C^1 -EMBEDDINGS BETWEEN GRAPH-DIRECTED SETS

Juan Deng, Zhiying Wen and Lifeng Xi

ShenZhen University, Department of Mathematics 518000, ShenZhen, P. R. China; dengjuan@szu.edu.cn

Tsinghua University, Department of Mathematics 100084, Beijing, P. R. China; wenzy@tsinghua.edu.cn

Ningbo University, Department of Mathematics 315211, Ningbo, P. R. China; xilifengningbo@yahoo.com

Abstract. For graph-directed sets, we obtain that a C^1 -embedding implies an affine embedding. We only pose the open set condition for the image sets. We can apply our result to self-similar sets with overlaps, for example all λ -Cantor sets.

1. Introduction

There are many works devoted to the bilipschitz embedding between fractals. For example, Mattila and Saaranen [9] investigate the bilipschitz embedding between Ahlfors–David regular sets, Llorente and Mattila [7] study the bilipschitz embedding between subsets of self-conformal fractals, Deng, Wen, Xiong and Xi[1] obtain the bilipschitz embedding for self-similar sets.

Feng, Huang and Rao [3] recently established the following relation between C^{1} embeddings and affine embeddings for self-similar sets:

Theorem 1.1 of [3]. Let E and F be self-similar sets. Suppose that the open set condition holds for F and

(1.1)
$$\dim_H E = \dim_S E,$$

where $\dim_S(\cdot)$ is the self-similarity dimension. If there is a C^1 -embedding from E to F, then E can be embedded into F affinely.

Here are several minor comments for the conditions of the theorem.

- 1° Under the assumption (1.1), the IFS of E does not contain complete overlaps.
- 2° The theorem requires the C^1 -embedding globally, but by the self-similarity, it seems a local C^1 -embedding will be enough.
- 3° As we will see later, some overlapping self-similar sets can be viewed as the attractors of graph-directed IFSs satisfying the open set condition. And we are led to discuss the embeddings between graph-directed sets.

The main result of this note is Theorem 1 below which generalizes that [3, Theorem 1.1] from the three points mentioned above.

We started with some basic definitions and notations which will be used later.

For two compact sets $K \subset \mathbf{R}^{m_1}$ and $K' \subset \mathbf{R}^{m_2}$, we say that an embedding f from K to K' is *affine* if there exists $a \in \mathbf{R}^{m_2}$ and a nondegenerate $(m_2 \times m_1)$ -matrix

doi:10.5186/aasfm.2016.4153

²⁰¹⁰ Mathematics Subject Classification: Primary 28A80.

Key words: Fractal, graph-directed sets, embedding.

Lifeng Xi is the corresponding author. The work is supported by NSFC (Nos. 11371329, 11071224, 11471124, 11301346, 11271223, 11431007), NSF of Zhejiang Province (Nos. LR13A010001).

M such that f(x) = Mx + a for all $x \in K$. Here M is said to be nondegenerate, if rank $(M) = m_1 \leq m_2$, i.e., Mx = 0 for $x \in \mathbf{R}^{m_1}$ if and only if x = 0. We say that an embedding g from K to K' is \mathbf{C}^1 , if there is an extension \bar{g} of g such that $\bar{g} \in C^1(O, \mathbf{R}^{m_2})$ for an open neighbourhood O of K and the Jacobian $D\bar{g}_x$ is nondegenerate at each $x \in K$.

Recall the graph directed construction [10] as follows. Given a directed graph $G = (\mathcal{V}, \mathcal{E})$ with vertex set \mathcal{V} and the edge set \mathcal{E} , the graph directed sets $\{K_i (\subset \mathbf{R}^m)\}_{i \in \mathcal{V}}$ on G with contracting similitudes $\{S_e : \mathbf{R}^m \to \mathbf{R}^m\}_{e \in \mathcal{E}}$ are non-empty compact sets satisfying

(1.2)
$$K_i = \bigcup_{j \in \mathcal{V}} \bigcup_{e \in \mathcal{E}_{i,j}} S_e(K_j) \text{ for all } i \in \mathcal{V},$$

where $\mathcal{E}_{i,j}$ is the collection of directed edges from *i* to *j*, and S_e has similarity ratio r_e for any $e \in \mathcal{E}$. In particular, if \mathcal{V} is a singleton, we obtain a self-similar set. We say that the open set condition (OSC) holds for graph-directed sets $\{K_i\}_{i\in\mathcal{V}}$, if there are non-empty and bounded open sets $\{O_i\}_{i\in\mathcal{V}}$ satisfying the *disjoint* union

(1.3)
$$\bigcup_{j\in\mathcal{V}}\bigcup_{e\in\mathcal{E}_{i,j}}S_e(O_j)\subset O_i \quad \text{for all } i\in\mathcal{V}.$$

A path $\mathbf{e} = e_1 e_2 \cdots e_k$ is said to be *admissible*, if the ending vertex of e_i is exactly the starting vertex of e_{i+1} for every *i*. Throughout the paper, when we talk about a path, we always mean an admissible one. If for any vertices $i \neq j \in \mathcal{V}$, there is a path from *i* to *j*, we will say that the *transitivity condition* holds for $\{K_i\}_{i\in\mathcal{V}}$. For more characterizations of graph-directed sets, please see [11]–[16].

