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Abstract. Our aim in this paper is to establish various norm inequalities in Musielak–Orlicz

spaces. We give a generalization of a result due to Cruz-Uribe, Fiorenza, Martell and Pérez and

apply it to obtain norm inequalities for classical operators as well as an Olsen inequality in Musielak–

Orlicz spaces.

1. Introduction

There has been a considerable amount of studies on the variable exponent Lebes-
gue spaces Lp(·); see [5, 7] etc. for exhaustive account of this direction of research.
In those studies, various kinds of norm inequalites were discussed, including those
which show the boundedness of important operators. Cruz-Uribe, Fiorenza, Martell
and Pérez [6] gave a method to obtain Lp(·)-norm inequalities from Lp0(w)-norm
inequalities with a constant exponent p0 and weights w. In fact, they proved [6,
Theorem 1.3]:

Theorem A. Let F be a family of ordered pairs (f, g) of nonnegative measurable
functions on R

N . Suppose that

(1.1)

ˆ

RN

f(x)p0w(x) dx ≤ C0

ˆ

RN

g(x)p0w(x) dx

for some p0 > 0, for all (f, g) ∈ F and for all A1-weights w with a constant C0

depending only on p0 and the A1-constant of w. Let p(·) be a variable exponent such
that

1 ≤ p− = ess inf
x∈RN

p(x) ≤ p+ = ess sup
x∈Rn

p(x) < ∞.

If p0 < p− and the Hardy–Littlewood maximal operator is bounded on L(p(·)/p0)′(RN),
then there is a constant C > 0 such that

‖f‖p(·) ≤ C‖g‖p(·)

for all (f, g) ∈ F with g ∈ Lp(·)(RN).

In the present paper, we call this theorem CFMP-theorem.
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Variable exponent Lebesgue spaces are special cases of Musielak–Orlicz spaces,
which were first considered by Nakano as modulared function spaces in [25] and
then developed by Musielak as generalized Orlicz spaces in [22]. Our main aim in
this paper is to extend Theorem A to Musielak–Orlicz spaces LΦ(RN) defined by a
general function Φ(x, t) satisfying certain conditions (Theorem 5.2). See Section 2
for the definition of Φ and LΦ(RN).

Many types of norm inequalities depend on the boundedness of the Hardy–
Littlewood maximal operator M . The boundedness of M on LΦ(RN) was established
in [19, Corollary 4.4]; we give its improvement in Section 3 of the present paper. The
proof of Theorem A also depends on the boundedness of M on the dual space of
Lp(·)(RN).

In Section 4, we study properties of the complementary function of Φ and look
for conditions on Φ that assure the boundedness of M on the dual space of LΦ(RN).
We follow [6] for the proof of our generalization of Theorem A, Theorem 5.2, and ap-
plications of extrapolation theorems to obtain vector-valued inequalities in LΦ(RN).
As applications of Theorem 5.2, we prove LΦ-norm inequalities for classical operators
such as sharp maximal operators and singular integral operators in Section 6. We
shall also show the LΦ-version of Kerman–Sawyer inequality.

Using the vector-valued inequality, in Section 7 we shall establish a decomposition
result for functions in Musielak–Orlicz spaces as an extension of [23] and [24] for the
case of Lebesgue spaces with variable exponents and Orlicz spaces. See [4, 13, 14, 26,
27, 37] for related results. As an application of the decomposition result, we obtain
an Olsen inequality in the final section. By an Olsen inequality, or a trace inequality,
we mean an inequality of type

(1.2) ‖g · Iαf‖X ≤ C‖g‖Y · ‖f‖Z

for some Banach function spaces X, Y and Z, where Iαf is the Riesz potential (of
order α) of f . There is a vast amount of literatures on Olsen inequalities [11, 12, 28,
29, 30, 32, 33, 34, 36]. We shall show that (1.2) holds with X = Z = LΦ(RN) and a
certain Morrey space Y .

Throughout this paper, let C denote various constants independent of the vari-
ables in question, and C(a, b, . . .) a constant that depends on a, b, . . ..

2. Preliminaries

We consider a function

Φ(x, t) = tφ(x, t) : RN × [0,∞) → [0,∞)

satisfying the following conditions (Φ1)–(Φ3):

(Φ1) φ( · , t) is measurable on R
N for each t ≥ 0 and φ(x, · ) is continuous on [0,∞)

for each x ∈ R
N ;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ φ(x, 1) ≤ A1 for all x ∈ R

N ;

(Φ3) φ(x, ·) is uniformly almost increasing on (0,∞), namely there exists a constant
A2 ≥ 1 such that

φ(x, t) ≤ A2φ(x, at) for all x ∈ R
N whenever t > 0 and a > 1.
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Let φ̄(x, t) = sup0≤s≤t φ(x, s) and

Φ(x, t) =

ˆ t

0

φ̄(x, r) dr

for x ∈ R
N and t ≥ 0. Then φ̄(x, ·) is continuous nondecreasing, Φ(x, ·) is convex

and

(2.1) Φ(x, t/2) ≤ Φ(x, t) ≤ A2Φ(x, t)

for all x ∈ R
N and t ≥ 0. Given Φ(x, t) as above, the associated Musielak–Orlicz

space

LΦ(RN) =

{

f ∈ L1
loc(R

N) :

ˆ

RN

Φ
(

y, |f(y)|/λ
)

dy < ∞ for some λ > 0

}

is a Banach space with respect to the norm (cf. [22])

‖f‖Φ = ‖f‖LΦ(RN ) = inf

{

λ > 0:

ˆ

RN

Φ
(

y, |f(y)|/λ
)

dy ≤ 1

}

.

We shall also consider the following conditions: Let ε ≥ 0, ν > 0 and ω > 0.

(Φ3; ε) t 7→ t−εφ(x, t) is uniformly almost increasing on (0,∞), namely there exists
a constant A2,ε ≥ 1 such that

φ(x, t) ≤ A2,εa
−εφ(x, at) for all x ∈ R

N whenever t > 0 and a > 1;

(Φ4) φ(x, ·) satisfies the uniform doubling condition, namely there exists a constant
A3 ≥ 1 such that

φ(x, 2t) ≤ A3φ(x, t) for all x ∈ R
N and t > 0;

(Φ5; ν) For every γ > 0, there exists a constant Bγ,ν ≥ 1 such that

Φ(x, t) ≤ Bγ,νΦ(y, t)

whenever |x− y| ≤ γt−ν and t ≥ 1;
(Φ6;ω) there exist a function g on R

N and a constant B∞ ≥ 1 such that 0 ≤ g(x) < 1
for all x ∈ R

N , gω ∈ L1(RN) and

B−1
∞ Φ(x, t) ≤ Φ(x′, t) ≤ B∞Φ(x, t)

whenever |x′| ≥ |x| and g(x) ≤ t ≤ 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on R
N

such that

(P1) 1 ≤ p− = infx∈RN p(x) ≤ supx∈RN p(x) = p+ < ∞

and

(Q1) −∞ < q−j = infx∈RN qj(x) ≤ supx∈RN qj(x) = q+j < ∞

for all j = 1, . . . , k. Set Lc(t) = log(c + t) for c ≥ e and t ≥ 0, L
(1)
c (t) = Lc(t),

L
(j+1)
c (t) = Lc(L

(j)
c (t)) and

Φ(x, t) = tp(x)
k
∏

j=1

(L(j)
c (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if there is a constant
K ≥ 0 such that K(p(x) − 1) + qj(x) ≥ 0 for all x ∈ R

N and j = 1, . . . , k; in
particular if p− > 1 or q−j ≥ 0 for all j = 1, . . . , k. If p− > 1, then Φ(x, t) satisfies
(Φ3; ε) for 0 < ε < p− − 1.
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Moreover, we see that Φ(x, t) satisfies (Φ5; ν) for every ν > 0 if

(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤
Cp

Le(1/|x− y|)

with a constant Cp ≥ 0 and
(Q2) qj(·) is (j + 1)-log-Hölder continuous, namely

|qj(x)− qj(y)| ≤
Cqj

L
(j+1)
e (1/|x− y|)

with constants Cqj ≥ 0, j = 1, . . . k.

Finally, we see that Φ(x, t) satisfies (Φ6;ω) for every ω > 0 with g(x) = 1/(1 +
|x|)(N+1)/ω if p(·) is log-Hölder continuous at ∞, namely if it satisfies

(P3) |p(x)− p(x′)| ≤
Cp,∞

Le(|x|)
whenever |x′| ≥ |x| with a constant Cp,∞ ≥ 0.

