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Abstract. Our aim in this paper is to establish various norm inequalities in Musielak—Orlicz
spaces. We give a generalization of a result due to Cruz-Uribe, Fiorenza, Martell and Pérez and
apply it to obtain norm inequalities for classical operators as well as an Olsen inequality in Musielak—
Orlicz spaces.

1. Introduction

There has been a considerable amount of studies on the variable exponent Lebes-
gue spaces LP(); see [5, 7] etc. for exhaustive account of this direction of research.
In those studies, various kinds of norm inequalites were discussed, including those
which show the boundedness of important operators. Cruz-Uribe, Fiorenza, Martell
and Pérez [6] gave a method to obtain LP()-norm inequalities from LP°(w)-norm
inequalities with a constant exponent p, and weights w. In fact, they proved |6,
Theorem 1.3]:

Theorem A. Let F be a family of ordered pairs ( f, g) of nonnegative measurable
functions on R . Suppose that

(1.1) [ f@Pu@) < Gy /R gleyrls) de

for some py > 0, for all (f,g) € F and for all Aj-weights w with a constant C
depending only on py and the A;-constant of w. Let p(-) be a variable exponent such
that

1<p =ess inf p(x) <p" =ess sup p(r) < co.
Z‘ERN SCER”
Ifpo < p~ and the HardyLittlewood maximal operator is bounded on L®)/P)' (RN),
then there is a constant C' > 0 such that

£ llpe) < Cllgllne)
for all (f,g) € F with g € LPO)(RV).
In the present paper, we call this theorem CFMP-theorem.
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Variable exponent Lebesgue spaces are special cases of Musielak—Orlicz spaces,
which were first considered by Nakano as modulared function spaces in [25] and
then developed by Musielak as generalized Orlicz spaces in [22]. Our main aim in
this paper is to extend Theorem A to Musielak—Orlicz spaces L?(RY) defined by a
general function ®(z,t) satisfying certain conditions (Theorem 5.2). See Section 2
for the definition of ® and L*(RY).

Many types of norm inequalities depend on the boundedness of the Hardy-—
Littlewood maximal operator M. The boundedness of M on L*(R”) was established
in [19, Corollary 4.4]; we give its improvement in Section 3 of the present paper. The
proof of Theorem A also depends on the boundedness of M on the dual space of
LPO(RY).

In Section 4, we study properties of the complementary function of ® and look
for conditions on @ that assure the boundedness of M on the dual space of L*(RY).
We follow [6] for the proof of our generalization of Theorem A, Theorem 5.2, and ap-
plications of extrapolation theorems to obtain vector-valued inequalities in L®(RY).
As applications of Theorem 5.2, we prove L®-norm inequalities for classical operators
such as sharp maximal operators and singular integral operators in Section 6. We
shall also show the L®-version of Kerman-Sawyer inequality.

Using the vector-valued inequality, in Section 7 we shall establish a decomposition
result for functions in Musielak-Orlicz spaces as an extension of [23] and [24] for the
case of Lebesgue spaces with variable exponents and Orlicz spaces. See [4, 13, 14, 26,
27, 37| for related results. As an application of the decomposition result, we obtain
an Olsen inequality in the final section. By an Olsen inequality, or a trace inequality,
we mean an inequality of type

(1.2) lg - Lo fllx < Cliglly - 1fllz

for some Banach function spaces X, Y and Z, where I, f is the Riesz potential (of
order a) of f. There is a vast amount of literatures on Olsen inequalities |11, 12, 28,
29, 30, 32, 33, 34, 36]. We shall show that (1.2) holds with X = Z = L*(R") and a
certain Morrey space Y.

Throughout this paper, let C' denote various constants independent of the vari-
ables in question, and C'(a,b,...) a constant that depends on a,b, .. ..

2. Preliminaries
We consider a function
®(z,t) = to(z,t): RY x [0,00) — [0, 00)
satisfying the following conditions (®1)—($3):

(®1) ¢(-,t) is measurable on RY for each t > 0 and ¢(z, - ) is continuous on [0, o)
for each z € RY;
(d2) there exists a constant A; > 1 such that

AT < ¢(x,1) < Ay for all z € RV,

(®3) ¢(x, ) is uniformly almost increasing on (0, c0), namely there exists a constant
As > 1 such that

d(z,t) < Ayp(z,at) for all z € RY whenever t > 0 and a > 1.
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Let (5(']:7 t) = SupOSsSt ¢($, S) and

B(z,t) = /0 t &(w, ) dr

for v € RY and ¢t > 0. Then ¢(z,) is continuous nondecreasing, ®(z,-) is convex
and

(2.1) P(x,t/2) < O(x,t) < Ay®(z,1)

for all z € RN and t > 0. Given ®(z,t) as above, the associated Musielak—Orlicz
space

L*(RN) = {f € L (RM): /RN D (y,|f(y)|/A) dy < oo for some A > 0}

is a Banach space with respect to the norm (cf. [22])

£l = 1wy = int {00 [ Bonlsln)ar< i,

We shall also consider the following conditions: Let € > 0, v > 0 and w > 0.

(®35¢) t — t°¢(x,t) is uniformly almost increasing on (0, 00), namely there exists
a constant A, . > 1 such that

¢(x,t) < Agca ¢(z,at) for all z € RN whenever t > 0 and a > 1;

(P4) ¢(z,-) satisfies the uniform doubling condition, namely there exists a constant
As > 1 such that

o(x,2t) < Asgp(x,t) for all z € RN and t > 0;
(®5;v) For every v > 0, there exists a constant B, , > 1 such that
O(z,t) < By, ®(y,t)

whenever |z —y| < ~yt7" and t > 1;
(®6;w) there exist a function g on RY and a constant By, > 1 such that 0 < g(z) < 1
for all z € RN, ¢¥ € LY(RY) and
B l®(x,t) < &2t
whenever |2/| > |z| and g(z) <t < 1.
Example 2.1. Let p(-) and ¢;(-), j = 1,..., k, be measurable functions on RY
such that
(P1) 1 <p~ =inf,cgn p(z) < sup,egny p(x) = pT < 00
and
(Ql) —oo < g; = inferny qj(z) < sup,crw ¢j(z) = ¢ < 00
for all j = 1,... k. Set L.(t) = log(c+t) for ¢ > e and t > 0, Lgl)(t) = L.(t),
L9 () = L(LY(t)) and

ﬁ L(J ))% (z)

Then, ®(x,t) satisfies (®1), ($2) and ((I>4). It satisfies (®3) if there is a constant
K > 0 such that K(p(xz) — 1) + ¢;(x) 2 0 for all z € RY and j = 1,...,k; in
particular if p~ > 1 or ¢; > 0 for all j = Jk. If p~ > 1, then O(x, t) satlsﬁes
(P3;¢) for 0 <e <p™ — 1.
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Moreover, we see that ®(x,t) satisfies ($5;v) for every v > 0 if
(P2) p(-) is log-Holder continuous, namely
C
p(x) =pW)| < 77—
Le(1/]x = yl)

with a constant C}, > 0 and
(Q2) ¢;(+) is (j + 1)-log-Holder continuous, namely

C,

495

(1/]z = yl)

4,2) = (6)| < 7

with constants Cy, >0, 7 =1,...k.