Given a λ -Cantor set $E_{\lambda} = E_{\lambda}/3 \cup (E_{\lambda}/3 + \lambda/3) \cup (E_{\lambda}/3 + 2/3)$, Hochman [4] proved the Furstenberg's conjecture that $\dim_H E_{\lambda} = 1$ for every $\lambda \notin \mathbf{Q}$. When $\lambda \in \mathbf{Q}$, Kenyon [5], Lagarias and Wang [6], Rao and Wen [14] proved that $\dim_H E_{\lambda} = 1$ for any $\lambda = p/q \in \mathbf{Q}$ with (p,q) = 1 and $p \equiv q \not\equiv 0 \pmod{3}$. In these two cases, we have

$$\dim_H E_{\lambda} = \dim_S E_{\lambda}.$$

Using graph-directed sets, Rao and Wen [14] proved that if $\lambda = p/q \in \mathbf{Q}$ with (p,q) = 1 and $p \not\equiv q \pmod{3}$, then

(1.4)
$$\dim_H E_{\lambda} < \dim_S E_{\lambda}$$

and there are graph directed sets $\{E_{\lambda}^{(1)}(=E_{\lambda}), \cdots, E_{\lambda}^{(k)}\}$ satisfying the OSC. In particular, for any $\lambda = 2/3^n$ with $n \ge 1$,

$$\dim_H E_{2/3^n} = \log_3 \frac{3 + \sqrt{5}}{2} < \dim_S E_{2/3^n} = 1$$

and the *transitivity condition* holds for corresponding graph-directed sets $\{E_{\lambda}^{(1)}(=E_{\lambda}), E_{\lambda}^{(2)}, \cdots, E_{\lambda}^{(2^{n})}\}$.

Remark 1. Let $\alpha^{-1} > 1$ be a P.V. number, for example, α^{-1} is $\frac{1+\sqrt{5}}{2}$, $\sqrt{2}+1$ or a positive integer greater than 1. An interesting fact is that we can obtain certain graph-directed sets satisfying the OSC from the IFS $\{\alpha^{p_i}x + b_i\}_{i=1}^m$ with $p_i \in \mathbf{N}$ and $b_i \in \mathbf{Q}$ for all *i*. For details, we refer to see [14, 8, 11, 17].

Now we state our main result.

Theorem 1. Suppose $\{K_i\}_i$ and $\{E_j\}_j$ are graph directed sets, the OSC holds for $\{K_i\}_i$ and the transitivity condition holds for $\{E_j\}_j$. If there is a C^1 -embedding from E_{j_0} to K_{i_0} for some i_0 and j_0 , then there exists an index *i* such that there is an affine embedding from E_j to K_i for every *j*.

Since any self-similar set has graph-directed construction satisfying the transitivity condition, we have

Theorem 2. Let *E* and *F* be self-similar sets. Suppose $F_1 = F \subset \mathbf{R}^m$ and $\{F_1, \dots, F_k\}$ are graph directed sets satisfying the OSC such that

(1.5)
$$F_i = \bigcup_{j=1}^{t(i)} S_{i,j}(F)$$

 $S_{i,j} \colon \mathbf{R}^m \to \mathbf{R}^m$ is the similarity for each (i, j). If there is a C^1 -embedding from E to F, then E can be embedded into F affinely.

Taking k = 1 in Theorem 2, we have the following corollary which is Theorem 1.1 of [3] without the assumption (1.1).

Corollary 1. Let E and F be self-similar sets and assume that the OSC holds for F. If there is a C^1 -embedding from E to F, then E can be embedded into F affinely.

Remark 2. (1) In Theorem 2, we pose no additional conditions for E, such as (1.1). Then we can take $E = E_{\lambda}$ in Theorem 2 where $\lambda = p/q \in \mathbf{Q}$ with $p + q \equiv 0 \pmod{3}$ and $pq \not\equiv 0 \pmod{3}$, in this case, we have (1.4).

