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Abstract. We study the action of fractional differential type operators on the space of point-

wise multipliers between holomorphic Triebel–Lizorkin spaces on the unit ball B of C
n. As an

application, we obtain new characterizations and examples of multipliers on Hardy–Sobolev spaces,

and we improve some well-known results about the integrals operators Ib and Jb.

1. Introduction and main results

For 0 < p < ∞, let Hp be the Hardy space in the unit ball B of C
n. For

τ ∈ R, denote by (I +R)τ the bijective linear fractional differential operator on the
space H of holomorphic functions on B, defined on the monomials by (I +R)τzα :=
(1 + |α|)τzα, where α = (α1, · · · , αn) is a multiindex of non-negative integers and
|α| = α1 + · · ·+ αn. For 0 < p < ∞ and s ∈ R, the Hardy–Sobolev space Hp

s on B

consists of all the holomorphic functions f on B such that (I + R)sf ∈ Hp, that is,
Hp

s := (I +R)−sHp.
The Hardy–Sobolev spaces Hp

s for 1 < p < ∞ and s < n can be described in
terms of fractional Cauchy operators, namely, Hp

s = Cs[L
p] where Cs is operator with

kernel

Cs(z, ζ) :=
dσ(ζ)

(1− zζ)n−s
,

(see [16]). Here dσ denotes the normalized surface measure on the unit sphere S and
Cs is a bijective operator from Hp to Hp

s which plays in some sense the same role
that (I +R)−s, as we will detail in the forthcoming sections.

One of our motivations arises as a natural question derived from the above rep-
resentation: Find a description of the functions ϕ ∈ Lp(dσ) for which Cs(ϕ) is a
pointwise multiplier on Hp

s . For the cases s > n/p or s ≤ 0 the answer to this ques-
tion is known (see for instance [25]). If s > n/p, Hp

s is a multiplicative algebra and
consequently Cs(ϕ) is a pointwise multiplier on Hp

s for any ϕ ∈ Lp(dσ). For s ≤ 0,
the space of multipliers of Hp

s coincides with H∞, and Cs(ϕ) is a pointwise multi-
plier on Hp

s if and only if Cs(ϕ) ∈ H∞. Our approach to obtain this description for
0 < s < n/p is based, among other ingredients, in the behavior of fractional differen-
tial operators on the algebra of pointwise multipliers between Hardy–Sobolev spaces.
These results, which are interesting by themselves, permits to describe the spaces
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of pointwise mutipliers in terms of trace measures on S and in terms of Carleson
measures on B, which complete the ones given in [25].

A non-negative Borel measure µ on B is a Carleson measure forHp
s ifHp

s ⊂ Lp(µ).
When s = 0, these measures are characterized by the condition µ(T (Q(ζ, r))) . rn,
for any Carleson box Q(ζ, r) = {z ∈ B; 1 − |z| ≤ r, z/|z| ∈ B(ζ, r)}. In this
characterization the Carleson boxes can be substituted by tents. The proof of this
result in several variables can be obtained using the methods of the classical theorem
in one variable, due to Carleson (see [12] and [13]).

For general s > 0, we recall, for instance, that if n − sp < 1, the Carleson
measures for the spaces Hp

s can be characterized by a capacitary condition on open
sets in S (see [18]) and for H2

s and any s > 0, was obtained (see [29]) a non-capacitary
characterization. A non-negative Borel measure µ on S is a trace measure for Hp

s ,
s > 0, if the space of all the boundary values of the functions Hp

s , also denoted by
Hp

s , is in Lp(dµ).
There is a large number of works dealing with the theory of pointwise multipliers

acting in pairs of spaces of differentiable functions on R
n. We refer to the book

of Maz’ya and Shaposhnikova [21] as a survey of some of the main results in this
topic. The fact that we are dealing with spaces of holomorphic functions, where
the non-isotropic metrics play a main role, allows us to use different arguments and
techniques to the ones used in the real case, which in some situations can not be
applied directly to the holomorphic case. One trivial example of this situation is the
fact that for kp > n, the functions in Hp

k are continuous up to the boundary, whereas
for real Sobolev spaces on B, the regularity holds for kp > 2n.

One second motivation was the study of the integral operators Ib and Jb with
holomorphic symbol b defined by

Ib(f)(z) =

ˆ 1

0

b(tz) (Rf)(tz)
dt

t
, Jb(f)(z) =

ˆ 1

0

f(tz) (Rb)(tz)
dt

t
.

Observe that Ib(f)(z) + Jb(f)(z) = (bf)(z) − (bf)(0). These operators have been
thoroughly studied in different settings, and there is a wide literature on the subject.
See for instance the classical articles [5], [4] and [20], the recent paper [26] and the
references therein.

We study the relationship of these operators with the multipliers, extending some
classical results on this topic. Since the techniques used to prove the main theorems
are not more involved, we state our results in the general setting of Triebel–Lizorkin
spaces which include both the Hardy–Sobolev spaces Hp

s and the Besov spaces Bp
s .

Recall that Bp
s consists of all the f ∈ H such that (1 − |z|2)k−s(I + R)kf(z) ∈

Lp ((1− |z|2)−1dν(z)) for some (any) non-negative integer k > s. Observe that Bp
−1/p

is the classical Bergman space Ap := Lp(dν)∩H and therefore Bp
s = (I+R)−s−1/pAp.

Here, dν denotes the normalized Lebesgue measure on B.
For 0 < p, q < ∞ and a positive Borel measure µ on B, the non-isotropic tent

space T p,q(µ) consists of all measurable functions ϕ on B such that

‖ϕ‖pT p,q(µ) :=

ˆ

S

(

ˆ

Γζ

|ϕ(w)|q
dµ(w)

(1− |w|2)n+1

)p/q

dσ(ζ) <∞,

where Γζ =
{

w ∈ B : |1− wζ̄| < 2(1− |w|2)
}

is the usual admissible approach region.
We extend the above definition to the case p = q = ∞ defining T∞,∞ := L∞.
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Let 0 < p, q < ∞ and s ∈ R. The holomorphic Triebel–Lizorkin space F p,q
s

consists of all holomorphic functions on B such that

‖f‖F p,q
s

:=
∥

∥(1− |z|2)k−s(I +R)kf(z)
∥

∥

T p,q(ν)
<∞,

for some (any) non-negative integer k > s. Note that if s < 0 then we can take k = 0.
The same techniques used in [23] to prove that the norms are equivalent for

different non-negative integer values of k permit to obtain equivalent norms replacing
(I + R)k by other differential operators, as (I + R)τ , τ > s not necessarily integer,
or the operators defined in (1.1) and in Remark 2.5. See for instance Chapter 6 in
[31] for more equivalent norms on Besov spaces.

Thus, the operator (I+R)τ is a bijective operator from F p,q
s to F p,q

s−τ . We then have
that If p < ∞ and q = 2, the characterization of Hp

s in terms of the area functions
gives that F p,2

s = Hp
s (see for instance [2]). If p = q < ∞, then F p,p

s is the Besov
space Bp

s . For p = ∞, if s > 0 the space B∞
s := F∞,∞

s is the holomorphic Lipschitz-
Zygmund space H ∩ Λs. The space F∞,∞

0 is the Bloch space B∞
0 of holomorphic

functions on B satisfying supz∈B(1− |z|2)|Rf(z)| <∞.
Given a couple of quasi-normed spaces X and Y of holomorphic functions on B,

we denote by Mult(X → Y ) the space of pointwise multipliers of X to Y . If X = Y ,
then we simply write Mult(X).

