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Abstract. We analyse the asymptotic behaviour of several types of moments of Borel proba-

bility measures on R
d. In particular, we prove that the asymptotic behaviour of the moments of a

measure is intimately related to the local dimensions of the measure.

1. Introduction

The purpose of this paper is to analyse the limiting behaviour of (different types
of) moments of measures. In particular, we show that that there is a relationship
between the asymptotic behaviour of the moments of a measure and the so-called
local dimensions of the measure.

1.1. Local dimensions of measures. Let µ a Borel probability measure on
Rd. For x ∈ Rd, we define the lower and upper local dimension of µ at x by

(1.1) dimloc(µ; x) = lim inf
rց0

logµ(B(x, r))

log r

and

(1.2) dimloc(µ; x) = lim sup
rց0

log µ(B(x, r))

log r
,

respectively. If the lower and upper local dimension of µ at x coincide, then we write
dimloc(µ; x) for the common value, i.e. we write

(1.3) dimloc(µ; x) = lim
rց0

log µ(B(x, r))

log r

provided the limit exists. The detailed study of the local dimensions of measures is
known as multifractal analysis and has received enormous interest during the past 20
years; the reader is refereed to the texts [Fa2, Pe] for a more thorough discussion of
this. It is now generally believed by experts that local dimensions provide important
information about the geometric properties of measures.

1.2. Moments of measures. For a metric space X, we write

P(X) = {µ | µ is a Borel probability measure on X}
and

Pco(X) = {µ | µ is a Borel probability measure on X with compact support}.
In addition, we used the the following notation throughout the paper. Namely, if
µ ∈ P(X), then we will denote the support of µ by suppµ, and if x ∈ X, then we
will denote the Dirac measure concentrated at x by δx.
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For µ ∈ Pco(R
d) and q > 0, we define the q’th moment of µ by

(1.4) Mq(µ) =

ˆ

|x|q dµ(x).

It is clear that if µ ∈ P([0, 1]) satisfies µ({1}) = 0, then Mq(µ) → 0 as q → ∞.
It is therefore natural and of interest to ask for estimates of the rate at which
Mq(µ) converges to 0 as q → ∞, i.e. we ask for estimates of lim infq→∞

logMq(µ)
− log q

and

lim supq→∞
logMq(µ)
− log q

. For example, as an application of our main results we obtain the

following result providing estimates of lim infq→∞
logMq(µ)

− log q
and lim supq→∞

logMq(µ)

− log q
in

terms of the lower and upper local dimensions of µ at 1.

Theorem 1.1. Let µ ∈ P([0, 1]) with 0, 1 ∈ supp µ. Then

dimloc(µ; 1) ≤ lim inf
q→∞

logMq(µ)

− log q
≤ lim sup

q→∞

logMq(µ)

− log q
≤ dimloc(µ; 1).

In particular, if the local dimension dimloc(µ; 1) exists then the limit limq→∞
logMq(µ)
− log q

exists and

lim
q→∞

logMq(µ)

− log q
= dimloc(µ; 1).

Proof. This follows from Corollary 2.8. �

It is natural to consider other types of moments. In particular, in this paper, we
will consider the following moment. For µ, ν ∈ Pco(R

d) and q > 0, we write

(1.5) Mq(µ, ν) =

ˆ

|x− y|q d(µ× ν)(x, y),

i.e. Mq(µ, ν) is the q’th moment of the average distance between two points x and
y where x is chosen with respect to the distribution µ and where y is chosen with
respect to the distribution ν. As above, it is clear that if µ, ν ∈ P([0, 1]) satisfy
(µ × ν){(x, y) ∈ [0, 1]2 | |x − y| = 1} = 0 (i.e. if (µ × ν){(0, 1)} = 0 and (µ ×
ν){(1, 0)} = 0), then Mq(µ, ν) → 0 as q → ∞. It is therefore natural and of interest
to ask for estimates of the rate at which Mq(µ, ν) converges to 0 as q → ∞, i.e.

we ask for estimates of lim infq→∞
logMq(µ,ν)

− log q
and lim supq→∞

logMq(µ,ν)
− log q

. As a further
application of our main results we obtain the following result providing estimates of

lim infq→∞
logMq(µ,ν)

− log q
and lim supq→∞

logMq(µ,ν)

− log q
in terms of the lower and upper local

dimensions of µ and ν at 0 and at 1.

Theorem 1.2. Let µ, ν ∈ P([0, 1]) with 0, 1 ∈ supp µ and 0, 1 ∈ supp ν. Then

inf
(x,y)∈{(1,0),(0,1)}

(dimloc(µ; x) + dimloc(ν; y)) ≤ lim inf
q→∞

logMq(µ, ν)

− log q

≤ lim sup
q→∞

logMq(µ, ν)

− log q
≤ inf

(x,y)∈{(1,0),(0,1)}

(

dimloc(µ; x) + dimloc(ν; y)
)

.

In particular, if the local dimensions dimloc(µ; 0), dimloc(µ; 1), dimloc(ν; 0) and

dimloc(ν; 1) exist, then the limit limq→∞
logMq(µ)

− log q
exists and

lim
q→∞

logMq(µ, ν)

− log q
= inf

(x,y)∈{(1,0),(0,1)}
(dimloc(µ; x) + dimloc(ν; y)) .

Proof. This follows from Corollary 2.7. �
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We emphasise that Theorem 1.1 and Theorem 1.2 are special cases of the more
general main results in Section 2. In particular, the results in Section 2 are not
restricted to measures on R but apply to measures in all higher dimensional Euclidean
spaces.

2. Statements of results

2.1. The extremal distance d(µ, ν) and the extremal set E(µ, ν). For
µ, ν ∈ Pco(R

d), we define the extremal distance d(µ, ν) of µ and ν by

(2.1) d(µ, ν) = sup
x∈suppµ

y∈supp ν

|x− y|,

and we define the extremal set E(µ, ν) of µ and ν by

(2.2) E(µ, ν) = {(x, y) ∈ suppµ× supp ν | |x− y| = d(µ, ν)} .

It is clear that the extremal distance d(µ, ν) is positive, i.e. d(µ, ν) ≥ 0. It is also clear
that if d(µ, ν) = 0, then there is a point (x0, y0) ∈ Rd×Rd, such that µ×ν = δ(x0,y0),

whence Mq(µ, ν) = |x0− y0|q for all q > 1, and so logMq(µ,ν)
− log q

→ ∞ if |x0− y0| < 1 and
logMq(µ,ν)

− log q
→ −∞ if |x0 − y0| > 1. We may therefore assume that d(µ, ν) 6= 0. The

next results show that if d(µ, ν) 6= 1, then the limiting behaviour of logMq(µ,ν)
− log q

is also

trivial.

Proposition 2.1. Let µ, ν ∈ Pco(R
d).

(1) If 0 < d(µ, ν) < 1, then

lim
q→∞

logMq(µ, ν)

− log q
= ∞.

(2) If 1 < d(µ, ν), then

lim
q→∞

logMq(µ, ν)

− log q
= −∞.

Proof. (1) If 0 < d(µ, ν) < 1, then Mq(µ, ν) ≤
´

d(µ, ν)q d(µ× ν)(x, y) = d(µ, ν)q

for all q > 1, and so logMq(µ,ν)
− log q

≥ − log(d(µ, ν)) q

log q
→ ∞.

(2) Assume that d(µ, ν) > 1 and choose R such that 1 < R < d(µ, ν). Now write

G =
{

(x, y) ∈ Rd ×Rd | |x− y| > R
}

.

It is clear that G is open. Next, we show that

(2.3) G ∩ supp(µ× ν) 6= ∅.