Finally, we see that ®(z,t) satisfies (®6;w) for every w > 0 with g(z) = 1/(1 +
|z )VFD/@ if p(.) is log-Hélder continuous at oo, namely if it satisfies
Ch.00

(P3) |p(x) — p(a)] < 7 (|x) whenever |2/| > |x| with a constant C), ., > 0.

Note that (®3;0) = (®3). If ®(z,t) satisfies (P3;¢), then it satisfies ($3;¢’) for
0 <& <e. If O(x,t) satisfies ($3;¢), then

o(x,t) < Aycaé(z,at) for all z € RN whenever t > 0 and a > 1

and
O(r,t) < Ay.a ' °®(z,at) for all z € RY whenever ¢t > 0 and a > 1.

If ®(z,t) satisfies (P5;v), then it satisfies ($5;1/) for all v/ > v; if O(z,t) satisfies
(P6;w), then it satisfies (P6;w’) for all W’ > w.

The following example shows that if 0 < v/ < v and 0 < w’ < w, then there exists
O (xz,t) satisfying (Pj), j = 1,2,3,4 such that it satisfies (®5;v) and (P6;w), while
it does not satisfy (®5;7') nor (96;w’).

Example 2.2. Forp>1,¢>0and r > 0, set
p 4 mi if >
() = P max (1, t ‘mln(l, \:c|))N %ft > 1,
P max (¢, min(1/2, |z|N/")) if ¢ < 1.
This ®(z,t) satisfies (®j), j = 1,2, 3, 4; it satisfies ($3;p — 1). We shall show:
(a) ®(x,t) satisfies (P5;v) if and only if v > g;
(b) ®(z,t) satisfies (P6;w) if w > r but does not satisfy (®6;w) if w < r.
Proof of (a). Let t > 1 and |z —y| < ~yt7". If v > q, then
min(1, [z[) < min(1, [y[) + [z — y| < min(L, |y|) + ¢ < min(1, [y[) + 277,
so that
max (1, min(1, |z])) < max(1,¢/min(1,|y|)) +,
which implies
(w, t) < " max (L, ¢ min(L, [y])) + 72" < (1+7)®(y, t).
Hence ®(x,t) satisfies (P5;v) if v > q.
Next, suppose v < q. Let e; = (1,0,...,0). Since ®(0,t) = t» and ®(t ey, t) =
tP max(1,t97") = tPTIY,
@(t_”el’t)
(0, 1)
This shows that ®(z,t) does not satisfy (®5;v).

— 00 (t— 00).
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Proof of (b). First, let w > r. Take
g-(z) = min(1/2,]z|") (2 € RY).
Then 0 < g,(x) < 1/2 for all z € RY and ¢ € L*RY). If g,(z) <t < 1 and
|2'| > |z|, then g,.(2') < g,(z) < t, so that ®(z,t) = ®(z/,t) = t?"'. Hence ®(x, 1)
satisfies (P6;w) if w > 7.

Next, assume that w < r and suppose that there exists a function g on R" such
that 0 < g(z) < 1 for all z € RY and

(2.2) O(z,t) < BO(2',t) whenever |2| > |z| and g(z) <t <1
with a constant B > 1. We claim that there exists R > 1 such that
(2.3) g(x) > |z|~N* for |z| > R.

Suppose on the contrary that there exists a sequence {x,} such that |z,| — co and
g(zn) < |2,| 7N/« for all n. We may assume |z,| > 2"/, Then
D (zn, |xn|_N/w) = |xn|_pN/w max(|xn|_N/w> |xn|_N/r) = |xn|_(p/w+1/r)N'
If we take 2/, € R such that |2/| = |z,|"/* (> |z,]), then
@([L’;, |:L,n|—N/w) _ |xn|—pN/w max(|$n|_N/“, |$;|—N/r) _ |:L,n|—(p/w+1/w)N'
Hence,
D(zp, |0 )
O (a1, |wa| ~N)
which contradicts (2.2). Thus, (2.3) holds, and hence ¢* € L'(R”), which means
that ®(x,t) does not satisfy (P6;w) if w < 7.

= |2, | VTIN50 (0= 00),

3. Boundedness of the maximal operator

(RY), its maximal function M f is defined by

M — )| d
f(z) §1>1103|er|/“ y)| dy.

As the boundedness of the maximal operator M on L*(RY), we give the following
theorem, which is an improvement of [19, Corollary 4.4] by relaxing assumptions on
O(z,t) in [19]. In fact, we shall show our result by assuming (®5;v) and (P6;w)
below instead of (®5) and (®6) in [19]. Further, the result is proved without (®4)
which is assumed in [19].

Theorem 3.1. Suppose that ®(x,t) satisfies (93;¢), (P5;v) and (P6;w) for
£>0,v>0andw > 0 satisfying v < (1+¢)/N and w < 1+ €. Then the maximal
operator M is bounded from L®(RY) into itself, namely

IMflle < Cullflle

For f € Li

loc

for all f € L*(RYN).

We prove this theorem by modifying the proof of [19, Theorem 4.1].
For a nonnegative f € L. (RY), z € RY and r > 0, let

I = x|/

J(frx,r) = :Er|/ ®(y, f(y)) dy.

and
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Lemma 3.2. Suppose ®(z,t) satisfies ($3;¢1) and (P5;v) for ey > 0 and v > 0
satisfying v < (1 +&1)/N. Then, given L > 1, there exist constants C; = C(L) > 2
and Cy > 0 such that

O(z, I(f;2,7)/Cr) < CoJ(fa,7)

for all + € RN, r > 0 and for all nonnegative f € Llloc(RN) such that f(y) > 1 or
f(y) =0 for each y € RY and

(31) | o sy <L

Proof. Given f as in the statement of the lemma, z € RY and r > 0, set
I =1(f;z,r)and J = J(f;x,7). Note that (3.1) implies J < L|B(0,1)|~'r=V. By
(®2) and (®3), ®(y, f(y)) > (A1d2)~" f(y), since f(y) > 1 or f(y) = 0. Hence
I < AyAsJ. Thus, if J <1, then

(I)(Z',I/Cl) S Ang)(l’, ].) S AlAQJ

whenever C; > A, As.

