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Abstract. We prove density of smooth functions in subspaces of Sobolev- and higher order

BV -spaces of kind Wm,p(Ω) ∩ Lq(Ω −D) and BV m(Ω) ∩ Lq(Ω −D), respectively, where Ω ⊂ R
n

(n ∈ N) is an open and bounded set with suitably smooth boundary, m < n is a positive integer,

1 ≤ p < ∞ s.t. mp < n, D ⋐ Ω is a sufficiently regular open subset and q > np/(n−mp). Here we

say that a Wm−1,1(Ω)-function is of m-th order bounded variation (BV m) if its m-th order partial

derivatives in the sense of distributions are finite Radon measures. This takes up earlier results by

Tietz and the author concerning functions with merely one order of differentiability which emerged

in the context of a variational problem related to image analysis. In the connection of our methods

we also investigate a question concerning the boundary traces of W 1,p(Ω) ∩ Lq(Ω)-functions.

1. Introduction

In the study of a variational integral with applications to image processing, Tietz
and the author encountered the problem of approximating Sobolev and BV-functions
which have additional summability properties on a measurable subset of their domain.
Namely we considered functionals of type

Fp,q[u] =

ˆ

Ω

|∇u|p dx+

ˆ

Ω−D

|u− f |q dx

where Ω ⊂ Rn is open and bounded with Lipschitz boundary, D ⊂ Ω is a measurable
subset with 0 < Ln(D) < Ln(Ω), f ∈ Lq(Ω−D) is a given function and u varies in
W 1,p(Ω) ∩ Lq(Ω−D), 1 ≤ p < q < ∞. In case of p = 1 one would rather study the
problem F → min in the space BV (Ω) ∩ Lq(Ω − D) which naturally comes with a
useful notion of compactness in contrast to the non-reflexive space W 1,1(Ω) (see [2,
Theorem 3.23, p. 132]). For an outline of how the first and the second integral in
the definition of Fp,q relate to the problems of image denoising and image inpainting,
respectively, we would like to refer the interested reader to the introduction of [6].
The following result revealed to be a key tool towards proving fine properties of
solutions of F → min:

Theorem 1.1. (cf. [6, Lemma 2.1 and Lemma 2.2]) Let Ω ⊂ Rn be open and
bounded with Lipschitz boundary and D ⊂ Ω a measurable subset with 0 < Ln(D) <
Ln(Ω).

(i) If u is in W 1,p(Ω)∩Lq(Ω−D), then there is a sequence of smooth functions
(ϕk)

∞
k=1 ⊂ C∞(Ω) such that

‖u− ϕk‖1,p;Ω + ‖u− ϕk‖q;Ω−D → 0 for k → ∞.
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(ii) If u is in BV (Ω) ∩ Lq(Ω−D), then there is a sequence of smooth functions
(ϕk)

∞
k=1 ⊂ C∞(Ω) such that

‖u− ϕk‖1;Ω + ‖u− ϕk‖q;Ω−D +
∣

∣

∣
|∇u|(Ω)−

ˆ

Ω

|∇ϕk| dx
∣

∣

∣

+
∣

∣

∣

√

1 + |∇u|2(Ω)−

ˆ

Ω

√

1 + |∇ϕk|2dx
∣

∣

∣
→ 0 for k → ∞.

Here, for a finite Radon measure µ the notation |µ|(Ω) means the total variation

and the expression
√

1 + |µ|2(Ω) is defined in the sense of convex functions of a
measure as described in [5]: let µ = µa(Ln Ω) + µs be the decomposition of µ into
an absolutely continuous part w.r.t. the restriction of the n-dimensional Lebesgue
measure to Ω with density µa ∈ L1(Ω) and a singular part µs ⊥ (Ln Ω). Then, we

define a measure
√

1 + |µ|2 by setting

√

1 + |µ|2(B) :=
(

√

1 + |µa|
2
(Ln Ω)

)

(B) + |µs|(B) =

ˆ

B

√

1 + |µa|
2
dx+ |µs|(B)

for any Borel-set B ⊂ Ω. The aim of this note is to generalize Theorem 1.1 towards
spaces of functions with higher order derivatives. The main results are:

Theorem 1.2. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary,
D ⋐ Ω an open precompact subset with minimally smooth boundary1 and u ∈
Wm,p(Ω)∩Lq(Ω−D). Then there is a sequence of smooth functions (ϕk)

∞
k=1 ⊂ C∞(Ω)

such that
‖u− ϕk‖m,p;Ω + ‖u− ϕk‖q;Ω−D → 0 for k → ∞.

Theorem 1.3. Let Ω ⊂ Rn be open and bounded with C1-boundary, D ⋐ Ω
an open precompact subset with C1-boundary which is star-shaped with respect to
a point x0 ∈ D and u ∈ BV m(Ω) ∩ Lq(Ω−D). Then there is a sequence of smooth
functions (ϕk)

∞
k=1 ⊂ C∞(Ω) such that

‖u− ϕk‖m−1,1;Ω + ‖u− ϕk‖q;Ω−D +
∣

∣

∣
|∇mu|(Ω)−

ˆ

Ω

|∇mϕk| dx
∣

∣

∣

+
∣

∣

∣

√

1 + |∇mu|2(Ω)−

ˆ

Ω

√

1 + |∇mϕk|2 dx
∣

∣

∣
→ 0 for k → ∞.

