C^{1}-EMBEDDINGS BETWEEN GRAPH-DIRECTED SETS

Juan Deng, Zhiying Wen and Lifeng Xi
ShenZhen University, Department of Mathematics
518000, ShenZhen, P. R. China; dengjuan@szu.edu.cn
Tsinghua University, Department of Mathematics
100084, Beijing, P.R. China; wenzy@tsinghua.edu.cn
Ningbo University, Department of Mathematics
315211, Ningbo, P. R. China; xilifengningbo@yahoo.com

Abstract

For graph-directed sets, we obtain that a C^{1}-embedding implies an affine embedding. We only pose the open set condition for the image sets. We can apply our result to self-similar sets with overlaps, for example all λ-Cantor sets.

1. Introduction

There are many works devoted to the bilipschitz embedding between fractals. For example, Mattila and Saaranen [9] investigate the bilipschitz embedding between Ahlfors-David regular sets, Llorente and Mattila [7] study the bilipschitz embedding between subsets of self-conformal fractals, Deng, Wen, Xiong and Xi[1] obtain the bilipschitz embedding for self-similar sets.

Feng, Huang and Rao [3] recently established the following relation between C^{1} embeddings and affine embeddings for self-similar sets:

Theorem 1.1 of [3]. Let E and F be self-similar sets. Suppose that the open set condition holds for F and

$$
\begin{equation*}
\operatorname{dim}_{H} E=\operatorname{dim}_{S} E, \tag{1.1}
\end{equation*}
$$

where $\operatorname{dim}_{S}(\cdot)$ is the self-similarity dimension. If there is a C^{1}-embedding from E to F, then E can be embedded into F affinely.

Here are several minor comments for the conditions of the theorem.
1° Under the assumption (1.1), the IFS of E does not contain complete overlaps.
2° The theorem requires the C^{1}-embedding globally, but by the self-similarity, it seems a local C^{1}-embedding will be enough.
3° As we will see later, some overlapping self-similar sets can be viewed as the attractors of graph-directed IFSs satisfying the open set condition. And we are led to discuss the embeddings between graph-directed sets.
The main result of this note is Theorem 1 below which generalizes that [3, Theorem 1.1] from the three points mentioned above.

We started with some basic definitions and notations which will be used later.
For two compact sets $K \subset \mathbf{R}^{m_{1}}$ and $K^{\prime} \subset \mathbf{R}^{m_{2}}$, we say that an embedding f from K to K^{\prime} is affine if there exists $a \in \mathbf{R}^{m_{2}}$ and a nondegenerate ($m_{2} \times m_{1}$)-matrix

[^0]M such that $f(x)=M x+a$ for all $x \in K$. Here M is said to be nondegenerate, if $\operatorname{rank}(M)=m_{1} \leq m_{2}$, i.e., $M x=0$ for $x \in \mathbf{R}^{m_{1}}$ if and only if $x=0$. We say that an embedding g from K to K^{\prime} is $\mathbf{C}^{\mathbf{1}}$, if there is an extension \bar{g} of g such that $\bar{g} \in C^{1}\left(O, \mathbf{R}^{m_{2}}\right)$ for an open neighbourhood O of K and the Jacobian $D \bar{g}_{x}$ is nondegenerate at each $x \in K$.

Recall the graph directed construction [10] as follows. Given a directed graph $G=$ $(\mathcal{V}, \mathcal{E})$ with vertex set \mathcal{V} and the edge set \mathcal{E}, the graph directed sets $\left\{K_{i}\left(\subset \mathbf{R}^{m}\right)\right\}_{i \in \mathcal{V}}$ on G with contracting similitudes $\left\{S_{e}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}\right\}_{e \in \mathcal{E}}$ are non-empty compact sets satisfying

$$
\begin{equation*}
K_{i}=\bigcup_{j \in \mathcal{V}} \bigcup_{e \in \mathcal{E}_{i, j}} S_{e}\left(K_{j}\right) \quad \text { for all } i \in \mathcal{V} \tag{1.2}
\end{equation*}
$$

where $\mathcal{E}_{i, j}$ is the collection of directed edges from i to j, and S_{e} has similarity ratio r_{e} for any $e \in \mathcal{E}$. In particular, if \mathcal{V} is a singleton, we obtain a self-similar set. We say that the open set condition (OSC) holds for graph-directed sets $\left\{K_{i}\right\}_{i \in \mathcal{V}}$, if there are non-empty and bounded open sets $\left\{O_{i}\right\}_{i \in \mathcal{V}}$ satisfying the disjoint union

$$
\begin{equation*}
\bigcup_{j \in \mathcal{V}} \bigcup_{e \in \mathcal{E}_{i, j}} S_{e}\left(O_{j}\right) \subset O_{i} \quad \text { for all } i \in \mathcal{V} \tag{1.3}
\end{equation*}
$$

A path $\mathbf{e}=e_{1} e_{2} \cdots e_{k}$ is said to be admissible, if the ending vertex of e_{i} is exactly the starting vertex of e_{i+1} for every i. Throughout the paper, when we talk about a path, we always mean an admissible one. If for any vertices $i \neq j \in \mathcal{V}$, there is a path from i to j, we will say that the transitivity condition holds for $\left\{K_{i}\right\}_{i \in \mathcal{V}}$. For more characterizations of graph-directed sets, please see [11]-[16].