(2) If $\alpha^{-1} > 1$ is a P.V. number and $F = \bigcup_{i=1}^{m} (\alpha^{p_i} F + b_i)$ with $p_i \in \mathbf{N}$ and $b_i \in \mathbf{Q}$ for all *i*, then there are graph directed sets $\{F_1(=F), \cdots, F_k\}$ satisfying the OSC such that

$$F_i = \bigcup_{j=1}^{t(i)} (\alpha^{q_{i,j}} F + c_{i,j})$$

where $q_{i,j} \in \mathbf{Z}$ and $c_{i,j} \in \mathbf{R}$, that means (1.5) holds in Theorem 2. We also obtain graph-directed sets satisfying (1.5) for λ -Cantor set $E_{p/q}$ with $p + q \not\equiv 0 \pmod{3}$ and $pq \not\equiv 0 \pmod{3}$ [14].

(3) In Theorem 1.1 of [3], the C^1 -embedding $g \in C^1(\mathbf{R}^m, \mathbf{R}^m)$ is a C^1 -diffeomorphism on \mathbf{R}^m . Our result only need $\bar{g} \in C^1(O, \mathbf{R}^{m_2})$ for an open neighbourhood O of a compact set E.

The paper is organized as follows. In Section 2 we give some preliminaries, including graph-directed construction and nearly affine mappings. In Section 3, using Arzela–Ascoli theorem and Baire category theorem, we prove the main theorems. To avoid the notational confusion, we draw a figure to illustrate the proof.

2. Preliminaries

For subsets A, B of \mathbb{R}^m , let dist $(x, A) = \inf_{y \in A} |x-y|$, dist $(A, B) = \inf_{x \in A, y \in B} |x-y|$ and |A| the diameter of A. For a given Euclidean space, let B(x, r) be the open ball centered at x with radius r > 0, and $\overline{B}(x, r)$ its closure.

2.1. Graph-directed construction. Let $\{K_i\}_{i\in\mathcal{V}}$ be the graph directed sets on $G = (\mathcal{V}, \mathcal{E})$ with contracting similitudes $\{S_e\}_{e\in\mathcal{E}}$. For any path $\mathbf{e} = e_1e_2\cdots e_k$, we denote its length $|\mathbf{e}| = k$. For $\mathbf{e} = e_1\cdots e_k$ and $\mathbf{e}' = e_1\cdots e_k e_{k+1}\cdots e_{k+m}$, we denote by $\mathbf{e} \prec \mathbf{e}'$. Then we give a *partial order*. Suppose $\mathbf{e} = e_1e_2\cdots e_k$ is a path from vertex *i* to vertex *j*. Then $S_{\mathbf{e}} = S_{e_1} \circ S_{e_2} \circ \cdots \circ S_{e_k}$ is a contracting similitude from K_j to K_i , with ratio $r_{\mathbf{e}} = r_{e_1}r_{e_2}\cdots r_{e_k}$. Write $K_{\mathbf{e}} = S_{\mathbf{e}}(K_j)$. If the OSC holds as in (1.3), then $K_j \subset \bar{O}_j$ for all $j \in \mathcal{V}$. For any path \mathbf{e} from vertex *i* to vertex *j*, we also have $O_{\mathbf{e}}$ with its closure $\bar{O}_{\mathbf{e}}$. Then $K_{\mathbf{e}} = S_{\mathbf{e}}(K_j) \subset S_{\mathbf{e}}(\bar{O}_j) = \bar{O}_{\mathbf{e}}$. Claim 1. If the OSC holds as in (1.3), then for every path \mathbf{e} we have $K_{\mathbf{e}} \subset O_{\mathbf{e}}$.

Claim 2. When the transitivity condition holds, then for all pair $(i, j) \in \mathcal{V} \times \mathcal{V}$, $y \in K_i$ and $\varepsilon > 0$, there exists a similate S such that $S(K_j) \subset B(y, \varepsilon) \cap K_i$.

Proof. Given $y \in K_i$, there exists an infinite path $\mathbf{e}^* = e_1 \cdots e_k \cdots$ such that

$$\bigcap_{k\geq 1} K_{\mathbf{e}(k)} = \{y\}$$

where $\mathbf{e}(k) = e_1 \cdots e_k$. Then there is an index $j' \in \mathcal{V}$ and an infinite sequence $k_1 < \cdots < k_n < k_{n+1} < \cdots$ of integers such that e_{k_i} is ending at the vertex $j' \in \mathcal{V}$ for all *i*. By the transitivity condition, there is a path \mathbf{e}' from j' to j. Therefore, we obtain that

$$y \in K_{\mathbf{e}(k_i)}$$
 and $S_{\mathbf{e}(k_i)}S_{\mathbf{e}'}(K_j) \subset K_{\mathbf{e}(k_i)}$ with $|K_{\mathbf{e}(k_i)}| \to 0$ as $i \to \infty$.