Note that (Φ3; 0) = (Φ3). If Φ(x, t) satisfies (Φ3; ε), then it satisfies (Φ3; ε′) for
0 ≤ ε′ ≤ ε. If Φ(x, t) satisfies (Φ3; ε), then

φ̄(x, t) ≤ A2,εa
−εφ̄(x, at) for all x ∈ R

N whenever t > 0 and a > 1

and

Φ(x, t) ≤ A2,εa
−1−εΦ(x, at) for all x ∈ R

N whenever t > 0 and a > 1.

If Φ(x, t) satisfies (Φ5; ν), then it satisfies (Φ5; ν ′) for all ν ′ ≥ ν; if Φ(x, t) satisfies
(Φ6;ω), then it satisfies (Φ6;ω′) for all ω′ ≥ ω.

The following example shows that if 0 < ν ′ < ν and 0 < ω′ < ω, then there exists
Φ(x, t) satisfying (Φj), j = 1, 2, 3, 4 such that it satisfies (Φ5; ν) and (Φ6;ω), while
it does not satisfy (Φ5; ν ′) nor (Φ6;ω′).

Example 2.2. For p ≥ 1, q > 0 and r > 0, set

Φ(x, t) =

{

tpmax
(

1, tq min(1, |x|)
)

if t ≥ 1,

tpmax
(

t, min(1/2, |x|−N/r)
)

if t < 1.

This Φ(x, t) satisfies (Φj), j = 1, 2, 3, 4; it satisfies (Φ3; p− 1). We shall show:

(a) Φ(x, t) satisfies (Φ5; ν) if and only if ν ≥ q;
(b) Φ(x, t) satisfies (Φ6;ω) if ω > r but does not satisfy (Φ6;ω) if ω < r.

Proof of (a). Let t ≥ 1 and |x− y| ≤ γt−ν . If ν ≥ q, then

min(1, |x|) ≤ min(1, |y|) + |x− y| ≤ min(1, |y|) + γt−ν ≤ min(1, |y|) + γt−q,

so that
max

(

1, tq min(1, |x|)
)

≤ max
(

1, tq min(1, |y|)
)

+ γ,

which implies

Φ(x, t) ≤ tpmax
(

1, tq min(1, |y|)
)

+ γtp ≤ (1 + γ)Φ(y, t).

Hence Φ(x, t) satisfies (Φ5; ν) if ν ≥ q.
Next, suppose ν < q. Let e1 = (1, 0, . . . , 0). Since Φ(0, t) = tp and Φ(t−νe1, t) =

tpmax(1, tq−ν) = tp+q−ν ,

Φ(t−νe1, t)

Φ(0, t)
→ ∞ (t → ∞).

This shows that Φ(x, t) does not satisfy (Φ5; ν).
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Proof of (b). First, let ω > r. Take

gr(x) = min
(

1/2, |x|−N/r
)

(x ∈ R
N).

Then 0 < gr(x) ≤ 1/2 for all x ∈ R
N and gωr ∈ L1(RN). If gr(x) ≤ t < 1 and

|x′| ≥ |x|, then gr(x
′) ≤ gr(x) ≤ t, so that Φ(x, t) = Φ(x′, t) = tp+1. Hence Φ(x, t)

satisfies (Φ6;ω) if ω > r.
Next, assume that ω < r and suppose that there exists a function g on R

N such
that 0 ≤ g(x) < 1 for all x ∈ R

N and

(2.2) Φ(x, t) ≤ BΦ(x′, t) whenever |x′| ≥ |x| and g(x) ≤ t < 1

with a constant B ≥ 1. We claim that there exists R > 1 such that

(2.3) g(x) ≥ |x|−N/ω for |x| ≥ R.

Suppose on the contrary that there exists a sequence {xn} such that |xn| → ∞ and
g(xn) < |xn|

−N/ω for all n. We may assume |xn| ≥ 2r/N . Then

Φ(xn, |xn|
−N/ω) = |xn|

−pN/ω max(|xn|
−N/ω, |xn|

−N/r) = |xn|
−(p/ω+1/r)N .

If we take x′
n ∈ R

N such that |x′
n| = |xn|

r/ω (> |xn|), then

Φ(x′
n, |xn|

−N/ω) = |xn|
−pN/ω max(|xn|

−N/ω, |x′
n|

−N/r) = |xn|
−(p/ω+1/ω)N .

Hence,
Φ(xn, |xn|

−N/ω)

Φ(x′
n, |xn|−N/ω)

= |xn|
(1/ω−1/r)N → ∞ (n → ∞),

which contradicts (2.2). Thus, (2.3) holds, and hence gω 6∈ L1(RN), which means
that Φ(x, t) does not satisfy (Φ6;ω) if ω < r.

3. Boundedness of the maximal operator

For f ∈ L1
loc(R

N), its maximal function Mf is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

ˆ

B(x,r)

|f(y)| dy.

As the boundedness of the maximal operator M on LΦ(RN), we give the following
theorem, which is an improvement of [19, Corollary 4.4] by relaxing assumptions on
Φ(x, t) in [19]. In fact, we shall show our result by assuming (Φ5; ν) and (Φ6;ω)
below instead of (Φ5) and (Φ6) in [19]. Further, the result is proved without (Φ4)
which is assumed in [19].

Theorem 3.1. Suppose that Φ(x, t) satisfies (Φ3; ε), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω ≤ 1 + ε. Then the maximal
operator M is bounded from LΦ(RN) into itself, namely

‖Mf‖Φ ≤ CM‖f‖Φ

for all f ∈ LΦ(RN).

We prove this theorem by modifying the proof of [19, Theorem 4.1].
For a nonnegative f ∈ L1

loc(R
N), x ∈ R

N and r > 0, let

I(f ; x, r) =
1

|B(x, r)|

ˆ

B(x,r)

f(y) dy

and

J(f ; x, r) =
1

|B(x, r)|

ˆ

B(x,r)

Φ
(

y, f(y)
)

dy.
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Lemma 3.2. Suppose Φ(x, t) satisfies (Φ3; ε1) and (Φ5; ν) for ε1 > 0 and ν > 0
satisfying ν ≤ (1 + ε1)/N . Then, given L ≥ 1, there exist constants C1 = C(L) ≥ 2
and C2 > 0 such that

Φ
(

x, I(f ; x, r)/C1

)

≤ C2J(f ; x, r)

for all x ∈ R
N , r > 0 and for all nonnegative f ∈ L1

loc(R
N) such that f(y) ≥ 1 or

f(y) = 0 for each y ∈ R
N and

(3.1)

ˆ

RN

Φ(y, f(y)) dy ≤ L.

Proof. Given f as in the statement of the lemma, x ∈ R
N and r > 0, set

I = I(f ; x, r) and J = J(f ; x, r). Note that (3.1) implies J ≤ L|B(0, 1)|−1r−N . By
(Φ2) and (Φ3), Φ

(

y, f(y)
)

≥ (A1A2)
−1f(y), since f(y) ≥ 1 or f(y) = 0. Hence

I ≤ A1A2J . Thus, if J ≤ 1, then

Φ(x, I/C1) ≤ A2JΦ(x, 1) ≤ A1A2J

whenever C1 ≥ A1A2.
Next, suppose J > 1. Since Φ(x, t) → ∞ as t → ∞, there exists K ≥ 1 such that

Φ(x,K) = Φ(x, 1)J

by (Φ1) and the mean value theorem. With this K, we have
ˆ

B(x,r)

f(y) dy ≤ K|B(x, r)|+ A2

ˆ

B(x,r)

f(y)
φ
(

y, f(y)
)

φ(y,K)
dy.

Since K > 1, by (Φ3; ε1) we have

Φ(x, 1)J = Φ(x,K) ≥ A−1
2,ε1K

1+ε1Φ(x, 1),

so that J ≥ A−1
2,ε1K

1+ε1 , which implies

K1+ε1 ≤ A2,ε1J ≤ A2,ε1L|B(0, 1)|−1r−N ,

or r ≤ γK−(1+ε1)/N with γ = (A2,ε1L|B(0, 1)|−1)1/N . Thus, if |y − x| ≤ r, then
|y − x| ≤ γK−(1+ε1)/N ≤ γK−ν . Hence, by (Φ5; ν) there is β > 0, independent of f ,
x, r, such that

φ(x,K) ≤ βφ(y,K) for all y ∈ B(x, r).

Thus, we have
ˆ

B(x,r)

f(y) dy ≤ K|B(x, r)|+
A2β

φ(x,K)

ˆ

B(x,r)

f(y)φ
(

y, f(y)
)

dy

= K|B(x, r)|+ A2β|B(x, r)|
J

φ(x,K)

= K|B(x, r)|

(

1 +
A2β

φ(x, 1)

)

≤ K|B(x, r)| (1 + A1A2β) .

