + lηi−1

(gX)− lηi(gX)

≤ CΓ,α,ρ0

lηi+1
(Y ) + lηi−1

(Y )− lηi(Y )

lηi+1
(X) + lηi−1

(X)− lηi(X)
,

where CΓ,α,ρ0 =
[
1 + (l/ρ0)

∑6g−5+2n
i=1 i(ηi, α)

] [
1 + (l/ρ0)

∑6g−5+2n
i=1 i(ηi, α)

]
. �

We do not know whether or not the action of MCG(Sg,n) on (Tg,n, d
Γ
h) is quasi-

isometric. But for any givenX, Y ∈ Tg,n, we have the following asymptotic behaviour.

Proposition 5.3. Let Γ be a preferred triangulation, and g ∈MCG(Sg,n) be a
positive Dehn twist about a simple closed curve α. For any given X, Y ∈ Tg,n, there
is a positive number CX,Y depending on X, Y such that

lim
n→∞

dΓ
h(gnX, gnY ) = CX,Y .

Moreover, for any X ∈ Tg,n,

lim
n→∞

dΓ
h(gnX, gn+1X) = 0.

Proof. Note that a Dehn twist is also an earthquake map, i.e. g = E lα(X)
α . The

remaining discussion is similar to the proof of the Main Theorem. �

It follows immediately from Proposition 5.3 that (Tg,n, d
Γ
h) is not MCG(Sg,n)

invariant. More precisely, we have the following corollary.
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Corollary 5.4. Let Γ be a preferred triangulation, and g ∈ MCG(Sg,n) be a
positive Dehn twist about a simple closed curve α. Then the action of g on Tg,n is
not isometric. In particular, (Tg,n, d

Γ
h) is not MCG(Sg,n) invariant.
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