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Abstract. For a non-tangential slit γ(t), the behavior of the driving function λ(t) near zero

in the Loewner equation is well understood; for tangential slit, the situation is less clear. In this

paper, we investigate the tangential slit Γp, p > 0, where Γ is a circular arc tangent at 0; Γp has

order p+1

p
near zero. Our main result is to give the exact expression of λ(t), and its Hölder exponent

near 0 in terms of p, which has a natural connection with the known results. We also extend this

to a general type of tangential slits, and give an estimation of the growth of λ(t) near 0.

1. Introduction

The Loewner differential equation was introduced by Loewner in the 20’s to
study the Bieberbach conjecture, and was the main tool in the final solution of the
conjecture by de Brange [1]. The importance of the equation emerged again in the
recent study of the stochastic Loewner evolution (SLE) due to Lawler, Schramm and
Werner [9, 10, 11, 19, 8] and the references there, and Smirnov [20, 21, 22]. This
also re-ignited the interest of the equation and its solution in the deterministic case
[2, 5, 6, 12, 13, 14, 15, 16, 18, 24, 25].

Let H be the upper half-plane. Suppose for any T > 0, γ : [0, T ] → H is a simple
curve with γ(0) ∈ R and γ(0, T ] ⊂ H. For every t ∈ [0, T ], the region Ht = H\γ[0, t]
is simply connected, and by changing the parametrization of γ, there is a unique
conformal map gt from Ht onto H such that

(1.1) gt(z) = z +
2t

z
+O

(

1

|z|2
)

as z → ∞.

This γ is said to be parameterized by the half-plane capacity. In this case, gt(z)
satisfies the equation

(1.2) ġt(z) =
2

gt(z)− λ(t)
, g0(z) = z,
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where λ(t) := limz→γ(t)gt(z) is a continuous real-valued function. The equation (1.2)
is called the (chordal) Loewner differential equation, λ is called the driving function
of the curve γ, and γ is called the trace of λ.

On the other hand, given a continuous function λ : [0, T ] → R and z ∈ H, we
can solve the initial value problem (1.2). Let Tz be the supremum of all t such that
the solution is well defined up to time t with gt(z) ∈ H. Let

Ht := {z ∈ H : Tz > t}.
Then gt is the unique conformal transformation from Ht onto H satisfying (1.1). Let
Kt := H \ Ht. Then {Kt}t∈[0,T ] is an increasing family of hulls in H (defined in
Section 2), and we can say that the hulls Kt are generated by the Loewner equation
(1.2).

In general, the domains Ht generated by a continuous driving function λ are
not necessarily slit half-planes (i.e., domains of the form H \ γ[0, t], for some simple
continuous curve γ in H∪{γ(0)} with γ(0) ∈ R). Recall that Lip(1/2) is the space of
Hölder continuous functions with exponent 1/2. Marshall and Rohde [15] and Lind
[12] proved that Ht is a slit half-plane for all t provided that ‖λ‖1/2 < 4; conversely,
λ ∈ Lip(1/2) if γ is a quasiarc that approaches R non-tangentially. For tangential
slit, recently Prokhorov and Vasil’ev [16] showed that the circular arc

Γ =
{

i+ eiθ : − π

2
≤ θ ≤ π

2

}

.

is generated by a Hölder continuous driving function with exponent 1/3 in the
Loewner equation (1.2).

In this paper, we consider the tangent slit

Γp :=
{

zp : z = i+ eiθ,−π
2
≤ θ ≤ π

2
(θp − 1)

}

,

where θp = 1/p if p ≥ 1; θp = 1 if 0 < p < 1 (we take the branch such that 1p = 1).
The condition on the angle ensures that the simple smooth curve Γp\{0} is contained
in the upper half plane, hence it is the trace of some driving function λ(t). It is not

difficult to show that for x+ iy ∈ Γp, then y = p
2
x

p+1

p + o(x
p+1

p ), i.e., Γp is a tangent
slit of order (p+ 1)/p at 0 (Proposition 2.3). Our main theorem is

Theorem 1.1. Let Γp be the trace generated by the Loewner equation (1.2).
Then the driving function λ(t) has the form

λ(t) = Ct
p

2p+1 + o(t
p

2p+1 ), as t→ 0,

for some C > 0.