Next, suppose J > 1. Since ®(z,t) — oo as t — 0o, there exists K > 1 such that

Oz, K) = P(x,1)J

by (®1) and the mean value theorem. With this K, we have

o (y: ()
fo)dy < KIBao) + 4 [ s 225 ay
/B(x,r) B(z,r) (b(y’ K)
Since K > 1, by (®3;¢;) we have
O(z,1)J = P(z,K) > A;L K751 @ (x, 1),
so that J > Ayl K'" which implies
Ko < Ay J < Ay L|IB(O, 1) 7Y,
or 1 < YK~V with v = (Ay. L|B(0,1)|"H)YN. Thus, if |y — 2| < r, then
y — x| < yK-He)/N <y K~V Hence, by (®5; ) there is § > 0, independent of f,
Y
x, r, such that
6z, K) < By K) for all y € B(x,r).
Thus, we have
Ay
fly)dy < K|B(z,r)| +

J
= K|B(x,7)| + A2ﬁ\3($ﬂ”)|m
Ao

= 1B )| (14 5205 < KIBG )| (0 + 414a5).

A(ﬁ@%@ﬂwwy

Therefore
I <(1+AAP)K,
so that by (®2) and ($3)
O(x, I/C)) < Ag®(x, K) < A1 AsJ
whenever C7 > 1+ A1 Asf. O

The next lemma can be shown in the same way as [19, Lemma 3.2|; note that
the value of w is irrelevant in this lemma.
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Lemma 3.3. Suppose ®(z,t) satisfies (P6; w) for some w > 0. Then there exists
a constant C5 > 0 such that

(2, I(fi2,r)/2) < C3{J(fs2,7) + (z, 9())}
for allz € RN, r > 0 and for all nonnegative f € Ll _(R") such that g(y) < f(y) <1

loc

or f(y) = 0 for each y € RN, where g is the function appearing in (®6;w).

Proof of Theorem 3.1. Choose py € (1,1 + ¢) such that py < (1 +¢)/(Nv) and
consider the function
Do(x,t) = B(x,t)/P0.
Then ®g(z,t) satisfies the conditions (®1), ($2), (P5;v) and (P6;w) with the same
g. Since
o(x, 1) = téo(z,t) with ¢o(z,t) = [t ()] "™,
condition (®3;¢) implies that @y (z,t) satisfies (P3;e1) with ey = (1+¢)/po— 1 > 0.
Note that
14+¢& 1+¢
(3.2) N N > v

Let f > 0 and |flle < 1/2. Let fi = fX(zif@)>1} fo = [X{wg@)<r@)<1y With g
in (®6;w) and f3 = f — f1 — fa, where xg is the characteristic function of E. Since

O(x,t) > (A1 Ag)~! for t > 1 by (93),
@0(1’,1&) S (AlAg)l_l/pO(I)(llf,t) S (AlAg)l_l/p06($,2t)
if ¢t > 1. Hence

/RN Do (y, f1(y)) dy < (A Ag)' =1,

In view of (3.2), we can apply Lemma 3.2 to ®¢, f; and L = (A;A,)' "7 and we
have

o, M fi(2)/Cr) < CoaM By (-, (1)) (@),
so that

(3.3) @ (a, Mfi(2)/Cr) < O [ M (- () ()]

for all z € RY with a constant C' > 0 independent of f.
Next, applying Lemma 3.3 to ®y and f;, we have

Do (z, M fo(x)/2) < C[MPo (-, fo(-)) (x) + Po(x, g(x))] .
Noting that ®y(z, g(x)) < Cg(z)+9)/P0 by (#3;¢), we have
(3.4) Oz, Mfo(w)/2) < C{ (Mo (- () ()] + g()' <}

for all z € RY with a constant C' > 0 independent of f.
Since 0 < f3<g<1,0< Mfz3 < Mg <1. Hence we have
(3.5) @ (2, Mfy(x)) < Aso(e, Mg(a)) < C[Mg(a)]**

for all z € RY with a constant C' > 0 independent of f.
Combining (3.3), (3.4) and (3.5), and noting that g(z) < Mg(x) for a.e. z € R",
we obtain

(3.6) ®(z, Mf(x)/(C1 +3)) <C { [Mcbo(., f(.))(x)]po n [Mg(x)]us}

for a.e. z € RY with a constant C' > 0 independent of f.
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Since M is bounded on LP°(RY) and on L'*¢(RY), there exists a constant C; > 1
such that

| @ MA@(C+3) da
=¢ {/RN [M(I)O (', f('))(y)]po dy + /RN [Mg(y)]'+e dy}

{/RN Dy (z, f(x))" d:c+/RN g(x)tre d:c}
<c {/RN B(z, f(2)) do + /RN o(z)"” d:c} <c,,

so that
/RN D (y, Mf(y)/(A2(Cy + 3)Cy)) dy < 1.

This completes the proof of the theorem. O

4. Properties of the complementary function

Hereafter, we assume that ®(z,t) further satisfies
(®3*) limy_yo ¢(z,t) = 00 and limy_,o; ¢(x,t) = 0 for every x € RV.

Note that this condition implies the same condition with ¢ in place of ¢. Also, note
that if ®(x,t) satisfies ($3;¢) for some £ > 0, then it satisfies ($3*). B

Under this asumption, we consider the complementary function ®*(z, s) of ®(x, t):
set

¢*(z,s) = sup{t > 0: ¢(,t) < s}
and
O*(, ) = / &% (z,7) dr
0
for z € RY and s > 0. Note that ®*(z,-) is nonnegative, convex and ®*(z,0) = 0;
O*(x,t) satisfies (1) and (P3).
Furthermore, we have
Proposition 4.1. (1) If ®(x,t) satisfies ($3;¢) for some € > 0, then *(z,t)
satisfies (92) and (P4).
(2) Define e* = (log2)/(log A3) where A3 > 1 is a constant appearing in (®4). If
O (x,t) satisties (P4), then ®*(x,t) satisties (P3;*).
Proof. (1) Suppose ®(z, t) satisfies (®3;¢) for some & > 0. Then ¢(z,t) — co as
t — oo and ¢(z,t) — 0 as t — 0, both uniformly in z € RY. It then follows that

