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Abstract. We show that the Teichmüller space of a surface without boundary and with

punctures, equipped with the Thurston metric, is the limit in an appropriate sense of Teichmüller

spaces of surfaces with boundary, equipped with their arc metrics, when the boundary lengths tend

to zero. We use this to obtain a result on the translation distances of mapping classes for their

actions on Teichmüller spaces equipped with the Thurston metric.

1. Introduction

In this paper, we show that the arc metrics on the Teichmüller space of surfaces
with boundary limit to the Thurston metric on the Teichmüller space of a surface
without boundary, by making the boundary lengths tend to zero. We use this to
prove a result on the translation distances for mapping classes.

We introduce some notation before stating precisely the results. In all this paper,
S = Sg,p,n is a connected orientable surface of finite type, of genus g with p punctures
and n boundary components. We assume that S has negative Euler characteristic,
i.e., χ(S) = 2 − 2g − p− n < 0. When n > 0, we denote by ∂S the boundary of S.
A hyperbolic structure on S is a complete metric of constant curvature −1 such that

(i) each puncture has a neighborhood isometric to a cusp, i.e., to the quotient

{z = x+ iy ∈ H
2 | y > a}/〈z 7→ z + 1〉,

for some a > 0,
(ii) each boundary component is a simple closed geodesic.

We denote by T (S) the Teichmüller space of S, that is, the set of homotopy classes
of hyperbolic structures on this surface. We say that a simple closed curve on S
is essential if it is neither homotopic to a point nor to a puncture (but it can be
homotopic to a boundary component).

Let S denote the set of homotopy classes of essential simple closed curves on
S. An arc on S is the homeomorphic image of a closed interval which is properly
embedded in S, that is, the interior of the arc is in the interior of S and the endpoints
of the arc are on the boundary of S. All homotopies of arcs that we consider are
relative to ∂S, that is, they keep the endpoints of the arc on the boundary ∂S (but
they do not necessarily fix pointwise the points of ∂S). An arc is said to be essential

if it is not homotopic to an arc whose image is contained in ∂S.
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Let A denote the set of homotopy classes of essential arcs on S. Assume that
S is equipped with a hyperbolic structure X. For any γ ∈ A ∪ S, there is a unique
geodesic γX in its homotopy class. It is orthogonal to ∂X at each endpoint, in the
case where γ is an equivalence class of arcs. We denote by ℓγ(X) the length of γX ,
and we call it the geodesic length of γ on X. This geodesic length only depends on
the equivalence class of X in T (S). Therefore it is a function defined on T (S).

The arc metric on T (S) is an asymmetric metric defined by

(1) d(X, Y ) = sup
γ∈A∪S

log
ℓγ(Y )

ℓγ(X)
.

This metric was introduced in [8]. It is an analogue for surfaces with boundary of
the Thurston asymmetric metric [16]. The arc metric is also studied in the papers
[2] [9] [13] [14].

By gluing a hyperbolic surface with its mirror image along the boundary compo-
nents, we obtain a natural isometric embedding of the Teichmüller space T (S) into

T (S̃), where S̃ denotes the double of S. We endow T (S̃) with the Thurston metric.
The authors do not know whether such an embedding is totally geodesic (although
this is unlikely). In a recent paper [2], the authors described how such an embed-
ding extends continuously to the Thurston compactification. Inspired by the work
of Walsh [17], the authors proved in [2] that the horofunction boundary of (T (S), d)
is homeomorphic to the Thurston boundary. It is conjectured in [2] that, with the
usual exceptional cases, the isometry group of (T (S), d) is the extended mapping
class group.

1.1. Convergence of the arc metric. The first aim of this paper is to study the
subsets of T (S) corresponding to hyperbolic surfaces whose boundary components
have fixed lengths. These subsets are intersections of level sets of the length functions
of boundary components.

Let B = {β1, · · · , βn} be the set of boundary components of S. Given any
L = (L1, · · · , Ln), Li > 0, we set

TL(S) = {X ∈ T (S) | ℓβi
(X) = Li, 1 ≤ i ≤ n}.