We will now prove (2.3). Since R < d(µ, ν) = supx∈suppµ,y∈supp ν |x− y|, we can find
x0 ∈ suppµ and y0 ∈ supp ν such that |x0 − y0| > R. This implies that (x0, y0) ∈ G

and that (x0, y0) ∈ supp µ×supp ν = supp(µ×ν), whence (x0, y0) ∈ G∩supp(µ×ν),
and so G ∩ supp(µ× ν) 6= ∅. This proves (2.3).

Since G is open and G ∩ supp(µ × ν) 6= ∅ (by (2.3)), we conclude that a =
(µ×ν)(G) > 0. Next, we note that Mq(µ, ν) ≥

´

G
|x−y|q d(µ×ν)(x, y) ≥

´

G
Rq d(µ×

ν)(x, y) = aRq for all q > 1, whence logMq(µ,ν)
− log q

≤ − log(a) 1
log q

− log(R) q

log q
→ −∞

because R > 1 and a > 0. �
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It follows from Proposition 2.1 and the preceding discussion, that if d(µ, ν) 6= 1,

then the limiting behaviour of logMq(µ,ν)
− log q

is trivial. Hence, below we will always assume

that

d(µ, ν) = 1.

2.2. The main results. The first main result, i.e. Theorem 2.2, provides an

upper bound for lim supq→∞
logMq(µ,ν)

− log q
and our second main result, i.e. Theorem 2.4,

provides a lower bound for lim infq→∞
logMq(µ,ν)

− log q
. Below we use the following notation,

namely, if C is a subset Rm, then we write dimH C for the Hausdorff dimension
of C and we write dimB C and dimB C for the lower and upper box dimension of
C, respectively; the reader is referred to [Fa1] for the definition of the Hausdorff
dimension and for the definitions of the lower and upper box dimensions. We can

now state our first main result providing an upper bound for lim supq→∞
logMq(µ,ν)

− log q
.

Theorem 2.2. Upper bound for lim supq→∞
logMq(µ,ν)

− log q
. Let µ, ν ∈ Pco(R

d) and

assume that d(µ, ν) = 1.

(1) We have

lim sup
q→∞

logMq(µ, ν)

− log q
≤ − dimH E(µ, ν) + sup

(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

(2) We have

lim sup
q→∞

logMq(µ, ν)

− log q
≤ inf

(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

.

The proof of Theorem 2.2 is given in Section 4 using the preliminary auxiliary
results from Section 3,

In order to state our second main result providing a lower bound for lim infq→∞
logMq(µ,ν)

− log q
, we introduce the following covering condition. Below we use the follow-

ing notation. If C is a subset of Rm and r > 0, then we write B(C, r) for the r

neighbourhood of C, i.e.

B(C, r) = {x ∈ Rm | dist(x, C) < r} .

The extremal set covering condition. Let µ, ν ∈ Pco(R
d) and assume that

d(µ, ν) = 1. For 0 ≤ r ≤ 1, write

(2.4) Er = {(x, y) ∈ suppµ× supp ν | |x− y| ≥ 1− r} .

We will say that µ and ν satisfy the extremal set covering condition if there is a
constant k0 > 0 and a number 0 < r0 < 1 such that

(2.5) Er ⊆ B (E0, k0r)

for all 0 < r < r0.

Before presenting our second main result, i.e. Theorem 2.4, we first note that all
measures µ and ν in R satisfy the extremal covering set condition; this is the content
of Lemma 2.3 below.

Lemma 2.3. Let µ, ν ∈ Pco(R) and assume that d(µ, ν) = 1. Then µ and ν

satisfy the extremal set covering set condition.
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Proof. Since µ and ν have compact supports, we can find real numbers s, t, u, v

such that µ ∈ P([s, t]) with s, t ∈ supp µ and ν ∈ P([u, v]) with u, v ∈ supp ν. Now
write

E =











{(s, v)} if |s− v| > |u− t|;
{(s, v), (t, u)} if |s− v| = |u− t|;
{(t, u)} if |s− v| < |u− t|,

and note that E = E(µ, ν). For 0 ≤ r ≤ 1, let Er is defined as in (2.4). Since
E = E(µ, ν) = E0, it is easily seen that

Er ⊆ {(x, y) ∈ [s, t]× [u, v] | |x− y| ≥ 1− r}

⊆







































[s, s+ r]× [v − r, v] ⊆ B(E,
√
2r) = B(E0,

√
2r)

for 0 < r < 1− |u− t| if |s− v| > |u− t|;
([s, s+ r]× [v − r, r]) ∪ ([t− r, t]× [u, u+ r]) ⊆ B(E,

√
2r)

= B(E0,
√
2r) for 0 < r < 1 if |s− v| = |u− t|;

[t− r, t]× [u, u+ r] ⊆ B(E,
√
2r) = B(E0,

√
2r)

for 0 < r < 1− |s− v| if |s− v| < |u− t|.

(2.6)

It follows immediately from (2.6) that µ and ν satisfy the extremal set covering
condition. �

Theorem 2.4. Lower bound for lim infq→∞
logMq(µ,ν)

− log q
. Let µ, ν ∈ Pco(R

d) and

assume that d(µ, ν) = 1. If µ and ν satisfy the extremal set covering condition, then
we have

lim inf
q→∞

logMq(µ, ν)

− log q
≥ −dimBE(µ, ν) + lim inf

rց0
inf

(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r
.

The proof of Theorem 2.4 is given in Section 5 using the preliminary auxiliary
results from Section 3.

While the second term in the upper bound for lim supq→∞
logMq(µ,ν)

− log q
in Theo-

rem 2.2.(1) and the second term in the lower bound for lim infq→∞
logMq(µ,ν)

− log q
in The-

orem 2.4 resemble each other, they represent two opposed set of ideas: the second

term in upper bound for lim supq→∞
logMq(µ,ν)

− log q
in Theorem 2.2.(1), i.e. the term

sup
(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

= sup
(x,y)∈E(µ,ν)

(

lim sup
rց0

logµ(B(x, r))

log r
+ lim sup

rց0

log ν(B(y, r))

log r

)

,
(2.7)

is obtained by first letting r tend to 0 (leading to the local dimensions dimloc(µ; x)
dimloc(ν; y)) followed by forming an extremum, whereas the corresponding term in

lower bound for lim infq→∞
logMq(µ,ν)

− log q
in Theorem 2.4, i.e. the term

lim inf
rց0

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r
,(2.8)

is obtained by first forming an extremum (the infimum inf(x,y)∈E(µ,ν)
log(µ×ν)B((x,y),r)

log r
)

followed by letting r tend to 0. However, under an additional condition, namely
Condition (2.9) below, the term (2.8) can be brought into a form that is similar to
(2.7); this is the statement of Corollary 2.5 below. In order to state Condition (2.9)
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in Corollary 2.5, we introduce the following notation. For a probability measure γ

on Rm, we write

dimloc(γ; x; r) = inf
0<ρ≤r

log γ(B(x, ρ))

log ρ
.

It follows immediately from the definition of dimloc(γ; x; r) and dimloc(γ; x) that

dimloc(γ; x; r) ր dimloc(γ; x) for all x ∈ Rm as r ց 0.

In particular, we conclude that if µ, ν ∈ Pco(R
d), then

dimloc(µ× ν; (x, y); r) ր dimloc(µ× ν; (x, y)) for all (x, y) ∈ Rd ×Rd as r ց 0.

While simple examples show that dimloc(µ× ν; ·; r) does not necessarily convergence
uniformly to dimloc(µ×ν; ·) as r ց 0, Condition (2.9) in Corollary 2.5 below stipulates
that dimloc(µ × ν; ·; r) converges uniformly to dimloc(µ × ν; ·) on E(µ, ν) as r ց 0.
We can now state Corollary 2.5.