Therefore
I ≤ (1 + A1A2β)K,

so that by (Φ2) and (Φ3)

Φ(x, I/C1) ≤ A2Φ(x,K) ≤ A1A2J

whenever C1 ≥ 1 + A1A2β. �

The next lemma can be shown in the same way as [19, Lemma 3.2]; note that
the value of ω is irrelevant in this lemma.
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Lemma 3.3. Suppose Φ(x, t) satisfies (Φ6;ω) for some ω > 0. Then there exists
a constant C3 > 0 such that

Φ
(

x, I(f ; x, r)/2
)

≤ C3 {J(f ; x, r) + Φ(x, g(x))}

for all x ∈ R
N , r > 0 and for all nonnegative f ∈ L1

loc(R
N) such that g(y) ≤ f(y) ≤ 1

or f(y) = 0 for each y ∈ R
N , where g is the function appearing in (Φ6;ω).

Proof of Theorem 3.1. Choose p0 ∈ (1, 1 + ε) such that p0 ≤ (1 + ε)/(Nν) and
consider the function

Φ0(x, t) = Φ(x, t)1/p0 .

Then Φ0(x, t) satisfies the conditions (Φ1), (Φ2), (Φ5; ν) and (Φ6;ω) with the same
g. Since

Φ0(x, t) = tφ0(x, t) with φ0(x, t) =
[

t1−p0φ(x, t)
]1/p0 ,

condition (Φ3; ε) implies that Φ0(x, t) satisfies (Φ3; ε1) with ε1 = (1+ ε)/p0 − 1 > 0.
Note that

(3.2)
1 + ε1
N

=
1 + ε

p0N
≥ ν.

Let f ≥ 0 and ‖f‖Φ ≤ 1/2. Let f1 = fχ{x:f(x)≥1}, f2 = fχ{x:g(x)≤f(x)<1} with g
in (Φ6;ω) and f3 = f − f1 − f2, where χE is the characteristic function of E. Since
Φ(x, t) ≥ (A1A2)

−1 for t ≥ 1 by (Φ3),

Φ0(x, t) ≤ (A1A2)
1−1/p0Φ(x, t) ≤ (A1A2)

1−1/p0Φ(x, 2t)

if t ≥ 1. Hence
ˆ

RN

Φ0(y, f1(y)) dy ≤ (A1A2)
1−1/p0 .

In view of (3.2), we can apply Lemma 3.2 to Φ0, f1 and L = (A1A2)
1−1/p0 , and we

have
Φ0

(

x,Mf1(x)/C1

)

≤ C2MΦ0

(

·, f1(·)
)

(x),

so that

(3.3) Φ
(

x,Mf1(x)/C1

)

≤ Cp0
2

[

MΦ0

(

·, f(·)
)

(x)
]p0

for all x ∈ R
N with a constant C > 0 independent of f .

Next, applying Lemma 3.3 to Φ0 and f2, we have

Φ0(x,Mf2(x)/2) ≤ C
[

MΦ0

(

·, f2(·)
)

(x) + Φ0

(

x, g(x)
)]

.

Noting that Φ0(x, g(x)) ≤ Cg(x)(1+ε)/p0 by (Φ3; ε), we have

(3.4) Φ
(

x,Mf2(x)/2
)

≤ C
{[

MΦ0

(

·, f(·)
)

(x)
]p0

+ g(x)1+ε
}

for all x ∈ R
N with a constant C > 0 independent of f .

Since 0 ≤ f3 ≤ g ≤ 1, 0 ≤ Mf3 ≤ Mg ≤ 1. Hence we have

(3.5) Φ
(

x,Mf3(x)
)

≤ A2Φ0(x,Mg(x))p0 ≤ C[Mg(x)]1+ε

for all x ∈ R
N with a constant C > 0 independent of f .

Combining (3.3), (3.4) and (3.5), and noting that g(x) ≤ Mg(x) for a.e. x ∈ R
N ,

we obtain

(3.6) Φ
(

x,Mf(x)/(C1 + 3)
)

≤ C
{[

MΦ0

(

·, f(·)
)

(x)
]p0

+ [Mg(x)]1+ε
}

for a.e. x ∈ R
N with a constant C > 0 independent of f .
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Since M is bounded on Lp0(RN) and on L1+ε(RN), there exists a constant C4 ≥ 1
such that

ˆ

RN

Φ
(

x,Mf(x)/(C1 + 3)) dx

≤ C

{
ˆ

RN

[

MΦ0

(

·, f(·)
)

(y)
]p0

dy +

ˆ

RN

[Mg(y)]1+ε dy

}

≤ C

{
ˆ

RN

Φ0

(

x, f(x)
)p0

dx+

ˆ

RN

g(x)1+ε dx

}

≤ C

{
ˆ

RN

Φ
(

x, f(x)
)

dx+

ˆ

RN

g(x)ω dx

}

≤ C4,

so that
ˆ

RN

Φ
(

y,Mf(y)/(A2(C1 + 3)C4)) dy ≤ 1.

This completes the proof of the theorem. �

4. Properties of the complementary function

Hereafter, we assume that Φ(x, t) further satisfies

(Φ3∗) limt→∞ φ(x, t) = ∞ and limt→0+ φ(x, t) = 0 for every x ∈ R
N .

Note that this condition implies the same condition with φ̄ in place of φ. Also, note
that if Φ(x, t) satisfies (Φ3; ε) for some ε > 0, then it satisfies (Φ3∗).

Under this asumption, we consider the complementary function Φ∗(x, s) of Φ(x, t):
set

φ∗(x, s) = sup{t ≥ 0: φ̄(x, t) ≤ s}

and

Φ∗(x, s) =

ˆ s

0

φ∗(x, r) dr

for x ∈ R
N and s ≥ 0. Note that Φ∗(x, ·) is nonnegative, convex and Φ∗(x, 0) = 0;

Φ∗(x, t) satisfies (Φ1) and (Φ3).
Furthermore, we have

Proposition 4.1. (1) If Φ(x, t) satisfies (Φ3; ε) for some ε > 0, then Φ∗(x, t)
satisfies (Φ2) and (Φ4).

(2) Define ε∗ = (log 2)/(logA3) where A3 > 1 is a constant appearing in (Φ4). If
Φ(x, t) satisfies (Φ4), then Φ∗(x, t) satisfies (Φ3; ε∗).

Proof. (1) Suppose Φ(x, t) satisfies (Φ3; ε) for some ε > 0. Then φ̄(x, t) → ∞ as
t → ∞ and φ̄(x, t) → 0 as t → 0, both uniformly in x ∈ R

N . It then follows that

0 < inf
x∈RN

φ∗(x, 1) ≤ sup
x∈RN

φ∗(x, 1) < ∞

and

0 < inf
x∈RN

Φ∗(x, 1) ≤ sup
x∈RN

Φ∗(x, 1) < ∞,

which is (Φ2) for Φ∗(x, t).
Since

φ̄(x, (2A2,ε)
−1/εt) ≤ A2,ε(2A2,ε)

−1φ̄(x, t) =
1

2
φ̄(x, t)
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by (Φ3; ε),

φ∗(x, 2s) = sup{t ≥ 0: φ̄(x, t) ≤ 2s}

≤ sup{t ≥ 0: φ̄(x, (2A2,ε)
−1/εt) ≤ s} = (2A2,ε)

1/εφ∗(x, s),

which implies

Φ∗(x, 2s) ≤ 2A∗
3Φ

∗(x, s),

where A∗
3 = (2A2,ε)

1/ε. Thus Φ∗(x, t) satisfies (Φ4).
(2) First, we show

(4.1) φ̄(x, t) ≤ s ⇒ φ̄(x,A−ε∗

3 aε
∗

t) ≤ as

for t ≥ 0 and a > 1. Let φ̄(x, t) ≤ s. If 1 < a ≤ A3, then

φ̄(x,A−ε∗

3 aε
∗

t) ≤ φ̄(x, t) ≤ s ≤ as.

If a ≥ A3, then using (Φ4) we have

φ̄(x,A−ε∗

3 aε
∗

t) ≤ A3(A
−ε∗

3 aε
∗

)1/ε
∗

φ̄(x, t) = aφ̄(x, t) ≤ as.

