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Abstract. For graph-directed sets, we obtain that a C1-embedding implies an affine embed-

ding. We only pose the open set condition for the image sets. We can apply our result to self-similar

sets with overlaps, for example all λ-Cantor sets.

1. Introduction

There are many works devoted to the bilipschitz embedding between fractals.
For example, Mattila and Saaranen [9] investigate the bilipschitz embedding between
Ahlfors–David regular sets, Llorente and Mattila [7] study the bilipschitz embedding
between subsets of self-conformal fractals, Deng, Wen, Xiong and Xi[1] obtain the
bilipschitz embedding for self-similar sets.

Feng, Huang and Rao [3] recently established the following relation between C1-
embeddings and affine embeddings for self-similar sets:

Theorem 1.1 of [3]. Let E and F be self-similar sets. Suppose that the open
set condition holds for F and

(1.1) dimH E = dimS E,

where dimS(·) is the self-similarity dimension. If there is a C1-embedding from E to
F , then E can be embedded into F affinely.

Here are several minor comments for the conditions of the theorem.

1◦ Under the assumption (1.1), the IFS of E does not contain complete overlaps.
2◦ The theorem requires the C1-embedding globally, but by the self-similarity,

it seems a local C1-embedding will be enough.
3◦ As we will see later, some overlapping self-similar sets can be viewed as the

attractors of graph-directed IFSs satisfying the open set condition. And we
are led to discuss the embeddings between graph-directed sets.

The main result of this note is Theorem 1 below which generalizes that [3, The-
orem 1.1] from the three points mentioned above.

We started with some basic definitions and notations which will be used later.
For two compact sets K ⊂ Rm1 and K ′ ⊂ Rm2 , we say that an embedding f

from K to K ′ is affine if there exists a ∈ Rm2 and a nondegenerate (m2×m1)-matrix
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M such that f(x) = Mx + a for all x ∈ K. Here M is said to be nondegenerate,
if rank(M) = m1 ≤ m2, i.e., Mx = 0 for x ∈ Rm1 if and only if x = 0. We
say that an embedding g from K to K ′ is C1, if there is an extension ḡ of g such
that ḡ ∈ C1(O,Rm2) for an open neighbourhood O of K and the Jacobian Dḡx is
nondegenerate at each x ∈ K.

Recall the graph directed construction [10] as follows. Given a directed graph G =
(V, E) with vertex set V and the edge set E , the graph directed sets {Ki(⊂ Rm)}i∈V
on G with contracting similitudes {Se : R

m → Rm}e∈E are non-empty compact sets
satisfying

(1.2) Ki =
⋃

j∈V

⋃

e∈Ei,j
Se(Kj) for all i ∈ V,

where Ei,j is the collection of directed edges from i to j, and Se has similarity ratio
re for any e ∈ E . In particular, if V is a singleton, we obtain a self-similar set. We
say that the open set condition (OSC) holds for graph-directed sets {Ki}i∈V , if there
are non-empty and bounded open sets {Oi}i∈V satisfying the disjoint union

(1.3)
⋃

j∈V

⋃

e∈Ei,j
Se(Oj) ⊂ Oi for all i ∈ V.

A path e = e1e2 · · · ek is said to be admissible, if the ending vertex of ei is exactly
the starting vertex of ei+1 for every i. Throughout the paper, when we talk about
a path, we always mean an admissible one. If for any vertices i 6= j ∈ V, there is a
path from i to j, we will say that the transitivity condition holds for {Ki}i∈V . For
more characterizations of graph-directed sets, please see [11]–[16].

Given a λ-Cantor set Eλ = Eλ/3 ∪ (Eλ/3 + λ/3) ∪ (Eλ/3 + 2/3), Hochman [4]
proved the Furstenberg’s conjecture that dimH Eλ = 1 for every λ 6∈ Q. When λ ∈ Q,
Kenyon [5], Lagarias and Wang [6], Rao and Wen [14] proved that dimH Eλ = 1 for
any λ = p/q ∈ Q with (p, q) = 1 and p ≡ q 6≡ 0(mod 3). In these two cases, we have

dimH Eλ = dimS Eλ.

