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Abstract. µ is called a p-admissible measure in one dimension if it is a doubling measure that

supports a (1, p)-Poincaré inequality. In this note, we estimate the range of p that (1, p)-Poincaré

inequality holds on (R, | · |, µ) where | · | is the Euclidean metric.

1. Introduction

Let µ be a measure on R
n. We call a measure doubling if there is a constant c

such that for every B = B(x, r) centered at x with radius r, the following holds,

(1.1) µ(B(x, 2r)) ≤ cµ(B(x, r)).

As a result, there exist constants Cµ, ν > 0, that depend only on the constant c in
above inequality such that

(1.2)
( r

R

)ν

≤ Cµ
µ(B(y, r))

µ(B(x,R))
,

whenever 0 < r < R < ∞, x ∈ R
n, and y ∈ B(x,R).

We say that µ admits a (1, p)-Poincaré inequality if there exists C > 0 such that
the following holds

(1.3)
1

µ(B)

ˆ

B

|u− uB| dµ ≤ Cr

(

1

µ(B)

ˆ

B

|∇u|p dµ

)1/p

for all ball B and locally Lipschitz function u on B. Here and in what follows,
uB = (µ(B))−1

´

B
u dµ.

A measure µ on R
n is called p-admissible with p ≥ 1 if it satisfies (1.1) and (1.3).

We denote by Cp the infimum of constants C such that (1.3) holds.
We recall that a nonnegative locally integrable function w on R

n is called a
Muckenhoupt Ap-weight for p ≥ 1 if for some C > 0 and every ball B ⊂ R

n,

(1.4)
1

|B|

ˆ

B

w dx ≤











C

(

1

|B|

ˆ

B

w
1

1−p dx

)1−p

if p > 1,

C ess infB w if p = 1,

where |B| is the Lebesgue measure of B. We write w ∈ Ap and denote by Mp,w the
infimum of C on the right side of (1.4).
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It is well known that Muckenhoupt Ap weights have the open ended property
([2]). This result has numerous applications. And the range of p that w ∈ Ap has
been studied in [1], [6] ,[7] and [9]. On the other hand, according to [4], the Poincaré
inequality also has the open ended property. See [3] for the self-improving property
of Poincaré inequalities which also has lots of applications. In this note, we get
an estimate of the range in a special case, i.e., the p-admissible measures in one
dimension.

For every p-admissible measure µ = w dx, set

IAp
= {p ≥ 1: w ∈ Ap},

IPp
= {p ≥ 1: (1, p)-Poincaré inequality holds in (R, | · |, µ)}.

In [5], the following result has been proved.

Theorem 1.1. Let µ be a measure on R and let p ≥ 1. Then µ is p-admissible

in R if and only if dµ = wdx and w is a Muckenhoupt Ap-weight.

Therefore one has IAp
= IPp

. Thus we can estimate IPp
through IAp

. In [6], the
estimate of IAp

has been done for measures supported on finite intervals. Namely,
Korenovskii proved the following. Let w ∈ Ap supported on a finite interval, p > 1,
Mp,w > 1 and p0 ∈ (1, p) be the root of equation

(1.5)
p− p0
p− 1

(Mp,wp0)
1/(p−1) = 1.

Then for all q > p0, we have w ∈ Aq. Note that the range of q is sharp, i.e. the
statement does not hold for q ≤ p0.

The main result of this note is as follows.

Theorem 1.2. Assume that µ is a p-admissible measure in R. Denote by p0 the

root of the following equation

p− p0
p− 1

(Mp0)
1/(p−1) = 1,

where M = (CpCµ4
ν)p

(

1− 2
Cµ4ν

)

. Then (1, q)-Poincaré inequality holds for q > p0.

The proof of Theorem 1.2 is based on Lemma 2.2, which gives a precise estimate
of an inequality that plays an important role in [5].

2. Proof of Theorem 1.2

To begin with, we prove some properties of the root of (1.5).

Lemma 2.1. For any p,Mp,w > 1, denote by p0 the root of (1.5). Then p0 is an

increasing function of Mp,w.

Proof. It suffices to show that the inverse function

x 7→ M(x) =
1

x

(

p− 1

p− x

)p−1

is strictly increasing in [1, p), which is easily verified by differentiation. �

To proceed, we need to estimate Mp,w for w ∈ Ap by ν, Cµ and Cp.
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Lemma 2.2. Let µ be a p-admissible measure on R for p ≥ 1. Then for any

finite interval I = (a, b) ⊂ R and nonnegative functions f on I we have

1

|I|

ˆ

I

f(x) dx ≤ C(p, I)

(

1

µ(I)

ˆ

I

f p dµ

)1/p

,

where C(p, I) = Cp

2

(

µ(I)
µ(2I)

)1/p
µ(2I)
µ(I+)

µ(I+)+µ(I
−
)

µ(I
−
)

and I+ = (b, 3b−a
2

), I− = (3a−b
2

, a) are

the parts of 2I\I lying to the right and to the left of I, respectively.