Thus (4.1) holds.
Now (4.1) implies

φ∗(x, s) ≤ Aε∗

3 a−ε∗φ∗(x, as)

for s > 0 and a > 1, which in turn implies

Φ∗(x, s) ≤ Aε∗

3 a−1−ε∗Φ∗(x, as)

whenever s > 0 and a > 1. This means that Φ∗(x, t) satisfies (Φ3; ε∗). �

Lemma 4.2. Suppose Φ(x, t) satisfies (Φ3; ε) for some ε > 0. Define

η(x, t) =

{

Φ(x, t)/t (t > 0),

0 (t = 0),
η∗(x, s) =

{

Φ∗(x, s)/s (s > 0),

0 (s = 0)

for x ∈ R
N , t ≥ 0 and s ≥ 0. Then there is a constant A4 ≥ 1 such that

A−1
4 t ≤ η∗(x, η(x, t)) ≤ A4t

for x ∈ R
N and t ≥ 0.

Proof. First, we note that

(4.2) t ≤ φ∗(x, φ̄(x, t)) ≤ A
1/ε
2,ε t

for all x ∈ R
N and t > 0. In fact, the first inequality is obvious from the definition

of φ∗. Suppose φ̄(x, at) ≤ φ̄(x, t) with a ≥ 1. Then, by (Φ3; ε),

φ̄(x, t) ≥ φ̄(x, at) ≥ A−1
2,εa

εφ̄(x, t),

so that a ≤ A
1/ε
2,ε . This shows the second inequality of (4.2).

Since φ∗(x, ·) and φ̄(x, ·) are non-decreasing, so are η∗(x, ·) and η(x, ·); and
η∗(x, s) ≤ φ∗(x, s) as well as η(x, t) ≤ φ̄(x, t). Hence, by (4.2), we have

η∗(x, η(x, t)) ≤ φ∗(x, φ̄(x, t)) ≤ A
1/ε
2,ε t.

On the other hand,

η(x, t) ≥
1

t

ˆ t

t/2

φ̄(x, r) dr ≥
1

2
φ̄(x, t/2)
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and, similarly, η∗(x, s) ≥ (1/2)φ∗(x, s/2). Hence

η∗(x, η(x, t)) ≥ η∗
(

x,
1

2
φ̄(x, t/2)

)

≥
1

2
φ∗

(

x,
1

4
φ̄(x, t/2)

)

.

Thus, by Proposition 4.1 (1) and (4.2), we have

η∗(x, η(x, t)) ≥
1

2(A∗
3)

2
φ∗(x, φ̄(x, t/2)) ≥

1

4(A∗
3)

2
t. �

Proposition 4.3. Suppose Φ(x, t) satisfies (Φ3; ε) and (Φ4) for some ε > 0.

(1) If Φ(x, t) satisfies (Φ5; ν), then Φ∗(x, s) satisfies (Φ5; ν/ε).
(2) If Φ(x, t) satisfies (Φ6;ω), then Φ∗(x, s) satisfies (Φ6;ω/ε).

Proof. (1) Let γ′ > 0 and |x−y| ≤ γ′t−ν/ε. First, we consider the case t ≥ A1A2.
Since η(x, 1) ≤ A1A2, there is s ≥ 1 such that t = η(x, s). Since

η(x, s) ≥ A−1
2,εs

εη(x, 1) ≥ (2A1A2,εA3)
−1sε,

we have
|x− y| ≤ γ′(2A1A2,εA3)

ν/εs−ν .

Hence, by (Φ5; ν) and (2.1),

B̄−1η(x, s) ≤ η(y, s) ≤ B̄η(x, s)

with B̄ = 2A2A3Bγ,ν , γ = γ′(2A1A2,εA3)
ν/ε. By Proposition 4.1 (1), there is a

constant B′ ≥ 1 such that η∗(z, B̄t) ≤ B′η∗(z, t) for all z ∈ R
N and t > 0. Then,

using Lemma 4.2 twice, we have

η∗(y, t) = η∗(y, η(x, s)) ≤ η∗(y, B̄η(y, s))

≤ B′η∗(y, η(y, s)) ≤ A4B
′s ≤ A2

4B
′η∗(x, t)

and

η∗(x, t) = η∗(x, η(x, s)) ≤ A4s ≤ A2
4η

∗(y, η(y, s))

≤ A2
4η

∗(y, B̄η(x, s)) ≤ A2
4B

′η∗(y, η(x, s)) = A2
4B

′η∗(y, t).

Thus

(4.3) B′′−1
η∗(x, t) ≤ η∗(y, t) ≤ B′′η∗(x, t) if t ≥ A1A2

with B′′ = A2
4B

′.
Next, let C1 = infz∈RN η∗(z, 1) and C2 = supz∈RN η∗(z, A1A2). Then C1 > 0 and

C2 < ∞ by Proposition 4.1 (1). Then

(4.4) C1C
−1
2 η∗(x, t) ≤ η∗(y, t) ≤ C−1

1 C2η
∗(x, t) for 1 ≤ t ≤ A1A2.

Now, (4.3) and (4.4) show that Φ∗(x, t) satisfies (Φ5; ν/ε).
(2) Let g(x) be the function appearing in (Φ6;ω) for Φ(x, t). Set

g∗(x) = min

(

1

2A1A3

, η(x, g(x))

)

.

Then, 0 ≤ g∗(x) ≤ 1/2 < 1 and

g∗(x) ≤ η(x, g(x)) ≤ A1A2A2,εg(x)
ε,

which implies (g∗)ω/ε ∈ L1(RN). We want to show that there exists a constant
B′

∞ ≥ 1 such that

(4.5) (B′
∞)−1η∗(x, t) ≤ η∗(x′, t) ≤ B′

∞η∗(x, t)

whenever |x′| ≥ |x| and g∗(x) ≤ t ≤ 1.
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First, suppose g∗(x) < t < 1/(2A1A3). Then g∗(x) = η(x, g(x)). Take s > 0 such
that η(x, s) = t. Then η(x, g(x)) < η(x, s) < η(x, 1), which implies g(x) < s < 1.
Thus, by (Φ6;ω) and (2.1)

B̄−1
∞ η(x, s) ≤ η(x′, s) ≤ B̄∞η(x, s)

or,

B̄−1
∞ t ≤ η(x′, s) ≤ B̄∞t

whenever |x′| ≥ |x|, where B̄∞ = 2A2A3B∞. Again by Proposition 4.1 (1), there is a
constant B∗ ≥ 1 such that η∗(z, B̄∞t) ≤ B∗η∗(z, t) for all z ∈ R

N and t > 0. Then,
by Lemma 4.2, we have

η∗(x, t) = η∗(x, η(x, s)) ≤ A4s ≤ A2
4η

∗(x′, η(x′, s))

≤ A2
4η

∗(x′, B̄∞t) ≤ A2
4B

∗η∗(x′, t)

and

η∗(x′, t) ≤ η∗(x′, B̄∞η(x′, s)) ≤ B∗η∗(x′, η(x′, s))

≤ A4B
∗s ≤ A2

4B
∗η∗(x, η(x, s)) = A2

4B
∗η∗(x, t).

Thus, we have shown that (4.5) holds for g∗(x) < t < 1/(2A1A3) and |x′| ≥ |x| with
B′

∞ = A2
4B

∗. By continuity, this holds also for t = g∗(x).
Next, let C ′

1 = infz∈RN η∗(z, 1/(2A1A3)) and C ′
2 = supz∈RN η∗(z, 1). Then C ′

1 >
0, C ′

2 < ∞ and

C ′
1(C

′
2)

−1η∗(x, t) ≤ η∗(x′, t) ≤ (C ′
1)

−1C ′
2η

∗(x, t)

for 1/(2A1A3) ≤ t ≤ 1 and |x′| ≥ |x|, which shows (4.5) for 1/(2A1A3) ≤ t ≤ 1 with
B′

∞ = (C ′
1)

−1C ′
2. �

Proposition 4.4. (1) For f ∈ LΦ(RN),

(4.6) ‖f‖Φ ≤ sup

{
∣

∣

∣

∣

ˆ

RN

f(x)g(x) dx

∣

∣

∣

∣

: g ∈ LΦ∗

(RN), ‖g‖Φ∗ ≤ 1

}

≤ 2‖f‖Φ.

(2) If a measurable function f satisfies

sup

{
ˆ

RN

|f(x)g(x)| dx : g ∈ LΦ∗

(RN), ‖g‖Φ∗ ≤ 1

}

< ∞,

then f ∈ LΦ(RN).

Proof. (1) This assertion is proved in [22, Theorem 13.11].
(2) Given a measurable function f , set En = {x ∈ R

N : |x| ≤ n, |f(x)| ≤ n} and
fn = f χEn for n ∈ N. Then fn ∈ LΦ(RN) and by (4.6), we have

‖fn‖Φ ≤ sup

{
ˆ

RN

|f(x)g(x)| dx : g ∈ LΦ∗

(RN), ‖g‖Φ∗ ≤ 1

}

< ∞.

