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Abstract. In the paper introducing the celebrated Falconer distance problem, Falconer proved
that the Lebesgue measure of the distance set is positive, provided that the Hausdorff dimension of
the underlying set is greater than d+1

2 . His result is based on the estimate

(0.1) µ× µ{(x, y) : 1 ≤ |x− y| ≤ 1 + ε} . ε,

where µ is a Borel measure satisfying the energy estimate Is(µ) =
´ ´
|x− y|−s

dµ(x) dµ(y) < ∞
for s > d+1

2 . An example due to Mattila [12, Remark 4.5], [11] shows in two dimensions that for
no s < 3

2 does Is(µ) < ∞ imply (0.1). His construction can be extended to three dimensions.
Mattila’s example readily applies to the case when the Euclidean norm in (0.1) is replaced by a
norm generated by a convex body with a smooth boundary and non-vanishing Gaussian curvature.
In this paper we prove, for all d ≥ 2, that for no s < d+1

2 does Is(µ) < ∞ imply (0.1) or the
analogous estimate where the Euclidean norm is replaced by the norm generated by a particular
convex body B with a smooth boundary and everywhere non-vanishing curvature. Our construction
is based on a combinatorial construction due to Valtr [15].

1. Introduction

The classical Falconer distance conjecture [5] says that if the Hausdorff dimension
of a compact set E ⊂ Rd, d ≥ 2, is greater than d

2
, then the Lebesgue measure of

∆(E) = {|x− y| : x, y ∈ E}
is positive. Here | · | denotes the Euclidean distance. The problem was introduced
by Falconer in [5] where he proves that the Lebesgue measure of ∆(E), denoted by
L1(∆(E)), is indeed positive if the Hausdorff dimension of E, denoted by dimH(E),
is greater than d+1

2
. Since then, due to efforts of Bourgain [2], Erdoğan [4], Mattila

[12, 13], Wolff [16] and others, the exponent has been improved, with the best current
result due to Wolff in two dimensions [16] and Erdoğan in higher dimensions [4]. They
proved that L1(∆(E)) > 0 provided that dimH(E) > d

2
+ 1

3
. See also [14] where the

authors prove that if dimH(E) > d+1
2
, then ∆(E) contains an interval.

Falconer’s d+1
2

exponent follows from the following key estimate. Suppose that µ
is Borel measure on E such that

Is(µ) =

¨
|x− y|−s dµ(x) dµ(y) <∞

for some s ≥ d+1
2
. Then

(1.1) µ× µ{(x, y) : 1 ≤ |x− y| ≤ 1 + ε} . ε,
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where here and throughout, X . Y means that there exists a uniform C > 0 such
that X ≤ CY .

This estimate follows by Plancherel and the fact that if σ denotes the Lebesgue
measure on the unit sphere, then

(1.2) |σ̂(ξ)| . |ξ|−
d−1
2 .

This implies, in particular, that (1.1) still holds if the Euclidean distance | · | is
replaced by ‖ · ‖B, where B is a symmetric convex body with a smooth boundary
and everywhere non-vanishing Gaussian curvature. This is because the estimate (1.2)
still holds if σ is replaced by σB, the Lebesgue measure on ∂B. To be precise, under
these assumptions on B, the estimate

(1.3) µ× µ{(x, y) : 1 ≤ ‖x− y‖B ≤ 1 + ε} . ε

holds provided that Is(µ) <∞ with s > d+1
2
.

A consequence of this more general version of (1.1) is that L1(∆B(E)) > 0
whenever dimH(E) > d+1

2
, where

∆B(E) = {‖x− y‖B : x, y ∈ E}.

See, for example, [1], [6], [7], [8] and [9] for the description of this generalization of
the Falconer distance problem and its connections with other interesting problems in
geometric measure theory and other areas.

An example due to Mattila (see [11]) shows in two dimensions that for no s < 3
2

does

Is(µ) =

¨
|x− y|−s dµ(x) dµ(y) <∞

imply (1.3). Mattila’s construction can be generalized to three dimensions (see Sec-
tion 3 below). However, in dimensions four and higher, his method does not seem
to apply. It is important to note that in any dimension, an example due to Falconer
[5] shows that for no s < d

2
does Is(µ) <∞ imply that the estimate (1.3) holds. We

record these calculations for the reader’s convenience in the Section 3 below.
In this paper we construct a measure in all dimensions which shows that for no

s < d+1
2

does Is(µ) <∞ imply that (1.3) holds. More precisely, we have the following
result.