Using graph-directed sets, Rao and Wen [14] proved that if λ = p/q ∈ Q with
(p, q) = 1 and p 6≡ q(mod 3), then

(1.4) dimH Eλ < dimS Eλ

and there are graph directed sets {E(1)
λ (= Eλ), · · · , E(k)

λ } satisfying the OSC. In
particular, for any λ = 2/3n with n ≥ 1,

dimH E2/3n = log3
3 +

√
5

2
< dimS E2/3n = 1

and the transitivity condition holds for corresponding graph-directed sets {E(1)
λ (=

Eλ), E
(2)
λ , · · · , E(2n)

λ }.
Remark 1. Let α−1 > 1 be a P.V. number, for example, α−1 is 1+

√
5

2
,
√
2+ 1 or

a positive integer greater than 1. An interesting fact is that we can obtain certain
graph-directed sets satisfying the OSC from the IFS {αpix+ bi}mi=1 with pi ∈ N and
bi ∈ Q for all i. For details, we refer to see [14, 8, 11, 17].

Now we state our main result.

Theorem 1. Suppose {Ki}i and {Ej}j are graph directed sets, the OSC holds
for {Ki}i and the transitivity condition holds for {Ej}j. If there is a C1-embedding
from Ej0 to Ki0 for some i0 and j0, then there exists an index i such that there is an
affine embedding from Ej to Ki for every j.
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Since any self-similar set has graph-directed construction satisfying the transi-
tivity condition, we have

Theorem 2. Let E and F be self-similar sets. Suppose F1 = F ⊂ Rm and
{F1, · · · , Fk} are graph directed sets satisfying the OSC such that

(1.5) Fi =

t(i)
⋃

j=1

Si,j(F )

Si,j : R
m → Rm is the similarity for each (i, j). If there is a C1-embedding from E

to F , then E can be embedded into F affinely.

Taking k = 1 in Theorem 2, we have the following corollary which is Theorem 1.1
of [3] without the assumption (1.1).

Corollary 1. Let E and F be self-similar sets and assume that the OSC holds
for F . If there is a C1-embedding from E to F , then E can be embedded into F
affinely.

Remark 2. (1) In Theorem 2, we pose no additional conditions for E, such
as (1.1). Then we can take E = Eλ in Theorem 2 where λ = p/q ∈ Q with
p+ q ≡ 0(mod 3) and pq 6≡ 0(mod 3), in this case, we have (1.4).

(2) If α−1 > 1 is a P.V. number and F =
⋃m

i=1(α
piF + bi) with pi ∈ N and bi ∈ Q

for all i, then there are graph directed sets {F1(= F ), · · · , Fk} satisfying the OSC
such that

Fi =

t(i)
⋃

j=1

(αqi,jF + ci,j)

where qi,j ∈ Z and ci,j ∈ R, that means (1.5) holds in Theorem 2. We also obtain
graph-directed sets satisfying (1.5) for λ-Cantor set Ep/q with p+ q 6≡ 0(mod 3) and
pq 6≡ 0(mod 3) [14].

(3) In Theorem 1.1 of [3], the C1-embedding g ∈ C1(Rm,Rm) is a C1-diffeo-
morphism on Rm. Our result only need ḡ ∈ C1(O,Rm2) for an open neighbourhood
O of a compact set E.

The paper is organized as follows. In Section 2 we give some preliminaries,
including graph-directed construction and nearly affine mappings. In Section 3, using
Arzela–Ascoli theorem and Baire category theorem, we prove the main theorems. To
avoid the notational confusion, we draw a figure to illustrate the proof.

2. Preliminaries

For subsets A,B of Rm, let dist(x,A) = infy∈A |x−y|, dist(A,B) = infx∈A,y∈B |x−
y| and |A| the diameter of A. For a given Euclidean space, let B(x, r) be the open
ball centered at x with radius r > 0, and B̄(x, r) its closure.