By the monotone convergence theorem, we conclude that f ∈ LΦ(RN). �

5. A generalization of a theorem of CFMP

In this section, we give a generalization of a result due to Cruz-Uribe, Fiorenza,
Martell and Pérez [6, Theorem 1.3]. Before we state the theorem, we prepare the
following lemma, which is easily verified:
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Lemma 5.1. For θ > 0, set

(5.1) Φθ(x, t) = Φ(x, t1/θ).

Then:

(1) Φθ(x, t) also satisfies (Φ1) and (Φ2);
(2) if Φ(x, t) satisfies (Φ3; ε) and θ ≤ 1+ε, then Φθ(x, t) satisfies (Φ3; (1+ε−θ)/θ);
(3) if Φ(x, t) satisfies (Φ4), then Φθ(x, t) also satisfies (Φ4): for

φθ(x, t) =

{

Φθ(x, t)/t (t > 0),

0 (t = 0),

we have

φθ(x, 2t) ≤ A3,θφθ(x, t)

with A3,θ = 21/θ−1A
j(θ)
3 , where j(θ) is the integer such that

(5.2) j(θ)− 1 < 1/θ ≤ j(θ);

(4) if Φ(x, t) satisfies (Φ5; ν), then Φθ(x, t) satisfies (Φ5; ν/θ); if Φ(x, t) satisfies
(Φ6;ω), then Φθ(x, t) satisfies (Φ6;ω/θ).

Further, if θ ≤ 1 + ε, then

(5.3) ‖f‖Φθ
= ‖|f |1/θ‖θΦ

for f ∈ LΦθ(RN).

Theorem 5.2. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 and let 0 < p0 < 1 + ε. Assume that

(5.4) ν <
(1 + ε− p0)(1 + ε∗(p0))

N
and ω ≤ (1 + ε− p0)(1 + ε∗(p0)),

where, defining j(p0) by (5.2), we write

(5.5) ε∗(p0) = (log 2)/(logA3,p0) = (log 2)/(log(21/p0−1A
j(p0)
3 )).

Let F be a family of ordered pairs (f, g) of nonnegative measurable functions on R
N .

If

(5.6)

ˆ

RN

f(x)p0w(x) dx ≤ C0

ˆ

RN

g(x)p0w(x) dx

for all (f, g) ∈ F and for all A1-weights w with a constant C0 depending only on p0
and the A1-constant of w, then there is a constant C > 0 such that

‖f‖Φ ≤ C‖g‖Φ

for all (f, g) ∈ F with g ∈ LΦ(RN).

Proof. By Lemma 5.1, Φp0(x, t) satisfies (Φ1), (Φ2), (Φ4) with constant A3,p0 =

21/p0−1A
j(p0)
3 , (Φ3; (1+ε−p0)/p0), (Φ5; ν/p0) and (Φ6;ω/p0). Let Ψ(x, t) = Φp0

∗(x, t).
Then, by Propositions 4.1 and 4.3, Ψ(x, t) satisfies (Φ1), (Φ2), (Φ4), (Φ3; ε∗(p0)),
(Φ5; ν/(1 + ε − p0)) and (Φ6;ω/(1 + ε − p0)). Therefore, the maximal operator M
is bounded on LΨ(RN) by (5.4) and Theorem 3.1, namely there is a constant A > 0
such that

‖Mh‖Ψ ≤ A‖h‖Ψ for all h ∈ LΨ(RN).
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Let j = 0, 1, . . .. Denote by M j the j-fold composition of M , where it is understood
that M0f = |f |. Consider an operator T : LΨ(RN) → LΨ(RN) defined by

Th =

∞
∑

j=0

M jh

2jAj
, h ∈ LΨ(RN).

Note that ‖Th‖Ψ ≤ 2‖h‖Ψ.
Now, let h ∈ LΨ(RN) and h ≥ 0. Then Th ≥ h and M(Th) ≤ 2ATh. A direct

calculation shows that Th is an A1-weight with A1-constant less than or equal to
2A (see, e.g., [9, Lemma 5.1]). Therefore by our assumption there is a constant C0

independent of h such that
ˆ

RN

f(x)p0h(x) dx ≤

ˆ

RN

f(x)p0Th(x) dx ≤ C0

ˆ

RN

g(x)p0Th(x) dx

for all (f, g) ∈ F .
Thus, if (f, g) ∈ F with g ∈ LΦ(RN), then, by Proposition 4.4 (applied to Φp0),

we have
ˆ

RN

f(x)p0h(x) dx ≤ 2C0‖g
p0‖Φp0

‖Th‖Ψ ≤ 4C0‖g
p0‖Φp0

‖h‖Ψ

for all h ∈ LΨ(RN) with h ≥ 0. Therefore, by Proposition 4.4 again, f p0 ∈ LΦp0 (RN)
and ‖f p0‖Φp0

≤ 4C0‖g
p0‖Φp0

. By (5.3), f ∈ LΦ(RN) and

‖f‖Φ ≤ (4C0)
1/p0‖g‖Φ. �

Remark 5.3. If p0 ≥ 1, then ε∗(p0) ≥ ε∗(1) = ε∗.

By using two types of extrapolation theorems as in [6], we obtain the following
corollaries. Let F be a family of ordered pairs (f, g) of nonnegative measurable
functions on R

N .

Corollary 5.4. (cf. [6, Corollary 1.10]) Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4),
(Φ5; ν) and (Φ6;ω) with ε > 0, ν > 0 and ω > 0 satisfying

(5.7) ν < (1 + ε)/N

and

(5.8) ω < 1 + ε.

Let 0 < p0 < ∞. If (5.6) holds for all (f, g) ∈ F and for all A∞-weights w with a
constant C0 depending only on p0 and the A∞-constant of w, then there is a constant
C > 0 such that

‖f‖Φ ≤ C‖g‖Φ

for all (f, g) ∈ F with g ∈ LΦ(RN). Furthermore,
∥

∥

∥

(

∑

j

(fj)
q
)1/q∥

∥

∥

Φ
≤ C

∥

∥

∥

(

∑

j

(gj)
q
)1/q∥

∥

∥

Φ

for every 0 < q < ∞ and
{

(fj, gj)
}

⊂ F .

Proof. By an extrapolation theorem [6, Theorem 6.1], for every 0 < p < ∞ and
w ∈ A∞,

ˆ

RN

f(x)pw(x) dx ≤ C

ˆ

RN

g(x)pw(x) dx, (f, g) ∈ F
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and, for every 0 < p, q < ∞ and w ∈ A∞,
ˆ

RN

(

∑

j

fj(x)
q
)p/q

w(x) dx ≤ C

ˆ

RN

(

∑

j

gj(x)
q
)p/q

w(x) dx.

Choosing p1 > 0 satisfying ν < (1 + ε− p1)/N and ω ≤ 1 + ε− p1 and applying
Theorem 5.2 with this p1 in place of p0, we obtain the first assertion. The second
assertion can be derived by applying Theorem 5.2 to the family

Fq =
{((

∑

j

(fj)
q
)1/q

,
(

∑

j

(gj)
q
)1/q)

:
{

(fj , gj)
}

j
⊂ F

}

. �

Corollary 5.5. (cf. [6, Corollary 1.11]) Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4),
(Φ5; ν) and (Φ6;ω) for ε > 0, ν > 0 and ω > 0 satisfying

(5.9) ν < ε(1 + ε∗)/N

and

(5.10) ω < ε(1 + ε∗)

for ε∗ given in Proposition 4.1. Let F be a family of ordered pairs (f, g) of nonnegative
measurable functions on R

N . Let 1 < p0 < ∞. If (5.6) holds for all (f, g) ∈ F and
for all Ap0-weights w with a constant C0 depending only on p0 and the Ap0-constant
of w, then there is a constant C > 0 such that

(5.11) ‖f‖Φ ≤ C‖g‖Φ

for all (f, g) ∈ F with g ∈ LΦ(RN). Furthermore,
∥

∥

∥

(

∑

j

(fj)
q
)1/q∥

∥

∥

Φ
≤ C

∥

∥

∥

(

∑

j

(gj)
q
)1/q∥

∥

∥

Φ

for every 1 < q < ∞ and
{

(fj, gj)
}

⊂ F .

Proof. By the extrapolation theorem [6, Theorem 6.2], for every 1 < p < ∞ and
w ∈ Ap,

ˆ

RN

f(x)pw(x) dx ≤ C

ˆ

RN

g(x)pw(x) dx, (f, g) ∈ F

and, for every 1 < p, q < ∞ and w ∈ Ap,
ˆ

RN

(

∑

j

fj(x)
q
)p/q

w(x) dx ≤ C

ˆ

RN

(

∑

j

gj(x)
q
)p/q

w(x) dx.