0 < inf ¢*(z,1) < sup ¢*(z,1) < o0
rERN

zERN
and
0 < inf ®*(x,1) < sup ®*(x,1) < o0,
which is (®2) for ®*(x, ).
Since

B, (245.)750) < Ay (24,0) 76, 1) = 36,1
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by (©3;¢),
¢*(x,2s) = sup{t > 0: ¢(z,t) < 2s}
<sup{t > 0: ¢(x, (245.)7V°1) < s} = (245.) 0" (x, 9),

which implies
O*(x,28) < 2A50"(z, s),

where A3 = (2A,.)Y/%. Thus ®*(x,t) satisfies (®4).
(2) First, we show

(4.1) Pz, t) <s = ¢z, A;% at) < as
for t > 0and a > 1. Let ¢(x,t) <s. If 1 <a < As, then

Pz, A3 a"t) < p(x,t) < 5 < as.
If a > Az, then using (®4) we have

Dz, A3% 0 t) < As(A35 @)V @, t) = ag(x,t) < as.
Thus (4.1) holds.
Now (4.1) implies
¢ (x,8) < AT a° ¢*(x,as)
for s > 0 and a > 1, which in turn implies
O*(x,5) < A5 a7 % (x, as)

whenever s > 0 and a > 1. This means that ®*(x,t) satisfies ($3;¢*). O

Lemma 4.2. Suppose ®(z,t) satisfies ($3;¢) for some € > 0. Define
m%w:{§“”” o w@ﬁyz{f@”vsgjzg’
forx € RN, t >0 and s > 0. Then there is a constant A, > 1 such that
ATt < (w, (b)) < Agt
for x € RN and t > 0.
Proof. First, we note that
(4.2) t < ¢*(x p(x, 1) < Ayt

for all z € RV and ¢ > 0. In fact, the first inequality is obvious from the definition
of ¢*. Suppose ¢(x,at) < ¢(x,t) with a > 1. Then, by ($3;¢),

d(w,t) > o, at) = Ayza*d(x,1),
so that a < A;/f . This shows the second inequality of (4.2).

Since ¢*(z,-) and ¢(z,-) are non-decreasing, so are n*(z,-) and n(z,-); and
n*(x,s) < ¢*(x,s) as well as n(z,t) < ¢(x,t). Hence, by (4.2), we have

0 (@ n(2,1)) < ¢"(z, Bz, 1) < A7t
On the other hand,
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and, similarly, n*(z,s) > (1/2)¢*(x, s/2). Hence

1- 1 1-
e ) 2 0 (5, 53(01/2)) 2 50 (030w 0/2) )
Thus, by Proposition 4.1 (1) and (4.2), we have

" Lo 2 1
Proposition 4.3. Suppose ®(z,t) satisfies ($3;¢) and (94) for some € > 0.
(1) If ®(z,t) satisfies (P5;v), then ®*(x, s) satisties (P5;v/e).
(2) If ®(x,t) satisfies (P6;w), then ®*(x, s) satisties (P6;w/¢).
Proof. (1) Let v/ > 0 and |z —y| < v't7/¢. First, we consider the case t > A; A,.
Since n(x, 1) < AjA,, there is s > 1 such that ¢t = n(z, s). Since

n(x,s) > Az_’;sen(:c, 1) > (24, A5, A3) 715,

t. 0J

we have
|l’ — y| S 7,(2A1A27€A3)V/ES_V.
Hence, by (®5;v) and (2.1),

B~l(x,s) <0y, s) < Bi(z, s)
with B = 24,A3B,,, v = 7’(21_41/1275/13)”/5. By Proposition 4.1 (1), there is a
constant B’ > 1 such that n*(z, Bt) < B'n*(z,t) for all z € RY and t > 0. Then,
using Lemma 4.2 twice, we have
7"y, t) =n"(y,n(z,s)) < 0"y, Bnly, s))
< B'*(y.(y, s)) < AsB's < AiB'n" (1)

and
0 (z,t) =" (z,n(x,s)) < Ags < Ain*(y.n(y, s))
< Ain*(y, Bn(z,s)) < AiB'n*(y,n(z,s)) = ATB'n*(y, t).
Thus
(4.3) B" ' (@, t) < nf(y,t) < B'p*(x,t) ift> AjA,

with B" = A2B'.
Next, let C} = inf,cgnv n*(2,1) and Cy = sup,.zv (2, A1 Az). Then €} > 0 and
Cy < oo by Proposition 4.1 (1). Then

(4.4) CiCy " (m,t) < m*(y,t) < Oy Con*(x,t) for 1 <t < AjA,.

Now, (4.3) and (4.4) show that ®*(z,t) satisfies (®5;v/¢).
(2) Let g(z) be the function appearing in (®6;w) for ®(x,t). Set

(1
g (o) = min (s n(oale)).
Then, 0 < g*(xz) <1/2 <1 and

g (x) < n(z,g(x)) < AjAsAsg(2)°,

which implies (¢*)*/¢ € L'(RY). We want to show that there exists a constant
B! > 1 such that

(4.5) (Ble)™'n"(x,1)
whenever |2'| > |z| and ¢*(z) <t < 1.

33
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First, suppose g*(z) <t < 1/(2A;A3). Then g*(z) = n(z, g(z)). Take s > 0 such
that n(x,s) = t. Then n(x,g(x)) < n(x,s) < n(x,1), which implies g(x) < s < 1.
Thus, by ($6;w) and (2.1)

B n(x,s) < n(2',s) < Boen(z, 5)
or,
Bt < n(a',s) < Buot

whenever |2/| > |z|, where By, = 245A3B.. Again by Proposition 4.1 (1), there is a
constant B* > 1 such that n*(z, Bot) < B*n*(z,t) for all z € RN and t > 0. Then,
by Lemma 4.2, we have

n*(x,t) = 0 (z,n(z,s)) < Ass < Afn*(2, n(a’, 5))
< A (2!, Boot) < AIB " (2, 1)
and
n*(2',t) < n*(2, Baon(a', 5)) < B'n* (2, n(', 5))
< AyB*s < ATB(x,n(x, 5)) = AJB 0 (x,1).

Thus, we have shown that (4.5) holds for g*(z) <t < 1/(2A;A43) and |2'| > |z| with
B'_ = A2B*. By continuity, this holds also for ¢t = g*(z).

Next, let C] = inf,cgnv n*(2,1/(2A1A43)) and C) = sup,cpnv 7*(2,1). Then C] >
0, C) < oo and

CUCy) (@, t) < (@', 1) < (C)) 7' Can’ (2, 1)

for 1/(241A3) <t <1 and |2/| > |z|, which shows (4.5) for 1/(24;A3) <t <1 with
Bl = (€))7, 0

Proposition 4.4. (1) For f € L*(RY),

16) e <sw{|[ g

(2) If a measurable function f satisfies

:g€ LY (RY), |g]

o < 1} <2/l

o {/R @)g@)ldr: g € L (RY), gller < 1} <o,

then f € L*(RY).