We actually prove in Theorem 3.1 for a complete expression of λ(t) in terms of a
series, and the constant C is given explicitly. We remark that the case in [16] is for
p = 1, and the case in [12] and [15] corresponds to p = ∞ heuristically. The technique
of proof is to obtain an integral expression of ft = g−1

t using the Christoffel–Schwarz
formula; we can then reduce the integral expression to a functional equation of λ(t),
which can be handled.

In [25], Wu and Dong considered the limit of γ within a sector, and proved that: if
there exist T > 0, α, β ∈ (0, π) such that arg(KT ) ⊂ (α, β), then lim supt→0 |λ(t)|/

√
t <

∞. For general tangent slits of order r at 0, we have the following theorem.

Theorem 1.2. Let r > 1, 0 < a < b, and let {Kt}t be the growing hulls
generated by the Loewner equation (1.2). If there exists a positive real number T
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such that KT lies in the domain Dr(a, b) := {x+ iy : x > 0, axr < y < bxr}, then

lim sup
t→0

|λ(t)|
t

1

r+1

<∞.

Clearly, the Γp in Theorem 1.1 is the special case with r = (p+ 1)/p. We do not

know the estimate of lim inft→0|λ(t)|/t
1

r+1 . It is known that for α > 1/2, if λ ∈ Cα,
then γ ∈ Cα+1/2 [14, 15, 24]; the converse is still unknown. Our case is a supplement
of this, and in particular corresponds to the case r = 1.

2. Preliminaries

We call a bounded subset A ⊂ H a (compact) H-hull if A = H ∩ A and H \ A
is simply connected. For such hull A, there is a unique conformal transformation
gA : H \A→ H such that lim

z→∞
(gA(z)− z) = 0 [8]. The half-plane capacity is defined

by

hcap(A) := lim
z→∞

z(gA(z)− z).

In other words,

gA(z) = z +
hcap(A)

z
+O

(

1

|z|2
)

, z → ∞.

Note that the half-plane capacity of the hull Kt generated by (1.2) is equal to 2t.
From grA(z) = rgA(z/r), it follows that

(2.1) hcap(rA) = r2hcap(A).

The half-plane capacity can be defined in a number of equivalent ways [8], and there
are various geometric interpretations for it [7, 17]. We need the following estimations
due to Lalley et al. [7] and Lind, Marshall and Rohde [13].

Theorem 2.1. [7] For a hull A, there exists C > 0 such that

C−1 · hsiz(A) < hcap(A) < C · hsiz(A),
where hsiz(A) := area

(
⋃

x+iy∈AB(x+ iy, y)
)

, and B(z, η) denotes the disk of radius
η about z.

Theorem 2.2. [13] Let A be a hull, and let gA be the unique conformal trans-
formation gA : H \ A → H be defined as the above. Then for σ = inf{Ā ∩ R},
τ = sup{Ā ∩R}, and I = [gA(σ−), gA(τ+)], we have

diamA ≤ diamI ≤ 4diamA.

Suppose {Kt}t∈[0,T ] is an increasing family of hulls generated by the Loewner
equation (1.2). Let gt be the conformal transformation of H \Kt onto H as in (1.1).
Let Kt,s be the hull gt(Ks\Kt)∩H for all t < s. It is not hard to see that

⋂

δ>0Kt,t+δ

is the single point λ(t). In particular, this implies that γ(0) = λ(0) if Kt = γ(0, t] for
a simple curve γ.

We mention some basic properties of the chordal Loewner equation that we use.
Suppose the hulls Kt are generated by a driving function λ(t), then we have

(i) Scaling: for η > 0, the scaled hull ηKt/η2 is driven by ηλ(t/η2).
(ii) Translation: for d ∈ R, the driving function of Kt + d is λ(t) + d.
(iii) Reflection: the reflected hulls RI(Kt) are generated by −λ(t), where RI de-

notes reflection in the imaginary axis.



684 Ka-Sing Lau and Hai-Hua Wu

(iv) Concatenation: for fixed T > 0, the mapped hulls gT (KT+t) are driven by
λ(T + t).

