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Abstract. We prove partial regularity for minimizers of vectorial integrals of the Calculus of

Variations, with general growth condition, imposing quasiconvexity assumptions only in an asymp-

totic sense.

1. Introduction

In this paper we study variational integrals of the type

F(u) :=

ˆ

Ω

f(Du) dx for u : Ω → R
N

where Ω is an open bounded set in R
n, n ≥ 2, N ≥ 1. Here f : RNn → R is a

continuous function satisfying a ϕ-growth condition:

|f(z)| ≤ C(1 + ϕ(|z|)), ∀z ∈ R
Nn,

where C is a positive constant and ϕ is a given N -function (see Definition 2.1).
Some examples of N -functions are the following:

ϕ(t) = tp, 1 < p <∞,

ϕ(t) = tp logα(1 + t), p > 1 and α > 0.

If ϕ is an N -function satisfying the ∆2-condition (see Section 2), by Lϕ(Ω) and
W 1,ϕ(Ω) we denote the classical Orlicz and Orlicz–Sobolev spaces, i.e. u ∈ Lϕ(Ω) if
and only if

´

Ω
ϕ(|u|) dx < ∞ and u ∈ W 1,ϕ(Ω) if and only if u,Du ∈ Lϕ(Ω). The

Luxembourg norm is defined as follows:

‖u‖Lϕ(Ω) = inf
{

λ > 0:

ˆ

Ω

ϕ

( |u(x)|
λ

)

dx ≤ 1
}

.

With this norm Lϕ(Ω) is a Banach space.
If there is no misunderstanding, we will write ‖u‖ϕ. Moreover, we denote by

W
1,ϕ
0 (Ω) the closure of C∞

c (Ω) functions with respect to the norm

‖u‖1,ϕ = ‖u‖ϕ + ‖Du‖ϕ
doi:10.5186/aasfm.2016.4155
2010 Mathematics Subject Classification: 35B65, 35J70.
Key words: Local minimizers, asymptotic behavior, general growth.



818 Teresa Isernia, Chiara Leone and Anna Verde

and by W−1,ϕ(Ω) its dual.
We will consider the following definition of a minimizer of F .

Definition 1.1. A map u ∈ W 1,ϕ(Ω,RN) is a W 1,ϕ-minimizer of F in Ω if

F(u) ≤ F(u+ ξ)

for every ξ ∈ W
1,ϕ
0 (Ω,RN).

Let us recall the notion of quasiconvexity introduced by Morrey [32]:

Definition 1.2. (Quasiconvexity) A continuous function f : RNn → R is said
to be quasiconvex if and only if

−
ˆ

B1

f(z +Dξ) dx ≥ f(z)

holds for every z ∈ R
Nn and every smooth function ξ : B1 → R

N with compact
support in the unit ball B1 in R

n.

Let us note that by scaling and translating, the unit ball in the definition above
may be replaced by an arbitrary ball in R

n.
The quasiconvexity was originally introduced for proving the lower semicontinuity

and the existence of minimizers of variational integrals of the Calculus of Variations.
In fact, assuming a power growth condition on f , quasiconvexity is a necessary and
sufficient condition for the sequential lower semicontinuity onW 1,p(Ω,RN), p > 1 (see
[1] and [31]). In the regularity theory a stronger definition, the strict quasiconvexity,
is needed, a notion which has nowadays become a common condition in the vectorial
Calculus of Variations (see [24, 2, 7]).

In order to treat the general growth case, we consider the notion of strictly W 1,ϕ-
quasiconvexity introduced in [14] (see also [6]).

Definition 1.3. (Strict W 1,ϕ-quasiconvexity) A continuous function f : RNn →
R is said to be strictly W 1,ϕ-quasiconvex if there exists a positive constant k > 0
such that

−
ˆ

B1

f(z +Dξ) dx ≥ f(z) + k−
ˆ

B1

ϕ|z|(|Dξ|) dx

for all ξ ∈ C1
0 (B1), for all z ∈ R

Nn, where ϕa(t) ∼ t2ϕ′′(a + t) for a, t ≥ 0.

A precise definition of ϕa is given in Section 2.
In this paper we will exhibit an adequate notion of strict W 1,ϕ-quasiconvexity at

infinity which we will call W 1,ϕ-asymptotic quasiconvexity (see Definition 2.5).
We note that in recent years a growing literature has considered the subject

of asymptotic regular problems: regularity theory for integrands with a particular
structure near infinity has been investigated first in [9] and subsequentely in [29, 35,
10, 17, 30, 33, 26, 27, 16, 18].

We deal with the problem wondering if, when you localize at infinity the natural
assumptions to have regularity, this regularity breaks down or not. It is the same
question faced in [5] and [4], where you do not require a global strict convexity or
quasiconvexity assumption: all the hypotheses are localized in some point z0 and
you obtain that minimizers are Hölder continuous near points where the integrand
function is “close” to the value z0.

Thus, after establishing several characterizations of the notion ofW 1,ϕ-asymptotic
quasiconvexity (see Theorem 4.1) we will prove the following result.
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Theorem 1.1. Let f satisfy (H1)–(H5) (see Section 2.3). Let z0 ∈ R
n with

|z0| > M + 1 so that (7.2) holds in Bρ(x0), let u ∈ W 1,ϕ(Ω,RN) be a minimizer of

F , and V (z) =
√

ϕ′(|z|)
|z| z. If for some x0 ∈ Ω

lim
r→0

−
ˆ

Br(x0)

|V (Du)− V (z0)|2 dx = 0,(1.1)

then in a neighborhood of x0 the minimizer u is C1,α for some α < 1.

In order to achieve this regularity result, we have to prove an excess decay esti-

mate, where the excess function is defined by

E(BR(x0), u) = −
ˆ

BR(x0)

|V (Du)− (V (Du))BR(x0)|2 dx.

In the power case the main idea is to use a blow-up argument based strongly on the
homogeneity of ϕ(t) = tp. Here we have to face with the lack of the homogeneity
since the general growth condition. Thus one makes use of the so-called A-harmonic
approximation proved in [14] (see also [37, 19, 20, 21, 22] for the power case). Such
tool allows us to compare the solutions of our problem with the solution of the regular
one in terms of the closeness of the gradient.

Moreover, we will prove that minimizers of F are Lipschitz continuous on an
open and dense subset of Ω. More precisely we define the set of regular points R(u)
by

R(u) = {x ∈ Ω: u is Lipschitz near x},
following that R(u) ⊂ Ω is open.

Corollary 1.1. Assume that f satisfies (H1)–(H5). Then, for every minimizer
u ∈ W 1,ϕ(Ω,RN) of F , the regular set R(u) is dense in Ω.

We remark that a counterexample of [36] shows that it is not possible to establish
regularity outside a negligible set (which would be the natural thing in the vectorial
regularity theory). So, our regularity result generalizes the ones given in [36] and
[8] for integrands with a power growth condition which become strictly convex and
strictly quasiconvex near infinity, respectively.

2. Definitions and assumptions

To simplify the presentation, the letters c, C will denote generic positive con-
stants, which may change from line to line, but does not depend on the crucial
quantities. For v ∈ L1

loc(R) and a ball Br(x0) ⊂ R
n we define

(v)Br(x0) := −
ˆ

Br(x0)

v(x) dx :=
1

| Br(x0)|

ˆ

Br(x0)

v(x) dx

where | Br(x0)| is the n-dimensional Lebesgue measure of Br(x0). When it is clear
from the context we shall omit the center as follows: Br ≡ Br(x0).

2.1. N -functions. The following definitions and results are standard in the
context of N -functions (see [34]).

Definition 2.1. A real function ϕ : [0,∞) → [0,∞) is said to be an N -function
if ϕ(0) = 0 and there exists a right continuous nondecreasing derivative ϕ′ satisfying
ϕ′(0) = 0, ϕ′(t) > 0 for t > 0 and lim

t→∞
ϕ′(t) = ∞. Especially ϕ is convex.
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Definition 2.2. We say that ϕ satisfies the ∆2-condition (we shall write ϕ ∈ ∆2)
if there exists a constant c > 0 such that

ϕ(2t) ≤ c ϕ(t) for all t ≥ 0.

We denote the smallest possible constant by ∆2(ϕ).

We shall say that two real functions ϕ1 and ϕ2 are equivalent and write ϕ1 ∼ ϕ2

if there exist constants c1, c2 > 0 such that c1ϕ1(t) ≤ ϕ2(t) ≤ c2ϕ1(t) if t ≥ 0. Since
ϕ(t) ≤ ϕ(2t) the ∆2-condition implies ϕ(2t) ∼ ϕ(t). Moreover, if ϕ is a function
satisfying the ∆2-condition, then ϕ(t) ∼ ϕ(at) uniformly in t ≥ 0 for any fixed a > 1.
Let us also note that, if ϕ satisfies the ∆2-condition, then any N -function which is
equivalent to ϕ satisfies this condition too.

By (ϕ′)−1 : [0,∞) → [0,∞) we denote the function

(ϕ′)−1(t) := sup{s ≥ 0: ϕ′(s) ≤ t}.
If ϕ′ is strictly increasing, then (ϕ′)−1 is the inverse function of ϕ′. Then ϕ∗ : [0,∞) →
[0,∞) with

ϕ∗(t) :=

ˆ t

0

(ϕ′)−1(s) ds

is again an N -function and for t > 0 it results (ϕ∗)′(t) = (ϕ′)−1(t). It is the comple-
mentary function of ϕ. Note that ϕ∗(t) = sups≥0(st−ϕ(s)) and (ϕ∗)∗ = ϕ. Examples
of such complementary pairs are

ϕ(t) =
tp

p
(ln t)γ1(ln ln t)γ2 · · · (ln ln · · · ln t)γn ,

ϕ∗(t) =
tq

q
[(ln t)−γ1(ln ln t)−γ2 · · · (ln ln · · · ln t)−γn ]q−1

with 1 < p <∞, 1
p
+ 1

q
= 1 and γi are arbitrary numbers.

