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Abstract. Uniqueness and non-existence of entire solutions to the minimal surface equation

in warped products R2×f R are provided. As a consequence of our results, the classical Bernstein’s

Theorem is extended.

1. Introduction

In this paper we deal with the following nonlinear elliptic equation in divergence
form

(1) div

(
Du

f(u)
√
f(u)2 + |Du|2

)
=

f ′(u)√
f(u)2 + |Du|2

{
2−

|Du|2

f(u)2

}
,

where f : R → (0,+∞) is a positive smooth function and the unknown function u

takes values on R
2, D and div being, respectively, the gradient and the divergence

operators in R
2 endowed with its Euclidean standard metric g.

As is well-known, u : R2 → R satisfies (1) if it is extremal among functions under
interior variation for the area integral

(2)

ˆ

R2

f(u)
√
f(u)2+ | Du |2.

This variational problem naturally arises in Riemannian Geometry. In fact, con-
sider the standard metric dt2 on the real line and take f a positive smooth function
defined on R. Then the product manifold R × R

2 endowed with the Riemannian
metric

(3) ḡ = π∗

R
(dt2) + f(π

R
)2 π∗

R2
(g),

where π
R

and π
R2

stand for the projections onto R and R
2, respectively, is a Riema-

nian warped product which we will represent by M = R×f R
2 [6]. Warped products

were introduced by Bishop and O’Neill in [3] to construct a large class of complete
manifolds of negative curvature.

Given a domain Ω in R
2 and u ∈ C∞(Ω), the induced metric on Ω via the graph

Σu = {(u(p), p) : p ∈ Ω} is given by

gu = du2 + f(u)2g.

Then, u is a critical point of (2) if and only if the associated graph Σu has zero mean
curvature. Namely, (1) is the minimal surfaces equation on R

2 for graphs in M .
When f ≡ 1, the equation (1) reduces to the well-known minimal surfaces equation
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in R
3, and the celebrated classical Bernstein Theorem states that the only entire

solutions u ∈ C∞(R2) to this equation are the affine planes.
Observe that from Bernstein’s Theorem, the only entire bounded solution to the

minimal surfaces equation on R
2 are the constant functions. For the general equation

(1), if there exists t0 ∈ R such that f ′(t0) = 0, then the constant function u = t0 is
an entire solution to (1). Thus, the following questions arise in a natural way:

When the constant functions u = t0 with f ′(t0) = 0 are the unique entire solutions
to Eq. (1)?

When is there no entire solution to Eq. (1)?

The main aim of this paper is to give several answers to these questions under
suitable geometrical assumptions. In the light of Bernstein’s Theorem, it seems
natural to work under the hypothesis of boundedness of the solutions. Some other
conditions regarding the function f will be required, all of them naturally extending
the setting of the original Bernstein Theorem.

2. Preliminaries

Let us consider the standard metrics dt2 and g on the real line R and R
2, re-

spectively, and take f a positive smooth function defined on R. We will denote by
M = R×f R

2 the manifold R
3 = R×R

2 endowed with the Riemannian metric (3).
We will denote by T = ∇t the gradient of t := π

R
for the metric g.

Let ψ : S →M be an isometric immersion of a surface S in M . We will say that
S is two-sided if its normal bundle is trivial, i.e., we can choose a unit normal vector
field N globally defined on S that we will call the Gauss map of the immersion ψ.
Then we define the smooth non-oriented angle function θ : S → [0, π) as

cos θ(p) = g(N(p), T (p)), p ∈ S.

Note that if ψ is locally a graph on R
2 (namely, ψ is transversal to T ), then it is

two-sided and either cos θ > 0 or cos θ < 0 along ψ.
We will denote by A the shape operator of ψ with respect to N , and by H =

1
2
trace(A) the mean curvature associated to A. Throughout this paper we will deal

with minimal surfaces, i.e., surfaces with zero mean curvature. As is well-known,
minimal surfaces are critical points of the area functional for compactly supported
area variations.

The family of surfaces St = {t} × R
2 constitutes a foliation of M by complete

totally umbilical leaves of constant mean curvature (log f)′(t) = f ′(t)
f(t)

that we will call

slices. Note that the condition (log f)′′(t) ≥ 0 (resp. (log f)′′(t) > 0) means that the
mean curvature of the slices is non-decreasing (resp. strictly increasing). Moreover,
note that these convexity conditions on the warping function are weaker than those
used in [3].

We will say that a surface ψ : S → M is contained in a slab if it is contained
between two slices. In other words, the height function τ = π

R
◦ ψ of ψ is such that

τ(S) ⊆ [t1, t2] for t1, t2 ∈ R, t1 < t2. Observe that a surface ψ : S → M is contained
in a slice if, and only if, cos2 θ = 1 along ψ.

3. Set up

Let ψ : S →M be an isometric immersion of a surface S in M = R×f R
2. Next

we will compute the Gaussian curvature K of S. If we denote by Ric and S the
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Ricci curvature and the scalar curvature of M , respectively, it is a straightforward
computation (see [2, Section 2]) to check that

(4) K = 1
2
S − Ric(N,N) + 2H2 − 1

2
trace(A2).