The simple curve Γp is the trace of a driving function λ(t). The order of Γp is
given by the following simple proposition.

Proposition 2.3. For x+iy ∈ Γp, p > 0, we have y = p
2
x

p+1

p +o
(

x
p+1

p

)

as x→ 0,
i.e., Γp is a tangent slit of order (p+ 1)/p.

Proof. For p = 1, Γ is the circular arc, x2 + (y− 1)2 = 1, so that y = 1
2
x2 + o(x2)

as x → 0. For p 6= 1, we have (x + iy)
1

p = u + iv ∈ Γ. Hence by using the binomial
expansion,

x+ iy =

(

u+ i

(

1

2
u2 + o(u2)

))p

= up
(

1 +
ip

2
u+ o(u)

)

.

Comparing the real and imaginary parts, we have y = p
2
x

p+1

p +o
(

x
p+1

p

)

as x→ 0. �

To close this section, we consider a functional equation which is associated with
the driving function λ(t) of Γp (Section 3).

Lemma 2.4. Let ϕ0 : [0, T ] → [0, 1) be a continuous function such that ϕ0(0) =
0, and satisfies

(2.2) ϕ0(t)(1− ϕ0(t))
q = c1t

q, t ∈ [0, T ]

for some q, c1 > 0. Then ϕ0(t) =
∑∞

n=1 cnt
qn with

cn+1 = c1

n
∑

j=1

∑

i1+···+ij=n

i1,··· ,ij≥1

q(q + 1) · · · (q + j − 1)

j!
ci1 · · · cij , n ≥ 1.

Proof. Without loss of generality, we assume that T = 1. We define a sequence
of auxiliary functions {ϕn(t)}n on (0, 1] inductively by

ϕn(t) =
ϕn−1(t)− ϕn−1(0)

tq
, t ∈ (0, 1].

We first show that ϕn(0) := limt→0 ϕn(t) = cn by induction.
For n = 1, it is clear that ϕ0(t) = ϕ0(0) + ϕ1(t)t

q = ϕ1(t)t
q, and by assumption,

ϕ1(t)(1−ϕ0(t))
q = c1. This implies ϕ1(0) := limt→0 ϕ1(t) = c1. Assume the statement

holds up to n. Then by the construction of ϕk’s, we have

(2.3) ϕ0(t) = ϕ1(0)t
q + ϕ2(0)t

2q + · · ·+ ϕn(0)t
nq + ϕn+1(t)t

(n+1)q,

also ϕk(0) = limt→0 ϕk(t) = ck, k ≤ n, and

(2.4) lim
t→0

ϕn+1(t)t
q = lim

t→0
(ϕn(t)− ϕn(0)) = 0.

For convenience, we use Cq,k to denote the term q(q+1)···(q+k)
(k+1)!

. Using the binomial

series, we have

(1− ϕ0(t))
−q = 1 +

∞
∑

k=0

Cq,k (ϕ0(t))
k+1, t ∈ [0, 1],

We apply this to hypothesis (2.2) and obtain

ϕ0(t) = c1t
q

(

1 +

∞
∑

k=0

Cq,k(ϕ0(t))
k+1

)
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= c1t
q

(

1 +

n
∑

k=0

Cq,k

(

ϕ1(0)t
q + · · ·+ ϕn(0)t

qn + ϕn+1(t)t
q(n+1)

)k+1

)

(2.5)

+ ϕn+1
0 (t)R1,n(t)

= c1t
q

(

1 +
n
∑

k=0

Cq,k

(

c1t
q + · · ·+ cnt

qn
)k+1

)

+Rn(t)

where
Rn(t) = ϕn+1(t)t

q(n+1)R2,n(t) + ϕn+1
0 (t)R1,n(t),

and R1,n, R2,n are obtained by putting all the excessive terms together. By (2.4),
it is direct to check that Rn(t) = o(tq(n+1)) as t → 0. By regrouping the term in
tkq, 1 ≤ k ≤ n+1, we see that the tq(n+1) term has coefficient cn+1. Compare it with
(2.3), and make use of the induction hypothesis, we have

ϕn+1(t)t
q(n+1) = cn+1t

q(n+1) + o(tq(n+1)), as t→ 0.