Our first result shows that the differential operator (I +R)τ , which is a bijective
operator on holomorphic Triebel–Lizorkin spaces, is also a bijection between two
spaces of multipliers of Triebel–Lizorkin spaces.

Theorem 1.1. Let 0 < p, q <∞ and s, s′ ∈ R.

(i) If s′ < s then g ∈ Mult(F p,q
s → F p,q

s′ ) if and only if for some (any) τ > s′ − s,
(I +R)τg ∈ Mult(F p,q

s → F p,q
s′−τ ).

(ii) If s = s′, then g ∈ Mult(F p,q
s ) if and only if g ∈ H∞ and for some (any)

τ > 0, (I +R)τg ∈ Mult(F p,q
s → F p,q

s−τ ).
(iii) If s′ > s, Mult(F p,q

s → F p,q
s′ ) = {0}.

The above theorem permits to describe the space Mult(F p,q
s → F p,q

s′ ), s′ < s,
in terms of T p,q-Carleson measures, that is, in terms of positive Borel measures µ
on B such that F p,q

s ⊂ T p,q(µ). Indeed, g ∈ Mult(F p,q
s → F p,q

s′ ) if and only if for
τ > max{s′, s′ − s}, (I + R)τg ∈ Mult(F p,q

s → F p,q
s′−τ ). Taking the norm in F p,q

s′−τ

corresponding to k = 0 > s′ − τ , we obtain f(I + R)τg ∈ F p,q
s′−τ if and only if

f ∈ H ∩ T p,q(µg), with

dµg(z) := |(I +R)τg(z)|q(1− |z|2)q(τ−s′)dν(z).

Thus, assertion (i) in Theorem 1.1 is equivalent to:
(i’) For s′ < s, g ∈ Mult(F p,q

s → F p,q
s′ ), if and only if for some (any) τ >

max{s′, s′ − s} the measure µg is a T p,q-Carleson measure for F p,q
s .

Theorem 1.1(ii) gives Mult(F p,q
s ) = H∞ ∩ (I + R)−τ Mult(F p,q

s → F p,q
s−τ ). The

space (I + R)−τ Mult(F p,q
s → F p,q

s−τ ) appears in the study of the boundedness of
Hankel type operators on Hardy–Sobolev and Besov spaces (see for instance [6], [14]
and the references therein).

The following corollary details the main properties of the action of the operator
(I +R)s on spaces of multipliers for the particular case of Hardy–Sobolev spaces:

Corollary 1.2. Let 0 < p < ∞ and s > 0. The following assertions are equiva-
lent:

(i) g ∈ Mult(Hp
s ).
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(ii) g ∈ H∞ and for some (any) τ > 0, (I +R)τg ∈ Mult(Hp
s → Hp

s−τ ).
(iii) g ∈ H∞ and for some (any) τ > s the measure

dµg(z) = |(I +R)τg(z)|2(1− |z|2)2(τ−s)dν(z)

is a T p,2-Carleson measure.
(iv) g ∈ H∞ and (I + R)sg ∈ Mult(Hp

s (S) → Hp(S)), that is g ∈ H∞ and the
measure dσg(ζ) = |(I + R)sg(ζ)|pdσ(ζ) is a trace measure for Hp

s , that is,
Hp

s (S) ⊂ Lp(σg).

The next applications of Theorem 1.1 give norm-estimates of the integral opera-
tors Ib and Jb, with a holomorphic symbol b already defined.

Since R
´ 1

0
h(tz)dt

t
= h(z) for any holomorphic function h on B with h(0) = 0,

we have RIb(f) = bRf and RJb(f) = fRb. Thus,

Ib: Ib is bounded from F p,q
s to F p,q

s′ if and only if b ∈ Mult(F p,q
s−1 → F p,q

s′−1).
Jb: Jb is bounded from F p,q

s to F p,q
s′ if and only if Rb ∈ Mult(F p,q

s → F p,q
s′−1).

In this case Theorem 1.1 and Jb give:

Corollary 1.3. Let 0 < p, q < ∞. If s′ < s, then Jb is bounded from F p,q
s to

F p,q
s′ if and only if b ∈ Mult(F p,q

s → F p,q
s′ ).

In [5] for n = 1 and p ≥ 1, [4] for n = 1 and p < 1, and more recently in [26] for any
n ≥ 1 and p > 0, it is shown that the operator Jb is bounded on Hp if and only if b ∈
BMOA, that is, if and only if Rb ∈ BMOA−1, where BMOAt := (I +R)−tBMOA
for any t ∈ R. Recall that BMOA consists of all holomorphic functions f on B such
that |(I +R)f(z)|2(1− |z|2)dν(z) is a classical Carleson measure, that is, a Carleson
measure for some (any) Hp (see for instance Theorem 5.9 in [31]).

Thus, Jb gives Mult(Hp → Hp
−1) = BMOA−1 and by Theorem 1.1 we have:

Corollary 1.4. If 0 < p < ∞ and s′ < 0, then Mult(Hp → Hp
s′) = BMOAs′ ,

that is, the pointwise multipliers from Hp to Hp
s′ are the holomorphic functions g on

B such that (I +R)s
′

g ∈ BMOA.

Our main result about the boundedness of the operators Ib and Jb is the following:

Theorem 1.5. Let 0 < p, q <∞. Then, we have:

(i) If s′ < s < 1, then Ib maps boundedly F p,q
s to F p,q

s′ if and only if b ∈ B∞
s′−s.

(ii) If s′ < s = 1, then Ib maps boundedly Hp
1 to Hp

s′ if and only b ∈ BMOAs′−1.
(iii) If s′ − 1 < s < 0, then Jb maps boundedly F p,q

s to F p,q
s′ if and only b ∈ B∞

s′−s.
(iv) If s′ < 1, then Jb maps boundedly Hp to Hp

s′ if and only b ∈ BMOAs′ .

As we stated before, one of our motivations is the description of the space

Xp
s := {ϕ ∈ Lp(dσ) : Cs(ϕ) ∈ Mult(Hp

s )}, p > 1, 0 < s < n/p.

The study of this space requires the knowledge of the fractional Cauchy operator
Cs on spaces of pointwise multipliers of Hardy–Sobolev spaces. Since the study of
the analogous problem for fractional Bergman operators may be interesting, we give
a unified treatment of these problems considering the following integral operators
PN,N+τ .

For N > 0 and τ > −n−N , let PN,N+τ be the integral operator with kernel

PN,N+τ (z, w) :=
dνN(w)

(1− zw)n+N+τ
,

where dνN (w) =
Γ(n+N)
n!Γ(N)

(1− |w|2)N−1 dν(w).
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We extend this definition to the case N = 0 by considering the fractional Cauchy
type kernel Cs(z, ζ). In order to unify notations we write dν0 := dσ and P0,τ = C−τ .
Observe that PN := PN,N is the orthogonal projection from L2(dνN) to the weighted
Bergman space H ∩ L2(dνN) and that P0 := P0,0 is the Cauchy projection C from
L2(dσ) to H2.

The operator PN,N+τ plays a role similar to the differential operator (I +R)τ as
we will see in Sections 2 and 3. We refer to the book [31] for the main properties
of these operators. Observe that if k is a positive integer and Rk

L, L > 0, is the
differential operator defined by

(1.1) Rk
L =

(

I +
R

L+ k − 1

)

· · ·

(

I +
R

L

)

,

it is immediate to check that for f ∈ B1
−N ∪H1,

(1.2) PN,N+k(f) = Rk
n+NP

N,N(f) = Rk
n+Nf.