Given a λ-Cantor set $E_{\lambda}=E_{\lambda} / 3 \cup\left(E_{\lambda} / 3+\lambda / 3\right) \cup\left(E_{\lambda} / 3+2 / 3\right)$, Hochman [4] proved the Furstenberg's conjecture that $\operatorname{dim}_{H} E_{\lambda}=1$ for every $\lambda \notin \mathbf{Q}$. When $\lambda \in \mathbf{Q}$, Kenyon [5], Lagarias and Wang [6], Rao and Wen [14] proved that $\operatorname{dim}_{H} E_{\lambda}=1$ for any $\lambda=p / q \in \mathbf{Q}$ with $(p, q)=1$ and $p \equiv q \not \equiv 0(\bmod 3)$. In these two cases, we have

$$
\operatorname{dim}_{H} E_{\lambda}=\operatorname{dim}_{S} E_{\lambda} .
$$

Using graph-directed sets, Rao and Wen [14] proved that if $\lambda=p / q \in \mathbf{Q}$ with $(p, q)=1$ and $p \not \equiv q(\bmod 3)$, then

$$
\begin{equation*}
\operatorname{dim}_{H} E_{\lambda}<\operatorname{dim}_{S} E_{\lambda} \tag{1.4}
\end{equation*}
$$

and there are graph directed sets $\left\{E_{\lambda}^{(1)}\left(=E_{\lambda}\right), \cdots, E_{\lambda}^{(k)}\right\}$ satisfying the OSC. In particular, for any $\lambda=2 / 3^{n}$ with $n \geq 1$,

$$
\operatorname{dim}_{H} E_{2 / 3^{n}}=\log _{3} \frac{3+\sqrt{5}}{2}<\operatorname{dim}_{S} E_{2 / 3^{n}}=1
$$

and the transitivity condition holds for corresponding graph-directed sets $\left\{E_{\lambda}^{(1)}(=\right.$ $\left.\left.E_{\lambda}\right), E_{\lambda}^{(2)}, \cdots, E_{\lambda}^{\left(2^{n}\right)}\right\}$.

Remark 1. Let $\alpha^{-1}>1$ be a P.V. number, for example, α^{-1} is $\frac{1+\sqrt{5}}{2}, \sqrt{2}+1$ or a positive integer greater than 1. An interesting fact is that we can obtain certain graph-directed sets satisfying the OSC from the IFS $\left\{\alpha^{p_{i}} x+b_{i}\right\}_{i=1}^{m}$ with $p_{i} \in \mathbf{N}$ and $b_{i} \in \mathbf{Q}$ for all i. For details, we refer to see $[14,8,11,17]$.

Now we state our main result.
Theorem 1. Suppose $\left\{K_{i}\right\}_{i}$ and $\left\{E_{j}\right\}_{j}$ are graph directed sets, the OSC holds for $\left\{K_{i}\right\}_{i}$ and the transitivity condition holds for $\left\{E_{j}\right\}_{j}$. If there is a C^{1}-embedding from $E_{j_{0}}$ to $K_{i_{0}}$ for some i_{0} and j_{0}, then there exists an index i such that there is an affine embedding from E_{j} to K_{i} for every j.

Since any self-similar set has graph-directed construction satisfying the transitivity condition, we have

Theorem 2. Let E and F be self-similar sets. Suppose $F_{1}=F \subset \mathbf{R}^{m}$ and $\left\{F_{1}, \cdots, F_{k}\right\}$ are graph directed sets satisfying the OSC such that

$$
\begin{equation*}
F_{i}=\bigcup_{j=1}^{t(i)} S_{i, j}(F) \tag{1.5}
\end{equation*}
$$

$S_{i, j}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ is the similarity for each (i, j). If there is a C^{1}-embedding from E to F, then E can be embedded into F affinely.

Taking $k=1$ in Theorem 2, we have the following corollary which is Theorem 1.1 of [3] without the assumption (1.1).

Corollary 1. Let E and F be self-similar sets and assume that the OSC holds for F. If there is a C^{1}-embedding from E to F, then E can be embedded into F affinely.

Remark 2. (1) In Theorem 2, we pose no additional conditions for E, such as (1.1). Then we can take $E=E_{\lambda}$ in Theorem 2 where $\lambda=p / q \in \mathbf{Q}$ with $p+q \equiv 0(\bmod 3)$ and $p q \not \equiv 0(\bmod 3)$, in this case, we have (1.4).
(2) If $\alpha^{-1}>1$ is a P.V. number and $F=\bigcup_{i=1}^{m}\left(\alpha^{p_{i}} F+b_{i}\right)$ with $p_{i} \in \mathbf{N}$ and $b_{i} \in \mathbf{Q}$ for all i, then there are graph directed sets $\left\{F_{1}(=F), \cdots, F_{k}\right\}$ satisfying the OSC such that

$$
F_{i}=\bigcup_{j=1}^{t(i)}\left(\alpha^{q_{i, j}} F+c_{i, j}\right)
$$

where $q_{i, j} \in \mathbf{Z}$ and $c_{i, j} \in \mathbf{R}$, that means (1.5) holds in Theorem 2. We also obtain graph-directed sets satisfying (1.5) for λ-Cantor set $E_{p / q}$ with $p+q \not \equiv 0(\bmod 3)$ and $p q \not \equiv 0(\bmod 3)[14]$.
(3) In Theorem 1.1 of [3], the C^{1}-embedding $g \in C^{1}\left(\mathbf{R}^{m}, \mathbf{R}^{m}\right)$ is a C^{1}-diffeomorphism on \mathbf{R}^{m}. Our result only need $\bar{g} \in C^{1}\left(O, \mathbf{R}^{m_{2}}\right)$ for an open neighbourhood O of a compact set E.