If ϕ, ϕ∗ satisfy the ∆2-condition we will write that ∆2(ϕ, ϕ
∗) <∞. Assume that

∆2(ϕ, ϕ
∗) <∞. Then for all δ > 0 there exists cδ depending only on ∆2(ϕ, ϕ

∗) such
that for all s, t ≥ 0 it holds that

t s ≤ δ ϕ(t) + cδ ϕ
∗(s).

This inequality is called Young’s inequality. For all t ≥ 0

t ≤ ϕ−1(t)(ϕ∗)−1(t) ≤ 2t,

t

2
ϕ′
( t

2

)

≤ ϕ(t) ≤ tϕ′(t),

ϕ
(ϕ∗(t)

t

)

≤ ϕ∗(t) ≤ ϕ
(2ϕ∗(t)

t

)

.

Therefore, uniformly in t ≥ 0,

(2.1) ϕ(t) ∼ tϕ′(t), ϕ∗(ϕ′(t)) ∼ ϕ(t),

where constants depend only on ∆2(ϕ, ϕ
∗).

Definition 2.3. We say that an N -function ϕ is of type (p0, p1) with 1 ≤ p0 ≤
p1 <∞ if

(2.2) ϕ(st) ≤ Cmax{sp0, sp1}ϕ(t) ∀s, t ≥ 0.

The following Lemma can be found in [14] (see Lemma 5).
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Lemma 2.1. Let ϕ be an N -function with ϕ ∈ ∆2 together with its conjugate.
Then ϕ is of type (p0, p1) with 1 < p0 < p1 < ∞ where p0 and p1 and the constant
C depend only on ∆2(ϕ, ϕ

∗).

Throughout the paper we will assume that ϕ satisfies the following assumption.

Assumption 2.1. Let ϕ be an N -function such that ϕ is C1([0,+∞)) and
C2(0,+∞). Further assume that

(2.3) ϕ′(t) ∼ tϕ′′(t).

We remark that under this assumption ∆2(ϕ, ϕ
∗) < ∞ will be automatically

satisfied, where ∆2(ϕ, ϕ
∗) depends only on the characteristics of ϕ.

We consider a family of N -functions {ϕa}a≥0 setting, for t ≥ 0,

ϕa(t) :=

ˆ t

0

ϕ′
a(s) ds with ϕ′

a(t) := ϕ′(a + t)
t

a+ t
.

The following lemma can be found in [12] (see Lemma 23 and Lemma 26).

Lemma 2.2. Let ϕ be an N -function with ϕ ∈ ∆2 together with its conjugate.
Then for all a ≥ 0 the function ϕa is an N -function and {ϕa}a≥0 and {(ϕa)∗}a≥0 ∼
{ϕ∗

ϕ′(a)}a≥0 satisfy the ∆2 condition uniformly in a ≥ 0.

Let us observe that by the previous lemma ϕa(t) ∼ tϕ′
a(t). Moreover, for t ≥ a

we have ϕa(t) ∼ ϕ(t) and for t ≤ a we have ϕa(t) ∼ t2ϕ′′(a). This implies that
ϕa(st) ≤ cs2ϕa(t) for all s ∈ [0, 1], a ≥ 0 and t ∈ [0, a].

For given ϕ we define the associated N -function ψ by

ψ′(t) =
√

tϕ′(t).

Note that

ψ′′(t) =
1

2

(

ϕ′′(t)

ϕ′(t)
t + 1

)

√

ϕ′(t)

t
=

1

2

(

ϕ′′(t)

ϕ′(t)
t+ 1

)

ψ′(t)

t
.

It is shown in [12] (see Lemma 25) that if ϕ satisfies Assumption 2.1 then also ϕ∗, ψ

and ψ∗ satisfy Assumption 2.1 and ψ′′(t) ∼
√

ϕ′′(t).
We define A, V : RNn → R

Nn in the following way:

(2.4) A(z) = DΦ(z), V (z) = DΨ(z),

where Φ(z) := ϕ(|z|) and Ψ(z) := ψ(|z|). About the functions A and V , the follow-
ing three lemmas can be found in [12] (see Lemma 21, Lemma 24, and Lemma 3,
respectively).

Lemma 2.3. Let ϕ satisfying Assumption 2.1, then A(z) = ϕ′(|z|) z|z| for z 6= 0,

A(0) = 0 and A satisfies

|A(z1)−A(z2)| ≤ cϕ′′(|z1|+ |z2|)|z1 − z2|,
(A(z1)− A(z2), z1 − z2) ≥ Cϕ′′(|z1|+ |z2|)|z1 − z2|2,

for z1, z2 ∈ R
Nn.

The same conclusions of Lemma 2.3 holds with A and ϕ replaced by V and ψ.
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Lemma 2.4. Let ϕ satisfy Assumption 2.1. Then, uniformly in z1, z2 ∈ R
n,

|z1|+ |z2| > 0

ϕ′′(|z1|+ |z2|)|z1 − z2| ∼ ϕ′
|z1|(|z1 − z2|),

ϕ′′(|z1|+ |z2|)|z1 − z2|2 ∼ ϕ|z1|(|z1 − z2|).
Lemma 2.5. Let ϕ satisfy Assumption 2.1 and let A and V be defined by (2.4).

Then, uniformly in z1, z2 ∈ R
Nn,

(A(z1)−A(z2), z1 − z2) ∼ |V (z1)− V (z2)|2 ∼ ϕ|z1|(|z1 − z2|),
and

|A(z1)− A(z2)| ∼ ϕ′
|z1|(|z1 − z2|).

Moreover

(A(z1), z1) ∼ |V (z1)|2 ∼ ϕ(|z1|), |A(z1)| ∼ ϕ′(|z1|),
uniformly in z1 ∈ R

Nn.

2.2. Asymptotic W
1,ϕ-quasiconvexity. Before introducing the notion of

asymptotic W 1,ϕ-quasiconvexity, let us consider a uniform version of the strict W 1,ϕ-
quasiconvexity.

Definition 2.4. (Uniform strict W 1,ϕ-quasiconvexity) A continuous function
f : RNn → R is said to be uniformly strictly W 1,ϕ-quasiconvex if there exists a
positive constant k > 0 such that

(2.5) −
ˆ

B1

f(z +Dξ) dx ≥ f(z) + k−
ˆ

B1

ϕ1+|z|(|Dξ|) dx

for all ξ ∈ C1
c (B1), for all z ∈ R

Nn, where ϕa(t) ∼ t2ϕ′′(a + t) for a, t ≥ 0.

Definition 2.5. (Asymptotic W 1,ϕ-quasiconvexity) A function f : RNn → R is
asymptotically W 1,ϕ-quasiconvex if there exist a positive constant M and a uniformly
strictly W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M.

Considering an N -function satisfying Assumption 2.1, we will work with the
following set of hypotheses.

2.3. Assumptions. Let f : RNn → R be such that

(H1) f ∈ C1(RNn) ∩ C2(RNn \ {0});
(H2) ∀z ∈ R

Nn, |f(z)| ≤ C(1 + ϕ(|z|));
(H3) f is asymptotically W 1,ϕ-quasiconvex;
(H4) ∀z ∈ R

Nn \ {0}, |D2f(z)| ≤ C ϕ′′(|z|);
(H5) ∀z1, z2 ∈ R

Nn such that |z1| ≤ 1
2
|z2| it holds

|D2f(z2)−D2f(z2 + z1)| ≤ C ϕ′′(|z2|)|z2|−β|z1|β

for some β ∈ (0, 1].

Remark 2.1. Due to hypothesis (H2), F is well defined on the Sobolev–Orlicz
space W 1,ϕ(Ω,RN).

Let us also observe that Assumption (H5), that is a Hölder continuity of D2f

away from zero, has been used to show everywhere regularity of radial functionals
with ϕ-growth (see [15]). We will use it in Lemma 6.2 below.
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3. Technical lemmas

For z1, z2 ∈ R
Nn, θ ∈ [0, 1] we define zθ = z1 + θ(z2 − z1). The following fact can

be found in [3] (see Lemma 2.1).

Lemma 3.1. Let β > −1, then uniformly in z1, z2 ∈ R
Nn with |z1|+ |z2| > 0, it

holds:
ˆ 1

0

|zθ|β dθ ∼ (|z1|+ |z2|)β.

Next result is a slight generalization of Lemma 20 in [12].

Lemma 3.2. Let ϕ be an N -function with ∆2({ϕ, ϕ∗}) < ∞; then, uniformly
in z1, z2 ∈ R

Nn with |z1|+ |z2| > 0, and in µ ≥ 0, it holds

ϕ′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

∼
ˆ 1

0

ϕ′(µ+ |zθ|)
µ+ |zθ|

dθ.

From the previous lemmas we derive the following one.

Lemma 3.3. Let ϕ be an N -function satisfying Assumption 2.1. Then, uni-
formly in z1, z2 ∈ R

Nn with |z1|+ |z2| > 0, and in µ ≥ 0, it holds
ˆ 1

0

ˆ 1

0

tϕ′′(µ+ |z1 + stz2|) ds dt ∼ ϕ′′(µ+ |z1|+ |z2|).