Theorem 1.1. There exists a symmetric convex body B with a smooth bound-
ary and non-vanishing Gaussian curvature, such that for any s < d+1

2
, there exists a

Borel measure µs, such that Is(µ) ≈ 1 and

(1.4) lim sup
ε→0

ε−1µs × µs{(x, y) : 1 ≤ ‖x− y‖B ≤ 1 + ε} =∞.

Remark 1.2. The proof will show that ε−1 in (1.4) may be replaced by ε−
2s
d+1
−γ

for any γ > 0. We also note that we only need to establish (1.4) with s ≥ d
2
since if

s < d
2
, the example due to Falconer [5], mentioned above, does the job.

Another way of stating the conclusion of Theorem 1.1 is that for no s < d+1
2

does
Is(µ) <∞ imply that the distance measure is in L∞(R). The distance measure ν is
defined by the relationˆ

g(t) dν(t) =

¨
g(‖x− y‖B) dµ(x) dµ(y).
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1.1. Structure of the paper. Theorem 1.1 is proved in Section 2 below. The
idea is to make a construction for a specific convex body obtained by glueing the
upper and lower hemispheres of the paraboloid. In the Subsection 2.1 we describe
the combinatorial construction used in the proof of Theorem 1.1. In Subsection 2.2
we use the combinatorial construction from Section 2.1 to complete the proof of
Theorem 1.1. In Section 3 we describe the aforementioned example due to Mattila
and generalize it to three dimensions.

2. Proof of the main result

2.1. Combinatorial underpinnings. The proof of Theorem 1.1 uses a gen-
eralization of the two-dimensional construction due to Pavel Valtr (see [3, 15]). A
similar construction can also be found in [10] in a slightly different context. Let

Pn =

{(
i1
n
,
i2
n
, . . . ,

id−1
n
,
id
n2

)
: 0 ≤ ij ≤ n− 1, for 1 ≤ j ≤ d− 1, and 1 ≤ id ≤ n2

}
.

Notice that in each of the first d−1 coordinates, there are n evenly distributed points,
but in the last dimension, there are n2 evenly distributed points. Now, let

H = {(t1, t2, . . . , td−1, t21 + t22 + · · ·+ t2d−1) ∈ Rd : t1, t2, . . . , td−1 ∈ R}
and define

LH = {H + p : p ∈ Pn}.

Figure 1. On the left, we see a picture of the set P5, on the right, we see it again with a few
parabolic arcs, which intersect a point in each column.

Let N = nd+1. By construction, #Pn = #LH = N . Also by construction, each
element of LH is incident to about nd−1 ≈ N

d−1
d+1 elements of P . Thus the total

number of incidences between P and LH is

≈ N1+ d−1
d+1 = N

2d
d+1 = N2− 2

d+1 .

2.1.1. Construction of the norm. With this construction in hand, it is easy
enough to flip the paraboloid upside down and glue it to another copy. Explicitly, let

BU =
{

(x1, x2, . . . , xd) ∈ Rd : xi ∈ [−1, 1], for 1 ≤ i ≤ d− 1,

and xd = 1−
(
x21 + x22 + · · ·+ x2d−1

) }
,

and

BL =
{

(x1, x2, . . . , xd) ∈ Rd : xi ∈ [−1, 1], for 1 ≤ i ≤ d− 1,

and xd = −1 + x21 + x22 + · · ·+ x2d−1
}
.
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Now, let

B′ =
(
BU ∩

{
(x1, x2, . . . , xd) ∈ Rd : xd ≥ 0

})
∪
(
BL ∩

{
(x1, x2, . . . , xd) ∈ Rd : xd ≤ 0

})
.

Finally, define B to be a convex body B′, with the ridge at the transition between
BU and BL smoothed.

Let L denote N copies of ∂B, each translated by an element of Pn. Now we
have a symmetric convex body B ⊂ Rd with a smooth boundary and everywhere
non-vanishing curvature, a point set Pn of size N and a set L of translates of ∂B, of
size ≈ N , such that the number of incidences between Pn and L is ≈ N2− 2

d+1 .
The reader may be aware of the fact that in dimensions four and higher, a more

dramatic combinatorial example is available.