The interest in a corresponding version of Theorem 1.1 for higher orders of dif-
ferentiability originates in the consideration of the functional which one gets after
replacing the gradient operator in the definition of Fp,q by its higher order analogue,
∇mu :=

(

∂
∂xi1

. . . ∂
∂xim

u
)n

i1,...,im=1
which yields the functional

Fm,p,q[u] =

ˆ

Ω

|∇mu|p dx+

ˆ

Ω−D

|u− f |q dx

for 1 < p <∞ and

Fm,1,q[u] = |∇mu|(Ω) +

ˆ

Ω−D

|u− f |q dx.

for p = 1. For special choices of Ω and f , solutions of F → min can be interpreted
in the context of higher order denoising/inpainting of images, which is a current
field of investigation in image analysis, see, e.g., [3]. As for m = 1, an adequate
approximation result in the spirit of Theorem 1.1 is useful for the investigation of

1The term ‘minimally smooth boundary’ was coined by Stein in his book [11, p. 189] and refines
the notion of a Lipschitz boundary slightly (for an explanation cf. Section 2.1).
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(generalized) minimizers of Fm,p,q. In this note, however, we restrict ourselves to
the proofs of Theorems 1.2 and 1.3 and postpone their applications to variational
problems of higher order to a separate paper.

One should note at this point, that due to Sobolev’s embedding theorem we
have for mp < n, that any function u ∈ Wm,p(Ω) is at least np/(n−mp)-summable
and as a direct consequence of this and the embedding BV (Ω) →֒ Ln/(n−1)(Ω), any
u ∈ BV m(Ω) is n/(n −m)-summable; so an actual problem does not arise unless q
is ‘large enough’, which we want to assume tacitly from now on.

The methods for proving Theorem 1.1 were customized to grasp the case of
merely one order of differentiability and fail for the general case since they crucially
rely on a ‘cut-off’ procedure which turns out to be unsuitable owing to the appear-
ance of higher order terms from the iterated chain rule. So we had to pursue an
entirely different approach which involves extending functions from Ω to Rn as well
as a ‘blow-up’-type argument, and therefore, unfortunately, goes along with much
more rigorous restrictions on the geometry of Ω and D. Considerations on how to
weaken the assumptions of Theorem 1.2 led to a result on the boundary traces of
Sobolev functions in the space W 1,p(Ω)∩Lq(Ω) which, albeit it does not confirm our
expectations, may be interesting in its own right for this very reason:

Theorem 1.4. Let Ω = Rn−1 × (0,∞) ⊂ Rn, 1 ≤ p < ∞, np
n−p

< q < ∞ and

T : W 1,p(Ω) → Lp(∂Ω) = Lp(Rn−1) denote the trace map. Then, the following holds:

(i) The images T (W 1,1(Ω) ∩ Lq(Ω)) and T (W 1,1(Ω)) = L1(Rn−1) coincide for
any 1 ≤ q <∞.

(ii) For 1 < p < ∞, the image T (W 1,p(Ω) ∩ Lq(Ω)) is a proper subspace of
T (W 1,p(Ω)) = W 1−1/p,p(Rn−1).

Remark 1.5. Although Theorem 1.4 is formulated for the special case of Ω being
a half-space, it extends to arbitrary Lipschitz domains via the standard procedure of
localizing with a suitable partition of unity and then retracting the general case to
the half-space setting by piecewise flattening the boundary.

At this point I want to express particular thanks to Prof. Dr. M. Bildhauer of
Saarland University for many fruitful discussions as well as to Prof. Dr. M. Fuchs,
my PhD advisor, for directing my interest upon this topic. Further thanks go to
Christian Tietz for valuable feedback and assessment. Finally I would like to thank
Prof. Dr. J. Weickert for supporting my research both financially and with his advice
whenever it comes to questions from the field of image analysis.

The subsequent section introduces most of our (non-standard) notation and in
particular explains our conception of higher order bounded variation. It is followed
by a section which gathers some needful results on Sobolev functions which might
be common but can hardly be found in literature. Finally, sections 3 and 4 treat the
proofs of Theorems 1.2 and 1.3, respectively. The last section is devoted to the proof
of Theorem 1.4.