The paper is organized as follows. In Section 2 we give some preliminaries, including graph-directed construction and nearly affine mappings. In Section 3, using Arzela-Ascoli theorem and Baire category theorem, we prove the main theorems. To avoid the notational confusion, we draw a figure to illustrate the proof.

2. Preliminaries

For subsets A, B of \mathbf{R}^{m}, let dist $(x, A)=\inf _{y \in A}|x-y|, \operatorname{dist}(A, B)=\inf _{x \in A, y \in B} \mid x-$ $y \mid$ and $|A|$ the diameter of A. For a given Euclidean space, let $B(x, r)$ be the open ball centered at x with radius $r>0$, and $\bar{B}(x, r)$ its closure.
2.1. Graph-directed construction. Let $\left\{K_{i}\right\}_{i \in \mathcal{V}}$ be the graph directed sets on $G=(\mathcal{V}, \mathcal{E})$ with contracting similitudes $\left\{S_{e}\right\}_{e \in \mathcal{E}}$. For any path $\mathbf{e}=e_{1} e_{2} \cdots e_{k}$, we denote its length $|\mathbf{e}|=k$. For $\mathbf{e}=e_{1} \cdots e_{k}$ and $\mathbf{e}^{\prime}=e_{1} \cdots e_{k} e_{k+1} \cdots e_{k+m}$, we denote by $\mathbf{e} \prec \mathbf{e}^{\prime}$. Then we give a partial order. Suppose $\mathbf{e}=e_{1} e_{2} \cdots e_{k}$ is a path from vertex i to vertex j. Then $S_{\mathrm{e}}=S_{e_{1}} \circ S_{e_{2}} \circ \cdots \circ S_{e_{k}}$ is a contracting similitude from K_{j} to K_{i}, with ratio $r_{\mathbf{e}}=r_{e_{1}} r_{e_{2}} \cdots r_{e_{k}}$. Write $K_{\mathbf{e}}=S_{\mathbf{e}}\left(K_{j}\right)$. If the OSC holds as in (1.3), then $K_{j} \subset \bar{O}_{j}$ for all $j \in \mathcal{V}$. For any path e from vertex i to vertex j, we also have $O_{\mathbf{e}}$ with its closure $\bar{O}_{\mathbf{e}}$. Then $K_{\mathbf{e}}=S_{\mathbf{e}}\left(K_{j}\right) \subset S_{\mathbf{e}}\left(\bar{O}_{j}\right)=\bar{O}_{\mathbf{e}}$.

Claim 1. If the OSC holds as in (1.3), then for every path \mathbf{e} we have $K_{\mathbf{e}} \subset \bar{O}_{\mathbf{e}}$.
Claim 2. When the transitivity condition holds, then for all pair $(i, j) \in \mathcal{V} \times \mathcal{V}$, $y \in K_{i}$ and $\varepsilon>0$, there exists a similitude S such that $S\left(K_{j}\right) \subset B(y, \varepsilon) \cap K_{i}$.

Proof. Given $y \in K_{i}$, there exists an infinite path $\mathbf{e}^{*}=e_{1} \cdots e_{k} \cdots$ such that

$$
\bigcap_{k \geq 1} K_{\mathbf{e}(k)}=\{y\}
$$

where $\mathbf{e}(k)=e_{1} \cdots e_{k}$. Then there is an index $j^{\prime} \in \mathcal{V}$ and an infinite sequence $k_{1}<\cdots<k_{n}<k_{n+1}<\cdots$ of integers such that $e_{k_{i}}$ is ending at the vertex $j^{\prime} \in \mathcal{V}$ for all i. By the transitivity condition, there is a path \mathbf{e}^{\prime} from j^{\prime} to j. Therefore, we obtain that

$$
y \in K_{\mathbf{e}\left(k_{i}\right)} \quad \text { and } \quad S_{\mathbf{e}\left(k_{i}\right)} S_{\mathbf{e}^{\prime}}\left(K_{j}\right) \subset K_{\mathbf{e}\left(k_{i}\right)} \quad \text { with } \quad\left|K_{\mathbf{e}\left(k_{i}\right)}\right| \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty .
$$

Take i large enough with $\left|K_{\mathbf{e}\left(k_{i}\right)}\right|<\varepsilon$, then $S=S_{\mathbf{e}\left(k_{i}\right)} S_{\mathbf{e}^{\prime}}$ is the contracting similitude required.

Denote by $\Omega(x, \varepsilon)$ the collection of all paths with their copies, whose diameters are comparable to ε, intersecting the closed ball $\bar{B}(x, \varepsilon)$, i.e.,

$$
\Omega(x, \varepsilon)=\left\{\mathbf{e}: \bar{B}(x, \varepsilon) \cap K_{\mathbf{e}} \neq \varnothing \text { and }\left(\min _{e \in \mathcal{E}} r_{e}\right) \cdot \varepsilon \leq\left|K_{\mathbf{e}}\right| \leq \varepsilon\right\} .
$$

The following lemma is natural from the OSC, we give its proof for self-containedness.
Lemma 1. If the OSC holds as in (1.3), then there exists an integer N_{0} such that for any $\varepsilon>0$ and $x \in K_{i}$,

$$
\# \Omega(x, \varepsilon) \leq N_{0} .
$$

Proof. Suppose $x \in K_{i}$ and $B\left(y_{j}, r^{*}\right) \subset O_{j}$ for all j with some small $r^{*}>0$. Write $O_{\mathbf{e}}=S_{\mathbf{e}}\left(O_{j}\right)$ and $B_{\mathbf{e}}=S_{\mathbf{e}}\left(B\left(y_{j}, r^{*}\right)\right)$ if the path \mathbf{e} is ending at j.