For a fixed vector L = (L1, · · · , Ln), there is a metric on TL(S), defined using the
same formula (1). This is the arc metric on TL(S). It is also the metric induced by
the arc metric of T (S) on TL(S) considered as a subset of T (S).

When L = 0, we define T0(S) be the Teichmüller space of hyperbolic structures
on S such that each boundary component is replaced by a puncture. We prove that
as L → 0, the restriction of the arc metric on TL(S) limits to the Thurston metric on
T0(S). This limiting behaviour is described using Fenchel–Nielsen coordinates. It is
also expressed in Proposition 2.3 below where we prove that there is a certain map
ΨL : TL(S) → T0(S) which is a (1, o(1))-quasi-isometry.

1.2. Application to translation distances in the mapping class group.

In the second part of this paper we use the results of the first part to study the
translation distances of mapping class group elements on Teichmüller space equipped
with the Thurston metric. This is based on Proposition 2.3. Let us be more precise.

In this part, the surface is without boundary, that is, S is an oriented surface
obtained from a closed surface by removing finitely many points (possibly none).
We denote its mapping class group by Mod(S). For an element f ∈ Mod(S), its
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translation distance with respect to the Thurston metric dTh on T (S) is defined by

σ(f) = inf
X∈T (S)

dTh(X, f(X)).

The maximal dilatation of f is the largest of the dilatation constants of its pseudo-
Anosov components, with respect to the Thurston decomposition of this mapping
class. See [7] and [15] for the decomposition of a mapping class.

We prove the following:

Theorem 1.1. Let f ∈ Mod(S) and λ(f) be the maximal dilatation of f . Then

there exists an integer n such that

(2) σ(fn) = log λ(fn).

Note that we always have log λ(fn) = n log λ(f). We recall that Bers proved in
[4] that

log λ(f) = inf
X∈T (S)

dTeich(X, f(X)),

where dTeich denotes the Teichmüller metric.
Recall that from Thurston’s classification, the mapping class f is either periodic,

reducible or pseudo-Anosov. When f is periodic, it has a fixed point in T (S), thus
σ(f) = 0 and (2) is trivial. Theorem 1.1 was proved in [10] when f is pseudo-Anosov.
In the present paper, we prove Theorem 1.1 by showing that when f is reducible, one
can decrease the distance dTh(X, f(X)) (not necessary strictly) by taking a sequence
of points X ∈ T (S) such that the lengths of the reducible curves of f decrease to
zero.

Remark 1.2. In the paper [10], the authors announced a proof that σ(f) =
log λ(f) for any pseudo-Anosov mapping class f . Unfortunately, there is a gap in
the argument. In fact, the (weaker) result which is proved there is that this holds up
to taking a power of f . This is also a particular case of Theorem 1.1 of the present
paper.

The difficulty to understand the translation distance σ(f) lies in the fact that
the Thurston metric is not uniquely geodesic. However, there is another notion of
translation distance obtained by setting:

τ(f) = lim
n→∞

1

n
dTh(X0, f

n(X0)),

where X0 ∈ T (S) is fixed. It is not hard to check that the definition of τ(f) is
independent on the choice of X0. As a corollary of Theorem 1.1, we have

Corollary 1.3. Let f ∈ Mod(S) and λ(f) be the maximal dilatation of f . Then

τ(f) = log λ(f).

Acknowledgements. The authors are partially supported by the French ANR
grant FINSLER (Géométrie de Finsler et applications, ANR-12-BS01-0009). W. Su
is partially supported by NSFC No: 11201078. The authors wish to thank the referee
for his/her remarks and corrections.