2.1. Graph-directed construction. Let {Ki}i∈V be the graph directed sets
on G = (V, E) with contracting similitudes {Se}e∈E . For any path e = e1e2 · · · ek, we
denote its length |e| = k. For e = e1 · · · ek and e′ = e1 · · · ekek+1 · · · ek+m, we denote
by e ≺ e′. Then we give a partial order. Suppose e = e1e2 · · · ek is a path from vertex
i to vertex j. Then Se = Se1 ◦ Se2 ◦ · · · ◦ Sek is a contracting similitude from Kj to
Ki, with ratio re = re1re2 · · · rek . Write Ke = Se(Kj). If the OSC holds as in (1.3),
then Kj ⊂ Ōj for all j ∈ V. For any path e from vertex i to vertex j, we also have
Oe with its closure Ōe. Then Ke = Se(Kj) ⊂ Se(Ōj) = Ōe.
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Claim 1. If the OSC holds as in (1.3), then for every path e we have Ke ⊂ Ōe.

Claim 2. When the transitivity condition holds, then for all pair (i, j) ∈ V ×V,
y ∈ Ki and ε > 0, there exists a similitude S such that S(Kj) ⊂ B(y, ε) ∩Ki.

Proof. Given y ∈ Ki, there exists an infinite path e∗ = e1 · · · ek · · · such that
⋂

k≥1
Ke(k) = {y}

where e(k) = e1 · · · ek. Then there is an index j′ ∈ V and an infinite sequence
k1 < · · · < kn < kn+1 < · · · of integers such that eki is ending at the vertex j′ ∈ V
for all i. By the transitivity condition, there is a path e′ from j′ to j. Therefore, we
obtain that

y ∈ Ke(ki) and Se(ki)Se′(Kj) ⊂ Ke(ki) with |Ke(ki)| → 0 as i → ∞.

Take i large enough with |Ke(ki)| < ε, then S = Se(ki)Se′ is the contracting similitude
required. �

Denote by Ω(x, ε) the collection of all paths with their copies, whose diameters
are comparable to ε, intersecting the closed ball B̄(x, ε), i.e.,

Ω(x, ε) = {e : B̄(x, ε) ∩Ke 6= ∅ and (min
e∈E

re) · ε ≤ |Ke| ≤ ε}.

The following lemma is natural from the OSC, we give its proof for self-containedness.

Lemma 1. If the OSC holds as in (1.3), then there exists an integer N0 such
that for any ε > 0 and x ∈ Ki,

#Ω(x, ε) ≤ N0.

Proof. Suppose x ∈ Ki and B(yj , r
∗) ⊂ Oj for all j with some small r∗ > 0.

Write Oe = Se(Oj) and Be = Se(B(yj, r
∗)) if the path e is ending at j.

For any path e = e1e2 · · · ek−1ek, denote e− = e1e2 · · · ek−1. Let

Ω∗(x, ε) = {e : |Ke| ≤ ε, |Ke−| > ε}(⊂ Ω(x, ε)).

Let N is an integer satisfying (maxe∈E re)
N < mine∈E re, we have

sup
e∈Ω∗(x,ε)

#{e′ ∈ Ω(x, ε) : e ≺ e′} ≤ (#E)N

Therefore, we obtain

#Ω(x, ε) ≤ (#E)N ·#Ω∗(x, ε).

Using the OSC, we find that Oe ∩Oe′ = ∅ whenever e 6= e′ ∈ Ω∗(x, ε). Now,

Be ⊂ Oe and Be ∩ Be′ = ∅ for e 6= e′ ∈ Ω∗(x, ε).

Denote by Re the radius of Be. If e is ending at j, then Re = r∗re and

(2.1)
mine∈E re

maxi∈V |Ki|
ε ≤ re =

|Ke|
|Kj |

≤ ε

mini∈V |Ki|
,

Hence r∗ mine∈E re
maxi∈V |Ki| ε ≤ Re ≤ r∗

mini∈V |Ki|ε.