Proof. (1) This assertion is proved in |22, Theorem 13.11].
(2) Given a measurable function f, set E,, = {z € R : |z| <n, |f(z)| < n} and
fn=fxg, for n € N. Then f, € L*(R") and by (4.6), we have

Il <swo{ [ 1F@g(o)ldos g € LR, gl <1} < o0

By the monotone convergence theorem, we conclude that f € L*(RY). 0

5. A generalization of a theorem of CFMP

In this section, we give a generalization of a result due to Cruz-Uribe, Fiorenza,
Martell and Pérez |6, Theorem 1.3]. Before we state the theorem, we prepare the
following lemma, which is easily verified:



732 Fumi-Yuki Maeda, Yoshihiro Sawano and Tetsu Shimomura

Lemma 5.1. For 0 > 0, set
(5.1) Dy(z,t) = B(x, t1/9).
Then:

(1) Pg(x,t) also satisties (P1) and (P2);
(2) if ®(x,t) satisfies (P3;¢) and 0 < 1+4-¢, then Oy(z,t) satisties (P3; (14+c—0)/6);
(3) if ®(x,t) satisties (P4), then Py(x,t) also satisties (P4): for
Dp(z,t)/t (t>0),
t) =
oot {0 (t="0),

we have
Po(,2t) < Azgo(z,t)
with Asg = 21/9_1/1?,;(6), where j(0) is the integer such that
(5.2) J(0) =1 <1/6 < j(0);
(4) if ®(z,t) satisfies (P5;v), then Py(x,t) satisfies (P5;v/0); if D(x,t) satisfies
(P6;w), then Py(x,t) satisties (P6;w/0).
Further, if < 1+ ¢, then
(5.3) 1F ey = IILF1V711%
for f € L*(RY).

Theorem 5.2. Suppose ®(z,t) satisties (93;¢), (P4), (P5;v) and (P6;w) for
e>0,v>0andw >0 and let 0 < pg < 1+ &. Assume that

- (1+e—po)(1+e*(po))

(5.4) N and w < (1+¢e—po)(1+e"(po)),
where, defining j(po) by (5.2), we write
(5.5) £*(po) = (log 2)/(log As ,) = (log 2)/(log(2'/7~1 A]™)).

Let F be a family of ordered pairs (f, g) of nonnegative measurable functions on RY.
If

(5.6) - fx)Pw(z)dx < Cy /RN g(x)Pw(x) dz

for all (f,g) € F and for all A;-weights w with a constant Cy depending only on py
and the A;-constant of w, then there is a constant C' > 0 such that

I flle < Cllglle
for all (f,g) € F with g € L*(RY).

Proof. By Lemma 5.1, &, (z,t) satisfies (®1), ($2), (P4) with constant As,, =
21/7’0_1/1?,;(”0), (®3; (1+e—po)/po), (P5;v/po) and (P6;w/py). Let U(x,t) = @, " (2, 1).
Then, by Propositions 4.1 and 4.3, W(x,t) satisfies (®1), (92), (P4), (P3;e*(po)),
(P5;v/(1 4+ € —po)) and (P6;w/(1 + ¢ — po)). Therefore, the maximal operator M
is bounded on LY(RY) by (5.4) and Theorem 3.1, namely there is a constant A > 0
such that

|Mh|lg < A||h|lg for all h € LY(RY).
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Let 5 =0,1,.... Denote by M’ the j-fold composition of M, where it is understood
that M°f = |f|. Consider an operator T: LY (R"Y) — LY(R") defined by

4 N
Th = Zzw he LY(RN).

Note that [|Th|ly < 2||h]|w.

Now, let h € LY(RY) and h > 0. Then Th > h and M(Th) < 2ATh. A direct
calculation shows that Th is an Aj-weight with A;-constant less than or equal to
2A (see, e.g., |9, Lemma 5.1]). Therefore by our assumption there is a constant Cj
independent of h such that

f@h@)de < | F@)PTh(z)de < Co / g(2)°Th(z) dx
RN RN RN
for all (f,g) € F.

Thus, if (f,g) € F with g € L*(R"), then, by Proposition 4.4 (applied to ®,,),
we have

f@)h(@) dz < 2Collg” e, IThllw < 4Collg™ lle,, 12w

for all h € LY(RY) with h > 0. Therefore, by Proposition 4.4 again, f7° € L®r (R")
and || f*[|s,, < 4Colg"|s,,- By (5.3), f € L?(RY) and

1 flla < (4C0)"*glla- 0
Remark 5.3. If pg > 1, then £*(pg) > €*(1) = &*.
By using two types of extrapolation theorems as in [6], we obtain the following

corollaries. Let F be a family of ordered pairs (f,g) of nonnegative measurable
functions on RV.

Corollary 5.4. (cf. [6, Corollary 1.10]) Suppose ®(z,t) satisfies ($3;¢), (P4),
(®5;v) and (P6;w) with e > 0, v > 0 and w > 0 satisfying

(5.7) v<(1+4+¢)/N
and
(5.8) w<l+e.

Let 0 < py < oo. If (5.6) holds for all (f,g) € F and for all A.-weights w with a
constant Cy depending only on py and the A..-constant of w, then there is a constant
C > 0 such that

[flle < Cllglla
for all (f,g) € F with g € L*(R"Y). Furthermore,

l(so) ), <l

for every 0 < ¢ < oo and {(f;,9;)} C F.

P

Proof. By an extrapolation theorem |6, Theorem 6.1], for every 0 < p < oo and
wE Ay,

f(z)Pw(x) de < C/ g(x)Pw(x)dx, (f,g) € F
RN RN
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and, for every 0 < p, ¢ < oo and w € A,
p/q
/RN (Z fj(x)q> x)dr < C’/ ZQJ w(x) d.
J

Choosing p; > 0 satisfying v < (1 4+ ¢ —p;)/N and w < 1 + ¢ — p; and applying
Theorem 5.2 with this p; in place of py, we obtain the first assertion. The second
assertion can be derived by applying Theorem 5.2 to the family

m- (0" (S0 ) s

Corollary 5.5. (cf. [6, Corollary 1.11]) Suppose ®(z,t) satisfies ($3;¢), (P4),
(P5;v) and (P6;w) for e > 0, v > 0 and w > 0 satisfying

(5.9) v<e(l+e)/N
and
(5.10) w<e(l4e")

for €* given in Proposition 4.1. Let F be a family of ordered pairs (f, g) of nonnegative
measurable functions on RY. Let 1 < py < oo. If (5.6) holds for all (f,g) € F and
for all A, -weights w with a constant Cy depending only on py and the A, -constant
of w, then there is a constant C' > 0 such that

(5.11) I flle < Cliglle
for all (f,g) € F with g € L*(RY). Furthermore,

(i), <el(Sur)”

for every 1 < q < oo and {(f;,9;)} C F.