2. Convergence of the arc metric under pinching

In this section, S = Sg,p,n is a connected orientable surface of genus g with p
punctures and n boundary components, and B = {β1, · · · , βn} is the set of boundary
components of S. Let C = {γ1, · · · , γ3g−3+p} be a maximal collection of distinct
homotopy classes of disjoint essential simple closed curves in the interior of S. The
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union C ∪ B is a pants decomposition of S. We denote the corresponding Fenchel–
Nielsen (length-twist) coordinates on T (S) by

(
(ℓ1, τ1), · · · , (ℓ3g−3+p, τ3g−3+p)

)
× (ℓ3g−3+p+1, · · · , ℓ3g−3+p+n).

Let us fix L = (ℓ3g−3+p+1, · · · , ℓ3g−3+p+n). We define a map

ΨL : TL(S) → T0(S),(
(ℓ1, τ1), · · · , (ℓ3g−3+p, τ3g−3+p)

)
× L 7→ ((ℓ1, τ1), · · · , (ℓ3g−3+p, τ3g−3+p))

It is clear that ΨL is a homeomorphism.

Definition 2.1. We say that a family of hyperbolic surfaces XL ∈ TL(S) con-
verges to a point X0 ∈ T0(S), and we denoted this relation by XL → X0, if
ΨL(XL) → X0 as L → 0.

The definition is independent of the choice of the pants decomposition. The
reason is that, for any given simple closed geodesic γ in the interior of XL, we can
explicitly compute the hyperbolic length and twist angle of γ by using the Fenchel–
Nielsen coordinates

(
(ℓ1, τ1), · · · , (ℓ3g−3+p, τ3g−3+p)

)
×L of XL. (For the explicit for-

mulae, see [6].) When XL → X0 as defined here, then, as L → 0, the hyperbolic
length and twist angle of γ converge to those of γ on X0. As a result, given any two
different pants decompositions, there is a continuous transformation between their
associated Fenchel–Nielsen coordinates. In fact, this convergence is similar to that
in augmented Teichmüller space. If we take the double of each Riemann surface, XL,
then the sequence of doubles converges to a noded Riemann surface, which is the
double of X0. It is well known that the convergence of a sequence in the augmented
Teichmüller space can be described using Fenchel–Nielsen coordinates, and that this
convergence is independent of the choice of Fenchel–Nielsen coordinates (cf. [1] or
[19]).

We shall use the following convergence criterion proved by Mondello; cf. [12, The-
orem 7.1] for a more general statement. In this statement, gL denotes the hyperbolic
metric of XL ∈ TL(S).

Lemma 2.2. XL → X0 if and only if there exist homeomorphisms fL : X0 → XL

such that (fL)
∗(gL) → g0 uniformly on the compact subsets of X0.

Here, (fL)
∗(gL) denotes the pull-back of the metric gL on X0 by the map fL and

we say that (fL)
∗(gL) → g0 uniformly on the compact subsets of X0 if for every

compact subset K ⊂ X0, the restriction of the metric (fL)
∗(gL) on K (in the sense of

the metric tensors or the quadratic forms on the tangent spaces) converges uniformly
to the restriction of g0 on K, as L → 0. Note that this is equivalent to say that,
with restriction on K, (fL)

∗(gL) and g0 are bi-Lipschitz equivalent with a Lipschitz
constant tending to 1 as L → 0.

2.1. The Thurston metric as a limit of the arc metric. We are only
interested in the situation where L is sufficiently small. We write in this case L ≪ 1.
If a quantity A → ∞ uniformly as L → 0, we write A ≫ 1. A quantity B = B(L)
satisfying B → 0 as L → 0 is denoted by o(1).

Recall that the Thurston metric on T0(S) is defined by

dTh(X, Y ) = sup
γ∈S

log
ℓγ(Y )

ℓγ(X)
.

Using the notation established at the beginning of this section, we prove the following:
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Proposition 2.3. For each L ≪ 1, the map ΨL : TL(S) → T0(S) is a (1, o(1))
quasi-isometry.

More precisely, we have, for any L and for any X and Y in TL(S),

d(X, Y )− o(1) ≤ dTh(ΨL(X),ΨL(Y )) ≤ d(X, Y ) + o(1).