Notice that Ke ⊂ Ōe (Claim 1) and B̄(x, ε) ∩Ke 6= ∅, we obtain that

Be ⊂ Ōe ⊂ B̄

(

x, ε+ remax
i∈V

|Oi|
)

⊂ B̄

(

x, ε+
maxi∈V |Oi|)
mini∈V |Ki|

ε

)

.
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Write c1 = 1+ maxi∈V |Oi|
mini∈V |Ki| and c2 =

r∗ mine∈E re
maxi∈V |Ki| . Now {Be}e∈Ω∗(x,ε) are pairwise disjoint

open balls in B̄(x, c1ε) and the radius Re ≥ c2ε for each e. We obtain

(#Ω∗(x, ε))L(B(x, c2ε)) ≤
∑

e∈Ω∗(x,ε)

L(Be) = L




⋃

e∈Ω∗(x,ε)

Be



 ≤ L(B(x, c1ε)),

where L is the Lebesgue measure on Rm. Therefore, we have

#Ω∗(x, ε) ≤ (
c1
c2
)n.

The lemma follows. �

2.2. Bilipschitz and nearly affine mapping. Suppose K ⊂ Rm1 and K ′ ⊂
Rm2. Given an embedding f : K → K ′, we denote

U(f) = sup
x 6=y∈K

|f(x)− f(y)|
|x− y| and L(f) = inf

x 6=y∈K

|f(x)− f(y)|
|x− y| .

It is clear that

U(f ◦ g) ≤ U(f)U(g) and L(f ◦ g) ≥ L(f)L(g),

and
U(S) = L(S) = r

for any similitude S with ratio r. For nondegenerate matrix (linear transformation)
M : Rm1 → Rm2 , we have L(M) > 0. Throughout the paper, when we say that the
mapping f(x) = Mx + a is affine, we mean that the matrix M is nondegenerate.
Hence L(f) > 0 for any affine mapping f .

Claim 3. If g : K → K ′ is a C1-embedding, then g is a bilipschitz mapping.

Proof. Suppose ḡ ∈ C1(O,Rm2) for some open neighbourhood O of K with
ḡ|K = g. We can take a small number r ∈ (0,dist(K,Rm1\O)/2) such that

0 < inf
dist(y,K)≤r

L(Dḡy) ≤ sup
dist(y,K)≤r

U(Dḡy) < ∞.

We obtain finitely many open balls {B(zi, r)}pi=1 centered at K such that K ⊂
∪p
i=1B(zi, r). Take δ be the Lebesgue constant of the open covering {B(zi, r)}pi=1.

Notice that the C1-embedding g is a continuous embedding, we only need to esti-

mate |g(x)−g(x′)|
|x−x′| for x, x′ ∈ K with 0 < |x− x′| < δ.

We can verify that L(g) > 0. In fact, whenever 0 < |x− x′| < δ, there exists an
index i ≤ p such that x, x′ ∈ B(zi, r). Therefore, we obtain a point ξ ∈ B(zi, r) in
line segment between x and x′ such that

|g(x)− g(x′)|
|x− x′| =

|Dḡξ(x− x′)|
|x− x′| ≥ inf

dist(y,K)≤r
L(Dḡy).

In the same way, we can obtain U(g) < ∞. �

Let K,K ′ be compact sets as above and c > 0 is fixed. We say that a sequence

{ft : K → K ′}∞t=1 ⊂ {f : c−1 ≤ L(f) ≤ U(f) ≤ c}
is nearly affine, if there is a sequence {At}∞t=1 of affine mappings satisfying

lim
t→∞

sup
x∈K

|ft(x)− At(x)| = 0.

Using Arzela–Ascoli theorem, we have
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Lemma 2. If {ft}∞t=1 is nearly affine, then there is an affine mapping A and a
subsequence {fti}i of {ft}t such that

lim
i→∞

fti(x) = A(x) uniformly on x ∈ K.