2.1.2. Lenz construction. (See e.g. [3]) More precisely, choose N/2 points
evenly spaced on the circle

{(cos(θ), sin(θ), 0, 0) : θ ∈ [0, 2π)}
and N/2 points evenly spaced on the circle

{(0, 0, cos(φ), sin(φ)) : φ ∈ [0, 2π)}.
Let KN be the union of the two point sets. It is not hard to check that all the
distances between the points on one circle and the points on the other circle are
equal to

√
2. It follows that the number of incidences between the points of KN and

the circles of radius
√

2 centered at the points of KN is ≈ N2, which is about as
bad as it can be and much larger than the N2− 2

d+1 obtained in the generalization of
Valtr’s example above. However, this construction will not help in the continuous
setting due to certain peculiarities of the Hausdorff dimension.

2.2. Using combinatorial information to construct the needed mea-
sures. Let d

2
≤ s < d+1

2
. There is no point going below d

2
because the lattice-based

construction in [5] shows that (1.1) cannot hold in that regime. Partition [0, 1]d into
lattice cubes of side-lengths ε where ε−s = N for some large integer N . Let n = N

1
d+1 .

Put Pn in the unit cube and select any lattice cube which contains a point of Pn. Let
Qn denote the set of centers of the selected lattice cubes.

Now, we define Lε to be the union of the ε-neighborhoods of the elements of L.
That is, for every translate of ∂B by an element, p ∈ Pn, let lp denote the locus of
points that are within ε of the translate of ∂B by p. Then

Lε =
⋃
p∈Pn

lp.

Lemma 2.1. Let µs denote the Lebesgue measure on the union of the selected
cubes above, normalized so that ˆ

dµs(x) = 1.

More precisely,
dµs(x) = εs−d

∑
p∈Pn

χRε(p)(x) dx,

where Rε(p) denotes the cube of side-length ε centered at p. Then

Is(µs) ≈ 1.
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Figure 2. On the left, we have P5, in the partitioned unit cube. On the right, we filled in every
cube which contained a point. Notice that there are gaps in the columns corresponding to cubes
which did not contain any points.

Proof. To prove the lemma, observe that

Is(µ) =

ˆ ˆ
|x− y|−s dµs(x) dµs(y)

= ε2(s−d)
∑
p,q∈Pn

ˆ ˆ
|x− y|−sχRε(p)(x)χRε(q)(y) dx dy

= ε2(s−d)
∑
p∈Pn

ˆ ˆ
|x− y|−sχRε(p)(x)χRε(p)(y) dx dy

+ ε2(s−d)
∑

p 6=q∈Pn

ˆ ˆ
|x− y|−sχRε(p)(x)χRε(q)(y) dx dy = I + II.

We have

I = ε2(s−d)
∑
p∈Pn

ˆ
Rε(p)

ˆ
Rε(p)

|x− y|−s dx dy.

Making the change of variables X = x− y, Y = y, we see that

I . ε2(s−d)
∑
p∈Pn

εd
ˆ
|X|≤

√
dε

|X|−s dX . ε2(s−d) · εd · εd−s
∑
p∈PN

1 = εs ·N . 1.

On the other hand,

II ≈
∑

p 6=q∈Pn

|p− q|−sε2s = N−2
∑

p 6=q∈Pn

|p− q|−s.

We have

p = (p′, pd) =

(
i1
n
, . . . ,

id−1
n
,
id
n2

)
and

q = (q′, qd) =

(
j1
n
, . . . ,

jd−1
n
,
jd
n2

)
.

Let i′ = (i1, . . . , id−1) and j′ = (j1, . . . , jd−1). Thus we must consider

N−2
∑

i 6=j;|i′|,|j′|≤n;id,jd≤n2

∣∣∣∣∣∣∣∣i′ − j′n

∣∣∣∣+

∣∣∣∣id − jdn2

∣∣∣∣∣∣∣∣−s.
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Replacing the sum by the integral, we obtain

N−2
¨

. . .

ˆ
|i1|,|j1|,...,|id−1|,|jd−1|≤n

id,jd≤n2

∣∣∣∣∣∣∣∣i′ − j′n

∣∣∣∣+

∣∣∣∣id − jdn2

∣∣∣∣∣∣∣∣−s di′ dj′ did djd,
which, by a change of variables, u′ = (i′/n), ud = (id/n

2), v′ = (j′/n), and vd =
(jd/n

2), with similarly named coordinates, becomes

=

¨
. . .

ˆ
u6=v

|u1|,|v1|,...,|ud−1|,|vd−1|≤1
ud,vd≤1

|u− v|−s du′ dv′ dud dvd . 1.