2. Preliminaries

2.1. Notation and conventions, the space BV
m(Ω). Throughout the

following, unless otherwise mentioned, Ω denotes an at least open and bounded subset
of Euclidean space

(

Rn, | · |
)

for n ∈ N with Lipschitz-regular boundary and D ⋐ Ω
is an open, precompact subset with Lipschitz-boundary as well. We adopt the notion
of ’minimally smooth’ boundaries from [11] which means that there is an ε > 0, a
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covering (Ui)
∞
i=1 of ∂Ω through open sets, an integer N and a positive real L such

that the following three conditions hold:

(i) If x ∈ ∂Ω, then Bε(x) ⊂ Ui for some i.
(ii) No point of Rn is contained in more than N of the Ui’s.
(iii) For each i, there are coordinates (x1, . . . , xn) s.t. Ω ∩ Ui can be written

as {(x1, . . . , xn) ∈ Ui : xn < ϕi(x1, . . . , xn−1)} with a Lipschitz-continuous
function ϕi : R

n−1 → R and Lip(ϕi) ≤ L.

The class of all sets with minimally smooth boundary contains, e.g., open and
bounded convex sets or open and bounded sets with C1-boundary. With Ωε (Ωε)
we denote the outer (inner) parallel set of Ω in distance ε:

Ωε := {x ∈ Rn : dist(x,Ω) < ε}, Ωε := {x ∈ Ω: dist(x, ∂Ω) > ε}.

By ρε ∗ u we abbreviate the convolution of a function u ∈ L1
loc
(Ω) with a symmetric

mollifier ρε ∈ C∞
0 (Rn), which is supported in the closure of the ball Bε(0). Hs,

s > 0 designates the s-dimensional Hausdorff measure and by Lp(Ω), 1 ≤ p < ∞
we mean the space of (real-valued) functions which are p-integrable w.r.t. the n-
dimensional Lebesgue measure Ln, normed in the usual way by ‖ · ‖p;Ω. Further,
Wm,p(Ω), m ∈ N, designates the Sobolev space of (real-valued) functions whose
distributional derivatives up to order m are represented by p-integrable functions,
endowed with the norm

‖u‖m,p;Ω :=
∑

ν∈Nn
0

|ν|≤m

‖∂νu‖p;Ω.

The notion ∇ku means the k-th iterated (distributional) gradient of a function u,
i.e. the k-th order symmetric tensor-valued function with components (∇ku)i1,...,ik =
∂i1 · · ·∂iku, i1, . . . , ik ∈ {1, . . . , n}. Sk(Rn) denotes the set of all symmetric tensors of
order k with real components, which is naturally isomorphic to the set of all k-linear
symmetric maps (Rn)k → R.

We declare by

BV m(Ω) :=
{

u ∈ Wm−1,1(Ω) : ∇m−1u ∈ BV (Ω, Sm−1(R))
}

the space of (real valued) functions of m-th order bounded variation, i.e. the set
of all functions, whose distributional gradients up to order m − 1 are represented
through 1-integrable tensor-valued functions and whose m-th distributional gradient
is a tensor-valued Radon measure of finite total variation

|∇mu|(Ω) = sup

{

ˆ

Ω

u

(

∑

ν∈Nn
0 , |ν|=m

∂νgν

)

dx : g ∈ Cm
0 (Ω,RM), ‖g‖∞ ≤ 1

}

with M := #{ν ∈ Nn
0 : |ν| := ν1 + . . .+ νn = m}. Together with the norm

‖u‖BV m(Ω) := ‖u‖m−1,1;Ω + |∇mu|(Ω),

BV m(Ω) becomes a Banach space.
Spaces of this kind have been studied (in an even more general setting) in [5] and

just like there, we will provide BV m(Ω) with another topology apart from the norm
topology, induced by the following distance: For u, v ∈ BV m(Ω) we set

df(u, v) := ‖u− v‖m−1,1;Ω +
∣

∣|∇mu|(Ω)− |∇mv|(Ω)
∣

∣+
∣

∣f(∇mu)(Ω)− f(∇mv)(Ω)
∣

∣
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where f(x) =
√

1 + |x|2 for x ∈ RM . Then convergence with respect to this distance
refines strict BV -convergence (see [2], Definition 3.14) and C∞(Ω) is a dense subspace
of
(

BV m(Ω), df(., .)
)

(see [5], Theorem 2.2).
To simplify matters, all of our results are formulated in terms of real valued

functions and extend component-wise to the vector-valued case.

2.2. Some auxiliary results on Sobolev functions.

Proposition 2.1. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary
and u ∈ Wm,p(Ω). With T : W 1,p(Ω) → Lp(∂Ω,Hn−1) denoting the boundary oper-
ator for real-valued Sobolev functions, we have that for any ε > 0 given, there is a
smooth function ϕ ∈ C∞(Ω) ∩Wm,p(Ω) with

‖u− ϕ‖m,p;Ω < ε

and such that T∇ku = T∇kϕ for 0 ≤ k ≤ m − 1, where the action of T on a
tensor-valued function is component-wise.

Proof. Exhaust Ω with open sets as given by

Ωj := {x ∈ Ω: dist(x, ∂Ω) > 1/j}, j = 1, 2, . . . ,

and consider the open covering of Ω through

A1 := Ω2, Aj := Ωj+1 − Ωj−1, j = 2, 3, . . . .

Let (ηj)
∞
j=1 be a partition of unity with respect to the covering (Aj)

∞
j=1 and take a

sequence (εj)
∞
j=1 of positive reals s.t. (spt ηj)

εj ⋐ Aj and

‖ηju− ρεj ∗ (ηju)‖m,p;Ω < ε/2j.