Fix positive constants M , N ∈ N and c ≥ 1. Suppose E, {Bi,j}1≤i<∞,1≤j≤N and
{Ci}Mi=1 are compact subsets of Euclidean spaces. We assume that for all i ≥ 1,

(2.2) E = Bi,1 ∪ · · · ∪Bi,N ,

and for every j, there is a family {fi,j}∞i=1 of nearly affine mappings and an index set
{α(i, j)}∞i=1 with 1 ≤ α(i, j) ≤ M for all i such that

(2.3) fi,j(Bi,j) ⊂ Cα(i,j)

and

(2.4) fi,j ∈ {f : c−1 ≤ L(f) ≤ U(f) ≤ c}.
Here Bi,j may be empty set. Using Arzela–Ascoli theorem again, we have

Lemma 3. Suppose (2.2)–(2.4) hold. Then there is an integer N∗ ≤ N and a
family of affine mappings {Aj}N∗

j=1, non-empty compact subsets {Bj}N∗

j=1 and index

set {α(j)}N∗

j=1 such that

E = B1 ∪ · · · ∪BN∗ ,

and Aj(Bj) ⊂ Cα(j) satisfying Aj ∈ {f : c−1 ≤ L(f) ≤ U(f) ≤ c}.
Given compact subsets E and B1, · · · , BN∗ of some Euclidean space, if

E = B1 ∪ · · · ∪BN∗ ,

using Baire category theorem, we have

Lemma 4. Suppose (2.2)–(2.4) hold. Then there exist an integer j with 1 ≤
j ≤ N∗ and an open ball B(x, r) with x ∈ E such that

E ∩ B(x, r) ⊂ Bj.

3. Proof of Theorems 1 and 2

Suppose {Ej}j∈U are graph-directed sets on the graph (U ,D) with vertex set U
and the edge set D satisfying

(3.1) Ej =
⋃

j′∈U

⋃

d∈Dj,j′

Td(Ej′) for all j ∈ U ,

where Dj1,j2 = {d : edge d from j1 to j2} and Td is the contracting similitude with
respect to edge d. Write Ed1···dk = Td1 ◦ · · · ◦ Tdk(Ej), where the path d1 · · · dk is
ending at vertex j.

Given j ∈ U , using Claim 2, we obtain an affine embedding

fj : Ej → Ej0.

To prove Theorem 1, we only need to verify

Proposition 1. There exists i ∈ V such that Ej0 can be embedded to Ki affinely.

Proof. By the transitivity condition, we can find a path b from j0 to itself. Write

bn = b · · ·b
︸ ︷︷ ︸

n

.
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Suppose x0 ∈ Ej0 is the point with respect to b∞, i.e.,

{x0} =
⋂

n

Ebn .

Without loss of generality, we assume the diameter |Ej0| = 1. Assume that
g : Ej0 → Ki0 is the corresponding C1-embedding, then by Claim 3, we have

(3.2) c−1 ≤ L(g) ≤ U(g) ≤ c

for some constant c > 0. Let Dgx0
be the Jacobian at point x0. Fix an integer n.

Consider the similitude Tbn with ratio rn. Then |Ebn | = rn|Ej0| = rn. Then we have

Tbn : Ej0 −→ Ebn with Ebn ⊂ B̄(x0, rn).

We also obtain a natural mapping

g|B̄(x0,rn) : B̄(x0, rn) −→ B̄(g(x0), crn)

due to U(g) ≤ c.
Let Ω(x, ε) be defined as in Section 2. For any path e in Ω(g(x0), crn), we have

a natural mapping

(Se)
−1 : B̄(g(x0), crn) ∩Ke −→ Kα(e),

where α(e) is the ending vertex of e. Therefore,

(3.3) Ej0 =
⋃

e∈Ω(g(x0),crn)

Be,n,

where

Be,n = (Tbn)−1g−1(g(Ebn) ∩Ke) and #Ω(g(x0), crn) ≤ N0,

where N0 is defined in Lemma 1. Let

fe,n = (Se)
−1 ◦ g ◦ Tbn ,

then

(3.4) fe,n(Be,n) ⊂ Kα(e).