Corollary 2.5. Lower bound for lim infq→∞
logMq(µ,ν)

− log q
. Let µ, ν ∈ Pco(R

d) and

assume that d(µ, ν) = 1. If µ and ν satisfy the extremal set covering condition and

(2.9) dimloc(µ× ν; ·; r) → dimloc(µ× ν; ·) uniformly on E(µ, ν) as r ց 0,

then

lim inf
q→∞

logMq(µ, ν)

− log q
≥ −dimBE(µ, ν) + inf

(x,y)∈E(µ,ν)
(dimloc(µ; x) + dimloc(ν; y)) .

Proof. It is not difficult to see that (2.9) implies that

(2.10) lim
rց0

inf
(x,y)∈E(µ,ν)

dimloc(µ× ν; (x, y); r) = inf
(x,y)∈E(µ,ν)

lim
rց0

dimloc(µ× ν; (x, y); r).

Using the fact that dimloc(µ × ν; (x, y); r) = inf0<ρ≤r
log(µ×ν)B((x,y),ρ)

log ρ
combined with

the fact that limrց0 dimloc(µ×ν; (x, y); r) = lim infrց0
log(µ(B(x,r)) ν(B(y,r)))

log r
, (2.10) can

now be rewritten as

lim
rց0

inf
(x,y)∈E(µ,ν)

inf
0<ρ≤r

log(µ× ν)B((x, y), ρ)

log ρ

= inf
(x,y)∈E(µ,ν)

lim inf
rց0

log(µ(B(x, r)) ν(B(y, r)))

log r
.

Next, since clearly

inf
0<ρ≤r

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), ρ)

log ρ
= inf

(x,y)∈E(µ,ν)
inf

0<ρ≤r

log(µ× ν)B((x, y), ρ)

log ρ
,

we now deduce from the previous equality that

lim inf
rց0

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r

= lim
rց0

inf
0<ρ≤r

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), ρ)

log ρ

= lim
rց0

inf
(x,y)∈E(µ,ν)

inf
0<ρ≤r

log(µ× ν)B((x, y), ρ)

log ρ

= inf
(x,y)∈E(µ,ν)

lim inf
rց0

log(µ(B(x, r)) ν(B(y, r)))

log r
.

(2.11)
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However, since B((x, y), r) ⊆ B(x, r)×B(y, r) for all (x, y) ∈ Rd×Rd and all r > 0,
we conclude from (2.11) that

lim inf
rց0

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r

≥ inf
(x,y)∈E(µ,ν)

lim inf
rց0

log(µ(B(x, r)) ν(B(y, r)))

log r

= inf
(x,y)∈E(µ,ν)

lim inf
rց0

(

logµ(B(x, r)

log r
+

log ν(B(y, r)

log r

)

≥ inf
(x,y)∈E(µ,ν)

(

lim inf
rց0

logµ(B(x, r)

log r
+ lim inf

rց0

log ν(B(y, r)

log r

)

= inf
(x,y)∈E(µ,ν)

(dimloc(µ; x) + dimloc(ν; y)) .

(2.12)

The desired statement now follows from (2.12) and Theorem 2.4. �

Before presenting several applications of Theorem 2.2 and Theorem 2.4, we first
made the following two comments.

Remark 1. For µ, ν ∈ Pco(R
d), write

∆(µ, ν) = inf
(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

and

∆(µ, ν) = sup
(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

.

Using this notation, Theorem 2.2 says that if d(µ, ν) = 1, then the numbers

− dimH E(µ, ν)+∆(µ, ν) and ∆(µ, ν) are upper bounds for lim supq→∞
logMq(µ,ν)

− log q
, i.e.

lim sup
q→∞

logMq(µ, ν)

− log q
≤ − dimH E(µ, ν) + ∆(µ, ν)

and

lim sup
q→∞

logMq(µ, ν)

− log q
≤ ∆(µ, ν).

We will now provide examples showing that, in general, there is no relation between
the upper bounds − dimH E(µ, ν) + ∆(µ, ν) and ∆(µ, ν). More precisely, we will
construct measures µp, ν ∈ Pco(R

2) for 0 < p ≤ 1
2

such that − dimH E(µp, ν) +

∆(µp, ν) > ∆(µp, ν) for 0 < p < 1
3
, − dimH E(µp, ν) + ∆(µp, ν) = ∆(µp, ν) for p = 1

3

and − dimHE(µp, ν) + ∆(µp, ν) < ∆(µp, ν) for 1
3
< p ≤ 1

2
. Fix 0 < r < 1

2
and define

S1, S2 : [0, 1] → [0, 1] by S1(x) = rx and S2(x) = rx+1− r. Let C be the self-similar
set associated with the list (Si)i, i.e. C is the unique non-empty compact subset of
[0, 1] such that C = ∪iSi(C). Also, fix 0 < p ≤ 1

2
and consider the probability

vector (p1, p2) = (p, 1 − p). Next, let πp be the self-similar measure associated with
the list (Si, pi)i, i.e. πp is the unique Borel probability measure on C such that
πp =

∑

i piπp ◦ S−1
i . We now define ϕ : [0, 1] → R2 by ϕ(t) = (cos(2πt), sin(2πt)).

Finally, we define µp, ν ∈ Pco(R
2) by µp = πp◦ϕ−1 and ν = δ(0,0). Since supp πp = C,

it is clear that supp µp = ϕ(C). It is also clear that supp ν = {(0, 0)} and d(µp, ν) = 1.
The previous remarks imply that

(2.13) E(µp, ν) = supp(µp × ν) = supp µp × supp ν = ϕ(C)× {(0, 0)}.
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Since dimH ϕ(C) = dimH C (because ϕ is bi-Lipschitz) and dimH C = − log 2
log r

(see

[Fa1]), we conclude from (2.13) that

(2.14) dimHE(µp, ν) = dimH ϕ(C) = dimHC = − log 2

log r
.

Next, we note that it is well-known that supt∈C dimloc(πp; t) = maxi
log pi
log r

= log p
log r

and

inft∈C dimloc(πp; t) = mini
log pi
log r

= log(1−p)
log r

, see [CaMa] or [Fa2]. Since it is also not

difficult to see that dimloc(πp; t) = dimloc(µp;ϕ(t)) for all t ∈ C, we therefore conclude
that

∆(µp, ν) = inf
(x,y)∈E(µp,ν)

(

dimloc(µp; x) + dimloc(ν; y)
)

= inf
x∈ϕ(C)

dimloc(µp; x) = inf
t∈C

dimloc(πp; t) =
log(1− p)

log r
.

(2.15)

Similarly, we prove that ∆(µp, ν) =
log p
log r

. Combining this and (2.14) gives

(2.16) − dimH E(µp, ν) + ∆(µp, ν) =
log 2

log r
+

log p

log r
=

log 2p

log r
.

It follows immediately from (2.15) and (2.16) that

− dimHE(µp, ν) + ∆(µp, ν) > ∆(µp, ν) for 0 < p < 1
3
;

− dimHE(µp, ν) + ∆(µp, ν) = ∆(µp, ν) for p = 1
3
;

− dimHE(µp, ν) + ∆(µp, ν) < ∆(µp, ν) for 1
3
< p ≤ 1

2
.

This concludes the first remark.