It is obvious that ϕ :=
∑∞

j=1 ρεj ∗ (ηju) is a smooth function which approximates u
in the right manner.

Now let Tj : W
1,p(Ω−Ωj) → Lp(∂Ω) denote the trace operator on W 1,p(Ω−Ωj).

Note that Tju|Ω−Ωj
= Tu whenever u ∈ W 1,p(Ω). Furthermore, since the trace

operators are continuous, there are positive constants cj s.t.

(1) ‖Tju‖p;∂Ω ≤ cj‖u‖1,p;Ω−Ωj
.

With

aj :=
1

max{ci : i ≤ j}
,

we can choose εj small enough such that

‖ηju− ρεj ∗ (ηju)‖m,p;Ω < aj/2
j.

Now let 0 ≤ k ≤ m− 1. Thus ∇ku ∈ W 1,p(Ω, Sk(R)) and by (1) we have

‖T∇ku− T∇kϕ‖p;∂Ω = ‖Tj∇
ku|Ω−Ωj

− Tj∇
kϕ|Ω−Ωj

‖p;∂Ω

≤ cj‖∇
ku−∇kϕ‖1,p;Ω−Ωj

≤ cj
∑

l≥j

‖ηlu− ρεl ∗ (ηlu)‖m,p;Ω < cj
∑

l≥j

al
2l

≤
1

2j−1
.

Since this holds for any j ∈ N, the result follows. �

Proposition 2.2. Let Ω ⊂ Rn be open and u ∈ Wm,p(Ω) ∩ Lq(Ω). Then, for
any ε > 0 given, there is a smooth function ϕ ∈ C∞(Ω) ∩Wm,p(Ω) satisfying

‖u− ϕ‖m,p;Ω + ‖u− ϕ‖q;Ω < ε.
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Proof. If we construct ϕ in the same manner as in the prove of Proposition 2.1, it
follows trivially from the properties of mollification (see e.g. [1, Theorem 2.29]) that
ϕ approximates u in Lq(Ω). �

Proposition 2.3. Let u ∈ Lp(Rn). For α > 1 define uα(x) := u(αx). Then
uα → u in Lp(Ω) for any sequence α ↓ 1 and any measurable set Ω ⊂ Rn.

Proof. W.l.o.g. we assume Ω = Rn. The set of smooth functions with compact
support C∞

0 (Rn) is dense in Lp(Rn). Thus, we can choose a sequence (ϕk)k∈N ⊂
C∞

0 (Rn) converging to u. Then ϕk(αx) approximates uα in Lp(Rn) and the result
follows since ϕk(αx) → ϕk(x) converges uniformly for α ↓ 1 and k fixed. �

The following extension result will be a key tool towards proving approximation
theorems in both Wm,p(Ω) ∩ Lq(Ω−D) and BV m(Ω) ∩ Lq(Ω−D):

Proposition 2.4. Let Ω ⊂ Rn be open and bounded with minimally smooth
boundary and u ∈ Wm,p(Ω) ∩ Lq(Ω). Then there is a continuous linear operator E,
mapping u to a function ũ ∈ Wm,p(Rn) ∩ Lq(Rn) and such that ũ = u (a.e.) on Ω.

Proof. We claim, that the operator E : Wm,p(Ω) → Wm,p(Rn), as defined in
[11, Part 3.3, pp. 189–192] performs an extension in the right manner. Indeed,
this is a mere consequence of the universality of this operator in the sense that it
simultaneously extends all orders of differentiability by the same construction. �

3. Proof of Theorem 1.2

We start by proving another version of Theorem 1.2 under stronger assumptions
on the geometry of Ω and D in order to clarify the main idea and then apply similar
arguments to a more general setting.

Lemma 3.1. Let Ω ⊂ Rn be open and bounded with minimally smooth bound-
ary, D ⋐ Ω an open and precompact subset with Lipschitz boundary which is star-
shaped with respect to a point x0 ∈ D and u ∈ Wm,p(Ω) ∩ Lq(Ω − D). Given an
arbitrary ε > 0, there is a function ϕ ∈ C∞(Ω) s.t.

‖ u− ϕ ‖m,p;Ω + ‖ u− ϕ ‖q;Ω−D< ε.

Proof. W.l.o.g. we may assume x0 = 0. Applying Proposition 2.4, we can extend
u outside of Ω to a function u′ ∈ Wm,p(Rn)∩Lq(Rn−D). Then, by Proposition 2.3,
u′α(x) := u′(αx) converges to u′ in Wm,p(Ω) ∩ Lq(Ω−D) for α ↓ 1. Fix α > 1 with

(1) ‖ u′ − u′α ‖m,p;Ω + ‖ u′ − u′α ‖q;Ω−D< ε/3

Due to its star shape, Dα := 1/αD is a precompact subset of D and u′α is q-integrable
on Rn−Dα. By Proposition 2.2, we can construct a smooth function ϕ′ ∈ C∞(Rn−
Dα) with

(2) ‖u′α − ϕ′‖m,p;Rn−Dα
+ ‖u′α − ϕ′‖q;Rn−Dα

< ε/3

and such that T∇kϕ′ = T∇ku′α in Lp(∂Dα,Hn−1) for every 0 ≤ k ≤ m − 1. Conse-
quently, ϕ′ can be extended to Dα by u′α|Dα

to a function v ∈ Wm,p(Ω)∩Lq(Ω−Dα).