Take *i* large enough with $|K_{\mathbf{e}(k_i)}| < \varepsilon$, then $S = S_{\mathbf{e}(k_i)}S_{\mathbf{e}'}$ is the contracting similitude required.

Denote by $\Omega(x,\varepsilon)$ the collection of all paths with their copies, whose diameters are comparable to ε , intersecting the closed ball $\overline{B}(x,\varepsilon)$, i.e.,

$$\Omega(x,\varepsilon) = \{ \mathbf{e} \colon \bar{B}(x,\varepsilon) \cap K_{\mathbf{e}} \neq \emptyset \text{ and } (\min_{e \in \mathcal{E}} r_e) \cdot \varepsilon \le |K_{\mathbf{e}}| \le \varepsilon \}.$$

The following lemma is natural from the OSC, we give its proof for self-containedness.

Lemma 1. If the OSC holds as in (1.3), then there exists an integer N_0 such that for any $\varepsilon > 0$ and $x \in K_i$,

$$\#\Omega(x,\varepsilon) \le N_0.$$

Proof. Suppose $x \in K_i$ and $B(y_j, r^*) \subset O_j$ for all j with some small $r^* > 0$. Write $O_{\mathbf{e}} = S_{\mathbf{e}}(O_j)$ and $B_{\mathbf{e}} = S_{\mathbf{e}}(B(y_j, r^*))$ if the path \mathbf{e} is ending at j.

For any path $\mathbf{e} = e_1 e_2 \cdots e_{k-1} e_k$, denote $\mathbf{e}^- = e_1 e_2 \cdots e_{k-1}$. Let

$$\Omega^*(x,\varepsilon) = \{ \mathbf{e} \colon |K_{\mathbf{e}}| \le \varepsilon, |K_{\mathbf{e}^-}| > \varepsilon \} (\subset \Omega(x,\varepsilon)).$$

Let N is an integer satisfying $(\max_{e \in \mathcal{E}} r_e)^N < \min_{e \in \mathcal{E}} r_e$, we have

$$\sup_{\mathbf{e}\in\Omega^*(x,\varepsilon)}\#\{\mathbf{e}'\in\Omega(x,\varepsilon)\colon\mathbf{e}\prec\mathbf{e}'\}\leq(\#\mathcal{E})^N$$

Therefore, we obtain

$$#\Omega(x,\varepsilon) \le (#\mathcal{E})^N \cdot #\Omega^*(x,\varepsilon).$$

Using the OSC, we find that $O_{\mathbf{e}} \cap O_{\mathbf{e}'} = \emptyset$ whenever $\mathbf{e} \neq \mathbf{e}' \in \Omega^*(x, \varepsilon)$. Now,

$$B_{\mathbf{e}} \subset O_{\mathbf{e}}$$
 and $B_{\mathbf{e}} \cap B_{\mathbf{e}'} = \emptyset$ for $\mathbf{e} \neq \mathbf{e}' \in \Omega^*(x, \varepsilon)$.

Denote by $R_{\mathbf{e}}$ the radius of $B_{\mathbf{e}}$. If \mathbf{e} is ending at j, then $R_{\mathbf{e}} = r^* r_{\mathbf{e}}$ and

(2.1)
$$\frac{\min_{e \in \mathcal{E}} r_e}{\max_{i \in \mathcal{V}} |K_i|} \varepsilon \le r_{\mathbf{e}} = \frac{|K_{\mathbf{e}}|}{|K_j|} \le \frac{\varepsilon}{\min_{i \in \mathcal{V}} |K_i|}$$

Hence $\frac{r^* \min_{e \in \mathcal{E}} r_e}{\max_{i \in \mathcal{V}} |K_i|} \varepsilon \le R_{\mathbf{e}} \le \frac{r^*}{\min_{i \in \mathcal{V}} |K_i|} \varepsilon$.

Notice that $K_{\mathbf{e}} \subset \overline{O}_{\mathbf{e}}$ (Claim 1) and $\overline{B}(x,\varepsilon) \cap K_{\mathbf{e}} \neq \emptyset$, we obtain that

$$B_{\mathbf{e}} \subset \bar{O}_{\mathbf{e}} \subset \bar{B}\left(x, \varepsilon + r_{\mathbf{e}} \max_{i \in \mathcal{V}} |O_i|\right) \subset \bar{B}\left(x, \varepsilon + \frac{\max_{i \in \mathcal{V}} |O_i|\right)}{\min_{i \in \mathcal{V}} |K_i|}\varepsilon\right).$$