Remark 2. The second term in the lower bound for lim infq→∞
logMq(µ,ν)

− log q
in

Theorem 2.4, i.e. the term

lim inf
rց0

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r

= lim inf
rց0

log sup(x,y)∈E(µ,ν)(µ× ν)B((x, y), r)

log r
,

(2.17)

is closely related to the so-called lower ∞-Rényi dimension of µ×ν and the concentra-
tion function of µ×ν. We will now explain these connections. For a Borel probability
measure γ on Rm and q ∈ [−∞,∞], we define the lower q-Rényi dimensions of γ by

Dγ(q) = lim inf
rց0

1

q − 1

log
´

supp γ
γ(B(x, r))q−1 dγ(x)

log r
for q ∈ R \ {1},

Dγ(1) = lim inf
rց0

´

supp γ
log γ(B(x, r)) dγ(x)

log r
,

and

Dγ(−∞) = lim inf
rց0

log infx∈supp γ γ(B(x, r))

log r
,

Dγ(∞) = lim inf
rց0

log supx∈supp γ γ(B(x, r))

log r
.

The upper Rényi dimensions are defined analogously by replacing lim inf by lim sup.
It is clear that if E(µ, ν) = supp(µ × ν) (and this may happen, see, for example,
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(2.13)), then the second term in the lower bound for lim infq→∞
logMq(µ,ν)

− log q
in Theo-

rem 2.4, equals lower ∞-Rényi dimension of µ× ν, i.e.

lim inf
rց0

inf
(x,y)∈E(µ,ν)

log(µ× ν)B((x, y), r)

log r
= lim inf

rց0

log sup(x,y)∈E(µ,ν)(µ× ν)B((x, y), r)

log r

= Dµ×ν(∞).

The Rényi dimensions were essentially introduced by Rényi [Ré1,Ré2] in 1960 as
a tool for analyzing various problems in information theory. The main significance
of the Rényi dimensions, is their relationship with the multifractal spectrum of the
measure γ. We define the Hausdorff multifractal spectrum function, fγ , of γ by

fγ(α) = dimH

{

x ∈ Rm

∣

∣

∣

∣

lim
rց0

log γ(B(x, r))

log r
= α

}

, α ≥ 0.

In the 1980’s it was conjectured in the physics literature [HaJeKaPrSh] that for
“good” measures the following result, relating the multifractal spectrum function fγ
to the Legendre transform of the Rényi dimensions, holds: the multifractal spectrum
function fγ coincides with the Legendre transforms of the functions τγ , τγ : R → R

define by τγ(q) = (1 − q)Dγ(q) and τ γ(q) = (1 − q)Dγ(q), i.e. fγ(α) = τ ∗
γ(α) =

τ ∗γ(α) for all α ≥ 0 where τ ∗
γ and τ ∗γ denote the Legendre transforms of τγ and τγ ,

respectively. This result is known as the Multifractal Formalism. During the 1990’s
there has been an enormous interest in verifying the Multifractal Formalism and
computing the multifractal spectra of measures in the mathematical literature, see
[Fa2, Pe].

The term in (2.17) is also related to concentration functions. If P is a Borel
probability measure on Rm, then the concentration function QP : (0,∞) → R of
P is defined by QP (r) = supx∈Rm P (B(x, r)), see [HeTh]. Using this notation and
terminology, it is now clear that if E(µ, ν) = supp(µ × ν), then the term in (2.17)

equals lim infrց0
logQµ×ν(r)

log r
. This completes the second remark.

2.3. Applications of the main results. We now present several corollaries of
Theorem 2.2, Theorem 2.4 and Corollary 2.5. In particular, we consider the following
two special cases: (1) the extremal set E(µ, ν) is finite, and (2) the measures µ and
ν are measures on the real line R.

Corollary 2.6. Let µ, ν ∈ Pco(R
d) and assume that d(µ, ν) = 1. If µ and ν

satisfy the extremal set covering condition and E(µ, ν) is finite, then

inf
(x,y)∈E(µ,ν)

(dimloc(µ; x) + dimloc(ν; y)) ≤ lim inf
q→∞

logMq(µ, ν)

− log q
≤ lim sup

q→∞

logMq(µ, ν)

− log q

≤ inf
(x,y)∈E(µ,ν)

(

dimloc(µ; x) + dimloc(ν; y)
)

.

Proof. Since E(µ, ν) is finite we conclude that Condition (2.9) is satisfied and
that dimHE(µ, ν) = dimBE(µ, ν) = 0. The desired result follows immediately from
this and Theorem 2.2 and Corollary 2.5. �

Corollary 2.7. Let µ ∈ P([s, t]) and ν ∈ P([u, v]) with s, t ∈ supp µ and
u, v ∈ supp ν and assume that

max(|s− v|, |u− t|) = 1.
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Write

E =











{(s, v)} if |s− v| > |u− t|;
{(s, v), (t, u)} if |s− v| = |u− t|;
{(t, u)} if |s− v| < |u− t|.

Then

inf
(x,y)∈E

(dimloc(µ; x) + dimloc(ν; y)) ≤ lim inf
q→∞

logMq(µ, ν)

− log q
≤ lim sup

q→∞

logMq(µ, ν)

− log q

≤ inf
(x,y)∈E

(

dimloc(µ; x) + dimloc(ν; y)
)

.

Proof. It is clear that d(µ, ν) = 1 (since max(|s − v|, |u − t|) = 1) and that
E(µ, ν) = E . Next, we observe that µ and ν satisfy the extremal covering condition
(by Lemma 2.3) and that E(µ, ν) is finite (since E(µ, ν) = E). The desired result
follows immediately from this observation and Corollary 2.6. �

Recall, that for µ ∈ Pco(R
d) and q > 0, we write

Mq(µ) =

ˆ

|x|q dµ(x).

Our final corollary provides estimates for lim infq→∞
logMq(µ)
− log q

and lim supq→∞
logMq(µ)
− log q

for µ ∈ P([0, 1]).

Corollary 2.8. Let µ ∈ P([0, 1]) with 1 ∈ supp µ. Then

dimloc(µ; 1) ≤ lim inf
q→∞

logMq(µ)

− log q
≤ lim sup

q→∞

logMq(µ)

− log q
≤ dimloc(µ; 1).

Proof. This corollary follows from applying Corollary 2.7 to the measures µ and
ν = δ0 noticing that Mq(µ, δ0) = Mq(µ). �

3. Proofs of Theorem 2.2 and Theorem 2.4. Preliminary results

The purpose of this section is to provide various auxiliary results that will be
used in the proofs of Theorem 2.2 and Theorem 2.4. The two main results results
are Lemma 3.2 and Lemma 3.4. Lemma 3.2 provides an alternative expressing for
the moments Mq(µ, ν). This expression will (see Section 4 and Section 5) allow us

to bound Mq(µ, ν) by an integral of the form
´ 1

1−δ
quq(1− u)a du for suitable choices

of δ and a, and Lemma 3.4 establishes the asymptotic behaviour of the integral
´ 1

1−δ
quq(1− u)a du as q → ∞.
Before stating and proving the first main auxiliary result, namely Lemma 3.2, we

first recall the following well-known result from analysis.

Lemma 3.1. Let X be a separable metric space and let m be a Borel measure
on X. If f : X → [0,∞) is a positive Borel function, then

ˆ

f dm =

ˆ ∞

0

m({f ≥ t}) dt.

Proof. This result is proven in [Ma, Theorem 1.15]. �

Lemma 3.2. Let µ, ν ∈ Pco(R
d) and assume that

sup
x∈suppµ

y∈supp ν

|x− y| = 1.
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Fix 0 < δ < 1. Then there is a function h : (0,∞) → R such that

Mq(µ, ν) =

ˆ 1

1−δ

quq−1 (µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du+ h(q)

and |h(q)| ≤ (1− δ)q for all q > 0.