Proof. Using ϕ′(t) ∼ tϕ′′(t), applying twice Lemma 3.2, and taking into account
that µ+ |z1|+ |z1 + z2| ∼ µ+ |z1|+ |z2| and ϕ′(2t) ∼ ϕ′(t), we obtain

ˆ 1

0

ˆ 1

0

tϕ′′(µ+ |z1 + stz2|) ds dt ≤ c

ˆ 1

0

ˆ 1

0

t
ϕ′(µ+ |z1 + stz2|)
µ+ |z1 + stz2|

dsdt

≤ c
ϕ′(µ+ |z1|+ |z1|+ |z1 + z2|)
µ+ |z1|+ |z1|+ |z1 + z2|

≤ c
ϕ′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

≤ cϕ′′(µ+ |z1|+ |z2|).
Similarly, for the other inequality, we have
ˆ 1

0

ˆ 1

0

tϕ′′(µ+ |z1 + stz2|) ds dt ≥ c

ˆ 1

0

ˆ 1

0

t
ϕ′(µ+ |z1 + stz2|)
µ+ |z1 + stz2|

ds dt

≥ c

ˆ 1

0

t
ϕ′(µ+ |z1|+ |z1 + tz2|)
µ+ |z1|+ |z1 + tz2|

dt

≥ c

(µ+ |z1|+ |z2|)2
ˆ 1

0

ϕ(µ+ |z1|+ |z1 + tz2|) t dt,

where, in the last line, we used that ϕ(t) ∼ tϕ′(t). Due to the Jensen inequality, we
go ahead and we obtain
ˆ 1

0

ˆ 1

0

tϕ′′(µ+ |z1 + stz2|) ds dt ≥
c

(µ+ |z1|+ |z2|)2
ϕ

(
ˆ 1

0

(µ+ |z1|+ |z1 + tz2|) t dt
)

≥ c

(µ+ |z1|+ |z2|)2
ϕ(µ+ |z1|+ |z2|)

≥ c
ϕ′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

≥ c ϕ′′(µ+ |z1|+ |z2|),
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thanks also to the equivalence between ϕ(2t) and ϕ(t), ϕ(t) and tϕ′(t), and ϕ′(t) and
tϕ′′(t). �

Remark 3.1. From the previous lemma we easily deduce that
ˆ 1

0

ˆ 1

0

tϕ′′(
√

1 + |z1 + stz2|2) ds dt ∼ ϕ′′(1 + |z1|+ |z2|),

since ϕ′(t) ∼ tϕ′′(t), ϕ′ is increasing and ϕ′(2t) ∼ ϕ′(t).

The following version of the Sobolev–Poincaré inequality can be found in [12]
(Theorem 7):

Theorem 3.1. Let ϕ be an N -function with ∆2(ϕ, ϕ
∗) < ∞. Then there exist

α ∈ (0, 1) and k > 0 such that, if B ⊂ R
n is a ball of radius R and u ∈ W 1,ϕ(B,RN),

then

−
ˆ

B
ϕ

( |u− (u)B|
R

)

dx ≤ k

(

−
ˆ

B
ϕα(|Du|) dx

)
1
α

.

The following two lemmas will be useful later.

Lemma 3.4. Let ϕ satisfy Assumption 2.1 and p0, p1 be as in Lemma 2.1. Then
for each η ∈ (0, 1] it holds

ϕ|a|(t) ≤ Cη1−p̄
′

ϕ|b|(t) + η|V (a)− V (b)|2,
(ϕ|a|)

∗(t) ≤ Cη1−q̄(ϕ|b|)
∗(t) + η|V (a)− V (b)|2

for all a, b ∈ R
n, t ≥ 0 and p̄ = min{p0, 2}, q̄ = max{p1, 2}. The constants depend

only on the characteristics of ϕ.

For the proof see Lemma 2.5 in [13].

Lemma 3.5. Let ϕ be an N -function satisfying Assumption 2.1 and let us con-
sider the function z ∈ R

Nn 7→ ϕ(
√

1 + |z|2 ). Then, uniformly in y, z ∈ R
Nn it

holds

(D2ϕ(
√

1 + |z + y|2 )y, y) ∼ ϕ′′(
√

1 + |z + y|2 )|y|2.
Proof. We can see that

Dϕ(
√

1 + |z + y|2 ) = ϕ′(
√

1 + |z + y|2 ) z + y
√

1 + |z + y|2
,

and

D2ϕ(
√

1 + |z + y|2 ) = ϕ′′(
√

1 + |z + y|2 ) z + y
√

1 + |z + y|2
⊗ z + y
√

1 + |z + y|2

+
ϕ′(
√

1 + |z + y|2 )
√

1 + |z + y|2

[

I− z + y
√

1 + |z + y|2
⊗ z + y
√

1 + |z + y|2

]

,

where I ∈ R
Nn is the identity matrix. Therefore

(D2ϕ(
√

1 + |z + y|2 )y, y) = ϕ′′(
√

1 + |z + y|2 ) |(z + y, y)|2
1 + |z + y|2

+
ϕ′(
√

1 + |z + y|2 )
√

1 + |z + y|2

[

|y|2 − |(z + y, y)|2
1 + |z + y|2

]

.
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Using Assumption 2.1 and the fact that
|(z + y, y)|2
1 + |z + y|2 ≤ |y|2 we deduce

(D2ϕ(
√

1 + |z + y|2 )y, y) ≤ ϕ′′(
√

1 + |z + y|2 ) |(z + y, y)|2
1 + |z + y|2

+ Cϕ′′(
√

1 + |z + y|2 )
[

|y|2 − |(z + y, y)|2
1 + |z + y|2

]

≤ Cϕ′′(
√

1 + |z + y|2 )|y|2.
Similarly,

(D2ϕ(
√

1 + |z + y|2 )y, y)

≥ ϕ′′(
√

1 + |z + y|2 ) |(z + y, y)|2
1 + |z + y|2 + Cϕ′′(

√

1 + |z + y|2 )
[

|y|2 − |(z + y, y)|2
1 + |z + y|2

]

= Cϕ′′(
√

1 + |z + y|2 )|y|2 + (1− C)ϕ′′(
√

1 + |z + y|2 ) |(z + y, y)|2
1 + |z + y|2

≥ Cϕ′′(
√

1 + |z + y|2 )|y|2. �

4. Characterization of asymptotic W
1,ϕ-quasiconvexity

In this section we will establish some characterizations of asymptotic W 1,ϕ-
quasiconvexity.

Theorem 4.1. Each of the following assertions is equivalent to the asymptotic
W 1,ϕ-quasiconvexity of a function f : RNn → R:

(i) If f is C2 outside a large ball, then there exists a uniformly strictly W 1,ϕ-
quasiconvex function g which is C2 outside a large ball with

(4.1) lim
|z|→∞

|D2f(z)−D2g(z)|
ϕ′′(|z|) = 0.

(ii) If f is locally bounded from below, then there exist a positive constant M
and a uniformly strictly W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M

and
g ≤ f on R

Nn.

(iii) If f is locally bounded from above, then there exist a positive constant M
and a uniformly strictly W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M

and
g ≥ f on R

Nn.

(iv) If f satisfies (H2), then there exist positive constants M, k, L such that

(4.2) −
ˆ

B1

f(z +Dξ) dx ≥ f(z) + k−
ˆ

B1

ϕ|z|(|Dξ|) dx

for |z| > M and ξ ∈ C∞
c (B1,R

N), and

(4.3) |f(z2)− f(z1)| ≤ L|z1 − z2|ϕ′(1 + |z1|+ |z2|)
for all |z1|, |z2| > M .
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Proof. The proof stands on four steps.
Step 1 : We want to prove that f asymptotically W 1,ϕ-quasiconvex is equivalent

to (i). Let us show that (i) implies the asymptotic W 1,ϕ-quasiconvexity of f , the
other implication being evidently true.

Let g be as in (i). We may assume that f, g are C2(RNn\B 1
2
) and taking h = f−g

we have that h ∈ C2(RNn \ B 1
2
). In particular, by (4.1) it holds

(4.4) lim
|z|→∞

|D2h(z)|
ϕ′′(|z|) = 0.

Our aim is to prove that

lim
|z|→∞

|Dh(z)|
ϕ′(|z|) = 0,(4.5)

and

lim
|z|→∞

|h(z)|
ϕ(|z|) = 0.(4.6)

Let us consider |z| > 1. Take z :=
z

|z| , then |z| = 1 and

|Dh(z)|
ϕ′(|z|) ≤ 1

ϕ′(|z|)

[
ˆ 1

0

|D2h(z + t(z − z))||z − z| dt+ |Dh(z)|
]

=

ˆ 1√
|z|

0

|D2h(z + t(z − z))|
ϕ′′(|z + t(z − z)|)

ϕ′′(|z + t(z − z)|)
ϕ′(|z|) |z − z| dt

+

ˆ 1

1√
|z|

|D2h(z + t(z − z))|
ϕ′′(|z + t(z − z)|)

ϕ′′(|z + t(z − z)|)
ϕ′(|z|) |z − z| dt+ |Dh(z)|

ϕ′(|z|)
= I + II + III .

Estimate for I:

I ≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

ˆ 1√
|z|

0

ϕ′′(|z + t(z − z)|)
ϕ′(|z|) |z − z| dt

≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

ˆ 1√
|z|

0

ϕ′′(1 + t(|z| − 1))(|z| − 1) dt

= sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)
[

ϕ′(1 + t(|z| − 1))
]

1√
|z|

0

≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)ϕ
′

(

1 +
|z| − 1
√

|z|

)

.

Taking into account that

ϕ′
(

1 + |z|−1√
|z|

)

ϕ′(|z|) ≤ ϕ′(1 +
√

|z|)
ϕ′(|z|) ≤ c

ϕ(1 +
√

|z|)
1 +

√

|z|
|z|

ϕ(|z|)

≤ c
ϕ(1 +

√

|z|)
ϕ(|z|)

√

|z| ≤ c
ϕ(
√

|z|)
ϕ(|z|)

√

|z|
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and using Lemma 2.1 we can find p0 > 1 and C > 0 such that

ϕ(
√

|z|) = ϕ

(

|z|
√

|z|

)

≤ C

(

1
√

|z|

)p0

ϕ(|z|).