For any path $\mathbf{e}=e_{1} e_{2} \cdots e_{k-1} e_{k}$, denote $\mathbf{e}^{-}=e_{1} e_{2} \cdots e_{k-1}$. Let

$$
\Omega^{*}(x, \varepsilon)=\left\{\mathbf{e}:\left|K_{\mathbf{e}}\right| \leq \varepsilon,\left|K_{\mathbf{e}^{-}}\right|>\varepsilon\right\}(\subset \Omega(x, \varepsilon)) .
$$

Let N is an integer satisfying $\left(\max _{e \in \mathcal{E}} r_{e}\right)^{N}<\min _{e \in \mathcal{E}} r_{e}$, we have

$$
\sup _{\mathbf{e} \in \Omega^{*}(x, \varepsilon)} \#\left\{\mathbf{e}^{\prime} \in \Omega(x, \varepsilon): \mathbf{e} \prec \mathbf{e}^{\prime}\right\} \leq(\# \mathcal{E})^{N}
$$

Therefore, we obtain

$$
\# \Omega(x, \varepsilon) \leq(\# \mathcal{E})^{N} \cdot \# \Omega^{*}(x, \varepsilon)
$$

Using the OSC, we find that $O_{\mathbf{e}} \cap O_{\mathbf{e}^{\prime}}=\varnothing$ whenever $\mathbf{e} \neq \mathbf{e}^{\prime} \in \Omega^{*}(x, \varepsilon)$. Now,

$$
B_{\mathbf{e}} \subset O_{\mathbf{e}} \quad \text { and } \quad B_{\mathbf{e}} \cap B_{\mathbf{e}^{\prime}}=\varnothing \quad \text { for } \mathbf{e} \neq \mathbf{e}^{\prime} \in \Omega^{*}(x, \varepsilon) .
$$

Denote by $R_{\mathbf{e}}$ the radius of $B_{\mathbf{e}}$. If \mathbf{e} is ending at j, then $R_{\mathbf{e}}=r^{*} r_{\mathbf{e}}$ and

$$
\begin{equation*}
\frac{\min _{e \in \mathcal{E}} r_{e}}{\max _{i \in \mathcal{V}}\left|K_{i}\right|} \varepsilon \leq r_{\mathrm{e}}=\frac{\left|K_{\mathrm{e}}\right|}{\left|K_{j}\right|} \leq \frac{\varepsilon}{\min _{i \in \mathcal{V}}\left|K_{i}\right|}, \tag{2.1}
\end{equation*}
$$

Hence $\frac{r^{*} \min _{e \in \mathcal{E}} r_{e}}{\max _{i \in \mathcal{E}}\left|K_{i}\right|} \varepsilon \leq R_{\mathrm{e}} \leq \frac{r^{*}}{\min _{i \in \mathcal{V}}\left|K_{i}\right|} \varepsilon$.
Notice that $K_{\mathrm{e}} \subset \bar{O}_{\mathrm{e}}$ (Claim 1) and $\bar{B}(x, \varepsilon) \cap K_{\mathrm{e}} \neq \varnothing$, we obtain that

$$
B_{\mathbf{e}} \subset \bar{O}_{\mathbf{e}} \subset \bar{B}\left(x, \varepsilon+r_{\mathbf{e}} \max _{i \in \mathcal{V}}\left|O_{i}\right|\right) \subset \bar{B}\left(x, \varepsilon+\frac{\left.\max _{i \in \mathcal{V}}\left|O_{i}\right|\right)}{\min _{i \in \mathcal{V}}\left|K_{i}\right|} \varepsilon\right) .
$$

Write $c_{1}=1+\frac{\max _{i \in \mathcal{V}}\left|O_{i}\right|}{\min _{i \in \mathcal{V}}\left|K_{i}\right|}$ and $c_{2}=\frac{r^{*} \min _{e \in \mathcal{E}} r_{e}}{\max _{i \in \mathcal{V}}\left|K_{i}\right|}$. Now $\left\{B_{\mathbf{e}}\right\}_{\mathbf{e} \in \Omega^{*}(x, \varepsilon)}$ are pairwise disjoint open balls in $\bar{B}\left(x, c_{1} \varepsilon\right)$ and the radius $R_{\mathbf{e}} \geq c_{2} \varepsilon$ for each \mathbf{e}. We obtain

$$
\left(\# \Omega^{*}(x, \varepsilon)\right) \mathcal{L}\left(B\left(x, c_{2} \varepsilon\right)\right) \leq \sum_{\mathbf{e} \in \Omega^{*}(x, \varepsilon)} \mathcal{L}\left(B_{\mathbf{e}}\right)=\mathcal{L}\left(\bigcup_{\mathbf{e} \in \Omega^{*}(x, \varepsilon)} B_{\mathbf{e}}\right) \leq \mathcal{L}\left(B\left(x, c_{1} \varepsilon\right)\right)
$$