P

Proof. By the extrapolation theorem [6, Theorem 6.2|, for every 1 < p < oo and
w e Ay,

. f(z)Pw(x)de < C g(x)Pw(z)dx, (f,g)€F

RN
and, for every 1 <p, ¢ < oo and w € A,

/(Zf] ) dg;<0/ (Zg] )p/qwx)dx.

Choosing 1 < p; < 14 ¢ satisfying v < (1+e—p;)(1 +¢*)/N and w < (1 +¢ —
p1)(1 4 €*) and applying Theorem 5.2 with this p; in place of py, we obtain the first
assertion. The second assertion follows from the same arguments as in the previous
corollary. U

Remark 5.6. Assumptions (5.7) and (5.8) are weaker than (5.9) and (5.10),
respectively. In fact, we see that
(A1 Ay )1 < B(m,1) < Ay Ap Ast/®
for t > 1, which implies ee* < 1, so that e(1 +¢&*) < 1 +e.

From Corollary 5.5 with the pairs (M f, | f]), we obtain vector-valued inequalities
for M on L*(RY). Recall that £*(pg) is defined by (5.5).
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Corollary 5.7. Suppose that ®(z,t) satisfies (93;¢), (P4), (P5;v) and (P6;w)
fore >0,v>0andw > 0. Let ¢ > 1.

(1) If v < e(1+¢€*)/N and w < £(1 + €*), then

o 1/q o 1/q
(Z(ij)q> (Z \fj\q>

for all sequences { f;}32, of measurable functions.
(2) Ifv < (1+e— 1/q)(1 +¢*(1/q))/N and w < (1+e—1/q)(1+¢e*(1/q)), then

Zm
[

for all sequences { f;}32, of measurable functlons .

P

o0

> (M)

J=1

Proof. (1) This is a direct consequence of Corollary 5.5 applied to the family
F =A{(Mf,|f])}; see [1]. _
(2) By Lemma 5.1, ®y/,(z,t) (= ®(x, %)) satisfies (©3;¢’), (P4), ($5;2') and
(P6;w') with
=q(1+e)—1, V=q and w' =qu.
By assumption,
£€>0, 0<vV<e(l+e(1/q)/N, 0<w <e(1+e*(1/q)).

Hence, by Corollary 5.5, we have

o 1/q o 1/q
(Z(ij)q> <C (Z |fj|q> :

— —
! P1/q ! P1/q

which implies the required inequality in view of Lemma 5.1. U

6. Some applications of CFMP-theorem

6.1. Sharp maximal function. For f € L{_(R"), the sharp maximal function
M?# f is defined by
1
r>0 |B(z,7) B(z,r)
where fz = (1/|B]) [ f(z) dz for a ball B.
Since 0 < M7 f < 2Mf by Theorem 3.1, we have

Proposition 6.1. Suppose ®(x,t) satisties ($3;¢), (P5;v) and (P6;w) fore > 0,
v >0 and w > 0 satisfying v < (1 +¢)/N and w < 1+ ¢. Then

1M7 flle < 2Cu| fllo

|f(y) - .fB(gc,r)| dy,

for all f € L*(RYN).
The following inequality is known (cf. [16]): for 0 < p < oo,

| Mt@re@dr<c [ i i@pe) i

RN
for all f € L®(RY) (= the space of L>-functions with compact support) and w €
A
Thus, applying Corollary 5.4 to F = {(M f, M# f): f € L=®(R")}, we have
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Proposition 6.2. Suppose ®(x,t) satisties (P3;¢), (P4), (P5;v) and (P6;w) for
e>0,v>0andw >0 satistying v < (1+¢)/N and w < 1 +e. Then

IMflle < ClIM7 flle
for all f € L®(RY).
In view of Propositions 6.1 and 6.2, we can state:

Corollary 6.3. Suppose ®(x,t) satisfies (93;¢), (®4), (P5;v) and (P6;w) for
e>0,v>0andw > 0 satistying v < (1+¢)/N and w < 1+ ¢. Then

Cflle < I1M* flle < Cllfllo
for f € L*(RY).

6.2. Singular integral operators. We consider a singular integral operator T’
associated to a standard kernel k(x,y) (see, e.g., |7, Section 6.3]). By C(RY) we
denote the set of all compactly supported C>-functions in R".

Recall the following result due to Alvarez and Pérez [3]:

Lemma 6.4. Let T be a singular integral operator associated to a standard
kernel and suppose T extends to a bounded operator from L'(RY) to w-L*(RY).
Then, for 0 < 6 < 1 there exists a constant C'(6) > 0 such that

M#(Tf1%)(x) < C(O)[M f(x))’
for all f € CX(RY) and x € RY.

Theorem 6.5. Let T' be a singular integral operator associated to a standard
kernel and suppose T extends to a bounded operator from L'(RY) to w-L*(RY).
Suppose ®(x,t) satisfies (P3;¢), (P4), (P5;v) and (P6;w) fore >0, v >0 andw > 0
satisfying v < (1 +¢€)/N and w < 1 +¢. Then T, defined initially on C>*(RY), can
be extended to a bounded operator from L*(RY) into itself.

Proof. Let 0 < 6 < 1. By Lemma 5.1, ®y(x,t) = ®(z,t"/?) satisfies ($3;¢’) with
g=(1+e—-0)/0, (P5v/(ON)) and (P6;w/0). Note that (1 +¢)/0 =1+¢£.

Let f € C®°(RY). Then, using Proposition 6.2, the above lemma and then
Theorem 3.1, we obtain

/
1750 = (I17500,,) " < Collar* (s

= Cp||[IMF(IT 1)V < C2C(O) 1M fllo < Cllfla-
Since C>°(RY) is dense in L®(RY) (cf. [20]), we obtain the required assertion.  [J

Remark 6.6. If K is a locally integrable function on R" \ {0} such that its
Fourier transform is bounded and

C
K (z)| < VK (z)| < Wa z #0.

[V

Then, for the singular integral operator T defined by Txf = K x f and for 1 < p <
oo, there exists a constant C' > 0 such that

| Tf@pu@de<c [ if@poe)

for all w € A, and f € LP(RY;w) (see, e.g., |9, Theorem 3.1, p. 411]). Therefore, by
Corollary 5.5, we have
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Proposition 6.7. Suppose ®(x,t) satisties (P3;¢), (P4), (P5;v) and (P6;w) for
e>0,v>0andw > 0 satistying v < (1 +&*)/N and w < (1 +*). Then

1T flle < ClIflle
for all f € L*(RY).