Then we obtain

ϕ′
(

1 + |z|−1√
|z|

)

ϕ′(|z|) ≤ C
ϕ(
√

|z|)
ϕ(|z|)

√

|z| ≤ C

√

|z|
(
√

|z|)p0
→ 0 as |z| → ∞.(4.7)

At this point, using (4.4) and (4.7), we can conclude that I → 0 as |z| → +∞.
Now we estimate II:

II ≤ sup
|y|>

√
|z|

|D2h(y)|
ϕ′′(|y|)

ˆ 1

1√
|z|

ϕ′′(|z + t(z − z)|)
ϕ′(|z|) |z − z| dt

≤ sup
|y|>

√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

ˆ 1

1√
|z|

ϕ′′(1 + t(|z| − 1))(|z| − 1) dt

≤ sup
|y|>

√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)
[

ϕ′(1 + t(|z| − 1))
]1

1√
|z|

= sup
|y|>

√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

[

ϕ′(|z|)− ϕ′

(

1 +
|z| − 1
√

|z|

)]

= sup
|y|>

√
|z|

|D2h(y)|
ϕ′′(|y|)






1−

ϕ′
(

1 + |z|−1√
|z|

)

ϕ′(|z|)






→ 0 as |z| → ∞

where we used (4.4) and (4.7) to conclude. Finally,

III ≤ 1

ϕ′(|z|) max
|y|=1

|Dh(y)| → 0 as |z| → ∞.

Analogously we also obtain (4.6). We can see that if |Dih(z)|
ϕ(i)(|z|) → 0 as |z| → ∞ for

i = 0, 1, 2, then |Dih(z)|
ϕ(i)(1+|z|) → 0 as |z| → ∞.

Taking into account (4.4),(4.5) and (4.6), fixed ν > 0, that we will choose later,
there exists M >> 1 such that if |z| > M , then

|D2h(z)| ≤ νϕ′′(1 + |z|), |Dh(z)| ≤ νϕ′(1 + |z|), |h(z)| ≤ νϕ(1 + |z|).
Let us consider a cut-off function η defined by











0 ≤ η ≤ 1 if 1 < |x| ≤ 2,

η = 1 if |x| > 2,

η = 0 if |x| ≤ 1.

Set

α := max

{

sup
RNn

|Dη|, sup
RNn

|D2η|
}

and let us consider ηM(z) = η( z
M+1

). Then we have

|DηM | ≤ α

M + 1
and |D2ηM | ≤ α

(M + 1)2
.
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Let Φ := ηMh; then for M ≤ |z| ≤ 2M we have

|D2Φ(z)| ≤ |D2ηM(z)||h(z)| + 2|DηM(z)||Dh(z)|+ |ηM(z)||D2h(z)|.
Taking into account the previous estimates, (2.1), (2.3) and M ≤ |z| ≤ 2M , we have

|D2Φ(z)| ≤ να

(M + 1)2
ϕ(1 + |z|) + 2να

(M + 1)
ϕ′(1 + |z|) + νϕ′′(1 + |z|)

≤
[

να

(M + 1)2
(1 + |z|)2 + 2να

(M + 1)
(1 + |z|) + ν

]

ϕ′′(1 + |z|) = λνϕ′′(1 + |z|).

In particular, we can conclude that

(4.8) |D2Φ(z)| ≤ λνϕ′′(1 + |z|) ∀z ∈ R
Nn.

Let ξ ∈ C∞
c (B1); we can write

Φ(z +Dξ) = Φ(z) + (DΦ(z), Dξ) +

ˆ 1

0

(1− t)(D2Φ(z + tDξ)Dξ,Dξ) dt.

Integrating over B1 and by using (4.8), (2.3), Lemma 3.2, the fact

(4.9) 1 + |z|+ |Dξ + z| ∼ 1 + |z|+ |Dξ|
and ϕa(t) ∼ ϕ′′(a+ t)t2 we get

−
ˆ

B1

Φ(z +Dξ) dx = −
ˆ

B1

Φ(z) dx+−
ˆ

B1

(DΦ(z), Dξ) dx

+−
ˆ

B1

ˆ 1

0

(1− t)(D2Φ(z + tDξ))Dξ,Dξ) dt dx

≥ Φ(z)−−
ˆ

B1

ˆ 1

0

(1− t)|D2Φ(z + tDξ))||Dξ|2 dt dx

≥ Φ(z)− λν−
ˆ

B1

ˆ 1

0

(1− t)ϕ′′(1 + |z + tDξ)|)|Dξ|2 dt dx

≥ Φ(z)− λνc−
ˆ

B1

ˆ 1

0

ϕ′(1 + |z + tDξ|)
1 + |z + tDξ| |Dξ|2 dt dx

≥ Φ(z)− λνc−
ˆ

B1

ϕ′(1 + |z| + |Dξ + z|)
1 + |z|+ |Dξ + z| |Dξ|2 dt dx

≥ Φ(z)− λνc−
ˆ

B1

ϕ′(1 + |z| + |Dξ|)
1 + |z|+ |Dξ| |Dξ|2 dt dx

≥ Φ(z)− λνc−
ˆ

B1

ϕ′′(1 + |z| + |Dξ|)|Dξ|2 dx

≥ Φ(z)− λνc−
ˆ

B1

ϕ1+|z|(|Dξ|) dx.

(4.10)

Let us take G := g+Φ with g uniformly strictly W 1,ϕ-quasiconvex with constant
k > 0 and Φ satisfying (4.10). Consequently,

−
ˆ

B1

G(z +Dξ) dx ≥ G(z) + (k − λνc)−
ˆ

B1

ϕ1+|z|(|Dξ|) dx

= G(z) + k̃−
ˆ

B1

ϕ1+|z|(|Dξ|) dx
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where k̃ > 0 if we choose ν < k
λc

. Thus G is uniformly strictly W 1,ϕ-quasiconvex

with constant k̃ > 0 and G(z) = f(z) for |z| > 2(M +1). This proves the asymptotic
quasiconvexity of f .

Step 2 : We want to prove that f asymptotically W 1,ϕ- quasiconvex is equivalent
to (ii), and it suffices to prove that asymptotic W 1,ϕ-quasiconvexity of f implies (ii).
Assume f asymptotic W 1,ϕ-quasiconvex, i.e., there exist a positive constant M and
a uniformly strictly W 1,ϕ-quasiconvex function g such that f(z) = g(z) for |z| > M .
Now g is locally bounded and f is locally bounded from below, so we have that

α := sup
|z|≤M

[g(z)− f(z)] <∞.

Let R > M and η be a C∞
c (BR) function, non-negative on R

Nn and such that

(4.11) |D2η(z)| ≤ νϕ′′(1 + |z|) on R
Nn and η(z) ≥ α for |z| ≤M

where ν will be chosen later. Let ξ ∈ C∞
c (B1); then we can write

η(z +Dξ) = η(z) + (Dη(z), Dξ) +

ˆ 1

0

(1− t)(D2η(z + tDξ)Dξ,Dξ) dt.

Integrating over B1 it holds, by (4.11),

−
ˆ

B1

η(z +Dξ) dx = −
ˆ

B1

η(z) dx+−
ˆ

B1

(Dη(z), Dξ) dx

+−
ˆ

B1

ˆ 1

0

(1− t)(D2η(z + tDξ)Dξ,Dξ) dt dx

≤ η(z) +−
ˆ

B1

ˆ 1

0

(1− t)|D2η(z + tDξ)||Dξ|2 dt dx

≤ η(z) + ν−
ˆ

B1

ˆ 1

0

ϕ′′(1 + |z + tDξ|)|Dξ|2 dt dx

≤ η(z) + νc−
ˆ

B1

ϕ1+|z|(|Dξ|) dx,

(4.12)

where we used, as before, ϕ′(t) ∼ tϕ′′(t), Lemma 3.2, (4.9) and ϕa(t) ∼ ϕ′′(a + t)t2.
Now taking G = g − η, with g and η satisfying (2.5) and (4.12), we have

−
ˆ

B1

G(z +Dξ)dx ≥ G(z) + k̃−
ˆ

B1

ϕ1+|z|(|Dξ|) dx

where k̃ > 0 if we choose ν = k
2c

. This means that G is uniformly strictly W 1,ϕ-
quasiconvex. But η(z) ≥ α ≥ g(z) − f(z) and η(z) = g(z) − G(z), so G(z) ≤ f(z)
for |z| ≤ M .

Step 3 : The proof is similar to the previous one.

Step 4 : Assume that f is a Borel measurable function, satisfying (H2). Since
quasiconvex functions are locally Lipschitz (see [25]), we can see that (ii) implies
(iv). So it suffices to show that a function satisfying (iv) is asymptotically W 1,ϕ-
quasiconvex.

Assume that f satisfies (iv) and consider the function

F (z) := f(z)− εϕ(
√

1 + |z|2)
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for z ∈ R
Nn. Here ε > 0 will be chosen later appropriately. Now we prove that F

satisfies (4.2) and (4.3).
Let ξ ∈ C∞

c (B1). Since f satisfies (4.2), we can write

−
ˆ

B1

F (z +Dξ) dx = −
ˆ

B1

f(z +Dξ) dx− ε−
ˆ

B1

ϕ(
√

1 + |z +Dξ|2) dx

≥ f(z) + k−
ˆ

B1

ϕ|z|(Dξ) dx− ε−
ˆ

B1

ϕ(
√

1 + |z +Dξ|2) dx

= F (z) + k−
ˆ

B1

ϕ|z|(Dξ) dx− ε−
ˆ

B1

[ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)] dx.

(4.13)

Note that

ϕ(
√

1 + |z +Dξ|2) = ϕ(
√

1 + |z|2) + (Dϕ(
√

1 + |z|2), Dξ)

+

ˆ 1

0

ˆ 1

0

t(D2ϕ(
√

1 + |z + stDξ|2)Dξ,Dξ) ds dt.