where \mathcal{L} is the Lebesgue measure on \mathbf{R}^{m}. Therefore, we have

$$
\# \Omega^{*}(x, \varepsilon) \leq\left(\frac{c_{1}}{c_{2}}\right)^{n}
$$

The lemma follows.
2.2. Bilipschitz and nearly affine mapping. Suppose $K \subset \mathbf{R}^{m_{1}}$ and $K^{\prime} \subset$ $\mathbf{R}^{m_{2}}$. Given an embedding $f: K \rightarrow K^{\prime}$, we denote

$$
U(f)=\sup _{x \neq y \in K} \frac{|f(x)-f(y)|}{|x-y|} \quad \text { and } \quad L(f)=\inf _{x \neq y \in K} \frac{|f(x)-f(y)|}{|x-y|} .
$$

It is clear that

$$
U(f \circ g) \leq U(f) U(g) \quad \text { and } \quad L(f \circ g) \geq L(f) L(g)
$$

and

$$
U(S)=L(S)=r
$$

for any similitude S with ratio r. For nondegenerate matrix (linear transformation) $M: \mathbf{R}^{m_{1}} \rightarrow \mathbf{R}^{m_{2}}$, we have $L(M)>0$. Throughout the paper, when we say that the mapping $f(x)=M x+a$ is affine, we mean that the matrix M is nondegenerate. Hence $L(f)>0$ for any affine mapping f.

Claim 3. If $g: K \rightarrow K^{\prime}$ is a C^{1}-embedding, then g is a bilipschitz mapping.
Proof. Suppose $\bar{g} \in C^{1}\left(O, \mathbf{R}^{m_{2}}\right)$ for some open neighbourhood O of K with $\left.\bar{g}\right|_{K}=g$. We can take a small number $r \in\left(0, \operatorname{dist}\left(K, \mathbf{R}^{m_{1}} \backslash O\right) / 2\right)$ such that

$$
0<\inf _{\operatorname{dist}(y, K) \leq r} L\left(D \bar{g}_{y}\right) \leq \sup _{\operatorname{dist}(y, K) \leq r} U\left(D \bar{g}_{y}\right)<\infty .
$$

We obtain finitely many open balls $\left\{B\left(z_{i}, r\right)\right\}_{i=1}^{p}$ centered at K such that $K \subset$ $\cup_{i=1}^{p} B\left(z_{i}, r\right)$. Take δ be the Lebesgue constant of the open covering $\left\{B\left(z_{i}, r\right)\right\}_{i=1}^{p}$. Notice that the C^{1}-embedding g is a continuous embedding, we only need to estimate $\frac{\left|g(x)-g\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|}$ for $x, x^{\prime} \in K$ with $0<\left|x-x^{\prime}\right|<\delta$.

We can verify that $L(g)>0$. In fact, whenever $0<\left|x-x^{\prime}\right|<\delta$, there exists an index $i \leq p$ such that $x, x^{\prime} \in B\left(z_{i}, r\right)$. Therefore, we obtain a point $\xi \in B\left(z_{i}, r\right)$ in line segment between x and x^{\prime} such that

$$
\frac{\left|g(x)-g\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|}=\frac{\left|D \bar{g}_{\xi}\left(x-x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|} \geq \inf _{\operatorname{dist}(y, K) \leq r} L\left(D \bar{g}_{y}\right) .
$$

In the same way, we can obtain $U(g)<\infty$.
Let K, K^{\prime} be compact sets as above and $c>0$ is fixed. We say that a sequence

$$
\left\{f_{t}: K \rightarrow K^{\prime}\right\}_{t=1}^{\infty} \subset\left\{f: c^{-1} \leq L(f) \leq U(f) \leq c\right\}
$$

is nearly affine, if there is a sequence $\left\{A_{t}\right\}_{t=1}^{\infty}$ of affine mappings satisfying

$$
\lim _{t \rightarrow \infty} \sup _{x \in K}\left|f_{t}(x)-A_{t}(x)\right|=0
$$

Using Arzela-Ascoli theorem, we have

Lemma 2. If $\left\{f_{t}\right\}_{t=1}^{\infty}$ is nearly affine, then there is an affine mapping A and a subsequence $\left\{f_{t_{i}}\right\}_{i}$ of $\left\{f_{t}\right\}_{t}$ such that

$$
\lim _{i \rightarrow \infty} f_{t_{i}}(x)=A(x) \quad \text { uniformly on } x \in K .
$$

Fix positive constants $M, N \in \mathbf{N}$ and $c \geq 1$. Suppose $E,\left\{B_{i, j}\right\}_{1 \leq i<\infty, 1 \leq j \leq N}$ and $\left\{C_{i}\right\}_{i=1}^{M}$ are compact subsets of Euclidean spaces. We assume that for all $i \geq 1$,

$$
\begin{equation*}
E=B_{i, 1} \cup \cdots \cup B_{i, N}, \tag{2.2}
\end{equation*}
$$

and for every j, there is a family $\left\{f_{i, j}\right\}_{i=1}^{\infty}$ of nearly affine mappings and an index set $\{\alpha(i, j)\}_{i=1}^{\infty}$ with $1 \leq \alpha(i, j) \leq M$ for all i such that

$$
\begin{equation*}
f_{i, j}\left(B_{i, j}\right) \subset C_{\alpha(i, j)} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i, j} \in\left\{f: c^{-1} \leq L(f) \leq U(f) \leq c\right\} \tag{2.4}
\end{equation*}
$$