Therefore ϕn+1(0) := limt→0 ϕn+1(t) = cn+1 exists, and induction follows.
We claim that ϕn+1(t) > 0 for all n ≥ 1, t ∈ (0, 1]. It then follows from (2.3) that

(2.6) f(t) :=
∞
∑

n=1

cnt
qn ≤ ϕ0(t) < 1, t ∈ [0, 1].

Suppose on the contrary, there exist N ≥ 1, t0 ∈ (0, 1] such that ϕN+1(t0) ≤ 0. Since
ϕN+1(0) = cN+1 > 0, and ϕN+1(t) is continuous in [0, t0], there exists t1 ∈ [0, t0] such
that ϕN+1(t1) = 0. By (2.3), we have

(2.7) ϕ0(t1) = c1t
q
1 + c2t

2q
1 + · · ·+ cN t

qN
1 .

Noting that R1,N(t1) > 0 and ϕN+1(t1) = 0, we obtain RN (t1) > 0. It follows from

(2.5) that ϕ0(t1) > c1t
q
1 + c2t

2q
1 + · · ·+ cN t

qN
1 . This contradicts with (2.7). Hence our

claim holds.
It remains to show that ϕ0(t) =

∑∞

n=0 cnt
qn. To this end, we consider a new

function
F (t, x) := Ft(x) = x(1 − x)q − c1t

q, x ∈ [0, 1].

Since F ′
t (x) = (1 − x)q−1

(

1 − (q + 1)x
)

, Ft(x) is strictly increasing in [0, 1
q+1

] (and

strictly decreasing in [ 1
q+1

, 1]). By the implicit function theorem, there is a unique

0 ≤ x(t) ≤ 1
q+1

, 0 ≤ t ≤ 1 such that F (t, x(t)) = 0 with x(0) = 0. Now observe that

ϕ0(0) = 0, F (t, ϕ0(t)) = 0 by (2.2). Also for f(t) =
∑∞

n=0 cnt
qn, we have f(0) = 0

and F (t, f(t)) = 0, as it follows from (2.6) that

c1t
q(1− f(t))−q = c1t

q

(

1 +

∞
∑

k=0

Cq,k(f(t))
k+1

)

= c1t
q

(

1 +

∞
∑

k=0

Cq,k(c1t
q + c2t

2q + c3t
3q + · · · )k+1

)

= c1t
q
(

1 + Cq,0c1t
q + (Cq,0c2 + Cq,1c

2
1)t

2q + · · ·
)

= c1t
q + c2t

2q + c3t
3q + · · · = f(t).

The uniqueness implies that ϕ0(t) = f(t). �
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3. Proof of Theorem 1.1

For simplicity, we will use the following notations: f(ǫ) . g(ǫ) means f(ǫ) ≤
Cg(ǫ) for some constant C > 0; f(ǫ) ≍ g(ǫ) means f(ǫ) . g(ǫ) and g(ǫ) . f(ǫ). We
give a more complete version of Theorem 1.1.

Theorem 3.1. The slit Γp is generated by the Loewner equation with driving
function λ(t) given by

λ(t) = cp

(

∞
∑

n=1

cnt
qn

)p(

1− 2

∞
∑

n=1

cnt
qn

)

, t ∈ [0, T ]

for some T > 0, where c = 4(p+1)π
p(2p+1)

, q = 1
2p+1

, and

cn+1 = c1

n
∑

j=1

∑

i1+···+ij=n

i1,··· ,ij≥1

q(q + 1) · · · (q + j − 1)

j!
ci1 · · · cij , n ≥ 1

with c1 = c−1
(

4(2p+1)π
p2

)q
. In particular, we have

λ(t) = (cc1)
pt

p

2p+1 + o
(

t
p

2p+1

)

, as t→ 0.

We will divide the proof of the theorem into two lemmas to obtain the functional
equation in Lemma 2.4.