Hence, PN,N+k is a bijective operator from F p,q
s to F p,q

s−k. These results for Bergman
spaces can be found for instance in [31].

The following theorem is the version of Theorem 1.1 for the operators PN,N+τ .

Theorem 1.6. Let 0 < p, q < ∞ and s, s′ ∈ R satisfying s′ ≤ s. Let N ≥ 0
such that F p,q

s ⊂ B1
−N ∪H1.

(i) If s′ < s then g ∈ Mult(F p,q
s → F p,q

s′ ) if and only if for some (any) τ > s′ − s,
PN,N+τg ∈ Mult(F p,q

s → F p,q
s′−τ ).

(ii) If s = s′, then g ∈ Mult(F p,q
s ) if and only if g ∈ H∞ and for some (any)

τ > 0, PN,N+τg ∈ Mult(F p,q
s → F p,q

s−τ ).

The proof of the above theorems for integer values of τ follows from some basic
properties of the pointwise multipliers of F p,q

s and the Leibnitz’s formula. The general
case needs also some adequate Taylor expansions with precise estimates of the error
term. As a consequence of this result we will obtain the following description of the
space Xp

s , that is, the space of functions ϕ ∈ Lp(dσ) such that Cs(ϕ) ∈ Mult(Hp
s ).

Theorem 1.7. Let 1 < p < ∞ and 0 < s < n/p. Let ϕ ∈ Lp. Then, Cs(ϕ) is a
pointwise multiplier for Hp

s if and only if Cs(ϕ) ∈ H∞ and the measure |C(ϕ)|pdσ is
a trace measure for Hp

s .

For p > 1 and 0 < s < n, consider the non-isotropic Riesz potential space

Ks(L
p) :=

{
ˆ

S

ϕ(ζ)

|1− ηζ|n−s
dσ(ζ) : ϕ ∈ Lp(dσ)

}

.

A trace measure for Ks(L
p) is a positive Borel measure µ on S such that

‖Ks(ϕ)‖Lp(µ) . ‖ϕ‖Lp(dσ). When 0 < s < n/p, these measures can be character-

ized in terms of non-isotropic Riesz capacities (see [1] and [17]).
The following results provide examples of pointwise multipliers for Hp

s .

Theorem 1.8. Let p > 1, 0 < s < n/p and let ψ ∈ Lp(σ) such that |ψ|pdσ is a
trace measure for Ks(L

p). Then, Cs(ψ) ∈ Mult(Hp
s ) if and only if Cs(ψ) ∈ H∞.

The next theorem gives other examples of functions in Xp
s .

Theorem 1.9. If 0 < p < ∞ and 0 < s < n/p, then H
n/s
s ∩ H∞ ⊂ Mult(Hp

s ).
In particular, if p > 1 , ϕ ∈ Ln/s(dσ) and Cs(ϕ) ∈ H∞, then ϕ ∈ Xp

s .



762 Carme Cascante, Joan Fàbrega and Joaquin M. Ortega

This is a generalization of a result of [11], where the authors prove this result for
a positive integer s < n/p.

The paper is organized as follows. Section 2 is devoted to state some basic
properties of the multipliers of Triebel–Lizorkin spaces, which permit us to prove
Theorems 1.1 and 1.6 for integer values of τ . In Section 3, we prove our main
theorems. In Subsection 3.1 we prove Theorem 1.1 and Corollary 1.2. We prove
Theorem 1.6 in Subsections 3.3 and 3.4. Both theorems use properties of the integral
operator, whose study is postponed to the subsection 3.5. In Subsection 3.2 we
give some applications of Theorem 1.1 and in particular we prove Theorem 1.5.
Subsection 3.6 is devoted to the study of the spaces Xp

s . In this subsection we prove
Theorems 1.7, 1.8 and 1.9.

Throughout the paper, the notation f(z) . g(z) means that there exists C > 0,
which does not depend on z, f and g, such that f(z) ≤ Cg(z). We write f(z) ≈ g(z)
when f(z) . g(z) and g(z) . f(z).

Acknowledgment. The authors thank the referee for his careful reading of the
manuscript and his observations that have improved the final version of the paper.

2. Multipliers and proof of Theorem 1.1 for integer values of τ

In this section we state some properties of the space of pointwise multipliers from
F p,q
s to F p,q

s′ , s′ ≤ s. We will need the following proposition.

Proposition 2.1. Let 0 < p, q <∞ and s ∈ R.

(i) For any s ≥ t, F p,q
s ⊂ F p,q

t ⊂ B∞
t−n/p.

(ii) If 0 < p < u <∞ and s− n/p ≥ t− n/u, F p,q
s ⊂ F u,v

t for any v > 0.
(iii) Let 0 < u ≤ p. If either s = t and q ≤ v or s > t, then F p,q

s ⊂ F u,v
t .

(iv) If 0 < u ≤ min{p, q} and s− n/p ≤ t− n/u, then Bu
t ⊂ F p,q

s .
(v) If either 0 < p ≤ 1 and s = n/p or s > n/p, then F p,q

s ⊂ H∞.
(vi) If 0 < p, q <∞, s0, s1 ∈ R, 0 < θ < 1 and s = (1− θ)s0 + θs1, then

(F p,q
s0
, F p,q

s1
)θ = F p,q

s .

Here (X, Y )θ denotes the intermediate space between X and Y obtained by
the complex interpolation method.

Proof. The above assertions for Besov and Hardy–Sobolev spaces can be found
for instance in [10], [8], [30] and [31]. A proof of (i), (ii) and (iv) can be found for
instance in Theorem 4.1 in [24]. Part (iii) for p = u, s = t and q ≤ v is also proved in
Theorem 4.1 in [24]. For u < p, s = t and q = v this follows from Hölder’s inequality.
Combining the above cases we prove (iii) for u ≤ p, s = t and q ≤ v. If s > t, we
apply (ii) with u∗ > p satisfying t− n/u∗ = s− n/p, to obtain F p,q

s ⊂ F u∗,v
t ⊂ F u,v

t .
The last embedding follows from (iii) for u < u∗, s = t and q = v.

Assertion (v) for s > n/p is a consequence of (i) and the fact that if r > 0, then
the Lipschitz space B∞

r is in H∞. The proof of the case 0 < p ≤ 1 and s = n/p for
Besov and Hardy–Sobolev spaces can be found in Theorem 1.4 in [8]. The general
case is proved in Theorem 4.3 in [24].

Assertion (vi) for the case p = q is proved in Theorem 1.3 in [9]. An independent
proof for 1 < p < ∞ and 1 ≤ q < ∞ can be found for instance in Corollary 3.4 in
[23]. We does not know an explicit reference for the cases 0 < p 6= q and n ≥ 1, but
the same proof for the case p = q given in [9], based in the representation formula
f = PN(f) and in norm-estimates of the operators PN,N+τ , can be adapted to prove
the interpolation result for the case p 6= q. �
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The following corollary gives conditions on p, q, s so that the operator PN,N+τ is
well defined on F p,q

s .

Corollary 2.2. The spaces B1
−N and H1 satisfy the following relations:

(i) The space B1
−N ∪ H1 coincides with H1 if N = 0 and with B1

−N if N > 0.
Therefore, PN,N+τ is well defined in B1

−N ∪H1.
(ii) The embedding F p,q

s ⊂ B1
−N , N > 0 holds in the following cases:

(a) p < 1 and s− n/p ≥ −N − n,
(b) p ≥ 1 and s > −N ,
(c) p = 1, s = −N and q ≤ 1.

(iii) F p,q
s ⊂ H1 holds in the following cases:
(a) p < 1 and s− n/p ≥ −n,
(b) p ≥ 1 and s > 0,
(c) p = 1, s = 0 and q ≤ 2.