Here $B_{i, j}$ may be empty set. Using Arzela-Ascoli theorem again, we have
Lemma 3. Suppose (2.2)-(2.4) hold. Then there is an integer $N^{*} \leq N$ and a family of affine mappings $\left\{A_{j}\right\}_{j=1}^{N^{*}}$, non-empty compact subsets $\left\{B_{j}\right\}_{j=1}^{N^{*}}$ and index set $\{\alpha(j)\}_{j=1}^{N^{*}}$ such that

$$
E=B_{1} \cup \cdots \cup B_{N^{*}},
$$

and $A_{j}\left(B_{j}\right) \subset C_{\alpha(j)}$ satisfying $A_{j} \in\left\{f: c^{-1} \leq L(f) \leq U(f) \leq c\right\}$.
Given compact subsets E and $B_{1}, \cdots, B_{N^{*}}$ of some Euclidean space, if

$$
E=B_{1} \cup \cdots \cup B_{N^{*}},
$$

using Baire category theorem, we have
Lemma 4. Suppose (2.2)-(2.4) hold. Then there exist an integer j with $1 \leq$ $j \leq N^{*}$ and an open ball $B(x, r)$ with $x \in E$ such that

$$
E \cap B(x, r) \subset B_{j} .
$$

3. Proof of Theorems 1 and 2

Suppose $\left\{E_{j}\right\}_{j \in \mathcal{U}}$ are graph-directed sets on the graph $(\mathcal{U}, \mathcal{D})$ with vertex set \mathcal{U} and the edge set \mathcal{D} satisfying

$$
\begin{equation*}
E_{j}=\bigcup_{j^{\prime} \in \mathcal{U}} \bigcup_{d \in \mathcal{D}_{j, j^{\prime}}} T_{d}\left(E_{j^{\prime}}\right) \text { for all } j \in \mathcal{U} \tag{3.1}
\end{equation*}
$$

where $\mathcal{D}_{j_{1}, j_{2}}=\left\{d\right.$: edge d from j_{1} to $\left.j_{2}\right\}$ and T_{d} is the contracting similitude with respect to edge d. Write $E_{d_{1} \cdots d_{k}}=T_{d_{1}} \circ \cdots \circ T_{d_{k}}\left(E_{j}\right)$, where the path $d_{1} \cdots d_{k}$ is ending at vertex j.

Given $j \in \mathcal{U}$, using Claim 2, we obtain an affine embedding

$$
f_{j}: E_{j} \rightarrow E_{j_{0}}
$$

To prove Theorem 1, we only need to verify
Proposition 1. There exists $i \in \mathcal{V}$ such that $E_{j_{0}}$ can be embedded to K_{i} affinely.
Proof. By the transitivity condition, we can find a path \mathbf{b} from j_{0} to itself. Write

$$
\mathbf{b}^{n}=\underbrace{\mathbf{b} \cdots \mathbf{b}}_{n} .
$$

Suppose $x_{0} \in E_{j_{0}}$ is the point with respect to \mathbf{b}^{∞}, i.e.,

$$
\left\{x_{0}\right\}=\bigcap_{n} E_{\mathbf{b}^{n}}
$$

Without loss of generality, we assume the diameter $\left|E_{j_{0}}\right|=1$. Assume that $g: E_{j_{0}} \rightarrow K_{i_{0}}$ is the corresponding C^{1}-embedding, then by Claim 3, we have

$$
\begin{equation*}
c^{-1} \leq L(g) \leq U(g) \leq c \tag{3.2}
\end{equation*}
$$

for some constant $c>0$. Let $D g_{x_{0}}$ be the Jacobian at point x_{0}. Fix an integer n. Consider the similitude $T_{\mathbf{b}^{n}}$ with ratio r_{n}. Then $\left|E_{\mathbf{b}^{n}}\right|=r_{n}\left|E_{j_{0}}\right|=r_{n}$. Then we have

$$
T_{\mathbf{b}^{n}}: E_{j_{0}} \longrightarrow E_{\mathbf{b}^{n}} \quad \text { with } \quad E_{\mathbf{b}^{n}} \subset \bar{B}\left(x_{0}, r_{n}\right) .
$$

We also obtain a natural mapping

$$
\left.g\right|_{\bar{B}\left(x_{0}, r_{n}\right)}: \bar{B}\left(x_{0}, r_{n}\right) \longrightarrow \bar{B}\left(g\left(x_{0}\right), c r_{n}\right)
$$

due to $U(g) \leq c$.
Let $\Omega(x, \bar{\varepsilon})$ be defined as in Section 2. For any path \mathbf{e} in $\Omega\left(g\left(x_{0}\right), c r_{n}\right)$, we have a natural mapping

$$
\left(S_{\mathbf{e}}\right)^{-1}: \bar{B}\left(g\left(x_{0}\right), c r_{n}\right) \cap K_{\mathbf{e}} \longrightarrow K_{\alpha(\mathbf{e})},
$$

where $\alpha(\mathbf{e})$ is the ending vertex of \mathbf{e}. Therefore,

$$
\begin{equation*}
E_{j_{0}}=\bigcup_{\mathbf{e} \in \Omega\left(g\left(x_{0}\right), c r_{n}\right)} B_{\mathbf{e}, n} \tag{3.3}
\end{equation*}
$$