Let γ(t) : 0 ≤ t ≤ T be the parameterization of Γp such that hcap γ(0, t] = 2t.
Let gt be the solution of the Loewner equation which maps H \ γ(0, t] onto H, and
let ft be the inverse of gt. Let λ(t) = gt(γ(t)). Since gt is well-defined in R \ {0}, the
two functions α(t) = gt(0−) and β(t) = gt(0+) are also well defined. When there is
no confusion, we suppress the variable t and just write λ, α and β for brevity.

First, we will give an integral expression of ft as the following.

Lemma 3.2. For p > 0, let w(z) = z−
1

p (with the branch satisfying ln 1 = 0),
and let ht = w ◦ ft be defined on H. Then

(3.1) ht(z)− ht(z0) = −1

p

ˆ z

z0

(ξ − α)−
1

p
−1(ξ − λ)(ξ − β)−1 dξ.

for any fixed z0 ∈ H.

Proof. We write w(z) = ψ ◦ φ(z), z ∈ H, where ψ(z) = 1/z, φ(z) = z
1

p . Noting
that Γ is a circular arc, let Γ′ be the subarc of Γ on {−π

2
≤ θ ≤ π

2
(θp − 1)} (where θp

is defined in the Introduction). Then we have

w(Γp) = ψ ◦ φ(Γp) = ψ(Γ′) = {x− i/2: x ≥ Re w(γ(T ))}.

Clearly w(H) = {reiθ : r > 0, −π
p
< θ < 0}. It follows that for p ≥ 1/2, w maps

H \ γ(0, t] conformally onto the domain

Mt = {reiθ : r > 0, −π
p
< θ < 0} \ {x− i/2: x ≥ Re w(γ(t))};

but for 0 ≤ p < 1/2, w is multivalued (as w(H) wraps around). We will divide our
proof into two cases.

Case 1 : p ≥ 1/2. Define ht := w ◦ ft = (ft)
− 1

p , then it maps H conformally
onto Mt. By applying the Christoffel–Schwarz formula to any fixed z0 ∈ H, we can
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express ht as

ht(z)− ht(z0) = b

ˆ z

z0

(ξ − α)−
1

p
−1(ξ − λ)(ξ − β)−1 dξ.

To determine b, we observe that

h′t(z) = b(z − α)−
1

p
−1(z − λ)(z − β)−1.

As h′t(z) = (w ◦ ft)′ = (−1
p
)[ft(z)]

− 1

p
−1f ′

t(z), we have

f ′
t(z) = (−bp)[ft(z)]

1

p
+1(z − α)−

1

p
−1(z − λ)(z − β)−1.

Noting that

(3.2) ft(z) = z − 2t

z
+ o

(

1

z

)

, as z → ∞,

we have f ′
t(z) → 1 and ft(z)/z → 1 as z → ∞. It follows that −bp = 1, i.e., b = −1

p
.

Case 2 : 0 < p < 1/2. We need to adjust Mt as a polygon in some Riemann
surface to apply the Christoffel–Schwarz formula. Let S := R

+ ×R be the Riemann
surface in the following sense:

(i) S =
⋃

m,n∈Z(Um ∪ Vn), where Um = R
+ × (2mπ, 2(m + 1)π), Vn = R

+ ×
((2n+ 1)π, (2n+ 3)π). For each m,n ∈ Z, define

φm : Um → C, (r, θ) 7→ reiθ, ψn : Vn → C, (r, θ) 7→ reiθ.

(ii) If Um and Vn intersect for some m,n ∈ Z, then the transition map

Φm,n = φm ◦ ψ−1
n : ψn(Um ∩ Vn) → φm(Um ∩ Vn)

is a conformal map from Um ∩ Vn onto itself.

Define the map w∗ : H → S, w∗(reiθ) =
(

r−
1

p ,−θ
p

)

for r > 0, θ ∈ (0, π). Follow-

ing the notations in Case 1, we still denote by Mt the Riemann surface w∗(H\γ[0, t]),
and denote w∗ by w. Obviously, w is 1–1 from H \ γ[0, t] onto Mt, and the boundary
of Mt consists of three rays. It follows from [3] and [4] that the Christoffel–Schwarz
formula (3.1) still holds for this case, and the same proof can be carried through. �

Lemma 3.3. With the above notations, we have α(t) < 0, and the following
identities for λ(t), α(t) and β(t):

(3.3) λ =

(

1

p
+ 1

)

α + β, β = α + C ′(−α)
p

p+1 ,

where C ′ =
(2(p+1)π

p2

)
p

p+1 , and

(3.4) (−α)
2p+1

p+1

(

b− (−α) 1

p+1

)

= δt,

where b = 2p
2p+1

C ′, δ = 4p
p+1

.