Proof. Let X0 ∈ T0(S). We denote by XL the set Ψ−1
L (X0). It is obvious that

XL → X0 as L → 0 in the sense of Definition 2.1.
First, we estimate the lengths of simple closed curves ℓγ(XL) in terms of ℓγ(X0).

For any boundary component β of S, we denote its unique geodesic representative in
XL by βL. By a well-known result [6], there is a collar neighborhood of βL of width
w(βL) such that

sinh
ℓβ(XL)

2
sinhw(βL) = 1.

Note that w(βL) → ∞ as L → 0. It is also well known that a simple closed geodesic
on XL that does not intersect βL is disjoint from such a collar [18]. In particular,
any simple closed geodesic in the interior of XL is disjoint from the collar.

Similarly, we choose a standard cusp neighborhood of each puncture of X0, that
is, a neighborhood isometric to

{
ℑz > 1

2

}
/〈z 7→ z + 1〉.

Any simple closed geodesic on X0 is disjoint from the standard cusp neighborhood.
Denote the union of the standard cusp neighborhoods on X0 by C. Using

Lemma 2.2, it is not hard to see that there exist homeomorphisms fL : X0 → XL

such that (as L ≪ 1)

(i) (fL)
∗(gL) → g0 uniformly on X0 \ C;

(ii) any closed geodesic in the interior of XL is contained in XL \ f−1
L (C).

As a result, we have

(3) ℓγ(XL) = (1 + o(1))ℓγ(X0), ∀ γ ∈ S \ B.

The next step is to estimate the length of an essential geodesic arc on XL. Con-
sider an arbitrary α ∈ A. Suppose that α joins two boundary components β1, β2 of
XL (we may have β1 = β2). A tubular neighborhood of α ∪ β1 ∪ β2 is a topological
pair of pants, denoted by P.

We first assume that β1 6= β2. Then the boundary of P has three connected
components, two of them being (homotopic to) β1 and β2. We denote by γ the
(homotopy class of the) third one.

To simplify our notation, we set ℓα = ℓα(XL), etc. We use the following hyper-
bolic geometry formula [2]:

cosh (ℓα) =
cosh

(
1
2
ℓγ
)
+ cosh

(
1
2
ℓβ1

)
cosh

(
1
2
ℓβ2

)

sinh
(
1
2
ℓβ1

)
sinh

(
1
2
ℓβ2

) .

By assumption, ℓβ1
, ℓβ2

≪ 1. By a direct calculation, we get

ℓα = log

(
cosh (ℓα) +

√
cosh2 (ℓα)− 1

)

= log
(
cosh

(
1
2
ℓγ
)
+ cosh

(
1
2
ℓβ1

)
cosh

(
1
2
ℓβ2

))

− log
(
sinh

(
1
2
ℓβ1

)
sinh

(
1
2
ℓβ2

))
+ o(1)

= ℓγ + | log
(
sinh

(
1
2
ℓβ1

)
sinh

(
1
2
ℓβ2

))
| − log 2 + o(1).

(4)
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Figure 1. The regular neighborhood is homotopic to a pair of pants.

The case where β1 = β2 can be dealt with in the same way, by using the following
formula [2]:

cosh2
(
1
2
ℓα
)
=

−1 + cosh2
(
1
2
ℓβ
)
+ cosh2

(
1
2
ℓγ1

)
+ cosh2

(
1
2
ℓγ2

)

sinh2
(
1
2
ℓβ
) +

+
2 cosh

(
1
2
ℓβ
)
cosh

(
1
2
ℓγ1

)
cosh

(
1
2
ℓγ2

)

sinh2
(
1
2
ℓβ
)

Here the boundary of the pair of pants P has three connected components, one of
them being β1 = β2. We denote by γ1, γ2 the two others.

Let Y0 ∈ T0(S), Y0 6= X0. Denote by YL = Ψ−1
L (Y0). Applying (3), we get

ℓγ(YL)

ℓγ(XL)
= (1 + o(1))

ℓγ(Y0)

ℓγ(X0)
, ∀ γ ∈ S.