Thus integrating over B1 and applying Lemma 3.5, Remark 3.1 and ϕ′′(a+t)t2 ∼ ϕa(t)
for a, t ≥ 0, it follows that

−
ˆ

B1

[ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)] dx = −
ˆ

B1

(Dϕ(
√

1 + |z|2), Dξ) dx

+−
ˆ

B1

ˆ 1

0

ˆ 1

0

t(D2ϕ(
√

1 + |z + stDξ|2)Dξ,Dξ) ds dt dx

≤ C −
ˆ

B1

ˆ 1

0

ˆ 1

0

tϕ′′(
√

1 + |z + stDξ|2)|Dξ|2 ds dt dx

≤ C −
ˆ

B1

ϕ′′(1 + |z|+ |Dξ|)|Dξ|2 dx ≤ C −
ˆ

B1

ϕ1+|z|(|Dξ|) dx

≤ C −
ˆ

B1

ϕ|z|(|Dξ|) dx

(4.14)

for |z| sufficiently large. Using together (4.13) and (4.14), and choosing ε small
enough, we have

−
ˆ

B1

F (z +Dξ) dx ≥ F (z) +K −
ˆ

B1

ϕ|z|(|Dξ|) dx.

Moreover, taking into account that f satisfies (4.3) we deduce, for |z1|, |z2| > M ,

|F (z2)− F (z1)| ≤ |f(z2)− f(z1)|+ ε|ϕ(
√

1 + |z1|2)− ϕ(
√

1 + |z2|2)|
≤ L|z2 − z1|ϕ′(1 + |z1|+ |z2|) + ε|ϕ(

√

1 + |z1|2)− ϕ(
√

1 + |z2|2)|
≤ (L+ c)|z2 − z1|ϕ′(1 + |z1|+ |z2|).

Next we let

G(z) := inf

{

−
ˆ

B1

F (z +Dξ) dx : ξ ∈ C∞
c (B1,R

N)

}

for z ∈ R
Nn. With this definition we have thatG(z) ≤ F (z) on R

Nn andG(z) = F (z)
for |z| > M . Now our aim is to prove that G is locally bounded from below.
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Fix z ∈ R
Nn such that |z| ≤ M + 1 and take z ∈ R

Nnsuch that |z| = 2(M + 1).
We have

−
ˆ

B1

F (z +Dξ) dx = −
ˆ

B1

[F (z +Dξ)− F (z +Dξ)] dx+−
ˆ

B1

F (z +Dξ) dx = I + II

Since F satisfies (4.2), we get

II = −
ˆ

B1

F (z +Dξ) dx ≥ F (z) + k−
ˆ

B1

ϕ|z|(|Dξ|) dx.

Now we estimate I:

I =
1

| B1 |

[
ˆ

{|Dξ|≤3(M+1)}
[F (z +Dξ)− F (z +Dξ)] dx

+

ˆ

{|Dξ|>3(M+1)}
[F (z +Dξ)− F (z +Dξ)] dx

]

=
1

| B1 |
[I1 + I2].

To estimate I1 we use the fact that F is locally bounded: I1 ≥ C̃. Regarding
I2 we take into account that F satisfies (4.3), then we apply Young’s inequality,
ϕ∗(ϕ′(t)) ∼ ϕ(t) and the ∆2 condition to deduce

I2 =

ˆ

{|Dξ|>3(M+1)}
[F (z +Dξ)− F (z +Dξ)] dx

]

≥ −L
ˆ

{|Dξ|>3(M+1)}
|z − z|ϕ′(1 + |z +Dξ|+ |z +Dξ|) dx

≥ −Lδc
ˆ

{|Dξ|>3(M+1)}
ϕ(1 + |z +Dξ|+ |z +Dξ|) dx

− LCδ

ˆ

{|Dξ|>3(M+1)}
ϕ(|z − z|) dx

≥ −Lδc
ˆ

{|Dξ|>3(M+1)}
ϕ(1 + |z|+ |Dξ|) dx− Cδ

≥ −Lδc
ˆ

{|Dξ|>3(M+1)}
ϕ1+|z|(|Dξ|) dx− Cδ

where in the last inequality we used ϕ1+|z|(|Dξ|) ∼ ϕ(1+|z|+|Dξ|) since |Dξ| > 1+|z|.
Putting together estimates on I1, I2 and II, taking into account that ϕ|z|(t) ∼

ϕ1+|z|(t) and choosing δ suitably we have

−
ˆ

B1

F (z +Dξ) dx ≥ −Cδ
ˆ

{|Dξ|>3(M+1)}
ϕ|z|(|Dξ|) dx+ F (z)

+ k−
ˆ

B1

ϕ|z|(|Dξ|) dx− C ≥ −C.

So we get G(z) ≥ −C for |z| ≤ M + 1. Moreover for |z| > M + 1 we gain

G(z) = f(z)− εϕ(
√

1 + |z|2) ≥ −C(1 + ϕ(|z|))
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and this proves the local boundedness of G from below. By Dacorogna’s formula1

we have that G coincides with the quasiconvex envelope QF of F , and thus it is
quasiconvex.

Finally we can prove that

g(z) = G(z) + εϕ(
√

1 + |z|2) for z ∈ R
Nn

is a uniformly strictly W 1,ϕ-quasiconvex function. By the quasiconvexity of G we get

−
ˆ

B1

g(z +Dξ) dx = −
ˆ

B1

G(z +Dξ) dx+ ε−
ˆ

B1

ϕ(
√

1 + |z +Dξ|2) dx

≥ G(z) + εϕ(
√

1 + |z|2) + ε−
ˆ

B1

[ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)] dx

= g(z) + ε−
ˆ

B1

[ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)] dx.

Using Lemma 3.5, Remark 3.1 and ϕa(t) ∼ ϕ′′(a+ t)t2 it holds

−
ˆ

B1

[ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)] dx

= −
ˆ

B1

(Dϕ(
√

1 + |z|2), Dξ) dx+−
ˆ

B1

ˆ 1

0

ˆ 1

0

t(D2ϕ(
√

1 + |z + stDξ|2)Dξ,Dξ) ds dt dx

= −
ˆ

B1

ˆ 1

0

ˆ 1

0

t(D2ϕ(
√

1 + |z + stDξ|2)Dξ,Dξ) ds dt dx

≥ C −
ˆ

B1

ˆ 1

0

ˆ 1

0

tϕ′′(
√

1 + |z + stDξ|2)|Dξ|2 ds dt dx

≥ C −
ˆ

B1

ϕ′′(1 + |z| + |Dξ|)|Dξ|2 dx ≥ C −
ˆ

B1

ϕ1+|z|(|Dξ|) dx.

We deduce that g is uniformly strictly W 1,ϕ-quasiconvex, i.e.

−
ˆ

B1

g(z +Dξ) dx ≥ g(z) + εc−
ˆ

B1

ϕ1+|z|(|Dξ|) dx.

Moreover we have that g(z) = f(z) for |z| > M +1. This proves that f is asymptot-
ically quasiconvex. �

5. Caccioppoli estimate

The starting point for the investigation of the regularity properties of weak so-
lutions is a Caccioppoli-type inequality. We need the following Lemma (see [14,
Lemma 10]):

Lemma 5.1. Let ψ be an N -function with ψ ∈ ∆2, let r > 0 and let h ∈
Lψ(B2r(x0)). Further, let f : [ r

2
, r] → [0,∞) be a bounded function such that for all

r
2
< s < t < r

f(s) ≤ θf(t) + A

ˆ

Bt(x0)

ψ

( |h(y)|
t− s

)

dy,

1In [11] Theorem 5 it is assumed that there exists a quasiconvex function from below F , and the
verification of this hypothesis is not immediate in our situation. However, we may still apply the
Theorem since the missing hypothesis is only needed to conclude that G is locally bounded from
below. Moreover, by (2.2) we can say that ϕ(|z|) ≤ c(1 + |z|p1), p1 > 1.
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where A > 0 and θ ∈ [0, 1). Then

f
(r

2

)

≤ C(θ,∆2(ψ))A

ˆ

Br(x0)

ψ

( |h(y)|
2r

)

dy.

Theorem 5.1. Let u ∈ W
1,ϕ
loc (Ω) be a minimizer of F and let BR be a ball such

that B2R ⋐ Ω. Then
ˆ

BR

ϕ|z|(|Du− z|) dx ≤ c

ˆ

B2R

ϕ|z|

( |u− q|
R

)

dx

for all z ∈ R
Nn with |z| > M and all linear polynomials q on R

n with values in R
N

such that Dq = z.

Proof. Let 0 < s < t and consider Bs ⊂ Bt ⊂ Ω. Let η ∈ C∞
c (Bt) be a standard

cut-off function between Bs and Bt, such that |Dη| ≤ c
t−s . Define ξ = η(u − q) and

ζ = (1− η)(u− q); then Dξ +Dζ = Du− z. Consider

I :=

ˆ

Bt

[f(z +Dξ)− f(z)] dx.

By hypothesis f is asymptotically W 1,ϕ-quasiconvex, and by Theorem 4.1 we know
that f satisfies (iv), so for |z| > M we have

(5.1) I ≥ k

ˆ

Bt

ϕ|z|(|Dξ|) dx.

Moreover,

I =

ˆ

Bt

[f(z +Dξ)− f(Du) + f(Du)− f(Du−Dξ) + f(Du−Dξ)− f(z)] dx

=

ˆ

Bt

[f(z +Dξ)− f(z +Dξ +Dζ)] dt+

ˆ

Bt

[f(Du)− f(Du−Dξ)] dt

+

ˆ

Bt

[f(z +Dζ)− f(z)] dx = I1 + I2 + I3.

Note that I2 ≤ 0 since u is a minimizer. Let us concentrate on I1:

I1 = −
ˆ

Bt

ˆ 1

0

Df(z +Dξ + θDζ)Dζ dθ dx.