Write $c_1 = 1 + \frac{\max_{i \in \mathcal{V}} |O_i|}{\min_{i \in \mathcal{V}} |K_i|}$ and $c_2 = \frac{r^* \min_{e \in \mathcal{E}} r_e}{\max_{i \in \mathcal{V}} |K_i|}$. Now $\{B_{\mathbf{e}}\}_{\mathbf{e} \in \Omega^*(x,\varepsilon)}$ are pairwise disjoint open balls in $\bar{B}(x, c_1 \varepsilon)$ and the radius $R_{\mathbf{e}} \ge c_2 \varepsilon$ for each \mathbf{e} . We obtain

$$(\#\Omega^*(x,\varepsilon))\mathcal{L}(B(x,c_2\varepsilon)) \le \sum_{\mathbf{e}\in\Omega^*(x,\varepsilon)}\mathcal{L}(B_{\mathbf{e}}) = \mathcal{L}\left(\bigcup_{\mathbf{e}\in\Omega^*(x,\varepsilon)}B_{\mathbf{e}}\right) \le \mathcal{L}(B(x,c_1\varepsilon)),$$

where \mathcal{L} is the Lebesgue measure on \mathbf{R}^m . Therefore, we have

$$#\Omega^*(x,\varepsilon) \le (\frac{c_1}{c_2})^n.$$

The lemma follows.

2.2. Bilipschitz and nearly affine mapping. Suppose $K \subset \mathbb{R}^{m_1}$ and $K' \subset \mathbb{R}^{m_2}$. Given an embedding $f: K \to K'$, we denote

$$U(f) = \sup_{x \neq y \in K} \frac{|f(x) - f(y)|}{|x - y|} \quad \text{and} \quad L(f) = \inf_{x \neq y \in K} \frac{|f(x) - f(y)|}{|x - y|}.$$

It is clear that

$$U(f \circ g) \le U(f)U(g)$$
 and $L(f \circ g) \ge L(f)L(g)$

and

$$U(S) = L(S) = r$$

for any similitude S with ratio r. For nondegenerate matrix (linear transformation) $M: \mathbf{R}^{m_1} \to \mathbf{R}^{m_2}$, we have L(M) > 0. Throughout the paper, when we say that the mapping f(x) = Mx + a is affine, we mean that the matrix M is nondegenerate. Hence L(f) > 0 for any affine mapping f.

Claim 3. If $g: K \to K'$ is a C^1 -embedding, then g is a bilipschitz mapping.

Proof. Suppose $\bar{g} \in C^1(O, \mathbb{R}^{m_2})$ for some open neighbourhood O of K with $\bar{g}|_K = g$. We can take a small number $r \in (0, \operatorname{dist}(K, \mathbb{R}^{m_1} \setminus O)/2)$ such that

$$0 < \inf_{\operatorname{dist}(y,K) \le r} L(D\bar{g}_y) \le \sup_{\operatorname{dist}(y,K) \le r} U(D\bar{g}_y) < \infty.$$

We obtain finitely many open balls $\{B(z_i, r)\}_{i=1}^p$ centered at K such that $K \subset \bigcup_{i=1}^p B(z_i, r)$. Take δ be the Lebesgue constant of the open covering $\{B(z_i, r)\}_{i=1}^p$. Notice that the C^1 -embedding g is a continuous embedding, we only need to estimate $\frac{|g(x)-g(x')|}{|x-x'|}$ for $x, x' \in K$ with $0 < |x - x'| < \delta$.

We can verify that L(g) > 0. In fact, whenever $0 < |x - x'| < \delta$, there exists an index $i \leq p$ such that $x, x' \in B(z_i, r)$. Therefore, we obtain a point $\xi \in B(z_i, r)$ in line segment between x and x' such that

$$\frac{|g(x) - g(x')|}{|x - x'|} = \frac{|D\bar{g}_{\xi}(x - x')|}{|x - x'|} \ge \inf_{\text{dist}(y, K) \le r} L(D\bar{g}_y).$$

In the same way, we can obtain $U(g) < \infty$.

Let K, K' be compact sets as above and c > 0 is fixed. We say that a sequence

$${f_t \colon K \to K'}_{t=1}^\infty \subset {f \colon c^{-1} \le L(f) \le U(f) \le c}$$

is *nearly affine*, if there is a sequence $\{A_t\}_{t=1}^{\infty}$ of affine mappings satisfying

$$\lim_{t \to \infty} \sup_{x \in K} |f_t(x) - A_t(x)| = 0.$$

Using Arzela–Ascoli theorem, we have

Lemma 2. If $\{f_t\}_{t=1}^{\infty}$ is nearly affine, then there is an affine mapping A and a subsequence $\{f_{t_i}\}_i$ of $\{f_t\}_t$ such that