6.3. Kerman—Sawyer inequality. In this subsection, let k(r) be a non-
negative nonincreasing lower semi-continuous function on (0, c0) such that

1
/ E(r)rNtdr < 0o
0

and there is Ry > 0 such that k(r) is positive and satisfies the doubling condition on
(O,RQ), ie., ]{3(7’) < Cdl{?(27”) for 0 <r < R0/2

Set k(0) = liminf, o4 k(r). (k(0) may be co.) With an abuse of notation, we
write k(z) = k(|z|) for 2 € RN, Let k(r) = v~ [ k(t)t"~*dt. The k-maximal
function of a non-negative measure p is defined by

Mp(x) = sup k(r)p(B(z,7)).

Kerman and Sawyer [17, Theorem 2.2| showed that
(6.1) CH[Myplly < NIk * pllp < Cl| Ml
for 1 < p < co. The left inequality follows from
Myp(z) < CM(k* p)(z) for all 2 € RV,

which was proved in [2, Lemma 4.3.1] and [17, Theorem 2.2(a)], and the boundedness
of the maximal operator M. This inequality, together with our Theorem 3.1, gives

Proposition 6.8. Suppose ®(z,t) satisfies (P3;¢), (P5;v) and (P6;w) fore > 0,
v >0 and w > 0 satisfying v < (1 4+¢)/N and w < 1+ ¢. Then

[Myplle < Cllk s pllo.
As a weighted version of the right inequality in (6.1), we have

Lemma 6.9. Let 1 < p < oo and w € A,. Then there exists a constant C' > 0
such that

/ [(k s ) () ["w(z) doe < C/ [(Mp) () ]Pw(z) da
RN RN
for all nonnegative measures 1 on RY.
This lemma is essentially proved in [15, Section 5| and [18, Proposition 1’]. By
using the method given in the proof of [35, Theorem 3.1.2] and modifying the proof

of 2, Part II, Theorem 4.3.1| to the weighted case, we can prove this lemma.
By this lemma and Corollary 5.5, we have

Theorem 6.10. Suppose ®(x,t) satisfies (93;¢), (P4), (P5;v) and (P6;w) for
e>0,v >0 andw > 0 satisfying v < e(1 +¢*)/N and w < €(1 + ¢*). Then there
exists a constant C' > 0 such that

[k plle < CllMipllo

for all nonnegative measures i on RY such that M,u € L*(RY).
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7. Decomposition for Musielak—Orlicz spaces

In this section, we give a decomposition theorem for functions in L*(RY).

Theorem 7.1. Let d € N U{0}. Suppose ®(z,t) satisties ($3;¢), (®4), (P5;v)
and (P6;w) for e > 0, v > 0 and w > 0 satisfying v < (1 +¢)/N and w < 1 +e¢.
Then every f € L®(R") has a decomposion

f = Z )\jaj,
j=1
with a; € L°(RY) and \; € [0,00), j = 1,2,..., such that
laj| < xq, fora cube@; for each j,
/ a;(v)z’ dr =0 for all multi-indices 3 with |3| < d, for each j
RN
and

< Ol flle

Z )\jXQj
j=1

with a constant C' > 0 independent of f.

P

To prove this theorem, we introduce the grand maximal operator which is origi-
nally used in the definition of the Hardy space HP(RY) with 0 < p < co. The grand
maximal operator M is defined by
(7.1) Mf(z) =sup{|t Nt )« f(z)]: t > 0,0 € Fr}

for f € S'(RY) and z € RY, where L is a fixed large integer and

Fr = {gp € S(RY) ¢ sup (1+ |z|)*0%p(x)| <1 for all B with |B] < L}.

zeRN
Here and below, we suppose L > N + 1.
Lemma 7.2. Suppose that ® satisfies ($3;¢), (P5;v) and (P6;w) for € > 0,

v >0 and w > 0 satisfying v < (1 +¢)/N and w < 1 +¢. If f € L*(RY), then
Mf e L*(RY) and

(7.2) [Mflle < Clflle-
Proof. In view of Theorem 3.1, it is enough to show
(7.3) Mf(z) < CMf(x)

for f € S(RY)NLL (RN). Let hy(z) =t (1 + |z|/t)~* for t > 0. Then,
[h e f(2)] < halli M f () = ([Pl [1 M f ()
(cf., e.g., [8, Proposition 2.7| or [10, Theorem 2.1.10]). Since |¢| < hy if ¢ € Fp,
(TNt ) f(@)] < Dok |f|(@) < (lhalli M f(2)
for all ¢ € Fr,t > 0 and x € RY, which yields (7.3) with C' = ||hy||; < oo. O
We shall use the following lemma. We refer to |31, Chap. III, §2] for the proof.
Lemma 7.3. Let f € S (RY)NLL (RY),d € NU{0} andr > 0. Set O = {y €

loc

RY: Mf(y) > r} and consider a collection of cubes {Q;} which has the bounded
intersection property and for which O = |, Q. (Such a collection can be obtained
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via the Whitney decomposition of O.) Then, f is expressed as f = g+ >, by with
br, g € S'(RY)N L .(RY) such that by is supported in Qj and

/ be(z)2z’ dv =0 for all B with |B] < d
RN

for each k. Furthermore,

(7.4) lg(x)| < Cr for all z € RN
and
kN+d+1

with constants C' depending only on N, where x and {; denote the center and the
side-length of ()}, respectively.

Remark 7.4. We have the following pointwise estimate from [10, Example 2.1.8]:
O N
- < CM *
<€k+ |Z£—:L’k|> - Xa;(@)
with C' > 0 independent of k, so that (7.5) implies

(7.6) My < € (MF - xqy +7(Mxgp) ™)
Proof of Theorem 7.1. Choose dy > d (d; € N) such that
<1+€7—1/q and w<1l+e—-1/q

TN
for ¢ = (N +d, —1)/N. For each j € Z, let
O;={r e RY: Mf(x)>27}.

By the previous lemma and remark, we find collections of cubes {Q;k}ke[{j hav-
ing the bounded intersection property such that J, . K, Qi = Oj; and we have a
decomposition

F=gi+b. b= b

k‘EKJ‘

with b, g; € S'(RV) N L, (R") such that b; supported in Q%
/ bir(r)z’ dv =0 for all B with |B| < dj,
RN

lg;(z)] < C27 and

; 1
(77) Mbj,k < C (Mf : XQ;‘,k + 2/ (MXQ;,k) /q) .