Proof. Define f : Rd ×Rd → [0,∞) by f(x, y) = |x − y|q. It now follows from
Lemma 3.1 that

Mq(µ, ν) =

ˆ

f d(µ× ν) =

ˆ ∞

0

(µ× ν)({f ≥ t}) dt

=

ˆ ∞

0

(µ× ν){(x, y) ∈ Rd ×Rd | |x− y|q ≥ t} dt

=

ˆ ∞

0

(µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ t
1
q } dt.

(3.1)

Introducing the substitution u = t
1
q into the integral in (3.1), it now follows that

Mq(µ, ν) =

ˆ ∞

0

quq−1 (µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du,

and the assumption supx∈suppµ,y∈supp ν |x− y| = 1, therefore implies that

(3.2) Mq(µ, ν) =

ˆ 1

0

quq−1 (µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du.

It follows immediately from (3.2) that

Mq(µ, ν) =

ˆ 1

1−δ

quq−1(µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du+ h(q),

where h(q) =
´ 1−δ

0
quq−1(µ× ν){(x, y) ∈ Rd×Rd | |x− y| ≥ u} du. In particular, we

conclude that |h(q)| ≤
´ 1−δ

0
quq−1 du = (1− δ)q for all q > 0. �

Next, we will state and prove the second main auxiliary result in this section,
namely, Lemma 3.4. However, we first prove lemma 3.3 below.

Lemma 3.3. Fix 0 < δ < 1 and a > 0. Then there are functions f, g : (0,∞) →
R and a real number c such that

ˆ 1

1−δ

quq−1(1− u)a du = c f(q) q−a + g(q)

and f(q) → 1 as q → ∞ and |g(q)| ≤ (1− δ)q for all q > 0.

Proof. Define the function f : (0,∞) → R by f(q) = qa
Γ(q+1)

Γ(q+a+1)
and note that it

follows from [Ol, p. 119] that f(q) → 1 as q → ∞. Also, define the real number c by
c = Γ(a+ 1),

Next, define the function g : (0,∞) → R by g(q) = −
´ 1−δ

0
quq−1(1− u)a du, and

note that |g(q)| ≤
´ 1−δ

0
quq−1(1− u)a du ≤

´ 1−δ

0
quq−1 du = (1− δ)q for all q > 0.
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Finally, since it is easily seen that
´ 1

0
uq−1(1− u)a du = Γ(q)Γ(a+1)

Γ(q+a+1)
, we have

ˆ 1

1−δ

quq−1(1− u)a du =

ˆ 1

0

quq−1(1− u)a du−
ˆ 1−δ

0

quq−1(1− u)a du

= q
Γ(q)Γ(a+ 1)

Γ(q + a + 1)
+ g(q) =

Γ(q + 1)Γ(a+ 1)

Γ(q + a+ 1)
+ g(q)

= c f(q) q−a + g(q)

for all q > 0. �

Lemma 3.4. Fix 0 < δ < 1, a > 0 and m > 0. Let h : (0,∞) → R be a function
and assume that |h(q)| ≤ (1− δ)q for all q > 0. Then

lim
q→∞

log
(

m
´ 1

1−δ
quq−1(1− u)a du+ h(q)

)

− log q
= a.

Proof. It follows from Lemma 3.3 there are functions f, g : (0,∞) → R and a
real number c such that

ˆ 1

1−δ

quq−1(1− u)a du = c f(q) q−a + g(q)

and f(q) → 1 as q → ∞ and |g(q)| ≤ (1− δ)q for all q > 0. In particular, this shows
that

m

ˆ 1

1−δ

quq−1(1− u)a du+ h(q) = mcf(q)q−a +mg(q) + h(q) = q−aϕ(q)

where the function ϕ : (0,∞) → R is defined by ϕ(q) = mcf(q) +mqag(q) + qah(q),
and so

(3.3)
log

(

m
´ 1

1−δ
quq−1(1− u)a du+ h(q)

)

− log q
= a− logϕ(q)

log q
.

However, we clearly have |qag(q)| ≤ qa(1 − δ)q → 0 as q → ∞ and |qah(q)| ≤
qa(1−δ)q → 0 as q → ∞, and so ϕ(q) = mcf(q)+mqag(q)+qah(q) → mc as q → ∞.
The desired result follows from this and (3.3). �

4. Proof of Theorem 2.2

The purpose of this section is to prove Theorem 2.2. We first introduce the
following notation that will be used in this and the following sections. Namely, if C
is a subset of Rm and r > 0, then we let Nr(C) denote the largest number of pairwise
disjoint balls of radii equal to r and with centres in C, i.e.

Nr(C) = sup{card I | (B(xi, r))i∈I is a family of balls with:

(1) xi ∈ C for all i;

(2) B(xi, r) ∩ B(xjr) = ∅ for all i 6= j}.
It is well-known that lower and upper box dimension of C are are given by

dimBC = lim inf
rց0

logNr(C)

− log r

and

dimBC = lim sup
rց0

logNr(C)

− log r
.
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respectively.
We now turn towards the proof of Theorem 2.2. We begin with the following

small lemma.

Lemma 4.1. Let µ, ν ∈ Pco(R
d). For each integer n and ε > 0, write

∆n,ε =

{

(x, y) ∈ Rd ×Rd
∣

∣ dimloc(µ; x) + ε ≥ log µ(B(x, r))

log r
for 0 < r <

1

n

and dimloc(ν; y) + ε ≥ log ν(B(y, r))

log r
for 0 < r <

1

n

}

.

Let C be a Borel subset of suppµ× supp ν. Then

−dimB(∆n,ε ∩ C) + sup
(x,y)∈C

(

dimloc(µ; x) + dimloc(ν; y)
)

+ 2ε ≥ 0

for all positive integers n and all ε > 0.

Proof. For brevity write

D = sup
(x,y)∈C

(

dimloc(µ; x) + dimloc(ν; y)
)

.

Fix a positive integer n and ε > 0. For each 0 < r < 1
n
, we can choose a subset Jr of

∆n,ε ∩ C with

(4.1) card Jr = Nr(∆n,ε ∩ C)

and

(4.2) the family (B((x, y), r))(x,y)∈Jr consists of pairwise disjoint sets.

We now prove the following two claims.

Claim 1. For 0 < r < 1
n
, we have Nr(∆n,ε ∩C) ≤ 2−(D

2
+ε)r−(D+2ε)

∑

(x,y)∈Jr(µ×
ν)B((x, y), r).

Proof of Claim 1. Noticing that B(x, 1√
2
r)×B(y, 1√

2
r) ⊆ B((x, y), r), we conclude

that
∑

(x,y)∈Jr

(µ× ν)B((x, y), r) ≥
∑

(x,y)∈Jr

(µ× ν)(B(x, 1√
2
r)×B(y, 1√

2
r))

=
∑

(x,y)∈Jr

µ(B(x, 1√
2
r)) ν(B(y, 1√

2
r)).

(4.3)

Next, we note that if 0 < r < 1
n

and (x, y) ∈ Jr ⊆ ∆n,ε ∩ C ⊆ ∆n,ε, then it follows

from the definition of ∆n,ε that µ(B(x, 1√
2
r)) ≥

(

1√
2
r
)dimloc(µ;x)+ε

and ν(B(y, 1√
2
r)) ≥

(

1√
2
r
)dimloc(ν;y)+ε

. We deduce from this and (4.1) and (4.3) that

∑

(x,y)∈Jr

(µ× ν)B((x, y), r) ≥
∑

(x,y)∈Jr

(

1√
2
r
)dimloc(µ;x)+ε

( 1√
2
r)dimloc(ν;y)+ε

=
∑

(x,y)∈Jr

(

1√
2
r
)dimloc(µ;x)+dimloc(ν;y)+2ε

≥
∑

(x,y)∈Jr

(

1√
2
r
)D+2ε

≥ 2−(D
2
+ε) rD+2ε card Jr ≥ 2−(D

2
+ε) rD+2εNr(∆n,ε ∩ C).

