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Abstract. The paper shows that for any Gδ set F of Lebesgue measure zero on the unit circle

T there exists a function f ∈ H∞ such that the radial limits of f exist at each point of T and vanish

precisely on F . This solves a problem proposed by Rubel in 1973.

1. Introduction

Let ∆ and T respectively be the open unit disc and its boundary circle in the
complex plane C. As usual, we denote by H∞ the space of all bounded analytic
functions in ∆. It is well known that every f ∈ H∞ has radial limits f(eiθ) a. e. on
T . A point eiθ ∈ T is called a Fatou point for f ∈ H∞ if f(eiθ) exists. Below we
assume that any function f ∈ H∞ is defined also a.e. on T by its radial limits f(eiθ).

The main purpose of this paper is to give an affirmative solution to Rubel’s
Problem 5.29 published in the well-known research problem collection of Hayman [1]
on the materials of “Symposium on complex analysis” held in 1973 at the University
of Kent, Canterbury. The formulation of the problem is the following.

Problem 5.29. (See [1, p. 168]) Let F be a Gδ of measure zero on T . Then does
there exist an f ∈ H∞, f 6= 0, such that f = 0 on F and every point of T is a Fatou
point of f?

The following minor modification of the problem asks a slightly more precise
question.

Modified Problem 5.29. Let F be a Gδ of measure zero on T . Then does
there exist an f ∈ H∞ such that f = 0 precisely on F and every point of T is a Fatou
point of f?

Problem 5.29 has remained open since it was proposed. The following theorem
completely solves both Problem 5.29 and its modification.

Theorem 1. Let F be a Gδ of measure zero on T . Then there exists a non-
vanishing f ∈ H∞ (even ℜf > 0 on ∆) such that f = 0 precisely on F and every
point of T is a Fatou point of f .

Note that Theorem 1 in a sense is an extension of Fatou’s following classical
interpolation theorem of 1906: If F is closed and of measure zero on T , then there
exists an element in the disc algebra which vanishes precisely on F (see, for example,
[2, p. 80]).

Now assume that for some set F ⊂ T there exists an f ∈ H∞ such that f = 0
precisely on F and every point of T is a Fatou point of f . Then F is Gδ since it is
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the zero set on T of the function f which belongs to the first Baire class on T . Also,
by the classical boundary uniqueness theorem, F is of measure zero on T . Thus,
Theorem 1 can be formulated also as the following “if and only if” result.

Corollary 1. Let F ⊂ T . There exists an f ∈ H∞ such that f = 0 precisely on
F and every point of T is a Fatou point of f if and only if F is a Gδ of measure zero
on T .

As a corollary of (the proof of) Theorem 1 we also have the following description
of the peak sets for those elements of H∞ for which all points of T are Fatou points.

Corollary 2. Let F be a Gδ of measure zero on T . Then there exists a λ ∈ H∞

such that:

(a) All points of T are Fatou points of λ;
(b) λ = 1 on F ; and
(c) |λ| < 1 on U \ F .

As above the converse implication is obvious and Corollary 2 in fact is the com-
plete description of peak sets for those elements of H∞ for which all point of T are
Fatou points.

The following lemma is due to Kolesnikov (see Lemma 2 in [3]).

Lemma. Let G be an open subset on T and let F ⊂ G be a set of measure zero
on T . For any ǫ > 0 there exists an open set O, F ⊂ O ⊂ G, and a function g ∈ H∞

such that:

1) |g(z)| < 2, 0 < ℜg(z) < 1 for z ∈ ∆;
2) the function g has a finite radial limit g(ζ) at each point ζ ∈ T ;
3) at the points ζ ∈ O the function g is analytic and ℜg(ζ) = 1;
4) |g(z)| ≤ ǫ on every radius Rζ0 with end-point at ζ0 ∈ T \G.

We use this lemma in our proof of Theorem 1 (we repeat some relevant arguments
from [3] for the sake of completeness).

The main result of the paper [3] is the following theorem of Kolesnikov, which
solves the classical problem on the description of the sets of nonexistence of radial
limits of bounded analytic functions.

Theorem (Kolesnikov). Let E ⊂ T . There exists an f ∈ H∞ such that the
radial limits of f exist exactly on the set T \ E if and only if E is a Gδσ of measure
zero.

The necessity part of this theorem is a well-known elementary result, while the
sufficiency part uses the above lemma and Carathéodory’s general theorem on the
boundary correspondence under the conformal mappings (involving the concept of a
prime end).

In conclusion of the present paper, however, we completely eliminate Carathéo-
dory’s theorem from the proof of Kolesnikov’s theorem. The main ingredient of this
simplified proof is Kolesnikov’s lemma (of course), but we just apply Theorem 1,
which makes the presentation shorter.