Since g; — 0 uniformly as j = —o0, g; = 0in & as j — —oo. On the other
hand, by (7.7) we have

> Mbjy,
k

< CHMf'XOqu>+C

[1b5]le <

<C HMf ‘Xo, + Y2 (Mxg:,)"*
] k

P

2y (Mxq:,)"*

k

P
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Now, by Corollary 5.7 (2), we see

<C SCHM]C'XOJ'H@'

P

2y " (Mxg:, )"

k

2 xa,
k

@
Hence,
bjlle < C{[MF-x0,|ly =0

as j — oo, which implies that b; — 0 in the sense of distributions as j — co.
Therefore

[e.e]

(7.8) F=> (ge1—9)

j=—o00

with the sum converging in the sense of distributions. Going through the same
arguments as in [31, pp. 108-109], we have functions {A; }rex; such that

(7.9) 9j+1 — 95 = Z Aj k.,

k)EKj

|A; il < COQjXQ;k for some universal constant Cy and [y Aji(x)2” dz = 0 for all 3
with || < d.
Let us set

i,k i .
A = @, )\j,k =2, forke Kj, j € 7.

Then
a1l < Xq3, /N a;r(r)2’ dr =0 for all B with |8] < d
R

and

F=Y0" Nty

JEZ keK;

where the summation is convergent in the sense of distributions.
What remains to show is the estimate

(7.10) Yo>  dwxan| <Clfle

JEZ k)EKj &

By the bounded intersection property, > ke, XQ5, < CXo,, and by the definition of
O;, Y iez 2 X0, < 2Mf. Hence

S5 hvan] =03 Y Pxes| <l

JEZ keK, ® JEZ keK; ®

Required inequality (7.10) now follows from Lemma 7.2. O
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8. An application to Olsen inequality
For 0 < ¢ < p < o0, recall that the Morrey space M{;(RN ) is defined by
MERY) = {f € Lio(RY): [| fll g < 00},

Il = s 101 ([ 17iray )
Q: cube Q

For 0 < a < N, we define the Riesz potential of order « for a locally integrable
function f on RY by

where

Li@) = [ o=l ) dy

Here it is natural to assume that
(s.1) | @ Ml dy < o0
RN

(see [21, Theorem 1.1, Chapter 2|), which is a necessary and sufficient condition for
the integral defining I, f(z) to converge for almost all z € RV,

Theorem 8.1. Suppose ®(x,t) satisfies ($3;¢), (P4), (P5;v) and (P6;w) for
e>0,v >0 andw > 0 satisfying v < e(1 +¢*)/N and w < (1 + €*) for * given in
Proposition 4.1. Let

Ne* 1 N

and 1+ —<u< —.
1+ e* e* o

(8.2) 0<a<

Then
lg - Laflle < Cllgll yavall fllo

for all f € L*(RYN) satisfying (8.1) and g € Ma/*(RN).
To prove Theorem 8.1, we need the following lemmas:

Lemma 8.2. [14, Lemma 4.2] Let d € N U {0}. Suppose h is an L*>-function
supported on a cube Q). Assume in addition that [gy 2Ph(z)dx = 0 for all B with
|B| < d. Then,

[e.e]

1
(3) (@) < Codlll(@) Y srmrainele) (@ € RY),

k=1
where ((()) denotes the side length of Q).

Lemma 8.3. Suppose ® satisfies ($3;¢), (P4), (P5;v) and (P6;w) for ¢ > 0,
v >0 and w > 0 satisfying v < e(1 +¢*)/N and w < e(1 +¢*). Let {Q;}32, be
a sequence of cubes, {a;}32, be a sequence of non-negative functions in L*(RN) for
u > 1+1/e* and let {)\;}32, be a sequence of non-negative numbers. If supp a; C Q;,

lajll. < 1Q;M* for each j and HZ;’;I AiXeQ, » <00 then 3722, Aja; € L*(RY) and

> >_Aixe,
=1 ® =1 ®
Proof of Lemma 8.3. Consider g € L* (RY) with ||g|

M) = [ 1o 3 vas(a) da

<C

o < 1 and set
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By the Holder inequality, we obtain

o 1/u/ 1/4
<> < o) dx) ||a]||uchA|@] (me[|g| ])

/n <Z )‘JXQJ ) (M[|9|u,](l'))1/u dx
(M[Ig|“']>l/w

where 1/u+1/u’ = 1. By Propositions 4.1 and 4.3, ®*(x, t) satisfies ($3; %), (P5;v/¢)
and (®6;w/e). Hence, by Lemma 5.1, ®* (v,t) = ®*(z,t"/*) satisfies (®3; (1 +
e*)Ju'—1), (®5;v/(eu’)) and (P6;w/(cu')). Note that v’ < 1+e*. By our assumption
v/(ew') < (1 +¢*)/N and w/(ew') < 14 *. Thus, by Theorem 3.1, the maximal
operator M is bounded on L*w(RYN). Hence

|(arta) ™|

which implies

iXQ;

Y

@*

o1/ o 1/u/
= | M[g["]]| =~ <C|lg] =Cllglle- < C,
* q> / q>u/

[Alg)l <C

Z AiXaQ;

J=1

®
for all ¢ € L* (RY) with [|g|ls < 1. Now the required conclusion follows from
Proposition 4.4. ]

Proof of Theorem 8.1.  First note that v < (1 +¢)/N and w < 1+ ¢ by
Remark 5.6. Choose d € N so large that

1 N N
(8.4) v —|l+e——— )] and w<l+e—-——.
N N +d N +d

Let f € L*(RY) satisfy (8.1). We decompose f according to Theorem 7.1 with d
chosen as above; f = 3777, Aja;, where a; € L*(RY) and \; € [0,00), j = 1,2,.
satisfying the Conditions in Theorem 7.1 for cubes {Q;}52,.

By Lemma 8.2,

1
[Laa;] < CZ k(N+d+1) (25 Qy)" X2+Q;

so that

g1 f|<|g\ZA | € O s (012°0) )

=1 k=1
Let
2FQ
asp(@) = T2 ) g ().
||9||MNa
Since

g Xorqyllu < 12°Q 17N Igl| s = £(27Q5)~12°Qs Y llgll v,
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we see that [la; /|, < ]2¥Q;|**. Hence, by Lemma 8.3, we have

lg - Laflle < Cllgllyorm | DD SR X2k,

j=1 k=1 >

Observe that xarg, < 2"V Myq,. Hence

o el < Clllygn |33 g - (Mg ¥+
Jj=1 k=1 o
= Cllallge |04+
=t )

By Corollary 5.7 (2) and (8.4), we can remove the maximal operator M and we obtain

lg - Iaflle < Cligl yvre | Aixa,|| < Cligllyvall fle,
j=1 ®
which is the required inequality. O]
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