$$\lim_{i \to \infty} f_{t_i}(x) = A(x) \quad \text{uniformly on } x \in K.$$

Fix positive constants $M, N \in \mathbb{N}$ and $c \geq 1$. Suppose $E, \{B_{i,j}\}_{1 \leq i < \infty, 1 \leq j \leq N}$ and $\{C_i\}_{i=1}^M$ are compact subsets of Euclidean spaces. We assume that for all $i \geq 1$,

$$(2.2) E = B_{i,1} \cup \dots \cup B_{i,N},$$

and for every j, there is a family $\{f_{i,j}\}_{i=1}^{\infty}$ of nearly affine mappings and an index set $\{\alpha(i,j)\}_{i=1}^{\infty}$ with $1 \leq \alpha(i,j) \leq M$ for all i such that

$$(2.3) f_{i,j}(B_{i,j}) \subset C_{\alpha(i,j)}$$

and

(2.4)
$$f_{i,j} \in \{f : c^{-1} \le L(f) \le U(f) \le c\}.$$

Here $B_{i,j}$ may be empty set. Using Arzela–Ascoli theorem again, we have

Lemma 3. Suppose (2.2)–(2.4) hold. Then there is an integer $N^* \leq N$ and a family of affine mappings $\{A_j\}_{j=1}^{N^*}$, non-empty compact subsets $\{B_j\}_{j=1}^{N^*}$ and index set $\{\alpha(j)\}_{j=1}^{N^*}$ such that

$$E = B_1 \cup \cdots \cup B_{N^*},$$

and $A_j(B_j) \subset C_{\alpha(j)}$ satisfying $A_j \in \{f : c^{-1} \leq L(f) \leq U(f) \leq c\}$.

Given compact subsets E and B_1, \dots, B_{N^*} of some Euclidean space, if

$$E = B_1 \cup \cdots \cup B_{N^*},$$

using Baire category theorem, we have

Lemma 4. Suppose (2.2)–(2.4) hold. Then there exist an integer j with $1 \leq j \leq N^*$ and an open ball B(x,r) with $x \in E$ such that

$$E \cap B(x,r) \subset B_i$$

3. Proof of Theorems 1 and 2

Suppose $\{E_j\}_{j \in \mathcal{U}}$ are graph-directed sets on the graph $(\mathcal{U}, \mathcal{D})$ with vertex set \mathcal{U} and the edge set \mathcal{D} satisfying

(3.1)
$$E_j = \bigcup_{j' \in \mathcal{U}} \bigcup_{d \in \mathcal{D}_{j,j'}} T_d(E_{j'}) \text{ for all } j \in \mathcal{U}_j$$

where $\mathcal{D}_{j_1,j_2} = \{d: \text{edge } d \text{ from } j_1 \text{ to } j_2\}$ and T_d is the contracting similitude with respect to edge d. Write $E_{d_1\cdots d_k} = T_{d_1} \circ \cdots \circ T_{d_k}(E_j)$, where the path $d_1\cdots d_k$ is ending at vertex j.

Given $j \in \mathcal{U}$, using Claim 2, we obtain an affine embedding

$$f_j \colon E_j \to E_{j_0}$$

To prove Theorem 1, we only need to verify

Proposition 1. There exists $i \in \mathcal{V}$ such that E_{j_0} can be embedded to K_i affinely. Proof. By the transitivity condition, we can find a path **b** from j_0 to itself. Write

$$\mathbf{b}^n = \underbrace{\mathbf{b} \cdots \mathbf{b}}$$

Suppose $x_0 \in E_{j_0}$ is the point with respect to \mathbf{b}^{∞} , i.e.,

$$\{x_0\} = \bigcap_n E_{\mathbf{b}^n}.$$

Without loss of generality, we assume the diameter $|E_{j_0}| = 1$. Assume that $g: E_{j_0} \to K_{i_0}$ is the corresponding C^1 -embedding, then by Claim 3, we have

(3.2)
$$c^{-1} \le L(g) \le U(g) \le c$$

for some constant c > 0. Let Dg_{x_0} be the Jacobian at point x_0 . Fix an integer n. Consider the similitude $T_{\mathbf{b}^n}$ with ratio r_n . Then $|E_{\mathbf{b}^n}| = r_n |E_{j_0}| = r_n$. Then we have

$$T_{\mathbf{b}^n} \colon E_{j_0} \longrightarrow E_{\mathbf{b}^n} \quad \text{with} \quad E_{\mathbf{b}^n} \subset \bar{B}(x_0, r_n)$$

We also obtain a natural mapping

$$g|_{\bar{B}(x_0,r_n)} \colon \bar{B}(x_0,r_n) \longrightarrow \bar{B}(g(x_0),cr_n)$$

due to $U(g) \leq c$.