where

$$
B_{\mathbf{e}, n}=\left(T_{\mathbf{b}^{n}}\right)^{-1} g^{-1}\left(g\left(E_{\mathbf{b}^{n}}\right) \cap K_{\mathbf{e}}\right) \quad \text { and } \quad \# \Omega\left(g\left(x_{0}\right), c r_{n}\right) \leq N_{0}
$$

where N_{0} is defined in Lemma 1. Let

$$
f_{\mathbf{e}, n}=\left(S_{\mathbf{e}}\right)^{-1} \circ g \circ T_{\mathbf{b}^{n}}
$$

then

$$
\begin{equation*}
f_{\mathbf{e}, n}\left(B_{\mathbf{e}, n}\right) \subset K_{\alpha(\mathbf{e})} . \tag{3.4}
\end{equation*}
$$

Figure 1. The case with $\# \Omega\left(g\left(x_{0}\right), c r_{n}\right)=3$.
Now, we shall estimate $U\left(f_{\mathbf{e}, n}\right)$ and $L\left(f_{\mathbf{e}, n}\right)$. In fact, using (2.1), we have

$$
\left(c_{1}\right)^{-1}\left(r_{n}\right)^{-1} \leq\left(r_{\mathbf{e}}\right)^{-1} \leq c_{1}\left(r_{n}\right)^{-1}
$$

for some constant $c_{1}>0$ depending on c and $\left\{K_{i}\right\}_{i}$. Therefore, we have

$$
U\left(\left(S_{\mathbf{e}}\right)^{-1} \circ g \circ T_{\mathbf{b}^{n}}\right) \leq U\left(\left(S_{\mathbf{e}}\right)^{-1}\right) U(g) U\left(T_{\mathbf{b}^{n}}\right)=\left(r_{\mathbf{e}}\right)^{-1} U(g) r_{n} \leq c c_{1} .
$$

In the same way, we have $L\left(\left(S_{\mathbf{e}}\right)^{-1} \circ g \circ T_{\mathbf{b}^{n}}\right) \geq\left(r_{\mathbf{e}}\right)^{-1} L(g) r_{n} \leq\left(c c_{1}\right)^{-1}$. Now,

$$
\begin{equation*}
\left(c c_{1}\right)^{-1} \leq L\left(f_{\mathbf{e}, n}\right) \leq U\left(f_{\mathbf{e}, n}\right) \leq c c_{1} . \tag{3.5}
\end{equation*}
$$

We will show the family $\left\{f_{\mathbf{e}, n}\right\}_{n}$ is nearly affine. In fact, we have

$$
g(y)=g\left(x_{0}\right)+\left(D g_{x_{0}}\right)\left(y-x_{0}\right)+o\left(\left|y-x_{0}\right|\right) .
$$

Therefore,

$$
f_{\mathbf{e}, n}(x)=\left(S_{\mathbf{e}}\right)^{-1} \circ g \circ T_{\mathbf{b}^{n}}(x)=A_{\mathbf{e}, n}(x)+\left(S_{\mathbf{e}}\right)^{-1} o\left(\left|T_{\mathbf{b}^{n}}(x)-x_{0}\right|\right)
$$

where $A_{\mathbf{e}, n}(x)=\left(S_{\mathbf{e}}\right)^{-1}\left[g\left(x_{0}\right)+\left(D g_{x_{0}}\right)\left(T_{\mathbf{b}^{n}}(x)-x_{0}\right)\right]$ is affine. Since

$$
\begin{aligned}
\left|\left(S_{\mathbf{e}}\right)^{-1}\left(T_{\mathbf{b}^{n}}(x)-x_{0}\right)\right| & \leq\left(r_{\mathbf{e}}\right)^{-1} r_{n} \leq \frac{\max _{i \in \mathcal{V}}\left|K_{i}\right|}{\left|K_{\mathbf{e}}\right|} r_{n} \\
& \leq \frac{\max _{i \in \mathcal{V}}\left|K_{i}\right|}{\left(\min _{e \in \mathcal{E}} r_{e}\right) \cdot\left(c r_{n}\right)} r_{n} \leq \frac{\max _{i \in \mathcal{V}}\left|K_{i}\right|}{\left(\min _{e \in \mathcal{E}} r_{e}\right) \cdot c}
\end{aligned}
$$

we obtain that

$$
\sup _{x \in E_{j_{0}}}\left|\left(S_{\mathbf{e}}\right)^{-1} o\left(\left|T_{\mathbf{b}^{n}}(x)-x_{0}\right|\right)\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

i.e.,

$$
\begin{equation*}
\sup _{x \in E_{j_{0}}}\left|f_{\mathbf{e}, n}(x)-A_{\mathbf{e}, n}(x)\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Then the family $\left\{f_{\mathbf{e}, n}\right\}_{n}$ is nearly affine for fixed $\mathbf{e} \in \Omega\left(g\left(x_{0}\right), c r_{n}\right)$. Notice that $\# \Omega\left(g\left(x_{0}\right), c r_{n}\right) \leq N_{0}$.