Choosing 1 < p1 < 1 + ε satisfying ν < (1 + ε− p1)(1 + ε∗)/N and ω ≤ (1 + ε−
p1)(1 + ε∗) and applying Theorem 5.2 with this p1 in place of p0, we obtain the first
assertion. The second assertion follows from the same arguments as in the previous
corollary. �

Remark 5.6. Assumptions (5.7) and (5.8) are weaker than (5.9) and (5.10),
respectively. In fact, we see that

(A1A2,ε)
−1tε ≤ φ(x, t) ≤ A1A2A3t

1/ε∗

for t ≥ 1, which implies εε∗ ≤ 1, so that ε(1 + ε∗) ≤ 1 + ε.

From Corollary 5.5 with the pairs (Mf, |f |), we obtain vector-valued inequalities
for M on LΦ(RN). Recall that ε∗(p0) is defined by (5.5).
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Corollary 5.7. Suppose that Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω)
for ε > 0, ν > 0 and ω > 0. Let q > 1.

(1) If ν < ε(1 + ε∗)/N and ω < ε(1 + ε∗), then
∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

(Mfj)
q

)1/q
∥

∥

∥

∥

∥

∥

Φ

≤ C

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

|fj|
q

)1/q
∥

∥

∥

∥

∥

∥

Φ

for all sequences {fj}
∞
j=1 of measurable functions.

(2) If ν < (1 + ε− 1/q)(1 + ε∗(1/q))/N and ω < (1 + ε− 1/q)(1 + ε∗(1/q)), then
∥

∥

∥

∥

∥

∞
∑

j=1

(Mfj)
q

∥

∥

∥

∥

∥

Φ

≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

|fj|
q

∥

∥

∥

∥

∥

Φ

for all sequences {fj}
∞
j=1 of measurable functions .

Proof. (1) This is a direct consequence of Corollary 5.5 applied to the family
F = {(Mf, |f |)}; see [1].

(2) By Lemma 5.1, Φ1/q(x, t)
(

= Φ(x, tq)
)

satisfies (Φ3; ε′), (Φ4), (Φ5; ν ′) and
(Φ6;ω′) with

ε′ = q(1 + ε)− 1, ν ′ = qν and ω′ = qω.

By assumption,

ε′ > 0, 0 < ν ′ < ε′(1 + ε∗(1/q))/N, 0 < ω′ < ε′(1 + ε∗(1/q)).

Hence, by Corollary 5.5, we have
∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

(Mfj)
q

)1/q
∥

∥

∥

∥

∥

∥

Φ1/q

≤ C

∥

∥

∥

∥

∥

∥

(

∞
∑

j=1

|fj|
q

)1/q
∥

∥

∥

∥

∥

∥

Φ1/q

,

which implies the required inequality in view of Lemma 5.1. �

6. Some applications of CFMP-theorem

6.1. Sharp maximal function. For f ∈ L1
loc(R

N), the sharp maximal function
M#f is defined by

M#f(x) = sup
r>0

1

|B(x, r)|

ˆ

B(x,r)

|f(y)− fB(x,r)| dy,

where fB = (1/|B|)
´

B
f(x) dx for a ball B.

Since 0 ≤ M#f ≤ 2Mf , by Theorem 3.1, we have

Proposition 6.1. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ5; ν) and (Φ6;ω) for ε > 0,
ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω ≤ 1 + ε. Then

‖M#f‖Φ ≤ 2CM‖f‖Φ

for all f ∈ LΦ(RN).

The following inequality is known (cf. [16]): for 0 < p < ∞,
ˆ

RN

[Mf(x)]pw(x) dx ≤ C

ˆ

RN

[M#f(x)]pw(x) dx

for all f ∈ L∞
c (RN) (= the space of L∞-functions with compact support) and w ∈

A∞.
Thus, applying Corollary 5.4 to F = {(Mf,M#f) : f ∈ L∞

c (RN)}, we have
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Proposition 6.2. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω < 1 + ε. Then

‖Mf‖Φ ≤ C‖M#f‖Φ

for all f ∈ L∞
c (RN).

In view of Propositions 6.1 and 6.2, we can state:

Corollary 6.3. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω < 1 + ε. Then

C−1‖f‖Φ ≤ ‖M#f‖Φ ≤ C‖f‖Φ

for f ∈ LΦ(RN).

6.2. Singular integral operators. We consider a singular integral operator T
associated to a standard kernel k(x, y) (see, e.g., [7, Section 6.3]). By C∞

c (RN) we
denote the set of all compactly supported C∞-functions in R

N .
Recall the following result due to Alvarez and Pérez [3]:

Lemma 6.4. Let T be a singular integral operator associated to a standard
kernel and suppose T extends to a bounded operator from L1(RN) to w-L1(RN).
Then, for 0 < θ < 1 there exists a constant C(θ) > 0 such that

M#(|Tf |θ)(x) ≤ C(θ)[Mf(x)]θ

for all f ∈ C∞
c (RN) and x ∈ R

N .

Theorem 6.5. Let T be a singular integral operator associated to a standard
kernel and suppose T extends to a bounded operator from L1(RN) to w-L1(RN).
Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for ε > 0, ν > 0 and ω > 0
satisfying ν < (1 + ε)/N and ω < 1 + ε. Then T , defined initially on C∞

c (RN), can
be extended to a bounded operator from LΦ(RN) into itself.

Proof. Let 0 < θ < 1. By Lemma 5.1, Φθ(x, t) = Φ(x, t1/θ) satisfies (Φ3; ε′) with
ε′ = (1 + ε− θ)/θ, (Φ5; ν/(θN)) and (Φ6;ω/θ). Note that (1 + ε)/θ = 1 + ε′.

Let f ∈ C∞
c (RN). Then, using Proposition 6.2, the above lemma and then

Theorem 3.1, we obtain

‖Tf‖Φ =
(

∥

∥|Tf |θ
∥

∥

Φθ

)1/θ

≤ C#

∥

∥M#(|Tf |θ)
∥

∥

1/θ

Φθ

= C#

∥

∥[M#(|Tf |θ)]1/θ
∥

∥

Φ
≤ C#C(θ)1/θ‖Mf‖Φ ≤ C‖f‖Φ.

Since C∞
c (RN) is dense in LΦ(RN) (cf. [20]), we obtain the required assertion. �

Remark 6.6. If K is a locally integrable function on R
N \ {0} such that its

Fourier transform is bounded and

|K(x)| ≤
C

|x|N
, |∇K(x)| ≤

C

|x|N+1
, x 6= 0.

Then, for the singular integral operator TK defined by TKf = K ∗ f and for 1 < p <
∞, there exists a constant C > 0 such that

ˆ

RN

|TKf(x)|
pw(x) dx ≤ C

ˆ

RN

|f(x)|pw(x) dx

for all w ∈ Ap and f ∈ Lp(RN ;w) (see, e.g., [9, Theorem 3.1, p. 411]). Therefore, by
Corollary 5.5, we have
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Proposition 6.7. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < ε(1 + ε∗)/N and ω < ε(1 + ε∗). Then

‖TKf‖Φ ≤ C‖f‖Φ

for all f ∈ LΦ(RN).

6.3. Kerman–Sawyer inequality. In this subsection, let k(r) be a non-
negative nonincreasing lower semi-continuous function on (0,∞) such that

ˆ 1

0

k(r)rN−1 dr < ∞

and there is R0 > 0 such that k(r) is positive and satisfies the doubling condition on
(0, R0), i.e., k(r) ≤ Cdk(2r) for 0 < r < R0/2.

Set k(0) = lim infr→0+ k(r). (k(0) may be ∞.) With an abuse of notation, we
write k(x) = k(|x|) for x ∈ R

N . Let k̄(r) = r−N
´ r

0
k(t)tN−1 dt. The k-maximal

function of a non-negative measure µ is defined by

Mkµ(x) = sup
r>0

k̄(r)µ(B(x, r)).

Kerman and Sawyer [17, Theorem 2.2] showed that

(6.1) C−1‖Mkµ‖p ≤ ‖k ∗ µ‖p ≤ C‖Mkµ‖p

for 1 < p < ∞. The left inequality follows from

Mkµ(x) ≤ CM(k ∗ µ)(x) for all x ∈ R
N ,

which was proved in [2, Lemma 4.3.1] and [17, Theorem 2.2(a)], and the boundedness
of the maximal operator M . This inequality, together with our Theorem 3.1, gives

Proposition 6.8. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ5; ν) and (Φ6;ω) for ε > 0,
ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω ≤ 1 + ε. Then

‖Mkµ‖Φ ≤ C‖k ∗ µ‖Φ.