Proof. Noting that ht(∞) = 0, by letting z0 → ∞, and making a change of
variable u = ξ−1, we have

ht(z) =

ˆ
1

z

0

F (u) du where F (u) =
(1− λu)

p(1− αu)1+
1

p (1− βu)u1−
1

p

.
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We expand the first three terms of F (u) and obtain

F (u) =
1

p
u

1

p
−1(1 + a1u+ a2u

2 + o(u2)) as u→ 0,

where a1 =
(

1+ 1
p

)

α+β−λ and a2 =
(

1+ 1
p

)

αβ−
(

1+ 1
p

)

αλ−βλ+β2+
(

1+ 1
p

)(

1+ 1
2p

)

α2.

Integrating F (u) and noting that ft(z) =
(

ht(z)
)−p

, we conclude that

ft(z) = z − a1p

p+ 1
−
(

a2p

2p+ 1
− a21p

2p+ 2

)

1

z
+ o

(

1

z

)

as z → ∞.

Hence it follows from (3.2) that a1 = 0, a2 =
(4p+2)t

p
. By equating the two expressions

on a1, we have

(3.5) β − λ = −
(

1

p
+ 1

)

α.

This implies α < 0, and also the first identity in (3.3) follows. Similarly by equating
the two expressions of a2, and use (3.5) to substitute away the λ, we obtain

(3.6) α

(

β +
α

2p

)

= −(4p+ 2)t

p+ 1
.

To prove the second identity, we use partial fractions to express ht(z) as

ht(z)− ht(z0) =
α− λ

p(β − α)

ˆ z−α

z0−α

ξ−
1

p
−1 dξ +

β − λ

p(β − α)

ˆ z−α

z0−α

ξ−
1

p dξ

(β − α)− ξ
.

Let z0 = 2β − λ, z = λ, then the first part of the integral is real. By observing that
ht maps R onto the boundary of Mt, we see that ht(2β−λ) is real and Imht(λ) = −1

2
.

This yields
1

2
=

β − λ

p(β − α)1+
1

p

· Im
ˆ 1+s

1−s

dξ

ξ
1

p (1− ξ)
,

where s = β−λ
β−α

. We claim that the last expression equals π. Then the above identity

together with (3.5) imply the second identity in (3.3).
To prove the claim, we choose the integral path Λ: ξ = 1 + seiθ, 0 ≤ θ ≤ π, the

imaginary part of the above integral is equal to

Re

ˆ π

0

dθ

(1 + seiθ)
1

p

= π.

The value π is a simple consequence of the power series expansion of (1 + z)−
1

p at
z = 0, noting that 0 < s < 1.

Putting the second identity in (3.3) into (3.6), we have the last identity of the
lemma. �

Remark 3.4. The formulae (3.3) and (3.4) for p = 1 are given in [16].

Proof of Theorem 3.1. By (3.3),

(3.7) λ =

(

1

p
+ 2

)

α + C ′(−α)
p

p+1 .

Therefore it suffices to find the appropriate expression of (−α) in terms of t on [0,
T]. In view of (2.2) and (3.4), we let

(3.8) ϕ0(t) =
1

b
(−α) 1

p+1 , t ∈ [0, T ].



On tangential slit solution of the Loewner equation 689

It follows from Theorem 2.2 that β−α ≍ diam γ[0, t]. By (3.3), −α ≍ β−λ ≤ β−α
holds. Thus we have limt→0 ϕ0(t) = 0. Putting (3.8) into (3.4) yields b2p+2ϕ2p+1

0 (t)(1−
ϕ0(t)) = δt. By letting q = 1

2p+1
and simplify, we arrive

(3.9) ϕ0(t)(1− ϕ0(t))
q = c1t

q, t ∈ [0, T ],

where c1 =
(

δ
b

)q
b−1 has the expression in Theorem 3.1. Equation (3.9) fulfils the

conditions in Lemma 2.4, and hence ϕ0(t) =
∑∞

n=1 cnt
qn as stated. In view of (3.7)

and (3.8), we have

λ = cp

(

∞
∑

n=1

cnt
qn

)p(

1− 2

∞
∑

n=1

cnt
qn

)

, t ∈ [0, T ].