On D, we can construct a smooth function ϕ′′ ∈ C∞(D) with

(3) ‖v − ϕ′′‖m,p;D < ε/3
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and such that ∂νϕ′′
|∂D = ∂νϕ′

|∂D for every multi-index ν ∈ Nn
0 . Therefore, and by

(1)–(3)

ϕ(x) :=

{

ϕ′′(x), x ∈ D,

ϕ′(x), x ∈ Ω−D

is a smooth function that approximates u in the right manner. �

We now come to the proof of Theorem 1.2. Let {x1, x2, x3, . . .} ⊂ ∂D be a dense
subset of ∂D. For every i ∈ N choose an open ball Bri(xi) such that Bri(xi) ∩D is
Lipschitz-equivalent to B1(0)∩Rn−1× (−∞, 0] via a bi-Lipschitz-map φi : Bri(xi) →
B1(0) and such that inf i ri > 0. Let pi denote the preimage of (0, . . . , 0,−1) with
respect to φi. W.l.o.g. we can assume pi = 0 for i fixed. Note that Bri(xi) is star
shaped with respect to pi.

Now let ηi ∈ C∞
0 (Bri(xi)) be a smooth function with 0 ≤ ηi ≤ 1, ηi ≡ 1 on

Bri/2(xi). We successively construct a sequence (ui)
∞
i=1 of Wm,p(Ω) ∩ Lq(Ω − D)-

functions in the following way: For i = 1, take α1 > 1 small enough such that
u1(x) := (η1u)(α1x) + (1− η1(x))u(x) fulfills

‖u− u1‖m,p;Ω + ‖u− u1‖q;Ω−D < ε/2.

Then (provided α1 is small enough) u1 is q-integrable outside a proper subset of D,
with positive distance from ∂D near ∂D ∩ Br1/4(x1). In the second step, we find
α2 > 1 for which the function u2 := (η2u1)(α2x) + (1− η2(x))u1(x) satisfies

‖u1 − u2‖m,p;Ω + ‖u1 − u2‖q;Ω−D < ε/4.

Then u2 is q-integrable outside a proper subset of D, with positive distance from ∂D
near ∂D ∩

(

Br1/4(x1) ∪ Br2/4(x2)
)

.
By continuing this process, we recursively define a sequence (ui) s.t.

‖ui−1 − ui‖m,p;Ω + ‖ui−1 − ui‖q;Ω−D < ε/2i

and ui is q-integrable beyond ∂D∩
(
⋃i

j=1Brj/4(xj)
)

, i.e. the domain of q-integrability
is enlarged gradually to the inside of D. Since ∂D is compact in Ω, after finitely many
steps N ,

⋃N
i=1Bri/4 covers ∂D. Then uN is a function with

‖u− uN‖m,p;Ω + ‖u− uN‖q;Ω < ε

and that is q-integrable outside an inner parallel set of D. From this point on, the
result follows by the same arguments as used in the proof of Lemma 3.1. �

4. Proof of Theorem 1.3

In this section we are concerned with generalizing our previous results for Sobolev
functions towards the spaces BV m(Ω) ∩ Lq(Ω−D).

Definition 4.1. In the following, we will keep saying “ϕ approximates u ∈
BV m(Ω) ∩ Lq(Ω − D) in the sense of (Aε)” for a given ε > 0, if ϕ approximates
u with respect to the metric df(., .) as well as in Lq(Ω−D):

(Aε)

{

‖u− ϕ‖m−1,1;Ω + ‖u− ϕ‖q,Ω−D +
∣

∣|∇mu|(Ω)− |∇mϕ|(Ω)
∣

∣

+
∣

∣

∣

√

1 + |∇mu|2(Ω)−
´

Ω

√

1 + |∇mϕ|2 dx
∣

∣

∣
< ε.

Notice, that corresponding versions of Proposition 2.1 and 2.2 can be proven in
the context of BV m(Ω):
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Proposition 4.2. Let Ω ⊂ Rn have C1-boundary2 and u ∈ BV m(Ω) ∩ Lq(Ω).
Then, for any ε > 0 given there is a smooth function ϕ ∈ C∞(Ω)∩BV m(Ω) satisfying

df(u, ϕ) + ‖u− ϕ‖q;Ω < ε.