Ej0

TT

Eb

g

Ka( )e

Ke Ke’

Ka( )e’

Ka( )e’’

g( )E

ug x( ) g x Dg x-x( )+( ) ( )0 0x0

( )S
-1

e

( )S
-1

e’

( )S
-1

e’’

j
n

b
n

b
n

Ke’’

Figure 1. The case with #Ω(g(x0), crn) = 3.

Now, we shall estimate U(fe,n) and L(fe,n). In fact, using (2.1), we have

(c1)
−1(rn)

−1 ≤ (re)
−1 ≤ c1(rn)

−1

for some constant c1 > 0 depending on c and {Ki}i. Therefore, we have

U((Se)
−1 ◦ g ◦ Tbn) ≤ U((Se)

−1)U(g)U(Tbn) = (re)
−1U(g)rn ≤ cc1.
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In the same way, we have L((Se)
−1 ◦ g ◦ Tbn) ≥ (re)

−1L(g)rn ≤ (cc1)
−1. Now,

(3.5) (cc1)
−1 ≤ L(fe,n) ≤ U(fe,n) ≤ cc1.

We will show the family {fe,n}n is nearly affine. In fact, we have

g(y) = g(x0) + (Dgx0
)(y − x0) + o(|y − x0|).

Therefore,

fe,n(x) = (Se)
−1 ◦ g ◦ Tbn(x) = Ae,n(x) + (Se)

−1o(|Tbn(x)− x0|)
where Ae,n(x) = (Se)

−1 [g(x0) + (Dgx0
)(Tbn(x)− x0)] is affine. Since

|(Se)
−1(Tbn(x)− x0)| ≤ (re)

−1rn ≤ maxi∈V |Ki|
|Ke|

rn

≤ maxi∈V |Ki|
(mine∈E re) · (crn)

rn ≤ maxi∈V |Ki|
(mine∈E re) · c

,

we obtain that

sup
x∈Ej0

|(Se)
−1o(|Tbn(x)− x0|)| → 0 as n → ∞,

i.e.,

(3.6) sup
x∈Ej0

|fe,n(x)− Ae,n(x)| → 0 as n → ∞.

Then the family {fe,n}n is nearly affine for fixed e ∈ Ω(g(x0), crn). Notice that
#Ω(g(x0), crn) ≤ N0.

Now we have (3.3)–(3.6) for the family {Be,n}e,n of compact subsets and the
family {fe,n}e,n of nearly affine mappings. By Lemma 3 there is an integer N∗ ≤ N0

and a family of affine mappings {Aj}N∗

j=1, non-empty compact subsets {Bj}N∗

j=1 and

index set {α(j)}N∗

j=1 ⊂ {α(e)}e such that

Ej0 = B1 ∪ · · · ∪ BN∗ ,

and Aj(Bj) ⊂ Kα(j) satisfying Aj ∈ {f : c−1 ≤ L(f) ≤ U(f) ≤ c}.
Using Lemma 4, there exist an integer j with 1 ≤ j ≤ N∗ and an open ball

B(x, r) with x ∈ Ej0 such that

Ej0 ∩ B(x, r) ⊂ Bj .

Applying Claim 2 to (j0, j0) and B(x, r), we can find a similitude S such that

S(Ej0) ⊂ Ej0 ∩B(x, r).

Then S(Ej0) ⊂ Bj . Therefore, we have

(Aj ◦ S)(Ej0) ⊂ Aj(Bj) ⊂ Kα(j),

then Proposition 1 follows. �

Proof of Theorem 2. By Theorem 1, we obtain that there exist Fi and an affine
mapping A such that

A(E) ⊂ Fi =

t(i)
⋃

j=1

Si,j(F ).

Using Baire category theorem, we have x ∈ A(E), r > 0 and j such that

A(E) ∩B(x, r) ⊂ Si,j(F ).
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It follows from the self-similarity of E that there is a similitude S such that S(E) ⊂
A−1(B(x, r)). Let T (x) = S−1

i,j (x), then

(T ◦ A ◦ S)(E) ⊂ F. �
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