Let $\Omega(x,\varepsilon)$ be defined as in Section 2. For any path **e** in $\Omega(g(x_0), cr_n)$, we have a natural mapping

$$(S_{\mathbf{e}})^{-1} \colon \overline{B}(g(x_0), cr_n) \cap K_{\mathbf{e}} \longrightarrow K_{\alpha(\mathbf{e})},$$

where $\alpha(\mathbf{e})$ is the ending vertex of \mathbf{e} . Therefore,

(3.3)
$$E_{j_0} = \bigcup_{\mathbf{e} \in \Omega(g(x_0), cr_n)} B_{\mathbf{e}, n},$$

where

$$B_{\mathbf{e},n} = (T_{\mathbf{b}^n})^{-1} g^{-1}(g(E_{\mathbf{b}^n}) \cap K_{\mathbf{e}}) \text{ and } \#\Omega(g(x_0), cr_n) \le N_0,$$

where N_0 is defined in Lemma 1. Let

$$f_{\mathbf{e},n} = (S_{\mathbf{e}})^{-1} \circ g \circ T_{\mathbf{b}^n},$$

then

(3.4)
$$f_{\mathbf{e},n}(B_{\mathbf{e},n}) \subset K_{\alpha(\mathbf{e})}.$$

Figure 1. The case with $\#\Omega(g(x_0), cr_n) = 3$.

Now, we shall estimate $U(f_{\mathbf{e},n})$ and $L(f_{\mathbf{e},n})$. In fact, using (2.1), we have $(c_1)^{-1}(r_n)^{-1} \leq (r_{\mathbf{e}})^{-1} \leq c_1(r_n)^{-1}$

for some constant $c_1 > 0$ depending on c and $\{K_i\}_i$. Therefore, we have

$$U((S_{\mathbf{e}})^{-1} \circ g \circ T_{\mathbf{b}^n}) \le U((S_{\mathbf{e}})^{-1})U(g)U(T_{\mathbf{b}^n}) = (r_{\mathbf{e}})^{-1}U(g)r_n \le cc_1.$$

Juan Deng, Zhiying Wen and Lifeng Xi

In the same way, we have $L((S_{\mathbf{e}})^{-1} \circ g \circ T_{\mathbf{b}^n}) \geq (r_{\mathbf{e}})^{-1}L(g)r_n \leq (cc_1)^{-1}$. Now, $(cc_1)^{-1} \le L(f_{\mathbf{e},n}) \le U(f_{\mathbf{e},n}) \le cc_1.$ (3.5)

We will show the family $\{f_{\mathbf{e},n}\}_n$ is nearly affine. In fact, we have

$$g(y) = g(x_0) + (Dg_{x_0})(y - x_0) + o(|y - x_0|).$$

Therefore,

$$f_{\mathbf{e},n}(x) = (S_{\mathbf{e}})^{-1} \circ g \circ T_{\mathbf{b}^n}(x) = A_{\mathbf{e},n}(x) + (S_{\mathbf{e}})^{-1}o(|T_{\mathbf{b}^n}(x) - x_0|)$$

where $A_{\mathbf{e},n}(x) = (S_{\mathbf{e}})^{-1} [g(x_0) + (Dg_{x_0})(T_{\mathbf{b}^n}(x) - x_0)]$ is affine. Since

$$|(S_{\mathbf{e}})^{-1}(T_{\mathbf{b}^n}(x) - x_0)| \le (r_{\mathbf{e}})^{-1}r_n \le \frac{\max_{i\in\mathcal{V}}|K_i|}{|K_{\mathbf{e}}|}r_n$$
$$\le \frac{\max_{i\in\mathcal{V}}|K_i|}{(\min_{e\in\mathcal{E}}r_e)\cdot(cr_n)}r_n \le \frac{\max_{i\in\mathcal{V}}|K_i|}{(\min_{e\in\mathcal{E}}r_e)\cdot c},$$

we obtain that

$$\sup_{x \in E_{j_0}} |(S_{\mathbf{e}})^{-1} o(|T_{\mathbf{b}^n}(x) - x_0|)| \to 0 \quad \text{as} \quad n \to \infty,$$

i.e.,

(3.6)
$$\sup_{x \in E_{j_0}} |f_{\mathbf{e},n}(x) - A_{\mathbf{e},n}(x)| \to 0 \quad \text{as} \quad n \to \infty.$$

Then the family $\{f_{\mathbf{e},n}\}_n$ is nearly affine for fixed $\mathbf{e} \in \Omega(g(x_0), cr_n)$. Notice that $#\Omega(g(x_0), cr_n) \le N_0.$