Proof. In [5], Theorem 2.2 it is shown, that C∞(Ω) lies dense in BV m(Ω) with
respect to the distance df(., .). The construction of such a smooth approximation
follows basically the same steps as in case of a Sobolev function (i.e. the classical
Meyers–Serrin argument (see [10]) as also seen in the proof of Proposition 2.1), and
thus it is clear that additional integrability constraints are respected by the approx-
imation thanks to the properties of mollification. �

Proposition 4.3. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary
and u ∈ BV m(Ω). Define T : W 1,1(Ω) → L1(∂Ω,Hn−1) as in Proposition 2.1 and
let S : BV (Ω) → L1(∂Ω,Hn−1) denote the trace operator on BV (Ω). Then, for any
ε > 0 there is a smooth function ϕ ∈ C∞(Ω)∩BV m(Ω) which approximates u in the
sense of (Aε) and such that

T∇ku = T∇kϕ, for all 0 ≤ k < m− 2 and S∇m−1u = S∇m−1ϕ

in L1(∂Ω,Hn−1) (hold in mind that T and S act component-wise on tensor-valued
functions).

Proof. The result follows by the same arguments we used in the proof of Proposi-
tion 2.1 since by Theorem 3, page 483 in [8], S is continuous with respect to the metric
df(., .) (see also [9, Theorem 2.11 and Remark 2.12] as well as [5, Theorem 2.3]). �

Corollary 4.4. Let Ω ⊂ Rn be open and bounded with C1-boundary and u ∈
BV m(Ω)∩Lq(Ω). Then there is a function ũ ∈ BV m(Rn)∩Lq(Rn) such that u = ũ
a.e. on Ω and

|∇mũ|(∂Ω) = 0.

Proof. According to Propositions 4.3 and 4.2 above, we can choose a function
ϕ ∈ C∞(Ω) ∩ BV m(Ω) ∩ Lq(Ω) with T∇kϕ = T∇ku for 0 ≤ k ≤ m − 2 and
S∇m−1ϕ = S∇m−1u in L1(∂Ω,Hn−1). In particular, ϕ ∈ Wm,1(Ω) ∩ Lq(Ω) and we
can therefore apply Proposition 2.4 to extend ϕ to a function ϕ̃ ∈ Wm,1(Rn)∩Lq(Rn).
But then

ũ(x) :=

{

u(x), x ∈ Ω,

ϕ̃(x), x ∈ Rn − Ω

is an extension of u as claimed. �

With these results at hand, there now follows the proof of Theorem 1.3. Without
loss of generality, we may assume x0 = 0. By Proposition 4.2 we can construct a
smooth function ψ ∈ C∞(Ω − D) having the same traces as u on ∂D at any order
and with

(1) df(u|Ω−D, ψ) + ‖u− ψ‖q;Ω−D < ε/3.

In particular, ψ is in Wm,1(Ω−D)∩Lq(Ω−D) and by Proposition 2.4, we can extend
ψ outside of Ω to a function ψ′ ∈ Wm,1(Rn−D)∩Lq(Rn−D). Due to Proposition 4.3,

2The author is not particularly sure to what extent it is necessary to request actual smoothness
of the boundary, since Demengel and Temam in [5] only speak of a ‘sufficiently smooth’ boundary,
but it seems to be adequate to assume it to be once differentiable.
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the function ψ′ can be extended by u|D to a function u′ in BV m(Rn) ∩ Lq(Rn −D)
s.t.

(2) |∇mu′|(∂D) = |∇mu|(∂D)

and since |∇mu|(N ) =
√

1 + |∇mu|
2
(N ) for any Ln-null set N we also get

(3)
√

1 + |∇mu|
2
(∂D) =

√

1 + |∇mu′|
2
(∂D).

Altogether, (1)–(3) imply that u′ approximates u in the sense that

df(u, u
′) + ‖u− u′‖q;Ω−D < ε/3.

Now we consider u′α(x) := u′(αx) for α > 1. Then, by the star shape of D, u′α is
q-integrable outside of Dα := (1/α)D ⋐ D.

It obliges to show u′α → u′ in the sense of (Aε) for α ↓ 1. With h : Rn → Rn,
x 7→ (1/α) x, we have ∇m(u′α) = αm−nh∗∇mu, where h∗µ(B) := µ(h−1(B)) denotes
the image measure. Further we get:

|∇mu′α|(Ω) = sup

{

ˆ

Ω

u′(αx)

(

∑

|ν|=m

∂νgν(x)

)

dx : g ∈ Cm
0 (Ω,RM), ‖g‖∞ ≤ 1

}

= α−n sup

{

ˆ

αΩ

u′(x)

(

∑

|ν|=m

∂νgν

)

(x/α)dx : g ∈ Cm
0 (Ω,RM), ‖g‖∞ ≤ 1

}

= αm−n sup

{

ˆ

αΩ

u′(x)

(

∑

|ν|=m

∂νgν(x/α)

)

dx : g ∈ Cm
0 (Ω,RM), ‖g‖∞ ≤ 1

}

= αm−n|∇mu′|(αΩ)
α↓1
−−→ |∇mu′|(Ω) = |∇mu′|(Ω),

since u′ ∈ Wm,1(Rn −D) and therefore |∇mu′|(∂Ω) = 0. This proves

lim sup
α↓1

|∇mu′α|(Ω) ≤ |∇mu′|(Ω)

and convergence follows from ∇m−1u′α
α↓1
−−→ ∇m−1u′ in L1(Rn) and lower semi-

continuity of the total variation.
Moreover, if

∇mu′ = ∇m
a u

′Ln +∇m
s u

′

denotes the Lebesgue-decomposition of the tensor valued Radon measure ∇mu′, we
have that