This completes the proof of Lemma 2.1. �

We are now ready to complete the argument in the case of the paraboloid. We
have

µs × µs{(x, y) : 1 ≤ ‖x− y‖B ≤ 1 + ε}
is ≈ Cε2s times the number of incidences between the elements of Qn and Lε, where
Qn and Lε are constructed in the beginning of this section. Invoking our generaliza-
tion of Valtr’s construction from Section 2.1 above, we see that

µs × µs{(x, y) : 1 ≤ ‖x− y‖B ≤ 1 + ε} ≈ ε2s ·N2− 2
d+1 ≈ N−

2
d+1 .

This quantity is much greater than ε = N−
1
s when s < d+1

2
. This completes the

proof of Theorem 1.1.

3. Mattila’s construction

In this section we describe Mattila’s construction from [11] and its generalization
to three dimensions.

First, we review the method of constructing a Cantor set of a given Hausdorff
dimension, (see [13]). If we want a Cantor set, Cα, of Hausdorff dimension 0 < α < 1,
we need to find the 0 < λ < 1/2 which satisfies α = log 2/ log(1/λ). Start with
the unit segment, then remove the interval (1

2
− λ/2, 1

2
+ λ/2). Next, remove the

middle λ proportion of each of the remaining subintervals, and so on. The classic
“middle-thirds” Cantor set would be generated with λ = 1/3.

To construct the two-dimensional example,M2(α), we let F = (Cα) ∪ (Cα − 1).
Then define M2(α) = F × [0, 1]. Define the measure µ to be (Hα|F ) × (L1|[0, 1]),
where Hα is the α-dimensional Hausdorff measure.

Pick a point x = (x1, x2) ∈M2(α). Notice that if x1 ∈ F , either x1 + 1 or x1− 1
is also in F . So there is an ε-annulus, with radius 1, centered at x, which contains
a rectangle of width ε and length

√
ε. This rectangle intersects M2(α) lengthwise.

The measure of this intersection is ε1/2+α. This follows easily from the fact that the
circle has non-vanishing curvature. It follows that

µ {y : 1 ≤ |x− y| ≤ 1 + ε} & εα+1/2

for every x. It follows that

µ× µ{(x, y) : 1 ≤ |x− y| ≤ 1 + ε} =

ˆ
µ {y : 1 ≤ |x− y| ≤ 1 + ε} dµ(x) & εα+1/2.

We conclude that
µ× µ{(x, y) : 1 ≤ |x− y| ≤ 1 + ε} . ε

only if
εα+

1
2 . 1,
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which can only hold if

α ≥ 1

2
.

Thus the estimate (1.3) does not in general hold for sets with Hausdorff dimen-
sion less than 3

2
. Letting α get arbitrarily small yields a family of counterexamples

with Hausdorff dimensions arbitrarily close to 1 , below which there are already coun-
terexamples. See, for example, [5]. Note that we worked in [−1, 1]× [0, 1] instead of
[0, 1]× [0, 1], to allow the main point to shine.

To constructM3(δ), the three-dimensional example, we set

M3(δ) = (Cα ∪ (Cα − 1))× (Cα ∪ (Cα − 1))× Cβ,
where α = 1 − δ, and β = δ/2, and δ is determined later. We will set µ to be a
product of the appropriate Hausdorff measures restricted to this set, much like the
previous example. Notice thatM3(δ) has a Hausdorff dimension of 2 − 3

2
δ, and for

a given point x ∈ M3(δ), there is an ε
1
2 by ε

1
2 by ε box inside the annulus whose

measure is
εα/2 · εα/2 · εβ = ε1−δ/2.

Once again, we have used the fact that the sphere has non-vanishing Gaussian
curvature, which implies, by elementary geometry, that the ε-annulus contains an ε

1
2

by ε
1
2 by ε box. It follows that

µ {y : 1 ≤ |x− y| ≤ 1 + ε} & ε1−δ/2

for every x ∈M3(δ), which means that

µ× µ{(x, y) : 1 ≤ |x− y| ≤ 1 + ε} & ε1−δ/2,

so (1.3) does not hold.
Thus we shown that for s < 2 = d+1

2
(when d = 3), Is(µ) < ∞ does not imply

that (1.3) holds. Observe that both constructions in this section work for any convex
B such that ∂B is smooth and has everywhere non-vanishing Gaussian curvature.
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