Using the fact that

A1 + A2

B1 +B2
≤ max

{
A1

B1
,
A2

B2

}
, A1, A2, B1, B2 > 0,

we derive from (4) that for any α ∈ A, there is some γ ∈ S such that

ℓα(YL)

ℓα(XL)
≤ max

{
ℓγ(YL)

ℓγ(XL)
, 1 + o(1)

}
≤ (1 + o(1))max

{
ℓγ(Y0)

ℓγ(X0)
, 1

}
.

In conclusion, we have

|d(XL, YL)− dTh(X0, Y0)| = o(1).

This proves the proposition. �

Remark 2.4. Instead of studying only the convergence of hyperbolic structures
XL to a hyperbolic structure X0 where all boundary components become cusps
(length zero), one may study convergence to hyperbolic structures where some of
the boundary components are cusps. The same arguments we used, but with heavier
notation, show that we may view the spaces TL associated with fixed vectors L with
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some zero coordinates as sitting on the boundary of the Teichmüller space of the
surface S = Sg,p,n with p punctures and n boundary components. This boudary has
an obvious stratified structure. The convergence to the boundary is in the sense of
the arc metrics (each stratum is endowed with its own arc metric). The arc metrics,
as we prove in the present paper, converge to the Thurston metric as one approaches
surfaces X0 where all the boundary components become cusps.

3. Translation distances of mapping classes

We now consider the Teichmüller space T (S) as a space of equivalence classes of
marked hyperbolic structures (X, g), where X is a hyperbolic surface and g : S →
X an orientation-preserving homeomorphism (rather than a space of equivalence
classes of metrics on a fixed surface). Two marked hyperbolic structures (X1, g1) and
(X2, g2) are equivalent if and only if there is a conformal mapping h : X1 → X2 in
the homotopy class of g2 ◦ g

−1
1 . With this definition, a mapping class f acts on T (S)

by changing the markings
f : (X, g) 7→ (X, g ◦ f).

In this section, the surface S is without boundary. Its Teichmüller space is
endowed with the Thurston metric dTh. We recall that the translation distance of an
element f ∈ Mod(S) is defined by

σ(f) = inf
X∈T (S)

dTh(X, f(X)).

3.1. Reducible maps. We first show that the question of understanding σ(f)
for any f ∈ Mod(S) can be reduced to that of a pseudo-Anosov mapping class f . We
shall pass to surfaces with boundary, those obtained by cutting S along a complete
reducing system for the mapping class f . We shall equip the Teichmüller spaces of
these surfaces with boundary with the arc metric and use the result of the preceding
section.

Assume that f ∈ Mod(S) is reducible. Let C = {c1, · · · , cr} ⊂ S be the maximal
set of disjoint simple closed curves such that f(C) = C. We denote the connected
components of S\C by R1, · · · , Rs. Each Rj , 1 ≤ j ≤ s, is a surface of negative Euler
characteristic with finitely many boundary components. We choose an arbitrary
hyperbolic structure on S such that the length of the system C = {c1, · · · , cr} is
L = (L1, · · · , Lr) and we assume that L1 = · · · = Lr, as a matter of convenience. We
shall no more use the notation Lj in this setting. Note that the existence of such a
hyperbolic structure XL is obvious, and that such a structure is not unique, since one
can perform twists around the curves in C. We let {XL} be the family of hyperbolic
structures on S corresponding to a given L.

In the following, convergence XL → X0 is in the sense of Definition 2.1. The
restriction of each XL to each subsurface Rj , 1 ≤ j ≤ s, induces a hyperbolic
structure on Rj , which we denote by Xj

L. The following lemma reduces the study of
σ(f) to the consideration of a “smaller” Teichmüller space.

Lemma 3.1. Assume that XL → X0. As L → 0, we have Xj
L → Xj

0 , 1 ≤ j ≤ s
and

dTh(XL, f(XL)) → max
j

{dTh(X
j
0 , f(X

j
0))}.