Analogously concerning I3, we have

I3 =

ˆ

Bt

ˆ 1

0

Df(z + θDζ)Dζ dθ dx.

Thus we obtain that

I1 + I3 =

ˆ

Bt

ˆ 1

0

[Df(z + θDζ)−Df(z +Dξ + θDζ)]Dζ dθ dx

=

ˆ

Bt

ˆ 1

0

[Df(z + θDζ)−Df(z) +Df(z)−Df(z +Dξ + θDζ)]Dζ dθ dx

=

ˆ

Bt

ˆ 1

0

[Df(z + θDζ)−Df(z)]Dζ dθ dx

−
ˆ

Bt

ˆ 1

0

[Df(z +Dξ + θDζ)−Df(z)]Dζ dθ dx
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from which

I1 + I3 ≤
ˆ

Bt

ˆ 1

0

|Df(z + θDζ)−Df(z)||Dζ | dθ dx

+

ˆ

Bt

ˆ 1

0

|Df(z +Dξ + θDζ)−Df(z)||Dζ | dθ dx.

By using hypothesis (H4) and Lemma 3.2 we have
ˆ

Bt

ˆ 1

0

|Df(z + θDζ)−Df(z)||Dζ | dθ dx

≤
ˆ

Bt

ˆ 1

0

ˆ 1

0

|D2f(tz + (1− t)(z + θDζ)| |θDζ | |Dζ | dt dθdx

≤ c

ˆ

Bt

ˆ 1

0

ˆ 1

0

ϕ′′(|tz + (1− t)(z + θDζ)|) |Dζ |2 dt dθ dx

≤ c

ˆ

Bt

ϕ′′(2|z|+ |z +Dζ |) |Dζ |2 dx

≤ c

ˆ

Bt

ϕ′(2|z|+ |z +Dζ |)
2|z|+ |z +Dζ | |Dζ |2 dx.

Taking into account the ∆2 condition for ϕ′ and ϕa(t) ∼ ϕ′′(a+ t)t2, it follows that
ˆ

Bt

ˆ 1

0

|Df(z + θDζ)−Df(z)||Dζ | dθ dx ≤ c

ˆ

Bt

ϕ′(|z|+ |Dζ |)
|z| + |Dζ | |Dζ |2 dx

≤ c

ˆ

Bt

ϕ′′(|z|+ |Dζ |)|Dζ |2 dx

≤ c

ˆ

Bt

ϕ|z|(|Dζ |) dx.

Analogously we can deduce
ˆ

Bt

ˆ 1

0

|Df(z +Dξ + θDζ)−Df(z)||Dζ | dθ dx

≤
ˆ

Bt

ˆ 1

0

ˆ 1

0

|D2f(t(z +Dξ + θDζ) + (1− t)z)| |Dξ + θDζ | |Dζ | dt dθ dx

≤ c

ˆ

Bt

ˆ 1

0

ˆ 1

0

ϕ′′(|t(z +Dξ + θDζ) + (1− t)z|) |Dξ + θDζ | |Dζ | dt dθ dx

≤ c

ˆ

Bt

ϕ′′(|z|+ |Dξ|+ |Dζ |) (|Dξ|+ |Dζ |) |Dζ | dx

≤ c

ˆ

Bt

ϕ′
|z|(|Dξ|+ |Dζ |) |Dζ | dx

≤ c

ˆ

Bt

ϕ′
|z|(|Dξ|) |Dζ | dx+ c

ˆ

Bt

ϕ′
|z|(|Dζ |) |Dζ | dx

≤ c

ˆ

Bt

ϕ′
|z|(|Dξ|) |Dζ | dx+ c

ˆ

Bt

ϕ|z|(|Dζ |) dx

where in the last line we used the equivalence ϕ′
a(t) ∼ tϕ′′(a+ t) and the fact that

ϕ′
|z|(|Dξ|+ |Dζ |) ≤ cϕ′

|z|(|Dξ|) + cϕ′
|z|(|Dζ |).
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Applying Young’s inequality for ϕa we have

I1 + I3 ≤ c

ˆ

Bt

ϕ|z|(|Dζ |) dx+ c

ˆ

Bt

ϕ′
|z|(|Dξ|) |Dζ | dx

≤ c

ˆ

Bt

ϕ|z|(|Dζ |) dx+ cδ

ˆ

Bt

ϕ|z|(|Dξ|) dx+ Cδ

ˆ

Bt

ϕ|z|(|Dζ |) dx

≤ C ′
δ

ˆ

Bt

ϕ|z|(|Dζ |) dx+ cδ

ˆ

Bt

ϕ|z|(|Dξ|) dx.

Taking into account (5.1) and choosing δ such that k − cδ > 0 we conclude
ˆ

Bt

ϕ|z|(|Dξ|) dx ≤ C

ˆ

Bt

ϕ|z|(|Dζ |) dx.

Now, by the definition of ζ we have Dζ = (1 − η)(Du − z) − Dη(u − q) and we
can note that Dζ = 0 in Bs. Moreover using the convexity of ϕ|z| and the fact that
|Dη| ≤ c

t−s , we have

ϕ|z|(|Dζ |) ≤ ϕ|z|

(

(1− η)|Du− z|+ c

t− s
|u− q|

)

≤ cϕ|z|(|Du− z|) + cϕ|z|

( |u− q|
t− s

)

.

Hence
ˆ

Bt

ϕ|z|(|Dξ|) dx ≤ C

ˆ

Bt \Bs

ϕ|z|(|Dζ |) dx

≤ c

ˆ

Bt \Bs

ϕ|z|(|Du− z|) dx+ c

ˆ

Bt

ϕ|z|

( |u− q|
t− s

)

dx.

Thus we have
ˆ

Bs

ϕ|z|(|Du− z|) dx =

ˆ

Bs

ϕ|z|(|Dξ|) dx ≤
ˆ

Bt

ϕ|z|(|Dξ|) dx

≤ c

ˆ

Bt \Bs

ϕ|z|(|Du− z|) dx+ c

ˆ

Bt

ϕ|z|

( |u− q|
t− s

)

dx.

We fill the hole by adding to both sides the term c
´

Bs
ϕ|z|(|Du−z|) dx and we divide

by c+ 1, thus obtaining
ˆ

Bs

ϕ|z|(|Du− z|) dx ≤ c

c+ 1

ˆ

Bt

ϕ|z|(|Du− z|) dx+ C

ˆ

Bt

ϕ|z|

( |u− q|
t− s

)

dx

= λ

ˆ

Bt

ϕ|z|(|Du− z|) dx+ α

ˆ

Bt

ϕ|z|

( |u− q|
t− s

)

dx

where λ := c
c+1

< 1 and α > 0. Now we can apply Lemma 5.1 to get the desired
result. �

An immediate consequence of the previous result is the following:

Corollary 5.1. There exists α ∈ (0, 1) such that for all minimizers u ∈ W 1,ϕ(Ω)
of F , all balls BR with B2R ⋐ Ω, and all z ∈ R

Nn with |z| > M

−
ˆ

BR

|V (Du)− V (z)|2 dx ≤ c

(

−
ˆ

B2R

|V (Du)− V (z)|2α dx
)

1
α
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Proof. By using Lemma 2.5, applying Theorem 5.1 with q such that (u−q)B2R
= 0

and Theorem 3.1 we have

−
ˆ

BR

|V (Du)− V (z)|2dx ≤ c−
ˆ

BR

ϕ|z|(|Du− z|) dx ≤ c−
ˆ

B2R

ϕ|z|

( |u− q|
R

)

dx

≤ c

(

−
ˆ

B2R

ϕα|z|(|Du− z|) dx
)

1
α

≤ c

(

−
ˆ

B2R

|V (Du)− V (z)|2α dx
)

1
α

. �

Using Gehring’s Lemma we deduce the following result.

Corollary 5.2. There exists s > 1 such that for all minimizers u ∈ W 1,ϕ(Ω) of
F , all balls BR with B2R ⋐ Ω, and all z ∈ R

Nn with |z| > M

(

−
ˆ

BR

|V (Du)− V (z)|2s dx
)

1
s

≤ c−
ˆ

B2R

|V (Du)− V (z)|2 dx

6. Almost A-harmonicity

In this section we recall a generalization of the A-harmonic approximation Lemma
in Orlicz space (see [14]). We say that A = (Aαβ

ij ) i,j=1,··· ,N

α,β=1,··· ,n
is strongly elliptic in the

sense of Legendre–Hadamard if

A(a⊗ b, a⊗ b) ≥ kA|a|2|b|2

holds for all a ∈ R
N , b ∈ R

n for some constant kA > 0. We say that a Sobolev
function w on BR is A-harmonic if

− div(ADw) = 0

is satisfied in the sense of distributions. Given a function u ∈ W 1,2(BR), we want to
find a function h that is A-harmonic and is close to u. In particular, we are looking
for a function h ∈ W 1,2(BR) such that

{

− div(ADh) = 0 in BR,
h = u on ∂ BR .

Let w := h− u. Then w satisfies

(6.1)

{

− div(ADw) = − div(ADu) in BR,
w = 0 on ∂ BR .

We recall Theorem 14 in [14]:

Theorem 6.1. Let BR ⋐ Ω and let B̃ ⊂ Ω denote either BR or B2R. Let A be
strongly elliptic in the sense of Legendre–Hadamard. Let ψ be an N -function with
∆2(ψ, ψ

∗) < ∞ and let s > 1. Then for every ε > 0, there exists δ > 0 depending
on n,N, kA, | A |,∆2(ψ, ψ

∗) and s such that the following holds: let u ∈ W 1,ψ(B̃) be
almost A-harmonic on BR in the sense that

∣

∣

∣

∣

−
ˆ

BR

(ADu,Dξ) dx

∣

∣

∣

∣

≤ δ−
ˆ

B̃
|Du| dx‖Dξ‖L∞(BR)
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for all ξ ∈ C∞
0 (BR). Then the unique solution w ∈ W

1,ψ
0 (BR) of (6.1) satisfies

−
ˆ

BR

ψ

( |w|
R

)

dx+−
ˆ

BR

ψ(|Dw|) dx ≤ ε

[

(

−
ˆ

BR

ψs(|Du|) dx
)

1
s

+−
ˆ

B̃
ψ(|Du|) dx

]

.