Proof. These results are a consequence of Proposition 2.1 and the equalities
B1

−N = F 1,1
−N and H1 = F 1,2

0 . More precisely: Part (i) for N = 0 follows from
Proposition 2.1(iii). The case N > 0 is a consequence of Proposition 2.1(iii), with
s = 0 > t = −N . In both cases (ii) and (iii), part (a) is a consequence of Proposition
2.1(ii), parts (b) and (c) are consequences of Proposition 2.1(iii). �

Now we use these results to prove some properties of the pointwise multipliers
of the Triebel–Lizorkin spaces. Some of these results for Hardy–Sobolev and Besov
spaces are well known. However, we do not know explicit references for all the
considered cases. So, we include a briefly proof of all of them.

Proposition 2.3. Let 0 < p, q <∞ and s, s′ ∈ R. Then, we have:

(i) If either p > 1 and s > n/p or 0 < p ≤ 1 and s ≥ n/p, then Mult(F p,q
s ) =

F p,q
s .

(ii) If s′ < s, then Mult(F p,q
s → F p,q

s′ ) ⊂ B∞
s′−s∩F

p,q
s′ . In the particular case where

s′ < s < 0, we have Mult(F p,q
s → F p,q

s′ ) = B∞
s′−s

(iii) Mult(F p,q
s ) ⊂ H∞ ∩ F p,q

s . If s < 0, then Mult(F p,q
s ) = H∞.

(iv) If s′ ≤ s and τ > 0, then Mult(F p,q
s → F p,q

s′ ) ⊂ Mult(F p,q
s−τ → F p,q

s′−τ ).
(v) If s′ > s, then Mult(F p,q

s → F p,q
s′ ) = {0}.

Proof. Assertion (i) follows easily from the fact that F p,q
s ⊂ H∞ (see Proposi-

tion 2.1(v)). Indeed, for a non-negative integer j, a real t ≥ 0 and h a holomorphic
function on B, let Dj,t(h)(z) := (1− |z|2)j−t(I +R)jh(z).

As we have observed in the introduction, the norm of h ∈ F p,q
s is equivalent

to the norm of (2I + R)mh in F p,q
s−m for any non-negative integer m. Hence, for a

positive integer k > s, we have ‖fg‖F p,q
s

≈ ‖(1 − |z|2)2k−s(2I + R)2k(fg)(z)‖T p,q .
Since (2I + R)(fg) = g(I + R)f + f(I + R)g, Leibnitz’s formula and the fact that
for s > n/p, F p,q

s ⊂ H∞ ⊂ B∞
0 , give

‖fg‖F p,q
s

.

k
∑

j=0

‖Dj,0(f)‖L∞‖D2k−j,sg‖T p,q +
2k
∑

j=k+1

‖D2k−j,0g‖L∞‖Dj,s(f)‖T p,q

. ‖f‖H∞‖g‖F p,q
s

+ ‖g‖H∞‖f‖F p,q
s

. ‖f‖F p,q
s
‖g‖F p,q

s
,

which proves that Mult(F p,q
s ) = F p,q

s .
Let us prove (ii). Since F p,q

s contains the constant functions, then it is clear
that Mult(F p,q

s → F p,q
s′ ) ⊂ F p,q

s′ . If s ≥ n/p, then by Proposition 2.1(i), we have
F p,q
s′ ⊂ B∞

s′−n/p ⊂ B∞
s′−s.
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Now we prove the case s < n/p. By Proposition 2.1((iv) and (i)), Bu
s−n/p+n/u ⊂

F p,q
s , u < min{p, q}, and F p,q

s′ ⊂ B∞
s′−n/p. Thus,

Mult(F p,q
s → F p,q

s′ ) ⊂ Mult(Bu
s−n/p+n/u → B∞

s′−n/p).

Fixed z ∈ B, let fz(w) =
(1−|z|2)n+N

(1−wz)n+N . By Proposition 1.4.10 in [27], for N large enough

we have that ‖fz‖Bu
s−n/p+n/u

≈ (1− |z|2)n/p−s. Therefore, for g ∈ Mult(F p,q
s → F p,q

s′ ),

(1− |z|2)n/p−s′|g(z)| ≤ ‖(1− |w|2)n/p−s′g(w)fz(w)‖L∞ ≈ ‖gfz‖B∞

s′−n/p

. ‖g‖Mult(Bu
s−n/p+n/u

→B∞

s′−n/p
)(1− |z|2)n/p−s,

(2.3)

which gives

‖g‖B∞

s′−s
= sup

z∈B
(1− |z|2)s−s′|g(z)| . ‖g‖Mult(F p,q

s →F p,q

s′
).

Hence g ∈ B∞
s′−s ∩ F

p,q
s′ . If, now, s′ < s < 0 and g ∈ B∞

s′−s, we have

‖gf‖F p,q

s′
≈ ‖g(z)f(z)(1− |z|2)−s′‖T p,q . ‖g‖B∞

s′−s
‖f(z)(1− |z|2)−s‖T p,q

≈ ‖g‖B∞

s′−s
‖f‖F p,q

s
,

(2.4)

which gives ‖g‖Mult(F p,q
s →F p,q

s′
) . ‖g‖B∞

s′−s
.

Assertion (iii) is a consequence of the fact that the point evaluation is bounded
on F p,q

s . Indeed, let g ∈ Mult(F p,q
s ). For any f ∈ F p,q

s and z ∈ B, then

|(gf)(z)| ≤ sup
h∈F p,q

s
h 6=0

|h(z)|

‖h‖F p,q
s

‖gf‖F p,q
s

≤ sup
h∈F p,q

s
h 6=0

|h(z)|

‖h‖F p,q
s

‖g‖Mult(F p,q
s )‖f‖F p,q

s
,

which gives ‖g‖∞ ≤ ‖g‖Mult(F p,q
s ). The same arguments used to prove (2.4) show that

if s < 0, then the converse inequality holds. Thus (iii) is proved.
In order to prove (iv), note that assertions (ii) and (iii) show that Mult(F p,q

s →
F p,q
s′ ) ⊂ Mult(F p,q

−s0 → F p,q
s′−s−s0

) for any s0 > 0. Therefore (iv) follows from the above
mentioned interpolation result in Proposition 2.1.

Now we prove (v). Note that if s′ ≤ n/p, (2.3) gives |g(z)| . (1 − |z|2)s
′−s, and

by the maximum modulus principe g = 0. The case s′ > n/p can be reduced to the
above case. Indeed, by part (ii), Proposition 2.1(i) and part (ii), we have

Mult(F p,q
s → F p,q

s′ ) ⊂ F p,q
s′ ⊂ B∞

s′−n/p ⊂ H∞ = Mult(F p,q
−1 ).

Hence, by Proposition 2.1(vi), for 0 < θ < 1 such that (1− θ)s′− θ < n/p, we obtain
Mult(F p,q

s → F p,q
s′ ) ⊂ Mult(F p,q

(1−θ)s−θ → F p,q
(1−θ)s′−θ) = 0. �

We conclude this section proving Theorem 1.1 for the particular case where τ is
a positive integer and that will be used as a tool to prove Theorem 1.1.

Proposition 2.4. Let 0 < p, q <∞. We then have:

(i) Let s′ ≤ s. If g ∈ Mult(F p,q
s → F p,q

s′ ), then for any positive integer k,
(I +R)kg ∈ Mult(F p,q

s → F p,q
s′−k).