2. Proofs

Proof of Theorem 1. We denote by m the Lebesgue measure on T . As a Gδ of
(Lebesgue) measure zero, the set F is an intersection of open sets Gk on T such that



Rubel’s problem on bounded analytic functions 815

m(Gk) < 1/2k, k = 1, 2, . . .. We assume Gk+1 ⊂ Gk (otherwise replace each Gk by
⋂k

j=1Gj).

We apply the Lemma for F and Gk, and for ǫ = 1/2k. Thus, we have the open
sets Ok on T , F ⊂ Ok ⊂ Gk, and the functions gk ∈ H∞ such that for each k:

(i) |gk(z)| < 2, 0 < ℜgk(z) < 1 for z ∈ ∆;
(ii) the function gk has a finite radial limit gk(ζ) at each point ζ ∈ T ;
(iii) at the points ζ ∈ Ok the function gk is analytic and ℜgk(ζ) = 1;
(iv) |gk(z)| ≤ ǫk on every radius Rζ0 with end-point at ζ0 ∈ T \Gk.

Since by (i) each gk is bounded by 2 and by (iv) the radial limits of gk on T \Gk

are bounded by 1/2k, by the Cauchy integral representation of the function gk we
have

|gk(z)| =

∣
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This estimate clearly implies that the series
∑∞

k=1 gk(z) = h(z) converges uniformly
on compact subsets of ∆ to an analytic function h on ∆ (cf. [3]).

Since by (i) we have ℜgk(z) > 0 for z ∈ ∆, we also have ℜh(z) > 0 for z ∈ ∆.
By (iii) we have ℜgk(ζ) = 1 on Ok and thus the radial limit of ℜh(z) is +∞ at each
point of F .

Now let ζ0 ∈ T \ F . Then ζ0 ∈ Gk only for finite many values of k, and by (iv),
for all large enough k we have |gk(z)| ≤ 1/2k on the radius Rζ0 (with end-point at
ζ0). Thus the series

∑∞
k=1 gk(z) = h(z) converges uniformly on the radius Rζ0 . Also,

by (ii) each gk has a finite radial limit at ζ0 and thus h has a finite radial limit at ζ0
(cf. [3]).

The radial limit properties of the function 1 + h are evident from above; we also
note that ℜ(1+h(z)) > 1 for z ∈ ∆. In particular, 1+h has finite and nonzero radial
limits everywhere on the set T \ F . The analytic function f = 1/(1 + h) is bounded
by 1 and has finite and nonzero radial limits everywhere on T \ F . Obviously f is
zero free on ∆ and moreover ℜf > 0 on ∆. Since the radial limit of ℜh(z) is +∞ at
each point of F , the radial limit of f is zero at each point of F .

Theorem 1 is proved. �

Proof of Corollary 2. Let h be the function from the previous proof. To complete
the proof one can simply take λ = h/(1 + h). This function clearly satisfies all the
requirements of Corollary 2. �

Finally we simplify the proof of Kolesnikov’s theorem by showing that it does not
need to use prime ends at all. Instead we apply an elementary (known) argument.

Simplified proof of Kolesnikov’s theorem. Let E = ∪∞
n=1En, where each En is a

Gδ of measure zero as in Kolesnikov’s theorem. By Theorem 1 for each En we have
a function fn ∈ H∞ with a positive real part, such that fn = 0 precisely on En and
every point of T is a Fatou point of fn. Since ℜfn(z) > 0 one can find an analytic
function log fn(z) = log |fn(z)| + i arg fn(z) such that | arg fn(z)| < π/2 on ∆. We
have that log |fn(z)| → −∞ as z ∈ ∆ approaches radially to any point of En and
log |fn(z)| has finite radial limits at each point of T \En. Obviously the radial limit
of the bounded analytic function

ϕn(z) = ei log fn(z) = e− arg fn(z)[cos(log |fn(z)|) + i sin(log |fn(z)|)]
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exists for each ζ ∈ T \ En and for no ζ ∈ En. Moreover, on the radii terminating on
En the oscillation of ϕn is uniformly large and exceeds e−π/2 (we use this property
below).

The bounded analytic function f(z) =
∑∞

n=1 1000
−nϕn(z) has all desired prop-

erties. At each ζ ∈ T \ E it has a radial limit since each ϕn does and the series
converges uniformly.

It remains to show that f does not have radial limits on E. If ζ0 ∈ E, let
Em be the set with the smallest index m such that ζ0 ∈ Em. The partial sum
∑m−1

n=1 1000−nϕn(z) has a finite radial limit at ζ0. But at ζ0 the oscillation of the
radial limit of the term 1000−mϕm(z) is not less than 1000−me−π/2 and the reminder

series
∑∞

n=m+1 1000
−nϕn(z) does not exceed 1000−m eπ/2

999
. Thus at ζ0 the oscillation

of the radial limit of f is larger than some positive number (say, 0.5e−π/21000−m).
The proof is over. �
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