The following results can be found in [14].

Lemma 6.1. Let BR ⊂ R
n be a ball and let u ∈ W 1,ϕ(BR). Then

−
ˆ

BR

|V (Du)− (V (Du))BR
|2 dx ∼ −

ˆ

BR

|V (Du)− V ((Du)BR
)|2 dx.

Lemma 6.2. Let z := (Du)B2R
. For all ε > 0 there exists δ > 0 such that for

every u ∈ W 1,ϕ(Ω) minimizer of F and every BR such that B2R ⋐ Ω, and for

−
ˆ

B2R

|V (Du)− (V (Du))B2R
|2 dx ≤ δ−

ˆ

B2R

|V (Du)|2 dx

it holds
∣

∣

∣

∣

−
ˆ

BR

D2f(z)(Du− z,Dξ) dx

∣

∣

∣

∣

≤ εϕ′′(|z|)−
ˆ

B2R

|Du− z| dx‖Dξ‖L∞(BR),(6.2)

for every ξ ∈ C∞
c (BR).

7. Excess decay estimate

Following the ideas in [3] we will prove the following Lemma.

Lemma 7.1. Let z0 ∈ R
n such that |z0| > 1. Let f ∈ C2(B2σ(z0)) be strictly

W 1,ϕ-quasiconvex at z0, that is,
ˆ

B
[f(z0 +Dξ)− f(z0)] dx ≥ k

ˆ

B
ϕ|z0|(|Dξ|) dx(7.1)

holds for all ξ ∈ C1
c (B,RN). Then, there exists ρ > 0 such that for all z ∈ Bρ(z0)
ˆ

B
[f(z +Dξ)− f(z)] dx ≥ k

2

ˆ

B
ϕ|z0|(|Dξ|) dx(7.2)

holds for all ξ ∈ C1
c (B,RN).

Proof. Let

ωρ := sup{|D2f(z1)−D2f(z2)| : z1, z2 ∈ Bσ(z0), |z1 − z2| < ρ}
and fix z such that |z − z0| < ρ < σ

2
. For η ∈ R

Nn, define

G(η) = f(z + η)− f(z0 + η).

By using (7.1) we have
ˆ

B
[f(z +Dξ)− f(z)] dx

=

ˆ

B
[f(z0 +Dξ)− f(z0)] dx+

ˆ

B
[f(z +Dξ)− f(z0 +Dξ) + f(z0)− f(z)] dx

≥ k

ˆ

B
ϕ|z0|(|Dξ|) dx+

ˆ

B
[G(Dξ)−G(0)− (DG(0), Dξ)] dx.

Now we split B as

X =
{

x ∈ B : |Dξ| ≤ σ

2

}

and Y =
{

x ∈ B : |Dξ| > σ

2

}

.
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Let us observe that

G(Dξ)−G(0)− (DG(0), Dξ) =
1

2
(D2G(θDξ)Dξ,Dξ)

with θ ∈ (0, 1). Moreover if x ∈ X then |Dξ| ≤ σ
2
, so z +Dξ ∈ Bσ(z0). Hence

ˆ

X

[G(Dξ)−G(0)−DG(0)Dξ] dx =
1

2

ˆ

X

(D2G(θDξ)Dξ,Dξ) dx

≥ −1

2

ˆ

X

|D2f(z + θDξ)−D2f(z0 + θDξ)||Dξ|2 dx ≥ −ωρ
2

ˆ

X

|Dξ|2 dx

≥ −c ωρ
2

ˆ

X

ϕ′′(|z0|+ |Dξ|)|Dξ|2 dx ≥ −c ωρ
2

ˆ

X

ϕ|z0|(|Dξ|) dx

where we used the fact that on X we have

ϕ′′(|z0|+ |Dξ|) ≥ c
ϕ′(|z0|+ |Dξ|)
|z0|+ |Dξ| ≥ c

ϕ′(1)

|z0|+ σ
2

> 0.

Let us define H(z, x) = f(z +Dξ(x))− f(z)− (Df(z), Dξ(x)) so that
ˆ

Y

[H(z, x)−H(z0, x)] dx =

ˆ

Y

[G(Dξ)−G(0)− (DG(0), Dξ)] dx.

We can see that
ˆ

Y

|H(z, x)−H(z0, x)| dx ≤
ˆ

Y

|z − z0||DzH(τ, x)| dx

≤ ρ

[
ˆ

Y

|Df(τ +Dξ)−Df(τ)| dx+
ˆ

Y

|D2f(τ)||Dξ| dx
]

= ρ[I + II].

Now we estimate I. We use hypothesis (H4), Lemma 3.2 and the fact that |τ | +
|Dξ + τ | ∼ |τ |+ |Dξ| to get

I ≤
ˆ

Y

ˆ 1

0

|D2f(τ + tDξ)||Dξ| dt dx ≤ c

ˆ

Y

ˆ 1

0

ϕ′′(|τ + tDξ|)|Dξ| dt dx

≤ c

ˆ

Y

ϕ′(|τ |+ |Dξ|)
|τ |+ |Dξ| |Dξ| dx ≤ cσ

ˆ

Y

ϕ′(|z0|+ |Dξ|)|Dξ| dx

where in the last inequality we used |τ |+ |Dξ| ≤ |z|+ |z0|+ |Dξ| ≤ ρ+2|z0|+ |Dξ| <
c(|z0|+ |Dξ|) as well as |τ |+ |Dξ| > 1 + σ

2
=: cσ on Y, if ρ is small enough.

Analogously, we estimate II:

II ≤ c

ˆ

Y

ϕ′′(|τ |)|Dξ| dx ≤ c

ˆ

Y

ϕ′(|z0|+ |Dξ|)|Dξ| dx

since |τ | ≤ |z| + |z0| ≤ c(|z0|+ |Dξ|). On the other hand, since on Y

ϕ′(|z0|+ |Dξ|)|Dξ| ≤ cϕ′′(|z0|+ |Dξ|)(|z0|+ |Dξ|)|Dξ|
≤ c(|z0|, σ)ϕ′′(|z0|+ |Dξ|)|Dξ|2 ≤ c(|z0|, σ)ϕ|z0|(|Dξ|),

we can say that
ˆ

Y

[G(Dξ)−G(0)− (DG(0), Dξ)] dx ≥ −c̃ρ
ˆ

Y

ϕ|z0|(|Dξ|) dx,

where c̃ depends on the characteristics of ϕ, σ and |z0|. Choosing ρ such that c ωρ

2
+

c̃ρ < k
2

we have the result. �

In the sequel we assume that z0 ∈ R
n, with |z0| > M + 1, so that (7.2) holds in

Bρ(z0) with ρ < 1.
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We define the excess function

E(BR(x0), u) = −
ˆ

BR(x0)

|V (Du)− (V (Du))BR(x0)|2 dx.

The main ingredient to prove our regularity result is the following decay estimate:

Proposition 7.1. For all ε > 0 there exists δ = δ(ε, ϕ) > 0 and β ∈ (0, 1), such
that, if u is a minimizer and if for some ball BR(x0) with B2R(x0) ⋐ Ω the following
estimates

E(B2R(x0), u) ≤ δ−
ˆ

B2R(x0)

|V (Du)|2 dx, |(Du)B2R(x0) − z0| < ρ(7.3)

hold true, then for every τ ∈ (0, 1
2
]

E(BτR(x0), u) ≤ Cτβ(ετ−n−1 + 1)E(B2R(x0), u),

where C = C(ϕ, n) and it is independent of ε.

Proof. Let q be a linear function such that (u−q)B2R
= 0 and z := Dq = (Du)B2R

.
Let w := u − q. Fix ε > 0 and δ as in Lemma 6.2, then w is almost A-harmonic

with A = D2f(z)
ϕ′′(|z|) . Let us observe that by Lemma 7.1 such A is strongly elliptic in the

sense of Legendre–Hadamard, since for every a ∈ R
N and b ∈ R

n,

D2f(z)

ϕ′′(|z|) (a⊗ b, a⊗ b) ≥ ϕ′′(|z0|)
ϕ′′(|z|) |a|

2|b|2 ≥ c|a|2|b|2

for z0 ∈ R
n with |z0| > 1 and z such that |z − z0| < ρ, where c depends on z0, ρ and

ϕ.
Let h be the A-harmonic approximation of w with h = w on ∂ BR. At this point

we can apply Theorem 6.1 and conclude that, for |z| > M , h satisfies

−
ˆ

BR

ϕ|z|(|Dw −Dh|) dx ≤ ε

[

(

−
ˆ

BR

ϕs|z|(|Du− z|) dx
)

1
s

+−
ˆ

B2R

ϕ|z|(|Du− z|) dx
]

where s is the same exponent of Corollary 5.2. Applying Lemma 2.5 and Corollary
5.2 we have

(

−
ˆ

BR

ϕs|z|(|Du− z|) dx
)

1
s

≤ c
(

−
ˆ

BR

|V (Du)− V (z)|2s dx
)

1
s

≤ c−
ˆ

B2R

|V (Du)− V (z)|2 dx

from which, taking into account that z = (Du)B2R
and using Lemma 6.1 we have

−
ˆ

BR

ϕ|z|(|Dw −Dh|) dx ≤ εc−
ˆ

B2R

|V (Du)− V (z)|2 dx

≤ εc−
ˆ

B2R

|V (Du)− (V (Du))B2R
|2 dx

= εc E(B2R, u).