(ii) Let s′ < s. If (I + R)kg ∈ Mult(F p,q
s → F p,q

s′−k) for some positive integer k,
then g ∈ Mult(F p,q

s → F p,q
s′ ).

(iii) g ∈ Mult(F p,q
s ) if and only if g ∈ H∞ and (I + R)kg ∈ Mult(F p,q

s → F p,q
s−k)

for some (any) positive integer k.
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Proof. Throughout the proof we use the previous mentioned fact that f ∈ F p,q
s if

and only if (I + R)mf ∈ F p,q
s−m. By iteration, it is enough to prove the assertions for

the case k = 1. Let f ∈ F p,q
s . Since g ∈ Mult(F p,q

s → F p,q
s′ ) ⊂ Mult(F p,q

s−1 → F p,q
s′−1)

(see (iv) in Proposition 2.3), we have f(I +R)g = (I +R)(gf)− gRf ∈ F p,q
s′−1. This

proves (i).
Let us prove (ii) and (iii). Assume that (I+R)g ∈ Mult(F p,q

s → F p,q
s′−1). We want

to prove that if s′ < s then g ∈ Mult(F p,q
s → F p,q

s′ ), and that if s′ = s and g ∈ H∞,
then g ∈ Mult(F p,q

s ). In order to prove these results, it is sufficient to show that
(I + R)m(gf) ∈ F p,q

s′−m for a positive integer m > s. By Leibnitz’s formula we have
(I +R)m(gf) =

∑m
j=0 cj(I +R)jgRm−jf . If s′ ≤ s and j ≥ 1, then assertion (i) and

Proposition 2.3 give

(I +R)jg ∈ Mult(F p,q
s → F p,q

s′−j) ⊂ Mult(F p,q
s+j−m → F p,q

s′−m)

and thus (I+R)jgRm−jf ∈ F p,q
s′−m. If s′ ≤ s and j = 0, then (I+R)g ∈ Mult(F p,q

s →
F p,q
s′−1) ⊂ B∞

s′−1−s. Therefore, g ∈ B∞
s′−s = Mult(F p,q

s−m → F p,q
s′−m), and gRmf ∈ F p,q

s′−m.
Finally, s′ = s and j = 0, then g ∈ H∞ = Mult(F p,q

s−m) and gRmf ∈ F p,q
s−m. The

necessary condition in (iii) is a consequence of (iii) in Proposition 2.3 and the above
part (i). �

Remark 2.5. The results in the above proposition have been stated in terms
of the bijective operator (I + R)k, but the same proof shows that they are valid for
operators (λ1I+R) · · · (λkI+R), λ1, · · · , λk ∈ C, and in particular for the operators
Rk

n+N . Since PN,N+k(g) = Rk
n+Ng, this gives a proof of Theorem 1.6 for integer values

of τ .

3. Proof of main results

3.1. Proof of Theorem 1.1. In this section we will begin with the following
proposition, which will be used in the proofs of both Theorems 1.1 and 1.6. We
postpone the proof of this result to the end of this section.

Definition 3.1. For φ ∈ L1[0, 1], let Φ be the operator on the space of holomor-
phic functions H defined by

Φ(h)(z) =

ˆ 1

0

φ(t)h(tz) dt.

Proposition 3.2. Let φ ∈ L1[0, 1] such that |φ(t)| . (1− t)κ−1 for some κ > 0
and t0 < t < 1. For 0 < p, q <∞ and s′ < s, we have:

(i) The operator Φ maps F p,q
s to F p,q

s+κ.
(ii) If s′ + κ < s, then Φ maps Mult(F p,q

s → F p,q
s′ ) to Mult(F p,q

s → F p,q
s′+κ).

Proof of Theorem 1.1. Using the integral expression of (I +R)−κ for κ > 0 (see
for instance [3])

(I +R)−κf(z) =
1

Γ(κ)

ˆ 1

0

(

log
1

t

)κ−1

f(tz) dt,

for a positive integer l > τ we have

(I +R)τg(z) =
1

Γ(l − τ)

ˆ 1

0

(

log
1

t

)l−τ−1

(I +R)lg(tz) dt.

Let us prove the first assertion (i) in Theorem 1.1. If τ > s′ − s and g ∈
Mult(F p,q

s → F p,q
s′ ), Proposition 2.4(i) gives (I + R)lg ∈ Mult(F p,q

s → F p,q
s′−l). By
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Proposition 3.2(ii) with φ(t) = 1
Γ(l−τ)

(

log 1
t

)l−τ−1
and κ = l − τ < l + s − s′, we

obtain (I +R)τg ∈ Mult(F p,q
s → F p,q

s′−τ ).
Conversely, if (I + R)τ0g ∈ Mult(F p,q

s → F p,q
s′−τ0

) for some τ0 > s′ − s, the same
argument shows that (I+R)τg = (I+R)τ−τ0(I+R)τ0g ∈ Mult(F p,q

s → F p,q
s′−τ ) for any

τ > s′ − s, and in particular for any non-negative integer k > s′ − s. This together
with Proposition 2.4 finishes the proof of (i).

Let us prove assertion (ii). By Proposition 2.4(iii), g ∈ Mult(F p,q
s ) if and only if

g ∈ H∞ and (I + R)kg ∈ Mult(F p,q
s → F p,q

s−k) for some positive integer k. By part

(i), (I +R)kg ∈ Mult(F p,q
s → F p,q

s−k) if and only if (I +R)τg ∈ Mult(F p,q
s → F p,q

s−τ ) for
any τ > 0, which concludes the proof.

Assertion (iii) was proved in Proposition 2.3(v). �

Remark 3.3. If s′ < s, Theorem 1.1 shows that if τ > s′ − s, then (I +R)τ is a
bijective operator from Mult(F p,q

s → F p,q
s′ ) to Mult(F p,q

s → F p,q
s′−τ ). If τ = s− s′ > 0,

then Mult(F p,q
s ) = H∞ ∩ (I + R)−τ Mult(F p,q

s → F p,q
s−τ ). In the case τ > s − s′ > 0,

we have

(3.5) (I +R)−τ Mult(F p,q
s → F p,q

s′ ) ⊂ B∞
s′−s+τ ∩Mult(F p,q

s ).

Indeed, if g ∈ Mult(F p,q
s → F p,q

s′ ), then, by Proposition 2.3(ii), g ∈ B∞
s′−s and therefore

(I + R)−τg ∈ B∞
s′−s+τ ⊂ H∞ as s′ − s + τ > 0. Since F p,q

s′ ⊂ F p,q
s−τ , g ∈ Mult(F p,q

s →
F p,q
s−τ) and (I +R)−τg ∈ H∞ ∩ (I +R)−τ Mult(F p,q

s → F p,q
s−τ ) = Mult(F p,q

s ).
Observe that the embedding (3.5) in general is not exhaustive. For instance, if

τ > −s′ > 0, Mult(Hp → Hp
s′) = BMOAs′ (see Corollary 1.4), B∞

s′+τ ⊂ H∞ =
Mult(Hp) and (I +R)−τBMOAs′ = BMOAs′+τ ( B∞

s′+τ .

Proof of Corollary 1.2. The equivalence between assertions (i) and (ii) is a
consequence of Theorem 1.1 and the fact that Hp

s = F p,2
s . From the definition of

Hp
s′ = F p,2

s′ with k = 0 > s′, we observe that for τ > s, (I+R)τg ∈ Mult(Hp
s → Hp

s−τ)
if and only dµg(z) = |(I + R)τg(z)|2(1 − |z|2)τ−sdν(z) is a T p,2-Carleson measure.
This gives the equivalence between assertions (ii) with τ > s and (iii).