Now we have (3.3)-(3.6) for the family $\left\{B_{\mathbf{e}, n}\right\}_{\mathbf{e}, n}$ of compact subsets and the family $\left\{f_{\mathbf{e}, n}\right\}_{\mathbf{e}, n}$ of nearly affine mappings. By Lemma 3 there is an integer $N^{*} \leq N_{0}$ and a family of affine mappings $\left\{A_{j}\right\}_{j=1}^{N^{*}}$, non-empty compact subsets $\left\{B_{j}\right\}_{j=1}^{N^{*}}$ and index set $\{\alpha(j)\}_{j=1}^{N^{*}} \subset\{\alpha(\mathbf{e})\}_{\mathbf{e}}$ such that

$$
E_{j_{0}}=B_{1} \cup \cdots \cup B_{N^{*}},
$$

and $A_{j}\left(B_{j}\right) \subset K_{\alpha(j)}$ satisfying $A_{j} \in\left\{f: c^{-1} \leq L(f) \leq U(f) \leq c\right\}$.
Using Lemma 4, there exist an integer j with $1 \leq j \leq N^{*}$ and an open ball $B(x, r)$ with $x \in E_{j_{0}}$ such that

$$
E_{j_{0}} \cap B(x, r) \subset B_{j} .
$$

Applying Claim 2 to $\left(j_{0}, j_{0}\right)$ and $B(x, r)$, we can find a similitude S such that

$$
S\left(E_{j_{0}}\right) \subset E_{j_{0}} \cap B(x, r)
$$

Then $S\left(E_{j_{0}}\right) \subset B_{j}$. Therefore, we have

$$
\left(A_{j} \circ S\right)\left(E_{j_{0}}\right) \subset A_{j}\left(B_{j}\right) \subset K_{\alpha(j)},
$$

then Proposition 1 follows.
Proof of Theorem 2. By Theorem 1, we obtain that there exist F_{i} and an affine mapping A such that

$$
A(E) \subset F_{i}=\bigcup_{j=1}^{t(i)} S_{i, j}(F)
$$

Using Baire category theorem, we have $x \in A(E), r>0$ and j such that

$$
A(E) \cap B(x, r) \subset S_{i, j}(F)
$$

It follows from the self-similarity of E that there is a similitude S such that $S(E) \subset$ $A^{-1}(B(x, r))$. Let $T(x)=S_{i, j}^{-1}(x)$, then

$$
(T \circ A \circ S)(E) \subset F
$$

References

[1] Deng, J., Z.-Y. Wen, Y. Xiong, and L.-F. Xi: Bilipschitz embedding of self-similar sets. J. Anal. Math. 114, 2011, 63-97.
[2] Falconer, K. J.: Fractal geometry. - Mathematical Foundations and Applications, Wiley, 2003.
[3] Feng, D.-J., W. Huang, and H. Rao: Affine embeddings and intersections of Cantor sets. J. Math. Pures Appl. 102, 2014, 1062-1079.
[4] Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. - Ann. of Math. (2) 180, 2014, 773-822.
[5] Kenyon, R.: Projecting the one dimensional Sierpinski gasket. - Israel J. Math. 97, 1997, 221-238.
[6] Lagarias, J. C., and Y. Wang: Tiling the line with translates of one tile. - Invent. Math. 124:1-3, 1996, 341-365.
[7] Llorente, M., and P. Mattila: Lipschitz equivalence of subsets of self-conformal sets. Nonlinearity 23, 2010, 875-882.
[8] Lau, K. S., and S. M. Ngai: Multifractal measures and a weak seperation condition. - Adv. Math. 141:1, 1999, 45-96.
[9] Mattila, P., and P. SaAranen: Ahlfors-David regular sets and bilipschitz maps. - Ann. Acad. Sci. Fenn. Math. 34, 2009, 487-502.
[10] Mauldin, R. D., and S. C. Williams: Hausdorff dimension in graph directed constructions. - Trans. Amer. Math. Soc. 309, 1988, 811-829.
[11] Ni, T.-J., and Z.-Y. Wen: Open set condition for graph directed self-similar structure. Math. Z. 276:1-2, 2014, 243-260.
[12] Ngai, S.-M., F. Wang, and X. Dong: Graph-directed iterated function systems satisfying the generalized finite type condition. - Nonlinearity 23:9, 2010, 2333-2350.
[13] Ngai, S. M., and Y. Wang: Hausdorff dimention of self-similar sets with overlaps. - J. Lond. Math. Soc. 63, 2001, 655-672.
[14] Rao, H., and Z.-Y. Wen: A class of self-similar fractals with overlap structure. - Adv. in Appl. Math. 20:1, 1998, 50-72.
[15] Wen, Z.-Y., and L.-F. XI: On the dimensions of sections for the graph-directed sets. - Ann. Acad. Sci. Fenn. Math. 35:2, 2010, 515-535.
[16] Xiong, Y., and L. Xi: Lipschitz equivalence of graph-directed fractals. - Studia Math. 194:2, 2009, 197-205.
[17] Zerner, M. P. W.: Weak separation properties for self-similar sets. - Proc. Amer. Math. Soc. 124:11, 1996, 3529-3539.

Received 25 June 2015 • Accepted 4 March 2016

[^0]: doi:10.5186/aasfm.2016.4153
 2010 Mathematics Subject Classification: Primary 28A80.
 Key words: Fractal, graph-directed sets, embedding.
 Lifeng Xi is the corresponding author. The work is supported by NSFC (Nos. 11371329, 11071224, 11471124, 11301346, 11271223, 11431007), NSF of Zhejiang Province (Nos. LR13A010001).