(7.4)
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Now we want to compute E(BτR, u). Applying Lemma 6.1, Lemma 2.5 and Lemma 3.4
we get

E(BτR, u) = −
ˆ

BτR

|V (Du)− (V (Du))BτR
|2 dx ≤ c−

ˆ

BτR

|V (Du)− V ((Dh)BτR
+ z)|2 dx

≤ c−
ˆ

BτR

ϕ|(Dh)BτR
+z|(|Du− (Dh)BτR

− z|) dx

= c−
ˆ

BτR

ϕ|(Dh)BτR
+z|(|Dw − (Dh)BτR

|) dx

≤ Cη−
ˆ

BτR

ϕ|z|(|Dw − (Dh)BτR
|) dx+ η−

ˆ

BτR

|V ((Dh)BτR
+ z)− V (z)|2 dx

= I + II .
Using Jensen’s inequality, (7.4), the fact that

sup
BτR

|Dh− (Dh)BτR
| ≤ c τ −

ˆ

BR

|Dh− (Dh)BR
| dx

(see [28]), the convexity of ϕ, and the ∆2-condition, we have

I ≤ Cη−
ˆ

BτR

ϕ|z|(|Dw −Dh|) dx+ Cη−
ˆ

BτR

ϕ|z|(|Dh− (Dh)BτR
|) dx

≤ Cητ
−nεE(B2R, u) + Cηϕ|z|

(

τ−
ˆ

BR

|Dh− (Dh)BR
| dx
)

.

Taking into account that ϕa(st) ≤ csϕa(t) for all a ≥ 0, s ∈ [0, 1] and t ≥ 0, using
Jensen inequality and (7.4) we have

ϕ|z|

(

τ−
ˆ

BR

|Dh− (Dh)BR
| dx
)

≤ c τϕ|z|

(

−
ˆ

BR

|Dh− (Dh)BR
| dx
)

≤ c τϕ|z|

(

−
ˆ

BR

|Dh−Dw| dx+−
ˆ

BR

|Dw − (Dw)BR
| dx
)

≤ c τϕ|z|

(

−
ˆ

BR

|Dh−Dw| dx
)

+ c τϕ|z|

(

−
ˆ

BR

|Dw − (Dw)BR
| dx
)

≤ c τ−
ˆ

BR

ϕ|z|(|Dh−Dw|) dx+ c τ−
ˆ

BR

ϕ|z|(|Du− (Du)BR
|) dx

≤ c τεE(B2R, u) + c τ−
ˆ

BR

ϕ|z|(|Du− (Du)BR
|) dx

≤ c τεE(B2R, u) + c τ E(B2R, u),

where in the last inequality we used

−
ˆ

BR

ϕ|z|(|Du− (Du)BR
|) dx ≤ c−

ˆ

BR

ϕ|z|(|Du− z|) dx+ c−
ˆ

BR

ϕ|z|(|z − (Du)BR
|) dx

≤ cE(B2R, u) + c ϕ|z|

(
∣

∣

∣

∣

−
ˆ

BR

[Du− z] dx

∣

∣

∣

∣

)

≤ cE(B2R, u) + c−
ˆ

BR

ϕ|z|(|Du− z|) dx

≤ cE(B2R, u).
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So we have

I ≤ Cητ
−nεE(B2R, u) + CητεE(B2R, u) + Cη τ E(B2R, u).

Now we estimate II; taking into account that

sup
BτR

|Dh| ≤ −
ˆ

BR

|Dh| dx,

using Jensen’s inequality, and (7.4) we obtain

II ≤ c η−
ˆ

BτR

ϕ|z|(|(Dh)BτR
|) dx ≤ c η ϕ|z|

(

−
ˆ

BR

|Dh| dx
)

≤ c η ϕ|z|

(

−
ˆ

BR

|Dh−Dw| dx+−
ˆ

BR

|Dw| dx
)

≤ c η ϕ|z|

(

−
ˆ

BR

|Dh−Dw| dx
)

+ c η ϕ|z|

(

−
ˆ

BR

|Du− z| dx
)

≤ c η−
ˆ

BR

ϕ|z|(|Dh−Dw|) dx+ c η−
ˆ

BR

ϕ|z|(|Du− z|) dx

≤ c η ε E(B2R, u) + c η E(B2R, u).

Putting together estimates for I and II we have

E(BτR, u) ≤ C E(B2R, u)[Cη τ
−n ε+ Cη τ ε+ Cη τ + η ε+ η],

choosing η = τα, and consequently Cη =
1

τα(p̄−1)
, with α <

1

p̄− 1
, we have

E(BτR, u) ≤ Cτβ(ετ−n−1 + 1)E(B2R, u)

where β = min{α, 1− α(p̄− 1)}. �

Proposition 7.2. Let γ ∈ (0, 1). Then there exists δ that depends on γ and on
the characteristics of ϕ such that: if for some ball BR(x0) ⊂ Ω

(7.5) E(B2R(x0), u) ≤ δ−
ˆ

B2R(x0)

|V (Du)|2 dx, |(Du)B2R(x0) − z0| <
ρ

2

hold, then for any ρ ∈ (0, 1],

(7.6) E(BρR(x0), u) ≤ cργβ E(B2R(x0), u),

where c depends on the characteristics of ϕ.

Proof. Let Λ(ε, τ) = Cτβ(ετ−n−1 + 1) where C depends on the characteristics of
ϕ and on n. Let ε = ε(τ) such that

Λ(ε, τ) ≤ min

{

(τ

2

)γβ

,
1

4

}

.

Let δ = δ(τ) such that Proposition 7.1 holds true and so small that are verified

(1 + τ−
n
2 )δ

1
2 <

1

2
and c

δ
1
p

τ
n
p

<
ρ

2
,

where c and p will be specified later.
With these choices we can prove that the inequalities in (7.3) hold when we

replace B2R with BτR, the first one being necessary to obtain the first inequality
following exactly the lines of the proof of Proposition 28 in [23].
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Concerning the second inequality we first observe that

|(Du)BτR
− z0| < |(Du)BτR

− (Du)B2R
|+ ρ

2
.

Moreover, taking into account that ϕ is of type (p0, p1) and using Lemma 2.5, for
some p > 1 we get

|(Du)BτR
− (Du)B2R

| ≤ −
ˆ

BτR

|Du− (Du)B2R
| dx ≤

(

−
ˆ

BτR

|Du− (Du)B2R
|p dx

)
1
p

≤ c

(

−
ˆ

BτR

ϕ|(Du)B2R
||Du− (Du)B2R

| dx
)

1
p

≤ c

(

−
ˆ

BτR

|V (Du)− (V (Du))B2R
|2 dx

)
1
p

≤ c

τ
n
p

(

−
ˆ

B2R

|V (Du)− (V (Du))B2R
|2 dx

)
1
p

≤ c

τ
n
p

δ
1
p

(

−
ˆ

B2R

|V (Du)|2 dx
)

1
p

≤ c
δ

1
p

τ
n
p

where in the last inequality we use that by Lemma 2.5 and Jensen inequality

−
ˆ

B2R(x)

|V (Du)|2 dy ∼ −
ˆ

B2R(x)

ϕ(|Du|) dy

≥ ϕ
(

−
ˆ

B2R(x)

|Du| dy
)

≥ ϕ(|(Du)B2R
|) ≥ ϕ(M) > 0.

(7.7)

So, the smallness assumptions in (7.3) are satisfied for BτR. By induction we get

E

(

B( τ
2
)k2R

)

≤ min

{

(τ

2

)γβk

,
1

4k

}

E(B2R)

which is the claim. �

Proof of Theorem 1.1. By Jensen inequality and Lemma 2.5 we have

ϕ|z0|(|(Du)Br(x) − z0|) ≤ ϕ|z0|

(

−
ˆ

Br(x)

|Du− z0| dy
)

≤ −
ˆ

Br(x)

ϕ|z0|(|Du− z0|) dy

≤ c−
ˆ

Br(x)

|V (Du)− V (z0)|2 dy

from which by (1.1) we can conclude that

|(Du)B2R(x) − z0| < ρ

for a suitable R > 0. Moreover by Lemma 2.5, Jensen’s inequality, (7.7), and (1.1)
we get

E(B2R(x), u) ≤ −
ˆ

B2R(x)

|V (Du)− V (z0)|2 dy ≤ δ−
ˆ

B2R(x)

|V (Du)|2 dy.

Hence we have that the assumptions of Proposition 7.2 are verified in a neighborhood
of x0, say in Bs(x0). Then by (7.6) we have

E(BρR(x), u) ≤ cργβ E(B2R(x), u) ∀x ∈ Bs(x0)
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and by Campanato’s characterization of Hölder continuity we deduce that u ∈
C1,α(Bs(x0)) for some α < 1. �

Let us recall that, for u ∈ W 1,ϕ(Ω,RN), the set of regular points R(u) is defined
by

R(u) = {x ∈ Ω: u is Lipschitz near x}.
Finally we prove Corollary 1.1.

Proof of Corollary 1.1. Using the characterization (iv) of Theorem 4.1 we
can find M > 0 such that the assumptions of Theorem 1.1 are satisfied near every
z0 ∈ R

Nn : |z0| > M . By Theorem 1.1 we have that u ∈ C1,α near every x0 ∈ Ω that
satisfies

lim
r→0

−
ˆ

Br(x0)

|V (Du)− V (z0)|2 dx = 0

and these points x0 belong to R(u).

By contradiction assume that some x ∈ Ω is not contained in R(u); then in a
neighborhood of x we cannot find x0 as before. Thus, V (Du) is essentially bounded
by M on this neighborhood and u is Lipschitz near x. Consequently x ∈ R(u) and
we have reached the desired contradiction. �
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