Analogously, note that (I + R)sg ∈ Mult(Hp
s → Hp) if and only dσg = |(I +

R)sg|2dσ is a trace measure for Hp
s , which gives the equivalence between assertions

(ii) with τ = s and (iv). �

3.2. Consequences of Theorem 1.1. We start this section with the proof of
Theorem 1.5.

Proof of Theorem 1.5. (i) Assume s′ < s < 1. Then, by property Ib, the
operator Ib is bounded from F p,q

s to F p,q
s′ if and only if b ∈ Mult(F p,q

s−1 → F p,q
s′−1). By

Proposition 2.3(ii) this is equivalent to g ∈ B∞
s′−s.

(ii) Assume s′ < s = 1. Then, by Ib, Ib is bounded from Hp
1 to Hp

s′ if and
only if b ∈ Mult(Hp → Hp

s′−1) = BMOAs′−1. The last equality is a consequence of
Corollary 1.4.

(iii) Assume s′ − 1 < s < 0. Then, by Jb, the operator Jb is bounded from F p,q
s

to F p,q
s′ if and only if Rb ∈ Mult(F p,q

s → F p,q
s′−1) = B∞

s′−s−1, which is equivalent to
b ∈ B∞

s′−s

(iv) Assume s′ < 1. Then, by Jb the operator Jb is bounded from Hp to Hp
s′ if and

only if Rb ∈ Mult(Hp → Hp
s′−1) = BMOAs′−1, which is equivalent to b ∈ BMOAs′ .

This ends the proof. �
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Corollary 1.4 also gives a characterization of BMOAs in terms of Carleson mea-
sures.

Corollary 3.4. If s ∈ R, then the following assertions are equivalent:

(i) g ∈ BMOAs

(ii) For some (any) τ > s, the measure |(I +R)τg(z)|2(1− |z|2)2(τ−s)−1dν(z) is a
Carleson measure.

Proof. For s < 0, g ∈ BMOAs = Mult(H2 → H2
s ) if and only if the measure

|g(z)|2(1−|z|2)−2s−1dν(z) is a Carleson measure for H2 and thus for any Hp. There-
fore, using that g ∈ BMOAs if and only if (I + R)τg ∈ BMOAs−τ , we finish the
proof. �

As a consequence of Theorem 1.1, we obtain the following characterization of the
multipliers from F p,q

s to F p,q
s′ that generalizes Proposition 2.3(i).

Corollary 3.5. Let 0 < p, q < ∞ and s′ ≤ s. If either p > 1 and s > n/p or
0 < p ≤ 1 and s ≥ n/p, then Mult(F p,q

s → F p,q
s′ ) = F p,q

s′ .

Proof. By Proposition 2.3(i), we have Mult(F p,q
s ) = F p,q

s . Thus, if τ = s−s′ > 0,
Theorem 1.1 gives

F p,q
s′ = (I +R)s−s′F p,q

s = (I +R)s−s′ Mult(F p,q
s ) ⊂ Mult(F p,q

s → F p,q
s′ ) ⊂ F p,q

s′ ,

which concludes the proof. �

3.3. Preliminaries for the proof of Theorem 1.6. We start recalling some
properties of the operators PN,N+τ . For any positive integer k and any f ∈ B1

−N∪H1,
(1.2) states that PN,N+k(f) = Rk

n+Nf . Consequently, PN,N+k is the restriccion to
B1

−N ∪H1 of a bijective operator from F p,q
s to F p,q

s−k for any 0 < p, q <∞ and s ∈ R.

Its inverse is given by PN+k,N : B1
−N−k ∪ F

1,2
−k → B1

−N ∪H1 . Indeed, by Fubini’s

Theorem, PN+k,N(PN,N+k(f)) = PN (fPN+k(1)) = PN(f) = f . In fact, the bijectiv-
ity of the operator PN,N+τ : B1

−N ∪ H1 → B1
−N−τ ∪ F

1,2
−τ holds for τ > −n − N . As

above, if τ ≥ 0, its inverse is PN+τ,N . For the general case τ > −n−N , the inverse
can be given by f → PN+k+τ,N(Rk

n+N+τf) for any non-negative integer k > −τ .
Indeed,

(3.6) PN+k+τ,N(Rk
n+N+τP

N,N+τ (f)) = PN+k+τ,N(PN,N+k+τ(f)) = f.

The following lemma shows that the operator PN,N+τ can be extended to the
space of holomorphic functions as an operator of the type introduced in Definition 3.1.

Definition 3.6. For N ≥ 0 and 0 < λ < n +N , let ΦN,N−λ be the operator on
H(B) defined by

ΦN,N−λ(f)(z) =
1

β(λ, n+N − λ)

ˆ 1

0

(1− t)λ−1tn+N−λ−1f(tz) dt.

Recall that the β function is defined by β(N,M) = Γ(N)Γ(M)
Γ(N+M)

=
´ 1

0
(1−t)N−1tM−1dt.

Lemma 3.7. Let N ≥ 0, λ < n +N and f ∈ H(B).

(i) For any non-negative integer k,

PN,N−λ(f) = PN+k,N−λ(Rk
n+Nf) = Rk

n+NP
N+k,N−λ(f).

(ii) If λ > 0, then PN,N−λ(f)(z) = ΦN,N−λ(f)(z).
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(iii) For any positive integer k > −λ,

PN,N−λ(f)(z) = ΦN+k,N−λ(Rk
n+Nf)(z).

Proof. It is enough to prove the result for monomials f(w) = wα. Using the
Taylor expansion of (1−zw)−n−N+λ and the orthogonality in L2(dν) of the monomials
wα, we obtain

PN,N−λ(wα)(z) =
1

nβ(N, n)

Γ(n+N − λ+ |α|)

α!Γ(n+N − λ)
zα
ˆ

B

|wα|2(1− |w|2)N−1 dν(w).

Now, integration in polar coordinates and the fact that ‖ζα‖2L2(dσ) =
(n−1)!α!

(n−1+|α|)!
give

ˆ

B

|wα|2(1− |w|2)N−1 dν(w) = β(N, n+ |α|)
n!α!

(n− 1 + |α|)!
=

n!α!Γ(N)

Γ(n+N + |α|)
.

Combining these results we obtain

PN,N−λ(wα)(z) =
Γ(n+N)Γ(n +N − λ+ |α|)

Γ(n+N − λ)Γ(n+N + |α|)
zα =: AN,N−λz

α.

Analogous arguments show that the above formula remains valid for N = 0.

Assertion (i) is a consequence of Rm
n+Nz

α = Γ(n+N)Γ(n+N+k+|α|)
Γ(n+N+k)Γ(n+N+|α|)

zα, which gives

the equality AN,N−λz
α = AN+m,N−λR

m
n+Nz

α. If λ > 0, then AN,N−λ = β(λ,n+N−λ+|α|)
β(λ,n+N−λ)

.

Hence

AN,N−λz
α =

1

β(λ, n+N − λ)

ˆ 1

0

(1− t)λ−1tn+N−λ−1(tz)α dt,

which proves part (ii). Assertion (iii) follows from (i) and (ii). �

Remark 3.8. Observe that, combining (3.6), Lemma 3.7 and Proposition 3.2,
we obtain that if F p,q

s ⊂ B1
−N ∪ H1, then PN,N+τ is a bijective operator from F p,q

s

to F p,q
s−τ for any τ > −n − N . In particular, if 1 < p < ∞ and 0 < s < n, Cs is a

bijective operator from Hp to Hp
s .