As a weighted version of the right inequality in (6.1), we have

Lemma 6.9. Let 1 < p < ∞ and w ∈ Ap. Then there exists a constant C > 0
such that

ˆ

RN

[(k ∗ µ)(x)]pw(x) dx ≤ C

ˆ

RN

[(Mkµ)(x)]
pw(x) dx

for all nonnegative measures µ on R
N .

This lemma is essentially proved in [15, Section 5] and [18, Proposition 1’]. By
using the method given in the proof of [35, Theorem 3.1.2] and modifying the proof
of [2, Part II, Theorem 4.3.1] to the weighted case, we can prove this lemma.

By this lemma and Corollary 5.5, we have

Theorem 6.10. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < ε(1 + ε∗)/N and ω < ε(1 + ε∗). Then there
exists a constant C > 0 such that

‖k ∗ µ‖Φ ≤ C‖Mkµ‖Φ

for all nonnegative measures µ on R
N such that Mkµ ∈ LΦ(RN).
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7. Decomposition for Musielak–Orlicz spaces

In this section, we give a decomposition theorem for functions in LΦ(RN).

Theorem 7.1. Let d ∈ N ∪ {0}. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν)
and (Φ6;ω) for ε > 0, ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω < 1 + ε.
Then every f ∈ LΦ(RN) has a decomposion

f =
∞
∑

j=1

λjaj ,

with aj ∈ L∞(RN) and λj ∈ [0,∞), j = 1, 2, . . ., such that

|aj | ≤ χQj
for a cube Qj for each j,

ˆ

RN

aj(x)x
β dx = 0 for all multi-indices β with |β| ≤ d, for each j

and
∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

∥

∥

∥

∥

∥

Φ

≤ C‖f‖Φ

with a constant C > 0 independent of f .

To prove this theorem, we introduce the grand maximal operator which is origi-
nally used in the definition of the Hardy space Hp(RN) with 0 < p < ∞. The grand
maximal operator M is defined by

(7.1) Mf(x) = sup{|t−Nϕ(t−1 · ) ∗ f(x)| : t > 0, ϕ ∈ FL}

for f ∈ S ′(RN) and x ∈ R
N , where L is a fixed large integer and

FL =

{

ϕ ∈ S(RN ) : sup
x∈RN

(1 + |x|)L|∂βϕ(x)| ≤ 1 for all β with |β| ≤ L

}

.

Here and below, we suppose L ≥ N + 1.

Lemma 7.2. Suppose that Φ satisfies (Φ3; ε), (Φ5; ν) and (Φ6;ω) for ε > 0,
ν > 0 and ω > 0 satisfying ν < (1 + ε)/N and ω ≤ 1 + ε. If f ∈ LΦ(RN), then
Mf ∈ LΦ(RN) and

(7.2) ‖Mf‖Φ ≤ C‖f‖Φ.

Proof. In view of Theorem 3.1, it is enough to show

(7.3) Mf(x) ≤ CMf(x)

for f ∈ S ′(RN) ∩ L1
loc(R

N). Let ht(x) = t−N(1 + |x|/t)−L for t > 0. Then,

|ht ∗ f(x)| ≤ ‖ht‖1Mf(x) = ‖h1‖1Mf(x)

(cf., e.g., [8, Proposition 2.7] or [10, Theorem 2.1.10]). Since |ϕ| ≤ h1 if ϕ ∈ FL,

|t−Nϕ(t−1 · ) ∗ f(x)| ≤ ht ∗ |f |(x) ≤ ‖h1‖1Mf(x)

for all ϕ ∈ FL, t > 0 and x ∈ R
N , which yields (7.3) with C = ‖h1‖1 < ∞. �

We shall use the following lemma. We refer to [31, Chap. III, §2] for the proof.

Lemma 7.3. Let f ∈ S ′(RN)∩L1
loc(R

N), d ∈ N∪{0} and r > 0. Set O = {y ∈
R

N : Mf(y) > r} and consider a collection of cubes {Q∗
k} which has the bounded

intersection property and for which O =
⋃

k Q
∗
k. (Such a collection can be obtained
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via the Whitney decomposition of O.) Then, f is expressed as f = g +
∑

k bk with
bk, g ∈ S ′(RN) ∩ L1

loc(R
N) such that bk is supported in Q∗

k and
ˆ

RN

bk(x)x
β dx = 0 for all β with |β| ≤ d

for each k. Furthermore,

(7.4) |g(x)| ≤ Cr for all x ∈ R
N

and

(7.5) Mbk ≤ C

(

Mf · χQ∗

k
+ r ·

ℓk
N+d+1

| · −xk|N+d+1
χRN\Q∗

k

)

with constants C depending only on N , where xk and ℓk denote the center and the
side-length of Q∗

k, respectively.

Remark 7.4. We have the following pointwise estimate from [10, Example 2.1.8]:
(

ℓk
ℓk + |x− xk|

)N

≤ CMχQ∗

j
(x)

with C > 0 independent of k, so that (7.5) implies

(7.6) Mbk ≤ C
(

Mf · χQ∗

k
+ r
(

MχQ∗

k

)(N+d+1)/N
)

.

Proof of Theorem 7.1. Choose d1 ≥ d (d1 ∈ N) such that

ν ≤
1 + ε− 1/q

N
and ω ≤ 1 + ε− 1/q

for q = (N + d1 − 1)/N . For each j ∈ Z, let

Oj = {x ∈ R
N : Mf(x) > 2j}.

By the previous lemma and remark, we find collections of cubes {Q∗
j,k}k∈Kj

hav-
ing the bounded intersection property such that

⋃

k∈Kj
Q∗

j,k = Oj ; and we have a

decomposition

f = gj + bj , bj =
∑

k∈Kj

bj,k

with bj,k, gj ∈ S ′(RN) ∩ L1
loc(R

N) such that bj,k supported in Q∗
j,k,

ˆ

RN

bj,k(x)x
β dx = 0 for all β with |β| ≤ d1,

|gj(x)| ≤ C2j and

(7.7) Mbj,k ≤ C
(

Mf · χQ∗

j,k
+ 2j

(

MχQ∗

j,k

)1/q
)

.

Since gj → 0 uniformly as j → −∞, gj → 0 in S ′ as j → −∞. On the other
hand, by (7.7) we have

‖bj‖Φ ≤

∥

∥

∥

∥

∥

∑

k

Mbj,k

∥

∥

∥

∥

∥

Φ

≤ C

∥

∥

∥

∥

∥

Mf · χOj
+
∑

k

2j(MχQ∗

j,k
)q

∥

∥

∥

∥

∥

Φ

≤ C
∥

∥Mf · χOj

∥

∥

Φ
+ C

∥

∥

∥

∥

∥

2j
∑

k

(MχQ∗

j,k
)q

∥

∥

∥

∥

∥

Φ

.
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Now, by Corollary 5.7 (2), we see

∥

∥

∥

∥

∥

2j
∑

k

(MχQ∗

j,k
)q

∥

∥

∥

∥

∥

Φ

≤ C

∥

∥

∥

∥

∥

2j
∑

k

χQ∗

j,k

∥

∥

∥

∥

∥

Φ

≤ C
∥

∥Mf · χOj

∥

∥

Φ
.

Hence,

‖bj‖Φ ≤ C
∥

∥Mf · χOj

∥

∥

Φ
→ 0

as j → ∞, which implies that bj → 0 in the sense of distributions as j → ∞.
Therefore

(7.8) f =
∞
∑

j=−∞

(gj+1 − gj),

with the sum converging in the sense of distributions. Going through the same
arguments as in [31, pp. 108–109], we have functions {Aj,k}k∈Kj

such that

(7.9) gj+1 − gj =
∑

k∈Kj

Aj,k,

|Aj,k| ≤ C02
jχQ∗

j,k
for some universal constant C0 and

´

RN Aj,k(x)x
β dx = 0 for all β

with |β| ≤ d.
Let us set

aj,k =
Aj,k

C02j
, λj,k = C02

j, for k ∈ Kj, j ∈ Z.

Then

|aj,k| ≤ χQ∗

j,k
,

ˆ

RN

aj,k(x)x
β dx = 0 for all β with |β| ≤ d

and

f =
∑

j∈Z

∑

k∈Kj

λj,kaj,k,

where the summation is convergent in the sense of distributions.
What remains to show is the estimate

(7.10)

∥

∥

∥

∥

∥

∥

∑

j∈Z

∑

k∈Kj

λj,kχQ∗

j,k

∥

∥

∥

∥

∥

∥

Φ

≤ C‖f‖Φ.