This completes the proof of Claim 1.
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Claim 2. For 0 < r < 1
n
, we have

∑

(x,y)∈Jr(µ× ν)B((x, y), r) ≤ 1.

Proof of Claim 2. Indeed, since the family (B((x, y), r) )(x,y)∈Jr consists of pair-
wise disjoint sets (by (4.2)), we immediately conclude that

∑

(x,y)∈Jr(µ×ν)B((x, y), r)

= (µ× ν)
(

⋃

(x,y)∈Jr B((x, y), r)
)

≤ 1. This completes the proof of Claim 2.

By combining Claim 1 and Claim 2, we see that for 0 < r < 1
n
, we have

Nr(∆n,ε ∩ C) ≤ 2
D
2
+εr−(D+2ε)

∑

(x,y)∈Jr

(µ× ν)B((x, y), r) ≤ 2
D
2
+εr−(D+2ε).

This inequality clearly implies that

dimB(∆n,ε ∩ C) ≤ dimB(∆n,ε ∩ C) = lim sup
rց0

logNr(∆n,ε ∩ C)

− log r
≤ D + 2ε. �

We can now prove Theorem 2.2. The proof of Theorem 2.2 is divided into two
parts. First we prove Theorem 2.2.(1) and then we prove Theorem 2.2.(2).

Proof of Theorem 2.2.(1). For the benefit of the reader we start by recalling the
statement of Theorem 2.2.(1). Let µ, ν ∈ Pco(R

d) and assume that

(4.4) d(µ, ν) = sup
x∈suppµ

y∈supp ν

|x− y| = 1.

Write E = E(µ, ν). Then

(4.5) lim sup
q→∞

Mq(µ, ν)

− log q
≤ − dimH E + sup

(x,y)∈E

(

dimloc(µ; x) + dimloc(ν; y)
)

.

We will now prove (4.5). For a positive integer n and ε > 0, we let ∆n,ε be
defined as in Lemma 4.1, i.e.

∆n,ε =

{

(x, y) ∈ Rd ×Rd
∣

∣ dimloc(µ; x) + ε ≥ log µ(B(x, r))

log r
for 0 < r <

1

n

and dimloc(ν; y) + ε ≥ log ν(B(y, r))

log r
for 0 < r <

1

n

}

.

For each positive integer n and ε > 0, we can find a positive number rn,ε such

that if 0 < r < rn,ε, then logNr(∆n,ε∩E)
− log r

≥ dimB(∆n,ε ∩ E)− ε, and so

(4.6) Nr(∆n,ε ∩ E) ≥ r−dimB(∆n,ε∩E)+ε

for 0 < r < rn,ε. Now, put δn,ε = min(rn,ε,
1
n
). Also, for each u ∈ (0, 1), we can

choose a subset Iu,n,ε of ∆n,ε ∩ E with

(4.7) card Iu,n,ε = N 1−u
2
(∆n,ε ∩ E)

and

(4.8) the family
(

B((x, y), 1−u
2
)
)

(x,y)∈Iu,n,ε
consists of pairwise disjoint sets.

It now follows from Lemma 3.2 that the is a function hn,ε : (0,∞) → R such that

(4.9) Mq(µ, ν) = In,ε(q) + hn,ε(q)

where

In,ε(q) =

ˆ 1

1−δn,ε

quq−1(µ× ν)
{

(x, y) ∈ Rd ×Rd | |x− y| ≥ u
}

du
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and |hn,ε(q)| ≤ (1− δn,ε)
q for all q > 0. We will now estimate In,ε(q). This is done in

Claim 1 below. For brevity, we write

D = sup
(x,y)∈E

(

dimloc(µ; x) + dimloc(ν; y)
)

,

sn,ε = dimB(∆n,ε ∩ E), an,ε = −sn,ε +D + 3ε,

in Claim 1 and below.

Claim 1. We have In,ε(q)≥m
´ 1

1−δn,ε
quq−1(1−u)an,ε du where m=2−ε(2

√
2)−(D+2ε).

Proof of Claim 1. We first note that

(4.10)
⋃

(x,y)∈Iu,n,ε

(

B(x, 1−u
2
)× B(y, 1−u

2
)
)

⊆
{

(v, w) ∈ Rd ×Rd | |v − w| ≥ u
}

;

indeed, if (x, y) ∈ Iu,n,ε ⊆ ∆n,ε ∩ E ⊆ E and (v, w) ∈ B(x, 1−u
2
) × B(y, 1−u

2
), then

1 = d(µ, ν) = |x−y| ≤ |x−v|+|v−w|+|w−y| = 1−u
2

+|v−w|+ 1−u
2

= |v−w|+1−u,
whence |v − w| ≥ u. This proves (4.10). It follows from (4.10) that

In,ε(q) =

ˆ 1

1−δn,ε

quq−1 (µ× ν){(v, w) ∈ Rd ×Rd | |v − w| ≥ u} du

≥
ˆ 1

1−δn,ε

quq−1(µ× ν)





⋃

(x,y)∈Iu,n,ε

(

B(x, 1−u
2
)× B(y, 1−u

2
)
)



 du.

(4.11)

Noticing that B((x, y), 1−u
2
) ⊆ B(x, 1−u

2
)×B(y, 1−u

2
) for all (x, y) ∈ Rd ×Rd and all

u ∈ (0, 1), we conclude from (4.11) that

In,ε(q) ≥
ˆ 1

1−δn,ε

quq−1(µ× ν)





⋃

(x,y)∈Iu,n,ε

B((x, y), 1−u
2
)



 du.(4.12)

Next, since it follows from (4.8) that the family (B((x, y), 1−u
2
) )(x,y)∈Iu,n,ε

consists of
pairwise disjoint sets, we conclude that

(µ× ν)





⋃

(x,y)∈Iu,n,ε

B((x, y), 1−u
2
)



 =
∑

(x,y)∈Iu,n,ε

(µ× ν)B((x, y), 1−u
2
),

and we therefore deduce from (4.12) that

(4.13) In,ε(q) ≥
ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

(µ× ν)B((x, y), 1−u
2
) du.

We now notice that B(x, 1√
2
1−u
2
) × B(y, 1√

2
1−u
2
) ⊆ B((x, y), 1−u

2
) for all (x, y) ∈

Rd ×Rd and all u ∈ (0, 1). This and (4.13) imply that

In,ε(q) ≥
ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

(µ× ν)
(

B(x, 1√
2
1−u
2
)×B(y, 1√

2
1−u
2
)
)

du

=

ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

µ(B(x, 1√
2
1−u
2
))ν(B(y, 1√

2
1−u
2
)) du.

(4.14)
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We now observe that if (x, y) ∈ Iu,n,ε and u ∈ (1 − δn,ε, 1), then (x, y) ∈ Iu,n,ε ⊆
∆n,ε ∩ E ⊆ ∆n,ε and 1√

2
1−u
2

≤ 1− u ≤ δn,ε ≤ 1
n
, whence

µ(B(x, 1√
2
1−u
2
)) ≥ ( 1√

2
1−u
2
)dimloc(µ;x)+ε,

ν(B(x, 1√
2
1−u
2
)) ≥ ( 1√

2
1−u
2
)dimloc(ν;y)+ε.