Proof. Let fk = min{f, k} for k ∈ N and for simplicity we denote

u(x) =

ˆ x

−∞

fk(t)χI(t) dt.

Set 2I = ((3a−b)/2, (3b−a)/2). Since u is Lipschitz, we can apply the (1, p)-Poincaré
inequality.

1

µ(2I)

ˆ

2I

|u− u2I | dµ ≤ Cp|I|

(

1

µ(2I)

ˆ

2I

|u′|p dµ

)1/p

≤ Cp|I|

(

µ(I)

µ(2I)

)1/p (
1

µ(I)

ˆ

I

f p dµ

)1/p

.

Next we will estimate the left side of above inequality. Note first that

u(x) =























0, x < a,
ˆ x

a

fk(t) dt, a ≤ x ≤ b,
ˆ b

a

fk(t) dt, x > b.

Thus we have
ˆ

2I

|u− u2I | dµ =

ˆ

I
−

u2I dµ+

ˆ

I+

(u(b)− u2I) dµ+

ˆ

I

|u− u2I | dµ

≥ (µ(I−)− µ(I+))u2I + µ(I+)u(b) + µ(I)|uI − u2I |.

By the definition, one has

(2.1) u2I =
1

µ(2I)

ˆ

I

u dµ+
µ(I+)

µ(2I)
u(b) =

µ(I)

µ(2I)
uI +

µ(I+)

µ(2I)
u(b).

Substituting (2.1) into the above inequality, we obtain
ˆ

2I

|u− u2I | dµ ≥ (µ(I−)− µ(I+))

(

µ(I)

µ(2I)
uI +

µ(I+)

µ(2I)
u(b)

)

+ µ(I+)µ(b)

+ µ(I)

∣

∣

∣

∣

µ(I+) + µ(I−)

µ2I
uI −

µ(I+)

µ(2I)
u(b)

∣

∣

∣

∣

.

If uI − u2I ≥ 0, then |uI − u2I | = uI − u2I and (2.1) gives

uI ≥
µ(I+)

µ(I+) + µ(I−)
u(b).
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Thus, after some elementary cancellations, one has
ˆ

2I

|u− u2I | dµ ≥ 2µ(I−)
µ(I)

µ(2I)
uI + 2µ(I+)

µ(I−)

µ(2I)
u(b)

≥ 2µ(I−)
µ(I+)

µ(I+) + µ(I−)
u(b).

Similarly, if uI − u2I ≤ 0, then |uI − u2I | = u2I − uI and

uI ≤
µ(I+)

µ(I+) + µ(I−)
u(b)

and hence, after suitable simplifications,
ˆ

2I

|u− u2I | dµ ≥ 2µ(I+)
µ(I−) + µ(I)

µ(2I)
u(b)− 2µ(I+)

µ(I)

µ(2I)
uI

≥ 2µ(I+)
µ(I−)

µ(I+) + µ(I−)
u(b).

Putting this into the Poincaré inequality results in

1

|I|

ˆ

I

f(x) dx ≤
Cp

2

(

µ(I)

µ(2I)

)1/p
µ(2I)

µ(I+)

µ(I+) + µ(I−)

µ(I−)

(

1

µ(I)

ˆ

I

f pdµ

)1/p

and the monotone convergence theorem proves the lemma. �

According to the equivalence definition of the Ap weights (see p.200 of [8]), one
gets

Mp,w ≤
µ(I)

µ(2I)

(

Cpµ(2I)

2

µ(I+) + µ(I−)

µ(I+)µ(I−)

)p

≤

(

1−
2min{µ(I+), µ(I−)}

µ(2I)

)(

Cpµ(2I)

min{µ(I+), µ(I−)}

)p

≤

(

1−
2

Cµ4ν

)

(CpCµ4
ν)p = M.

Now we prove Theorem 1.2.

Proof. Theorem 1.2 follows directly from (1.5) and Lemmas 2.1 and 2.2. and
that the new Aq constant is no larger than

M

(

q − 1

p− 1

1

Z(q)

)q−1

where Z(q) = 1− p−q
p−1

(Mq)1/(p−1) (see p. 1200 of [6]). �
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