αm−nh∗∇
mu′ = αm∇m

a u
′ ◦ h−1Ln + αm−nh∗∇

m
s u

′

is the Lebesgue-decomposition of ∇mu′α, and by definition it follows:

√

1 + |∇mu′α|
2(Ω) =

ˆ

Ω

√

1 + |αm∇m
a u

′(αx)|2 dx+ αm−n|h∗∇
m
s u

′|(Ω).

As above, for the total variation of the singular part we have

αm−n|h∗∇
m
s u

′|(Ω) = αm−n|∇m
s u

′|(αΩ)
α↓1
−−→ |∇m

s u
′|(Ω) = |∇m

s u
′|(Ω).

To the first part, we can apply the transformation formula:
ˆ

Ω

√

1 + |αm∇m
a u

′(αx)|2 dx = α−n

ˆ

αΩ

√

1 + |αm∇m
a u

′(x)|2 dx.
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Due to αm∇m
a u

′ α↓1
−−→ ∇m

a u
′ pointwise a.e. and |αm∇m

a u
′(x)| ≤ 2|∇m

a u
′(x)| (we may

assume αm < 2), by Lebesgue’s theorem on dominated convergence we conclude

α−n

ˆ

αΩ

√

1 + |αm∇m
a u

′(x)|2 dx
α↓1
−−→

ˆ

Ω

√

1 + |∇m
a u

′(x)|2 dx.

Hence, we can choose α > 1 small enough with

(4) df(u
′, u′α) + ‖u′ − u′α‖q,Ω−D < ε/3

and u′α is q-integrable outside Dα. From that point on, we may proceed just like in
the proof of Lemma 3.1 and construct a smooth function ϕ ∈ C∞(Ω) with

(5) ‖u′α − ϕ‖q;Ω−D + df(u
′
α, ϕ) < ε/3.

by conjoining C∞-approximations of u′α on Rn − Dα and D. Altogether, we have
that ϕ approximates u as claimed. �

Remark 4.5. One might expect that, using similar arguments as in the proof
of Theorem 1.2, we can generalize the above result towards weaker assumptions on
Ω and D; but this is not the case. This seems to ground on the fact that the
metric df(., .) is not translation invariant, and addition does not act continuously
w.r.t. the topology it induces on BV m(Ω). Put simply: minor changes of a function
u ∈ BV m(Ω) on a small set can have a major effect on its global behavior.

5. Boundary traces of W
m,p(Ω) ∩ L

q(Ω)-functions, proof of Theorem 1.4

Revising the steps in the proof of our approximation result in the Sobolev context,
we find that our method largely relies on the extension result 2.4, being the reason
for that we have to presume D to be compactly contained in Ω which guarantees
q-integrability near the boundary ∂Ω. Hence we could prove Theorem 1.2 in a much
broader setting if already any Wm,p(Ω)-function could be extended from Ω to Rn by
a Wm,p(Rn) ∩ Lq(Rn)-function. This leads to the question, whether the images of
Wm,p(Ω) and Wm,p(Ω) ∩ Lq(Ω) under the Sobolev trace map T : W 1,p(Ω) → Lp(∂Ω)
coincide for q > np

n−mp
. This section is devoted to the prove of Theorem 1.4, which

gives a negative answer if p > 1 or m > 1.
In what follows, let Ω be the ’upper’ half-space Rn−1 × (0,∞) in Rn and T :

W 1,p(Ω) → Lp(∂Ω) = Lp(Rn−1) denote the trace map for Sobolev functions. A
classical result by Gagliardo in [7] is, that only for p = 1 this map is onto. For
p > 1, the investigation of the image of T in Lp(Rn−1) led to the idea of fractional
Sobolev spaces (often referred to as Sobolev–Slobodeckij spaces)W s,p(Ω) for arbitrary
non-integer s > 0. With these at hand, the exact trace of W 1,p(Ω) is given by
W 1−1/p,p(Rn−1).

Proof of Theorem 1.4. ad (i): Let f ∈ L1(Rn−1) be an arbitrary function on
the boundary of Ω. For a given q ≥ 1, we are going to construct a function u ∈
W 1,1(Ω) ∩ Lq(Ω) with T (u) = f :

Let (ϕk)
∞
k=1 ⊂ C∞

0 (Rn−1) be a sequence of smooth functions with compact sup-
port, which approximates f in the following way:

‖f − ϕk‖1;Rn−1
k→∞
−−−→ 0(1)

‖ϕk+1 − ϕk‖1,Rn−1 < 2−k.(2)
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Since C∞
0 (Rn−1) ⊂ Lq(Rn−1), we can further choose a monotonously decreasing null-

sequence (δk)
∞
k=1 such that

δk‖ϕk‖q;Rn−1 < 2−k,(3)

δk‖∇ϕk‖1;Rn−1 < 2−k for k = 1, 2, . . . ,(4)

ε0 :=

∞
∑

k=1

δk <∞.(5)

Setting εk :=
∑∞

i=k+1 δi for k = 1, 2, . . ., we now define a function ũ(x, t) at a
point (x, t) ∈ Rn−1 × (0,∞) piecewise by

ũ(x, t) :=































0, for ε0 ≤ t,

ϕ1(x), for ε1 ≤ t < ε0,
...