We deduce from this and (4.7) and (4.14) that

In,ε(q) ≥
ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

µ
(

B(x, 1√
2
1−u
2
)
)

ν
(

B(y, 1√
2
1−u
2
)
)

du

≥
ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

(

1√
2
1−u
2

)dimloc(µ;x)+ε (
1√
2
1−u
2

)dimloc(ν;y)+ε

du

=

ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

(

1√
2
1−u
2

)dimloc(µ;x)+dimloc(ν;y)+2ε

du

≥
ˆ 1

1−δn,ε

quq−1
∑

(x,y)∈Iu,n,ε

(

1√
2
1−u
2

)D+2ε

du

=

ˆ 1

1−δn,ε

quq−1
(

1√
2
1−u
2

)D+2ε

card Iu,n,ε du

=

ˆ 1

1−δn,ε

quq−1
(

1√
2
1−u
2

)D+2ε

N 1−u
2
(∆n,ε ∩ E) du.

(4.15)

Finally, we observe that if u ∈ (1 − δn,ε, 1), then 1 − u ≤ δn,ε ≤ rn,ε, and (4.6)
therefore shows that

N 1−u
2
(∆n,ε ∩ E) ≥

(

1−u
2

)−dimB(∆n,ε∩E)+ε ≥ 2−ε(1− u)−dimB(∆n,ε∩E)+ε.

This and (4.15) imply that

In,ε(q) ≥
ˆ 1

1−δn,ε

quq−1
(

1√
2
1−u
2

)D+2ε

2−ε(1− u)−dimB(∆n,ε∩E)+ε du

= m

ˆ 1

1−δn,ε

quq−1 (1− u)an,ε du.

This completes the proof of Claim 1.

Combining Claim 1 and (4.9) yields

(4.16) Mq(µ, ν) = In,ε(q) + hn,ε(q) ≥ m

ˆ 1

1−δn,ε

quq−1(1− u)an,ε du+ hn,ε(q),

for all positive integers n and all ε > 0, where |hn,ε(q)| ≤ (1− δn,ε)
q for all q > 0, and

an,ε = −sn,ε+D+3ε = −dimB(∆n,ε∩E)+D+3ε ≥ ε > 0 since −dimB(∆n,ε∩E)+
D + 2ε ≥ 0 by Lemma 4.1. Since |hn,ε(q)| ≤ (1− δn,ε)

q for all q > 0, and an,ε > 0, it
follows from Lemma 3.4 and (4.16) that

lim sup
q→∞

logMq(µ, ν)

− log q
≤ lim

q→∞

log
(

m
´ 1

1−δn,ε
quq−1(1− u)an,ε du+ hn,ε(q)

)

− log q

= an,ε = −dimB(∆n,ε ∩ E) +D + 3ε
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for all positive integers n and all ε > 0. Using the fact that dimH(∆n,ε ∩ E) ≤
dimB(∆n,ε ∩ E), we therefore conclude that

(4.17) lim sup
q→∞

logMq(µ, ν)

− log q
≤ −dimH(∆n,ε ∩ E) +D + 3ε

for all positive integers n and all ε > 0.
Since (4.17) holds for all n, we now deduce that

(4.18) lim sup
q→∞

logMq(µ, ν)

− log q
≤ − sup

n

dimH(∆n,ε ∩ E) +D + 3ε.

However, it is clear that
⋃

n ∆n,ε = Rd × Rd, whence supn dimH(∆n,ε ∩ E) =
dimH (

⋃

n(∆n,ε ∩ E)) = dimHE, and (4.18) therefore implies that

(4.19) lim sup
q→∞

logMq(µ, ν)

− log q
≤ − dimH E +D + 3ε.

Finally, letting ε ց 0 gives the desired result. �

Proof of Theorem 2.2.(2). For the benefit of the reader we start by recalling the
statement of Theorem 2.2.(2). Let µ, ν ∈ Pco(R

d) and assume that

(4.20) d(µ, ν) = sup
x∈suppµ

y∈supp ν

|x− y| = 1.

Write E = E(µ, ν). Then

(4.21) lim sup
q→∞

Mq(µ, ν)

− log q
≤ inf

(x,y)∈E

(

dimloc(µ; x) + dimloc(ν; y)
)

.

We will now prove (4.20). Fix ε > 0 and fix (x, y) ∈ E. We can find δε > 0 such
that if 0 < r < δε, then

(4.22) dimloc(µ; x) + ε ≥ log µB(x, r)

log r
, dimloc(ν; y) + ε ≥ log νB(y, r)

log r
.

It now follows from Lemma 3.2 that the is a function hε : (0,∞) → R such that

Mq(µ, ν) = Iε(q) + hε(q)

where

Iε(q) =

ˆ 1

1−δε

quq−1(µ× ν){(v, w) ∈ Rd ×Rd | |v − w| ≥ u} du

and |hε(q)| ≤ (1 − δ)q for all q > 0. We will now estimate Iε(q). This is done in
Claim 1 below. For brevity, we write

D = dimloc(µ; x) + dimloc(ν; y), aε = D + 3ε,

in Claim 1 and below.

Claim 1. We have Iε(q) ≥ m
´ 1

1−δε
quq−1 (1− u)aε du where m = 2−aε .

Proof of Claim 1. We first note that

(4.23) B(x, 1−u
2
)× B(y, 1−u

2
) ⊆ {(v, w) ∈ Rd ×Rd | |v − w| ≥ u};

indeed, since (x, y) ∈ E, we deduce that |x − y| = d(µ, ν) = 1, and we therefore
conclude that if (v, w) ∈ B(x, 1−u

2
)×B(y, 1−u

2
), then 1 = |x− y| ≤ |x− v|+ |v−w|+
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|w − y| = 1−u
2

+ |v − w| + 1−u
2

= |v − w| + 1 − u, whence |v − w| ≥ u. This proves
(4.23). It follows from (4.23) that

Iε(q) =

ˆ 1

1−δε

quq−1(µ× ν){(v, w) ∈ Rd ×Rd | |v − w| ≥ u} du

≥
ˆ 1

1−δε

quq−1(µ× ν)
(

B(x, 1−u
2
)×B(y, 1−u

2
)
)

du

=

ˆ 1

1−δε

quq−1µ(B(x, 1−u
2
))ν(B(y, 1−u

2
)) du.

(4.24)

We now observe that if u ∈ (1 − δε, 1), then 1−u
2

≤ 1 − u ≤ δε, whence (using
(4.21))

µ(B(x, 1−u
2
)) ≥ (1−u

2
)dimloc(µ;x)+ε, ν(B(x, 1−u

2
)) ≥ (1−u

2
)dimloc(ν;y)+ε.

We deduce from this and (4.24) that

Iε(q) ≥
ˆ 1

1−δε

quq−1(1−u
2
)dimloc(µ;x)+ε(1−u

2
)dimloc(ν;y)+ε du = m

ˆ 1

1−δε

quq−1(1− u)aε du.

This completes the proof of Claim 1.

Combining Claim 1 and (4.22) yields

Mq(µ, ν) = Iε(q) + hε(q) ≥ m

ˆ 1

1−δε

quq−1(1− u)aε du+ hε(q),

where |hε(q)| ≤ (1− δε)
q for all q > 0, and aε = D+2ε ≥ 2ε > 0 since clearly D ≥ 0.

Since |hε(q)| ≤ (1 − δε)
q for all q > 0, and aε > 0, it follows from Lemma 3.4 and

(4.22) that

lim sup
q→∞

logMq(µ, ν)

− log q
≤ lim

q→∞

log
(

m
´ 1

1−δε
quq−1(1− u)aε du+ hε(q)

)

− log q

= aε = dimloc(µ; x) + dimloc(ν; y) + 2ε.