Now we have (3.3)–(3.6) for the family $\{B_{\mathbf{e},n}\}_{\mathbf{e},n}$ of compact subsets and the family $\{f_{\mathbf{e},n}\}_{\mathbf{e},n}$ of nearly affine mappings. By Lemma 3 there is an integer $N^* \leq N_0$ and a family of affine mappings $\{A_j\}_{j=1}^{N^*}$, non-empty compact subsets $\{B_j\}_{j=1}^{N^*}$ and index set $\{\alpha(j)\}_{j=1}^{N^*} \subset \{\alpha(\mathbf{e})\}_{\mathbf{e}}$ such that

$$E_{j_0} = B_1 \cup \cdots \cup B_{N^*},$$

and $A_j(B_j) \subset K_{\alpha(j)}$ satisfying $A_j \in \{f : c^{-1} \leq L(f) \leq U(f) \leq c\}$. Using Lemma 4, there exist an integer j with $1 \leq j \leq N^*$ and an open ball B(x,r) with $x \in E_{j_0}$ such that

$$E_{j_0} \cap B(x,r) \subset B_j$$

Applying Claim 2 to (j_0, j_0) and B(x, r), we can find a similitude S such that

$$S(E_{j_0}) \subset E_{j_0} \cap B(x, r).$$

Then $S(E_{i_0}) \subset B_i$. Therefore, we have

$$(A_j \circ S)(E_{j_0}) \subset A_j(B_j) \subset K_{\alpha(j)}$$

then Proposition 1 follows.

Proof of Theorem 2. By Theorem 1, we obtain that there exist F_i and an affine mapping A such that

$$A(E) \subset F_i = \bigcup_{j=1}^{t(i)} S_{i,j}(F)$$

Using Baire category theorem, we have $x \in A(E)$, r > 0 and j such that

$$A(E) \cap B(x,r) \subset S_{i,j}(F).$$

810

It follows from the self-similarity of E that there is a similitude S such that $S(E) \subset A^{-1}(B(x,r))$. Let $T(x) = S_{i,i}^{-1}(x)$, then

$$(T \circ A \circ S)(E) \subset F.$$

References

- DENG, J., Z.-Y. WEN, Y. XIONG, and L.-F. XI: Bilipschitz embedding of self-similar sets. -J. Anal. Math. 114, 2011, 63–97.
- [2] FALCONER, K.J.: Fractal geometry. Mathematical Foundations and Applications, Wiley, 2003.
- [3] FENG, D.-J., W. HUANG, and H. RAO: Affine embeddings and intersections of Cantor sets. -J. Math. Pures Appl. 102, 2014, 1062–1079.
- [4] HOCHMAN, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. (2) 180, 2014, 773–822.
- [5] KENYON, R.: Projecting the one dimensional Sierpinski gasket. Israel J. Math. 97, 1997, 221–238.
- [6] LAGARIAS, J. C., and Y. WANG: Tiling the line with translates of one tile. Invent. Math. 124:1-3, 1996, 341–365.
- [7] LLORENTE, M., and P. MATTILA: Lipschitz equivalence of subsets of self-conformal sets. -Nonlinearity 23, 2010, 875–882.
- [8] LAU, K. S., and S. M. NGAI: Multifractal measures and a weak separation condition. Adv. Math. 141:1, 1999, 45–96.
- [9] MATTILA, P., and P. SAARANEN: Ahlfors-David regular sets and bilipschitz maps. Ann. Acad. Sci. Fenn. Math. 34, 2009, 487–502.
- [10] MAULDIN, R. D., and S. C. WILLIAMS: Hausdorff dimension in graph directed constructions.
 Trans. Amer. Math. Soc. 309, 1988, 811–829.
- [11] NI, T.-J., and Z.-Y. WEN: Open set condition for graph directed self-similar structure. -Math. Z. 276:1-2, 2014, 243-260.
- [12] NGAI, S.-M., F. WANG, and X. DONG: Graph-directed iterated function systems satisfying the generalized finite type condition. - Nonlinearity 23:9, 2010, 2333–2350.
- [13] NGAI, S. M., and Y. WANG: Hausdorff dimension of self-similar sets with overlaps. J. Lond. Math. Soc. 63, 2001, 655–672.
- [14] RAO, H., and Z.-Y. WEN: A class of self-similar fractals with overlap structure. Adv. in Appl. Math. 20:1, 1998, 50–72.
- [15] WEN, Z.-Y., and L.-F. XI: On the dimensions of sections for the graph-directed sets. Ann. Acad. Sci. Fenn. Math. 35:2, 2010, 515–535.
- [16] XIONG, Y., and L. XI: Lipschitz equivalence of graph-directed fractals. Studia Math. 194:2, 2009, 197–205.
- [17] ZERNER, M. P. W.: Weak separation properties for self-similar sets. Proc. Amer. Math. Soc. 124:11, 1996, 3529–3539.

Received 25 June 2015 • Accepted 4 March 2016