ϕk(x), for εk ≤ t < εk−1,
...

It is readily seen from (3), that ũ ∈ Lq(Ω). Furthermore we claim ũ ∈ BV (Ω):
Since ũ has only jump-type discontinuities concentrated on the set

Sũ =
∞
⋃

i=0

(

Rn−1 × {εi}
)

,

which is countably (n− 1)-rectifiable and ũ is differentiable outside Sũ with

∇ũ(x, t) :=































0, for ε0 < t,

∇ϕ1(x)⊕ 0, for ε1 ≤ t < ε0,
...

∇ϕk(x)⊕ 0, for εk ≤ t < εk−1,
...

the total variation of ũ can be calculated to

|∇ũ|(Ω) =
∞
∑

k=1

δk‖∇ϕk‖1,Rn−1 + ‖ϕ1‖1;Rn−1 +

∞
∑

k=1

‖ϕk+1 − ϕk‖1;Rn−1

which is finite by (2)+(4). Thus, by the properties of mollification

u(x, t) :=
(

ρt/2 ∗ ũ
)

(x, t)

defines a W 1,1(Ω)∩Lq(Ω)-function which has boundary trace f on Rn−1 by construc-
tion.

ad (ii): In order to prove the non-surjectivity in the case p > 1, we make use of
the following generalization of the classical Gagliardo–Nirenberg inequality towards
fractional Sobolev spaces (see [4, Corollary 2]):

Lemma 5.1. Let 1 < p, q <∞, 0 < s < 1 and u ∈ W 1,p(Ω)∩Lq(Ω). Then there
is a constant C = C(p, q, s) > 0 such that

‖u‖s,p(s);Ω ≤ C‖u‖1−s
q;Ω ‖u‖s1,p;Ω

where
1

p(s)
=
s

p
+

1− s

q
.
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We are going to show, that whenever q > np
n−p

, we can choose 0 < s0 < 1

s.t. p(s0) >
(n−1)p
n−p

and s0 >
1

p(s0)
. Then by the above Lemma, every function u ∈

W 1,p(Ω)∩Lq(Ω) is an element ofW s0,p(s0)(Ω) and consequently, by [12], Theorem 2.7.2
it has a boundary trace in Lp(s0)(Rn−1). Notice, that due to the fact that the trace
operator is in any case defined through the continuation of the trivial map u 7→ u|∂Ω
on the dense subspace C∞(Ω) ∩W 1,p(Ω) (and C∞(Ω) ∩W s0,p(s0)(Ω), respectively),
in Lp(∂Ω) the trace of u as a W 1,p(Ω)∩Lq(Ω)-function will be the same as the trace
of u as an W s0,p(s0)(Ω)-function, since by the above inequality every sequence of
smooth functions approximating u in W 1,p(Ω)∩Lq(Ω) approximates u as an element
of W s0,p(s0)(Ω) as well. But since p(s0) exceeds the maximal exponent from Sobolev’s
embedding theorem for traces (see [1, Theorem 5.4 Case A]) which is proven to be
optimal via a counterexample in [1, Example 5.25] we conclude that there are indeed
traces in T (W 1,p(Ω)) which do not come from a W 1,p(Ω) ∩ Lq(Ω)-function.

Solving
1

p(s)
=
s

p
+

1− s

q
< s

for s yields

s >
p

pq + p− q
.

Surely, p(s) becomes maximal for s minimal, so we put

smin :=
p

pq − q + p
< 1

and calculate pmax := p(smin) to

pmax = q

(

1−
1

p

)

+ 1.

Since q > np
n−p

by assumption, we have

pmax >
(n− 1)p

n− p
.

Hence we can choose smin < s0 < 1 small enough s.t. (n−1)p
n−p

< p(s0) < pmax.

Remark 5.2. From part (ii) of the theorem we conclude, that for m > 1 the
image T (Wm,p(Ω) ∩ Lq(Ω)) in Lp(∂Ω) is always a proper subspace of T (Wm,p(Ω)),
since Wm,p(Ω) is embedded into some W 1,p′(Ω) for p′ > 1 via Sobolev’s embedding
theorem.

Remark added in proof. The author strongly believes that quite recently,
he succeeded in proving generalisations of Theorems 1.2 and 1.3 where both Ω and
Ω − D only need to be bounded with Lipschitz regular boundary. In particular, as
expected, neither the compactness of D in Ω nor the star shape are necessary to
prove density of smooth functions.
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