Finally, taking infimum over all (x, y) ∈ E and letting ε ց 0 gives the desired
result. �

5. Proof of Theorem 2.4

The purpose of this section is to prove Theorem 2.4. We start by recalling the
following well-known covering lemma.

Lemma 5.1. Let A be a subset of Rm and let r > 0. Then there is a finite or
countable subset I of A such that the family (B(x, r))x∈I of balls with centres in I

and radii equal to r satisfying the following two conditions:

(1) If x, y ∈ I and x 6= y, then B(x, r) ∩ B(y, r) = ∅.
(2) We have

⋃

x∈AB(x, r) ⊆ ⋃

x∈I B(x, 5r).

Proof. The result is proven in [Ma, Theorem 2.1]. �

We can now prove Theorem 2.4.
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Proof of Theorem 2.4. For the benefit of the reader we start by recalling the
statement of Theorem 2.4. Let µ, ν ∈ Pco(R

d) and assume that

d(µ, ν) = sup
x∈suppµ

y∈supp ν

|x− y| = 1.

Write E = E(µ, ν). Assume that µ and ν satisfy the extremal covering condition, i.e.
there a positive constant k0 > 0 and a number 0 < r0 < 1 such that Er ⊆ B(E0, k0r)
for all r with 0 < r < r0 where Er is defined in (2.4). Then

(5.1) lim inf
q→∞

logMq(µ, ν)

− log q
≥ −dimBE + lim inf

rց0
inf

(x,y)∈E

log(µ× ν)B((x, y), r)

log r
.

We will now prove (5.1). For brevity write

D = lim inf
rց0

inf
(x,y)∈E

log(µ× ν)B((x, y), r)

log r
, s = dimBE.

We must now prove that lim infq→∞
logMq(µ,ν)

− log q
≥ −s + D. This inequality is clearly

satisfied if −s +D ≤ 0, and we will therefore assume that −s +D > 0.
Fix ε with 0 < ε < 1

2
(−s + D). Recall, the definition of the box dimensions in

Section 4. In particular, recall that if C is a subset of Rm and r > 0, then we let
Nr(C) denotes the largest number of pairwise disjoint balls of radii equal to r and
with centres in C. It follows from the definitions of the upper box dimension and the

number D that we can find δε with 0 < δε < r0 such that logNr(E)
− log r

≤ dimBE + ε for

all r ≤ δε and inf(x,y)∈E
log(µ×ν)B((x,y),r)

log r
≥ D − ε for all r ≤ 5k0δε. In particular, this

implies that

(5.2) Nr(E) ≤ r−dimBE−ε

for all r ≤ δε, and

(5.3) (µ× ν)B((x, y), r) ≤ rD−ε

for all (x, y) ∈ E and all r ≤ 5k0δε.
Next, we conclude from Lemma 3.2 that the is a function hε : (0,∞) → R such

that

(5.4) Mq(µ, ν) = Iε(q) + hε(q)

where

Iε(q) =

ˆ 1

1−δε

quq−1(µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du

and |hε(q)| ≤ (1 − δε)
q for all q > 0. We will now estimate Iε(q). This is done in

Claim 1 below. For brevity we write

aε = −s +D − 2ε

in Claim 1 below.

Claim 1. We have Iε(q) ≤ m
´ 1

1−δε
quq−1(1−u)aε du where m = (5k0)

D−εk−s−ε
0 .

Proof of Claim 1. We first note that if u ∈ (1 − δε, 1), then 1 − u < δε < r0,
whence E1−u ⊆ B(E0, k0(1− u)) = B(E, k0(1− u)) (because E0 = E), and so

(5.5) E1−u ⊆ B(E, k0(1− u)) =
⋃

(x,y)∈E
B((x, y), k0(1− u)).
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Applying Lemma 5.1 to the family {B((x, y), k0(1 − u)) | (x, y) ∈ E} (i.e. the
family of balls with centres in E and radii equal to k(1−u)), we conclude that there
is a finite or countable subset Iu of E such that the family {B((x, y), k0(1 − u)) |
(x, y) ∈ Iu} of balls with centres in Iu and radii equal to k0(1 − u) satisfies the
following two conditions:

(1) If (x1, y1), (x2, y2) ∈ Iu and (x1, y1) 6= (x2, y2), then B((x1, y1), k0(1 − u)) ∩
B((x2, y2), k0(1− u)) = ∅;

(2) We have
⋃

(x,y)∈E B((x, y), k0(1− u)) ⊆
⋃

(x,y)∈Iu B((x, y), 5k0(1− u)).

Combining (5.5) and Condition (2), we now deduce that

Iε(q) =

ˆ 1

1−δε

quq−1(µ× ν){(x, y) ∈ Rd ×Rd | |x− y| ≥ u} du

=

ˆ 1

1−δε

quq−1(µ× ν)(E1−u) du

≤
ˆ 1

1−δε

quq−1(µ× ν)





⋃

(x,y)∈E
B((x, y), k0(1− u))



 du

≤
ˆ 1

1−δε

quq−1(µ× ν)





⋃

(x,y)∈Iu

B((x, y), 5k0(1− u))



 du

≤
ˆ 1

1−δε

quq−1
∑

(x,y)∈Iu

(µ× ν)(B((x, y), 5k0(1− u))) du.

(5.6)

However, if u ∈ (1−δε, 1) and (x, y) ∈ Iu, then (x, y) ∈ E and 5k0(1−u) ≤ 5k0δε,
and it therefore follows from (5.3) that (µ×ν)(B((x, y), 5k0(1−u))) ≤ (5k0(1−u))D−ε.
This and (5.6) imply that

Iε(q) ≤
ˆ 1

1−δε

quq−1
∑

(x,y)∈Iu

(5k0(1− u))D−ε du

= (5k0)
D−ε

ˆ 1

1−δε

quq−1(1− u)D−ε card Iu du.

(5.7)

Next, we observe that it follows from Condition (1) that the family (B((x, y), k0(1−
u)) )(x,y)∈Iu consists of pairwise disjoint balls with centres in Iu ⊆ E and radii equal
to k0(1− u). This clearly implies that

(5.8) card Iu ≤ Nk0(1−u)(E).

Combining (5.7) and (5.8) now gives

(5.9) Iε(q) ≤ (5k0)
D−ε

ˆ 1

1−δε

quq−1(1− u)D−εNk0(1−u)(E) du.

We also notice that if u ∈ (1 − δε, 1), then k(1 − u) ≤ k0δε, and (5.2) therefore
implies that

(5.10) Nk0(1−u)(E) ≤ (k0(1− u))−dimBE−ε.
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We deduce from (5.9) and (5.10) that

Iε(q) ≤ (5k0)
D−ε

ˆ 1

1−δε

quq−1(1− u)D−ε(k0(1− u))−dimBE−ε du

= m

ˆ 1

1−δε

quq−1(1− u)aε du.

This completes the proof of Claim 1.

Combining Claim 1 and (5.4) yields

(5.11) Mq(µ, ν) = Iε(q) + hε(q) ≤ m

ˆ 1

1−δε

quq−1(1− u)aε du+ hε(q)

where |hε(q)| ≤ (1 − δε)
q for all q > 0, and aε = −s + D − 2ε > 0 (because

0 < ε < 1
2
(−s +D)). Since |hε(q)| ≤ (1 − δε)

q for all q > 0, and aε > 0, it follows
from Lemma 3.4 and (5.11) that

lim inf
q→∞

logMq(µ, ν)

− log q
≥ lim

q→∞

log
(

m
´ 1

1−δε
quq−1(1− u)aε du+ h(q)

)

− log q

= aε = −dimBE +D − 2ε.

Finally, letting ε ց 0 gives the desired result. �
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