On the other hand, we have that (see [6, Ex. 7.13])

(5) S = −4
f ′′

f
− 2

f ′2

f 2
.

Let us put NM = N − g(N, T )T . Then

Ric(N,N) = Ric(NM , NM) + cos2 θ Ric(T, T )

can be computed using [6, Cor. 7.43] to obtain

(6) Ric(N,N) = sin2 θ (log f)′′(t)− 2
f ′′(t)

f(t)
.

Finally, from (4), (5), (6) and using also the Gauss and Codazzi equations of ψ,
we get

Lemma 1. Let ψ : S → M be a minimal surface S in M = R×f R
2. Then the

Gaussian curvature K of S can be expressed as

(7) K = −
f ′(τ)2

f(τ)2
− sin2 θ(log f)′′(τ)− 1

2
trace(A2).

On the other hand, the gradient of the height function τ and f(τ) cos θ on S are
given, respectively, by

∇τ = T⊤ = T − cos θ N

and

(8) ∇ (f(τ) cos θ) = −f(τ)A(T⊤),

where by ( )⊤ we mean taking the tangential component of a vector field along
ψ. Then, for a minimal surface, the Laplacians of τ and f(τ) cos θ on S become,
respectively,

(9) ∆τ =
f ′(τ)

f(τ)
(2− sin2 θ)

and

(10) ∆(f(τ) cos θ) = −f(τ) cos θ sin2 θ (log f)′′(τ)− f(τ) cos θ trace(A2),

see [1] for the details. We will also use that, for a minimal surface, we have

(11) |∇ (f(τ) cos θ) |2 = 1
2
trace(A2)

(
f(τ)2 − f(τ)2 cos2 θ

)
.

In fact, let us take a local orthonormal frame {E1, E2} on S with AE1 = µE1 and
A(E2) = −µE2 for a certain function µ. If we put T⊤ = k1E1 + k2E2 for certain
functions k1 and k2, then

g(AT⊤, AT⊤) = µ2(k21 + k22) =
1
2
trace(A2)

∣∣T⊤
∣∣2 = 1

2
trace(A2) sin2 θ,

which jointly (8) allows to obtain (11).
For each u ∈ C∞(R2), let Σu = {(u(p), p) : p ∈ R

2} be the entire graph defined
by u on R

2. The subset Σu can be seen as a regular surface in M which inherits from
M a Riemannian metric which, on R

2, is given by

gu = du2 + f(u)2g.
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Note that τ(u(p), p) = u(p) for any p ∈ R
2, and so τ and u may be naturally

identified on Σu. Observe also that Σu is two sided, and we can orient the graph in
such a way that cos θ > 0. More precisely, the Gauss map of Σu is given by

N =
f(u)√

f(u)2 + |Du|2

(
T −

1

f(u)2
Du
)
,

where Du denotes the gradient of u in (R2, g) and |Du|2 = g(Du,Du), and so

(12) cos θ =
f(u)√

f(u)2 + |Du|2
.

The graph Σu is minimal if and only if u is a solution to the non-linear elliptic
equation (1).

4. Main results

In order to obtain our results, we will consider on R
2 a metric ĝu, conformal to

gu, which lets a certain control of its Gaussian curvature.

Lemma 2. Let u ∈ C∞(R2) be a smooth function on R
2 such that Σu is a

minimal graph in R ×f R
2, where the smooth function f : R → (0,+∞) satisfies

that (log f)′′ ≥ 0. Then

(13) (f(u) cos θ + λ)2 K̂u ≥ −
f ′(u)2

f(u)2
− (log f)′′(u) sin2 θ

(
1 +

f(u) cos θ

f(u) cos θ + λ

)
,

where λ = inf f and K̂u denotes the Gaussian curvature of R2 furnished with the
conformal metric

(14) ĝu = (f(u) cos θ + λ)2gu.

Proof. Using (10) and (11), if we denote by ∆u the Laplacian operator on (R2, gu)
we get

∆u log(f(u) cos θ + λ) =
1

(f(u) cos θ + λ)2

{
−

1

2
trace(A2)f(u)2 sin2 θ

− f(u) cos θ(f(u) cos θ+λ)
(
trace(A2) + sin2 θ(log f)′′(u)

)}
.(15)

Since f(u) ≥ λ, we have that

f(u)2 sin2 θ ≥ λ2 − f(u)2 cos2 θ

and so
1
2
trace(A2)f(u)2 sin2 θ + f(u) cos θ (f(u) cos θ + λ)trace(A2)

≥ 1
2
(f(u) cos θ + λ)2trace(A2).

Hence, from (15) it follows that

(16) ∆u log(f(u) cos θ + λ) ≤
f(u) cos θ

f(u) cos θ + λ
sin2 θ (log f)′′(u)− 1

2
trace(A2).

Now, consider on M the metric ĝu conformal to gu given by (14). Then, from
the well-known relation

(f(u) cos θ + λ)2 K̂u = Ku −∆u(log(f(u) cos θ + λ)),

where Ku is the Gaussian curvature of the metric gu, we conclude the thesis by using
Lemma 1, (10) and (16). �
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Remark 3. Observe that gu is a complete metric on R
2 since (R2, g) is complete.