Proof. It is clear that Xj
L → Xj

0 , 1 ≤ j ≤ s. Moreover, the proof of Lemma 2.3
implies that

lim inf
L→0

dTh(XL, f(XL)) ≥ max
j

{dTh(X
j
0 , f(X

j
0))}.
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It remains to show that

lim sup
L→0

dTh(XL, f(XL)) ≤ max
j

{dTh(X
j
0 , f(X

j
0))}.

The proof given below is similar to our argument in the proof of Proposition 2.3.
Let γ ∈ S. If γ is disjoint from C, then γ is contained in some subsurface Rj . By

Lemma 2.2, ℓγ(XL) = (1 + o(1)) ℓγ(X
j
0). This implies that

(5) sup
γ∈S,i(γ,C)=0

log
ℓγ(f(XL))

ℓγ(XL)
≤ max

j
{dTh(X

j
0 , f(X

j
0))}.

Now we assume that γ ∈ S and i(γ, C) 6= 0. On the hyperbolic surface XL, C
is isotopic to a geodesic submanifold (the geodesic representative of {c1, · · · , cr}),

denoted by Ĉ. Up to isotopy, we may assume that f(Ĉ) = Ĉ. The geodesic represen-

tative of γ on XL is decomposed by Ĉ into finite many geodesic segments, denoted by

γ1, · · · , γk. The mapping class f acts on XL by pull-back (which, restricted to Ĉ, is an
isometry). If we look at the geodesic representative of γ on f(XL), it is also decom-

posed by Ĉ into geodesic segments; each of them will be denoted by γ′
j , corresponding

to γj. We denote the length of each γj and γ′
j by Lj and L′

j , respectively.

We assume that γj is contained in some subsurface X
s(j)
L , which is identified to

a point in the Teichmüller space T (Rs(j)) of the subsurface Rs(j). Since the mapping

class f acts on T (Rs(j)), we denote the image of X
s(j)
L by f(X

s(j)
L ). We denote by

ℓj = ℓ(γj, X
s(j)
L ), the length of the geodesic representative of the arc γj on X

s(j)
L , and

ℓ′j = ℓ(γj, f(X
s(j)
L )). Note that the distinction between ℓj and Lj is that, to define

ℓj, the endpoints of the arc γj are allowed to vary on the boundary curves of the
subsurface and ℓj is taken as the minimum, whereas for Lj the endpoints are not
allowed to vary. We claim that:

Lemma 3.2. As L is sufficiently small,

(6)
L′
j

Lj

≤ (1 + o(1))max

{
1,

ℓ′j
ℓj

}
.

The proof of Lemma 3.2 is postponed to §3.3. Assuming this lemma, we continue
the proof of Lemma 3.1. Using (6), we have

(7)
ℓγ(f(XL))

ℓγ(XL)
=

∑
L′
j∑

Lj

≤ (1 + o(1))max

{
1,

ℓ(γj, f(X
s(j)
L ))

ℓ(γj, X
s(j)
L )

}
.

As a result, we have

sup
γ∈S,i(γ,C)6=0

log
ℓγ(f(XL))

ℓγ(XL)
≤ max

1≤j≤s
{d(Xj

L, f(X
j
L))}+ o(1).

By Proposition 2.3, the right-hand side converges to

max{dTh(X
j
0 , f(X

j
0)}.

The lemma follows from this result and (5). �

There is a converse construction. We can first pick a point (X1
0 , · · · , X

s
0) in the

product of Teichmüller spaces T0(S \ C) :=
∏

j T0(R
j), and construct a family of

hyperbolic structures XL in T (S) such that Xj
L → Xj

0 . As a result, we obtain:

Corollary 3.3. If f ∈ Mod(S) is reduced by C = {c1, · · · , cr} ⊂ S, then σ(f) is

at most the translation distance of the action by f restricted on T0(S \ C).
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Let R0 be a connected component of S \ C. There is a smallest integer k such
that fk(R0) = R0. We say that the union R = R0 ∪ f(R0) ∪ · · · ∪ fk−1(R0) is a
reducible component of f . We set

T (R) =

k−1∏

j=0

T0(f
j(R0))

and we endow this space with the supremum Thurston metric, which we still denote
by dTh. We set

σR(f) = inf
X∈T (R)

dTh(X, f(X)).