3.4. Proof of Theorem 1.6. The proof is similar to the one of Theorem 1.1. By
Lemma 3.7(iii), PN,N+τ (g) = ΦN+k,N+τ (Rk

n+Ng) for any non-negative integer k > τ .
Since Rk

n+N is a bounded operator from Mult(F p,q
s → F p,q

s′ ) to Mult(F p,q
s → F p,q

s′−k)

(see Remark 2.5), Proposition 3.2(ii) gives that PN,N+τ maps Mult(F p,q
s → F p,q

s′ ) to
Mult(F p,q

s → F p,q
s′−τ ).

Conversely, for any non-negative integer k > −τ , the inverse of PN,N+τ is

PN+τ+k,N ◦Rk
n+N+τ = ΦN+τ+k,N ◦Rk

n+N+τ

(see (3.6)). Hence, the same argument used above shows that this inverse maps
Mult(F p,q

s → F p,q
s′−τ ) to Mult(F p,q

s → F p,q
s′ ). Thus, the operator PN,N+τ is bijective

from Mult(F p,q
s → F p,q

s′ ) to Mult(F p,q
s → F p,q

s′−τ ). This concludes the proof of part (i).
Let us prove assertion (ii). By Remark 2.5, g ∈ Mult(F p,q

s ) if and only if g ∈ H∞

and Rk
n+Ng = PN,N+k(g) ∈ Mult(F p,q

s → F p,q
s−k) for some non-negative integer k. By

part (i), PN,N+k(g) ∈ Mult(F p,q
s → F p,q

s−k) if and only if PN,N+τ (g) ∈ Mult(F p,q
s →

F p,q
s−τ) for any τ > 0, which concludes the proof. �

3.5. Proof of Proposition 3.2. In order to prove Proposition 3.2 we will need
the following Taylor formulas.
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Lemma 3.9. Let 0 < t < 1 and z, w ∈ B. For any positive integers m and l,

1

(1− zw)n+l
=

m
∑

j=0

(1− t)j

j!

dj

dtj
1

(1− tzw)n+l
+Rn+l−1

1

(1− t)m+1(zw)m+1

(1− zw)(1− tzw)m+1
.

Proof. If |λ| < 1, for any 0 < t < 1 we have

1

1− λ
=

m
∑

j=0

(1− t)j

j!

dj

dtj
1

1− tλ
+

(1− t)m+1λm+1

(1− λ)(1− tλ)m+1
.

Choosing λ = zw and applying the operator Rn+l−1
1 (with respect to the variable z)

to the terms in the above identity we obtain the result. �

Lemma 3.10. Let m be a positive integer and assume that f ∈ B1
−N for some

N > 0. Then, for 0 ≤ t < 1,

f(z) =
m
∑

j=0

(1− t)j

j!

∑

|α|=j

(

j

α

)

zα∂αf(tz) + Em(f)(z, t),

where ∂α = ∂jf
∂wα and the function Em(f)(z, t) satisfies

|Em(f)(z, t)| . (1− t)m+1

ˆ

B

|Rk
n+Nf(w)|(1− |w|2)k+N−1

|1− zw|n+N |1− tzw|m+1
dν(w),

for any non-negative integer k.

Proof. Since 1 − |w|2 ≤ 2|1 − zw|, it is enough to prove the result for integer
values of N . Using the representation formula f = PN(f) and Lemma 3.9 we obtain

f(z) =

m
∑

j=0

(1− t)j

j!

djf(tz)

d tj
+

ˆ

B

f(w)Rn+N−1
1

(1− t)m+1(zw)m+1

(1− zw)(1− tzw)m+1
dνN (w).

Using the integration by parts formula
ˆ

B

ϕdνN =

ˆ

B

Rk
n+N ϕdνN+k, ϕ ∈ Ck(B),

which follows easily from
N
∑

j=1

ˆ

B

∂

∂wj

(

wjϕ(w)(1− |w|2)N
)

dν(w) = 0, we obtain

f(z) =

m
∑

j=0

(1− t)j

j!

∑

|α|=j

(

j

α

)

zα
∂jf

∂wα
(tz)

+ c

ˆ

B

Rk
n+Nf(w)(1− |w|2)N+k−1Rn+N−1

1

(1− t)m+1(zw)m+1

(1− zw)(1− tzw)m+1
dν(w).

This formula together with the fact that |1− zw| . |1− tzw| prove the result. �

Proof of Proposition 3.2. In order to prove (i), we will show that if f ∈ F p,q
s

and a non-negative integer l > s+ κ, then

(I +R)lΦ(f)(z) =

ˆ 1

0

φ(t)(I +R)lf(tz) dt ∈ F p,q
s+κ−l.

If h := (I+R)lf , this is equivalent to prove that ‖(1−|z|2)l−s−κΦ(h)(z)‖T p,q . ‖(1−

|z|2)l−s h(z)‖T p,q . Since for 0 < t0 < 1, Φ0(h)(z) :=
´ t0
0
φ(t)h(tz) dt is holomorphic

on a neighborhood of B, for any k, (I +R)kf is also holomorphic on a neighborhood
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of B and, consequently, Φ0(h) is in F p,q
s′+κ. Hence, it is enough to prove the result for

the function Φ1(h)(z) :=
´ 1

t0
φ(t)h(tz) dt.

Let N be large enough so that F p,q
s−l ⊂ B1

−N . Then,

|h(tz)| =
∣

∣PN (h)(tz)
∣

∣ .

ˆ

B

|h(w)|

|1− tzw|n+N
dνN(w).

Since |1− tzw| ≈ 1− t+ |1− zw|, Fubini’s theorem gives

|Φ1(h)(z)| .

ˆ 1

t0

(1− t)κ−1|h(tz)| dt .

ˆ

B

|h(w)|

|1− zw|n+N−κ
dνN(w),

provided n+N − κ > 0. Combining these results, we obtain that

(1− |z|2)l−s−κ

ˆ 1

t0

(1− t)κ−1|h(tz)| dt . BN−l+s,l−s−κ
(

(1− |w|2)l−sh(w)
)

(z),

where BN,M denotes the Berezin type integral operator with kernel

BN,M(z, w) :=
(1− |w|2)N−1(1− |z|2)M

|1− zw|n+N+M
dν(w).

By Proposition 2.8 in [23], if 1 < p, q < ∞ and N,M > 0, the operator BN,M is
bounded on T p,q. Thus, in this case we have

∥

∥

∥

∥

(1− |z|2)l−s−κ

ˆ 1

t0

(1− t)κ−1|h(tz)| dt

∥

∥

∥

∥

T p,q

. ‖(1− |w|2)l−sh(w)‖T p,q .

The proof of the cases 0 < p ≤ 1 or 0 < q ≤ 1 can be reduced to the above
case, choosing 0 < θ < min{p, q} and N large enough, and using the facts that

‖ϕ‖T p,q = ‖ϕθ‖
1/θ

T p/θ,q/θ and

BN,M((1− |w|2)l−s|h(w)|)θ . B(n+N)θ−n,(n+M)θ−n
(

(1− |w|2)(l−s)θ|h(w)|θ
)

(see Corollary 5.3 in [7]).
Now we prove (ii). Let g ∈ Mult(F p,q

s → F p,q
s′ ) with s′ < s, and s′ + κ < s. As

above Φ0(g) ∈ H(B) ⊂ Mult(F p,q
t ) for any t ∈ R. Thus, it is enough to show that

Φ1(g) ∈ Mult(F p,q
s → F p,q

s′+κ). Since s′ + κ < s, by Proposition 2.4, this is equivalent
to prove that for a positive integer l > s > s′ + κ

(I+R)lΦ1(g)(z) =

ˆ 1

t0

φ(t)(I+R)lg(tz) dt = Φ1((I+R)
lg)(z) ∈ Mult(F p,q

s → F p,q
s′+κ−l),

that is, we want to prove that fΦ1((I +R)lg) ∈ F p,q
s′+κ−l for any f ∈ F p,q

s . By Taylor
expansion in Lemma 3.10, this result will be true if for f ∈ F p,q

s the functions

Fα(z) :=

ˆ 1

t0

φ(t)(1− t)j∂αf(tz)(I +R)lg(tz) dt, |α| = j ≤ m, and

E(z) :=

ˆ 1

t0

φ(t)Em(f)(z, t)(I +R)lg(tz) dt

are in F p,q
s′+κ−l for some m.