If additionally inf f > 0, then ĝu is also complete.

Lemma 4. Let f : R → (0,+∞) be a smooth function such that (log f)′′ ≥ 0 and
inf f > 0. Then, every bounded entire solution u to Eq. (1) satisfies that f ′(u) = 0.

Proof. Since we are assuming that Σu is contained in a slab (because we are

considering bounded solutions of (1)), we infer from Lemma 2 that K̂u is bounded
from below.

We will use the following generalized maximum principle for Riemannian mani-
folds given by Omori [5] (see also Yau’s paper [7]):

Let M be a complete Riemannian manifold whose Ricci curvature is bounded
away from −∞ and let u : M → R be a smooth function on M .

a) If u is bounded from above on M , then for each ε > 0 there exists a point
pε ∈ R

2 such that

|∇u(pε)| < ε, ∆u(pε) < ε, sup u− ε < u(pε) ≤ sup u;

b) If u is bounded from below on M , then for each ε > 0 there exists a point
pε ∈M such that

|∇u(pε)| < ε, ∆u(pε) > −ε, inf u ≤ u(pε) < inf u+ ε.

Here ∇u and ∆u denote, respectively, the gradient and the Laplacian of u.

Thus, let u ∈ C∞(R2) be a bounded solution to the differential elliptic equa-
tion (1) and consider u as a smooth function on the complete Riemannian manifold

(R2, ĝu) (see Remark 3). If we denote by ∆̂u the laplacian operator on (R2, ĝu), then
we have that

(17) ∆̂uu =
1

(λ+ f(u) cos θ)2
∆uu.

As u is bounded from below, from the generalized maximum principle we know
that for each entire m there exists a point pm ∈ M such that

−
1

m
< ∆̂uu(pm).

Then, letting m→ ∞ and using (9) and (17), we obtain that f ′(inf u)
f(inf u)

≥ 0. Reasoning

analogously, since u is bounded from above we obtain that f ′(supu)
f(sup u)

≤ 0. The thesis

follows immediately by using that (log f)′′ ≥ 0. �

Remark 5. Let f : R → (0,+∞) be a smooth positive function such that
(log f)′′ > 0. Then it is clear that if there exists t0 ∈ R such that f ′(t0) = 0,
then t0 is the unique zero of f ′ and moreover inf f > 0.

Now, let us relax the assumption (log f)′′ > 0 to (log f)′′ ≥ 0. Let us take J =
{t ∈ R : f ′(t) = 0} and suppose that J 6= ∅ and it is not unitary. Then (log f)′′(t) = 0
for every point t ∈ J . To see this, observe that the condition (log f)′′ ≥ 0 implies
that f ′′ ≥ 0. Thus, if there exists t0 ∈ J such that (log f)′′(t0) > 0, then it would
be f ′′(t0) > 0 and so f would attain a local minimum at t0. Therefore f ′ would be
strictly increasing in an open interval (t0− ǫ, t0 + ǫ) for a suitable real number ǫ > 0,
i.e., f ′ would be negative on (t0 − ǫ, t0) and positive on (t0, t0 + ǫ). But then, since
f ′ is non-decreasing on R, no other zero of f ′ can exist.

Observe that, in general, provided that (log f)′′ ≥ 0 the existence of a zero of f ′

implies that inf f > 0.
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As a consequence of Lemma 4, we obtain the following non-existence result

Theorem 6. Let f : R → (0,+∞) be a smooth function such that (log f)′′ ≥ 0
and inf f > 0. If the function f ′ has not zeros, then there is no bounded entire
solutions to Eq. (1).

Also we have the following uniqueness result

Theorem 7. Let f : R → (0,+∞) be a smooth function satisfying that (log f)′′ >
0. If there exists u0 ∈ R such that f ′(u0) = 0, then the only bounded entire solution
to Eq. (1) is the constant function u = u0.

Proof. The proof follows from Lemma 4 and Remark 5. �

Remark 8. Note that if the function f satisfies the weaker condition (log f)′′ ≥ 0
and there exists a unique zero of f ′, the thesis of Theorem 7 also holds.

Finally we get

Theorem 9. Let f : R → (0,+∞) be a smooth function satisfying that (log f)′′ ≥
0. If there exists u0 ∈ R such that f ′(u0) = 0, then the only bounded entire solutions
to Eq. (1) are the constant functions u = c with f ′(c) = 0.

Proof. We can suppose that the set J is not unitary; otherwise, the result follows
as has been reasoned above. Let u be an entire bounded solution to Eq. (1). Using
Lemma 2 and 4, and Remark 5, we have that

(f(u) cos θ + λ)2 K̂u ≥ 0.

Consequently, K̂u is non-negative and (R2, ĝu) is parabolic (see [4, Sec. 4]).
Taking into account the invariance of harmonic functions by conformal changes

of metric and using (9), we obtain that u is harmonic and bounded on the parabolic
surface (R2, ĝu). Therefore u must be equal to a constant c, with f ′(c) = 0. �
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