This proves the theorem. �

4. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma:

Lemma 4.1. Let r > 1, c > 0, and γc(x) = x + icxr. Then hcap(γc(0, x]) ≍
xr+1, x ∈ (0, 1/2].

Proof. Let ℓc(x) = hcap(γc(0, x]). Noting that

c
1

r−1γc(0, x] = γ1(0, c
1

r−1x],

and using (2.1), we have ℓ1(c
1

r−1x) = c
2

r−1 ℓc(x). Therefore it suffices to show that
ℓ1(x) ≍ xr+1. It follows from Theorem 2.1 that ℓ1(x) ≍ hsiz(γ1(0, x]). Hence it
suffices to show that

(4.1) hsiz(γ1(0, x]) ≍ xr+1.

Let

Dc(x) = {u+ iv : 0 ≤ u ≤ x, 0 ≤ v ≤ cur} ∪ B(x+ icxr, cxr).

We claim that there exists a constant C > 1 such that dist(x + ixr, γC) ≥ xr holds
for each x ∈ (0, 1/2]. This implies that for x ∈ (0, 1/2],

D1(x) ⊂
⋃

0≤u≤x

B(u+ iur, ur) ⊂ DC(x).

Hence area(D1(x)) ≤ hsiz(γ1(0, x]) ≤ area(DC(x)). Since area(D1(x)) ≍ xr+1 ≍
area(DC(x)) (by direct calculation), the estimation (4.1) holds.

Now, we prove our claim. For each fixed x ∈ (0, 1/2], let c(x) be defined so that
the curve γc(x)(u) = u+ic(x)ur tangents to the ball B(x+ixr, xr) at zx = x̄+ic(x)x̄r.
Then dist(x+ ixr, zx) = xr, and (c(x)x̄r − xr)2 + (x̄− x)2 = x2r. It follows that

c2(x)x̄2r ≤ 2c(x)(xx̄)r.

As x−xr ≤ x̄ ≤ x, c(x) ≤ 2(1−21−r)−r := C for x ∈ (0, 1/2], and dist(x+ ixr, γC) ≥
xr holds for each x ∈ (0, 1/2]. �

Proof of Theorem 1.2. Let {Kt}t∈[0,T ] be the growing hulls generated by the
Loewner equation with driving function λ(t), and let KT ⊂ Dr(a, b) = {x + iy : x >
0, axr < y < bxr}. Let

x(t) = sup{x : x+ iy ∈ Kt}, t ∈ [0, T ].
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We claim that x(t) ≍ t
1

r+1 . As Kt ⊂ Dr(a, b), by the definition of hsiz(K), we have

hsiz(γa(0, x(t)]) ≤ hsiz(Kt) ≤ hsiz(γb(0, x(t)]).

It follows from Theorem 2.1 that

ℓa(x(t)) . hcap(Kt) = 2t . ℓb(x(t)).

By Lemma 4.1, x(t) ≍ t
1

r+1 holds.
Now let At = {u+ iv : 0 ≤ u ≤ x(t), 0 ≤ v ≤ bur}. Since Kt ⊂ Dr(a, b), we have

x(t) ≤ diamKt ≤ diamAt ≍ x(t), which implies that

(4.2) x(t) ≍ diamKt.

Let It = [gt(σt−), gt(τt+)] with σt = inf(Kt ∩R), τt = sup(Kt ∩R). Theorem 2.2
implies that diamKt ≍ diamIt. This and (4.2) imply x(t) ≍ diamIt. Noting

that λ(t) ∈ It and λ(0) = 0 ∈ It, we have |λ(t)| . x(t) ≍ t
1

r+1 . This implies

lim supt→0 |λ(t)|/t
1

r+1 <∞. �
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