By Propositions 2.4(i) and 2.3(iv) we have

(I +R)lg ∈ Mult(F p,q
s → F p,q

s′−l) ⊂ Mult(F p,q
s−j → F p,q

s′−l−j).

As f ∈ F p,q
s then ∂αf ∈ F p,q

s−j which gives (∂αf) · (I +R)lg ∈ F p,q
s′−j−l. Hence, part (i)

(with φ̃(t) = (1− t)jφ(t) and κ̃ = κ + j) shows that Fα ∈ F p,q
s′+κ−l.
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In order to prove that E ∈ F p,q
s′+κ−l, we will show that for k > s,

‖(1− |z|2)l−s′−κE(z)‖T p,q . ‖(1− |z|2)k−s(I +R)kf(z)‖T p,q .

Since s′ < s, (I + R)lg ∈ B∞
s′−s−l and hence g ∈ B∞

s′−s. Thus, for m ≥ l + s− s′ − κ,
from

1− t|z| ≈ 1− t+ 1− |z| . |1− tzw| ≈ 1− t + |1− zw|,

we obtain

(1− t)m+κ|(I +R)lg(tz)| . ‖g‖B∞

s′−s

(1− t)m+κ

(1− t|z|)l+s−s′
≤ ‖g‖B∞

s′−s
|1− tzw|m+κ+s′−s−l.

This estimate together Lemma 3.10 with N > s give

(1− |z|2)l−s′−κE(z) . (1− |z|2)l−s′−κ

ˆ 1

t0

(1− t)κ−1|Em(f)(z, t)(I +R)lg(tz)| dt

. ‖g‖B∞

s′−s

ˆ 1

t0

ˆ

B

|Rk
n+Nf(w)|(1− |w|2)k+N−1(1− |z|2)l−s′−κ

|1− zw|n+N(1− t+ |1− zw|)l+s−s′−κ+1
dν(w) dt

. ‖g‖B∞

s′−s

ˆ

B

|Rk
n+Nf(w)|(1− |w|2)k+N−1(1− |z|2)l−s′−κ

|1− zw|n+N+l+s−s′−κ
dν(w)

= ‖g‖B∞

s′−s
BN+s,l−s′−κ

(

(1− |w|2)k−s|(I +R)kf(w)|
)

.

Now, as we stated before, the integral operator BN+s,l−s′−κ is bounded on T p,q and
‖g‖B∞

s′−s
‖(1 − |w|2)k−s|(I + R)kf(w)|‖T p,q ≈ ‖g‖B∞

s′−s
‖f‖F p,q

s
, which concludes the

proof. �

3.6. The space X
p

s
. In this section we prove the last results about the space

Xp
s stated in the Introduction.

Proof of Theorem 1.7. For 0 < s < n, the operator Cs = P0,−s is a bijective
operator from Hp to Hp

s , whose inverse is Pn−s,0◦Rn
n−s (see (3.6)). By Proposition 2.4

(see also Remark 2.5), g ∈ Mult(Hp
s ) if and only if g ∈ H∞ and Rn

n−sg ∈ Mult(Hp
s →

Hp
s−n) and, by Theorem 1.6(i), this is equivalent to g ∈ H∞ and Pn−s,0(Rn

n−sg) ∈
Mult(Hp

s → Hp), or equivalently to g ∈ H∞ and the measure |Pn−s,0(Rn
n−sg)|

pdσ is
a trace measure for Hp

s .
Thus, if h ∈ Hp, we have Cs(h) ∈ Mult(Hp

s ) if and only if Cs(h) ∈ H∞ and the
measure |h|pdσ is a trace measure for Hp

s . Since Cs(ϕ) = Cs(C(ϕ)) for any ϕ ∈ Lp(dσ),
the above result applied to h = C(ϕ) concludes the proof. �

Proof of Theorem 1.8. Recall that a nonnegative weight w on S is in the
Muckenhoupt class Ap if

[w]p := sup
B

(

1

σ(B)

ˆ

B

w dσ

)(

1

σ(B)

ˆ

B

w−1/(p−1) dσ

)p−1

<∞,

where B = B(ζ, r) = {η ∈ S ; |1−ζη| < r}, ζ ∈ S and r > 0, denotes a non-isotropic
ball on S.

In the proof of this theorem we will use Lemma 3.1 in [22] which states the
following: Assume that |ψ|p dσ is a trace measure for the space Ks(L

p). If g ∈ Lp(σ)
satisfies that for any w in the Muckenhoupt class Ap,

ˆ

S

|g|pw dσ ≤ C(n, p, [w]p)

ˆ

S

|ψ|pw dσ,

then the measure |g|pdσ is also a trace measure for Ks(L
p).
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Since the Cauchy transform is a bounded operator on Lp(w), we have that for
any w ∈ Ap,

ˆ

S

|C(ψ)|pwdσ ≤ C(n, p, [w]p)

ˆ

S

|ψ|pwdσ.

(See, for instance, [28, Corollary of Theorem 2, p. 205]). Hence, the above mentioned
lemma gives that dµ = |C(ψ)|pdσ is also a trace measure for Ks(L

p).
Moreover, for any f ∈ Hp

s there exists ϕ ∈ Lp, satisfying that f = Cs(ϕ) and

‖Ks(ϕ)‖Ks(Lp) = ‖ϕ‖p . ‖f‖Hp
s
.

But |f | ≤ Ks(|ϕ|), and consequently dµ is also a trace measure for Hp
s .

Finally Cs(ψ) = Cs (C(ψ)) and we conclude the proof. �

In [15] there are obtained more detailed examples of pointwise multipliers for Hp
s .

Proof of Theorem 1.9. Let us prove that H
n/s
s ∩ H∞ ⊂ Mult(Hp

s ). By Corol-
lary 1.2, g ∈ Mult(Hp

s ) if and only if g ∈ H∞ and (I + R)sg ∈ Mult(Hp
s → Hp).

Thus, it is enough to prove that (I +R)sH
n/s
s = Hn/s ⊂ Mult(Hp

s → Hp).
If 0 < p < ∞, 0 < s < n/p, h ∈ Hn/s and f ∈ Hp

s , then the embeddding
Hp

s ⊂ Hq, s − n/p = −n/q (see Section 5 in [10] or Proposition 2.1) and Hölder’s
inequality with exponent q/p give

‖hf‖Hp ≤ ‖h‖Hn/s ‖f‖Hq . ‖h‖Hn/s ‖f‖Hp
s
,

which proves the result.

If p > 1, the operator Cs is bounded from Ln/s to H
n/s
s . Hence, if ϕ ∈ Ln/s and

Cs(ϕ) ∈ H∞, then Cs(ϕ) ∈ H∞ ∩H
n/s
s , which ends the proof. �

We remark that in [15] there are obtained more detailed examples of pointwise
multipliers for Hp

s .
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