By the bounded intersection property,
∑

k∈Kj
χQ∗

j,k
≤ CχOj

, and by the definition of

Oj,
∑

j∈Z 2
jχOj

≤ 2Mf . Hence

∥

∥

∥

∥

∥

∥

∑

j∈Z

∑

k∈Kj

λj,kχQ∗

j,k

∥

∥

∥

∥

∥

∥

Φ

= C0

∥

∥

∥

∥

∥

∥

∑

j∈Z

∑

k∈Kj

2jχQ∗

j,k

∥

∥

∥

∥

∥

∥

Φ

≤ C‖Mf‖Φ.

Required inequality (7.10) now follows from Lemma 7.2. �
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8. An application to Olsen inequality

For 0 < q ≤ p < ∞, recall that the Morrey space Mp
q(R

N) is defined by

Mp
q(R

N) =
{

f ∈ L1
loc(R

N) : ‖f‖Mp
q
< ∞

}

,

where

‖f‖Mp
q
= sup

Q : cube
|Q|

1

p
− 1

q

(
ˆ

Q

|f(y)|q dy

)
1

q

.

For 0 < α < N , we define the Riesz potential of order α for a locally integrable
function f on R

N by

Iαf(x) =

ˆ

RN

|x− y|α−Nf(y) dy.

Here it is natural to assume that

(8.1)

ˆ

RN

(1 + |y|)α−N |f(y)| dy < ∞

(see [21, Theorem 1.1, Chapter 2]), which is a necessary and sufficient condition for
the integral defining Iαf(x) to converge for almost all x ∈ R

N .

Theorem 8.1. Suppose Φ(x, t) satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for
ε > 0, ν > 0 and ω > 0 satisfying ν < ε(1 + ε∗)/N and ω < ε(1 + ε∗) for ε∗ given in
Proposition 4.1. Let

(8.2) 0 < α <
Nε∗

1 + ε∗
and 1 +

1

ε∗
< u ≤

N

α
.

Then
‖g · Iαf‖Φ ≤ C‖g‖

M
N/α
u

‖f‖Φ

for all f ∈ LΦ(RN) satisfying (8.1) and g ∈ M
N/α
u (RN).

To prove Theorem 8.1, we need the following lemmas:

Lemma 8.2. [14, Lemma 4.2] Let d ∈ N ∪ {0}. Suppose h is an L∞-function
supported on a cube Q. Assume in addition that

´

RN xβh(x) dx = 0 for all β with
|β| ≤ d. Then,

(8.3) |Iαh(x)| ≤ Cα,d‖h‖∞ℓ(Q)α
∞
∑

k=1

1

2k(N+d+1−α)
χ2kQ(x) (x ∈ R

N),

where ℓ(Q) denotes the side length of Q.

Lemma 8.3. Suppose Φ satisfies (Φ3; ε), (Φ4), (Φ5; ν) and (Φ6;ω) for ε > 0,
ν > 0 and ω > 0 satisfying ν < ε(1 + ε∗)/N and ω ≤ ε(1 + ε∗). Let {Qj}

∞
j=1 be

a sequence of cubes, {aj}
∞
j=1 be a sequence of non-negative functions in Lu(RN) for

u > 1+1/ε∗ and let {λj}
∞
j=1 be a sequence of non-negative numbers. If supp aj ⊂ Qj ,

‖aj‖u ≤ |Qj|
1/u for each j and

∥

∥

∥

∑∞
j=1 λjχQj

∥

∥

∥

Φ
< ∞, then

∑∞
j=1 λjaj ∈ LΦ(RN) and

∥

∥

∥

∥

∥

∞
∑

j=1

λjaj

∥

∥

∥

∥

∥

Φ

≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

∥

∥

∥

∥

∥

Φ

.

Proof of Lemma 8.3. Consider g ∈ LΦ∗

(RN) with ‖g‖Φ∗ ≤ 1 and set

Λ(g) =

ˆ

RN

|g(x)|

∞
∑

j=1

λjaj(x) dx.
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By the Hölder inequality, we obtain

|Λ(g)| ≤
∞
∑

j=1

λj

(

ˆ

Qj

|g(x)|u
′

dx

)1/u′

‖aj‖u ≤ C
∞
∑

j=1

λj|Qj |

(

inf
Qj

M [|g|u
′

]

)1/u′

≤ C

ˆ

Rn

(

∞
∑

j=1

λjχQj
(x)

)

(

M [|g|u
′

](x)
)1/u′

dx

≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

∥

∥

∥

∥

∥

Φ

∥

∥

∥

∥

(

M [|g|u
′

]
)1/u′

∥

∥

∥

∥

Φ∗

,

where 1/u+1/u′ = 1. By Propositions 4.1 and 4.3, Φ∗(x, t) satisfies (Φ3; ε∗), (Φ5; ν/ε)
and (Φ6;ω/ε). Hence, by Lemma 5.1, Φ∗

u′(x, t) = Φ∗(x, t1/u
′

) satisfies (Φ3; (1 +
ε∗)/u′−1), (Φ5; ν/(εu′)) and (Φ6;ω/(εu′)). Note that u′ < 1+ε∗. By our assumption
ν/(εu′) < (1 + ε∗)/N and ω/(εu′) ≤ 1 + ε∗. Thus, by Theorem 3.1, the maximal
operator M is bounded on LΦ∗

u′ (RN). Hence
∥

∥

∥

∥

(

M [|g|u
′

]
)1/u′

∥

∥

∥

∥

Φ∗

=
∥

∥

∥
M [|g|u

′

]
∥

∥

∥

1/u′

Φ∗

u′

≤ C
∥

∥

∥
|g|u

′

∥

∥

∥

1/u′

Φ∗

u′

= C‖g‖Φ∗ ≤ C,

which implies

|Λ(g)| ≤ C

∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

∥

∥

∥

∥

∥

Φ

for all g ∈ LΦ∗

(RN) with ‖g‖Φ∗ ≤ 1. Now the required conclusion follows from
Proposition 4.4. �

Proof of Theorem 8.1. First note that ν < (1 + ε)/N and ω < 1 + ε by
Remark 5.6. Choose d ∈ N so large that

(8.4) ν ≤
1

N

(

1 + ε−
N

N + d

)

and ω ≤ 1 + ε−
N

N + d
.

Let f ∈ LΦ(RN) satisfy (8.1). We decompose f according to Theorem 7.1 with d
chosen as above; f =

∑∞
j=1 λjaj , where aj ∈ L∞(RN) and λj ∈ [0,∞), j = 1, 2, . . . ,

satisfying the conditions in Theorem 7.1 for cubes {Qj}
∞
j=1.

By Lemma 8.2,

|Iαaj | ≤ C

∞
∑

k=1

1

2k(N+d+1)
ℓ(2kQj)

αχ2kQj
,

so that

|g · Iαf | ≤ |g|
∞
∑

j=1

λj |Iαaj | ≤ C
∞
∑

j=1

∞
∑

k=1

λj

2k(N+d+1)

(

|g|ℓ(2kQj)
αχ2kQj

)

.

Let

aj,k(x) =
ℓ(2kQj)

α

‖g‖
M

N/α
u

|g(x)|χ2kQj
(x).

Since

‖g · χ2kQj
‖u ≤ |2kQj|

−α/N+1/u‖g‖
M

N/α
u

= ℓ(2kQj)
−α|2kQj|

1/u‖g‖
M

N/α
u

,
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we see that ‖aj,k‖u ≤ |2kQj|
1/u. Hence, by Lemma 8.3, we have

‖g · Iαf‖Φ ≤ C‖g‖
M

N/α
u

∥

∥

∥

∥

∥

∞
∑

j=1

∞
∑

k=1

λj

2k(N+d+1)
· χ2kQj

∥

∥

∥

∥

∥

Φ

.

Observe that χ2kQj
≤ 2kNMχQj

. Hence

‖g · Iαf‖Φ ≤ C‖g‖
M

N/α
u

∥

∥

∥

∥

∥

∞
∑

j=1

∞
∑

k=1

λj

2k(N+d+1)
2k(N+d) · (MχQj

)(N+d)/N

∥

∥

∥

∥

∥

Φ

= C‖g‖
M

N/α
u

∥

∥

∥

∥

∥

∞
∑

j=1

λj(MχQj
)(N+d)/N

∥

∥

∥

∥

∥

Φ

.

By Corollary 5.7 (2) and (8.4), we can remove the maximal operator M and we obtain

‖g · Iαf‖Φ ≤ C‖g‖
M

N/α
u

∥

∥

∥

∥

∥

∞
∑

j=1

λjχQj

∥

∥

∥

∥

∥

Φ

≤ C‖g‖
M

N/α
u

‖f‖Φ,

which is the required inequality. �
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