By Corollary 3.3, we have

σ(f) ≤ max
R

σR(f).

Note that the action of f on R is either periodic or pseudo-Anosov. When R is a
periodic component of f , σR(f) = 0.

3.1. Pseudo-Anosov maps. We start with a remark on the translation dis-
tance of a pseudo-Anosov map f ∈ Mod(S), for the action of f on Teichmüller
space equipped with the Thurston metric, which was investigated in [10]. By defini-
tion, there is a pair of transverse measured laminations (µs, µu) binding the surface
S (which are called the stable and unstable measured laminations associated to f)
satisfying

f(µs) = Kµs, f(µu) =
1

K
µu,

where K = λ(f). By a result of Thurston (see [7] and [15]), both µs and µu are mini-
mal and uniquely ergodic. Taking a sequence of simple closed curves to approximate
µu, it follows directly from the definition of the Thurston metric that

σ(f) ≥ log λ(f).

Let us now endow S with some hyperbolic structure. The complement of S \ µu

consists of a finite number of ideal polygons. We adjoin a finite number of leaves
to µu such that it becomes a complete geodesic lamination, which we denote by µu.
(Note that µu is not necessarily unique, but there are finitely many choices).

Using Thurston’s shearing coordinates [16], there exists a unique hyperbolic struc-
ture X ∈ T (S) corresponding the the pair (µu, µs) such that µs is, up to equivalence,
the horocyclic foliation of µu. Then, {(µu, etµs)}t∈R defines a stretch line on T (S),
which is a geodesic ray of the Thurston metric passing through the point X ∼= (µu, µs).

Since the map f acts isometrically between the hyperbolic surfaces X and f(X),
the image of the stretch line {(µu, etµs)}t∈R is the stretch line {(f(µu), etf(µs))}t∈R.
Note that f(µs) = Kµs. There exists an integer n such that fn(µu) = µu. It turns
out that the stretch line {(µu, etµs)}t∈R is preserved by fn and the point X ∼= (µu, µs)
is transformed into fn(X) ∼= (λ,Knµs). It follows from an argument of Bers [4] that
the translation distance

σ(fn) = log λ(fn) = n log λ(f).

If f is reducible, by Corollary 3.3, the translation distance of f is at most
maxR σR(f), where R is taken over all reducible components of f . If R = R0 ∪
f(R0)∪· · ·∪fk−1(R0) is a pseudo-Anosov component, then we can take a hyperbolic
structure X0 ∈ T (R0) such that X0 lies on a stretch line preserved by some power
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fn. We equip each f j(R0) with the hyperbolic structure f j(X0), 1 ≤ j ≤ k− 1. This
shows that

σR(f
n) = n log λ(f |R),

where f |R denotes the restriction of f on R.

Proof of Theorem 1.1. It follows directly from the definition of the Thurston
metric that

σ(fn) ≥ n log λ(f).

Since f has finitely many reducible components, the theorem follows from the above
discussion, by taking n sufficiently large. �

Remark 3.4. When f has no pseudo-Anosov component, we have σ(f) = 0.
Whether the dilatation λ(f) is equal to σ(f), when f is a general pseudo-Anosov
map, remains an open question. Note that by Wolpert’s inequality, dTh ≤ 2dTeich.
As a result, we have

log λ(f) ≤ σ(f) ≤ 2 log λ(f).

3.3. Proof of Lemma 3.2. In this subsection, we prove Lemma 3.2, which
is used in §3.1. We also take XL to be a family of hyperbolic structures on S such
that the lengths of the curves in the curve system C are given by the vector L. As

L → 0, XL → X0. As before, we denote the geodesic representative of C on XL by Ĉ.

By cutting XL along Ĉ, we obtain finitely many subsurfaces with geodesic boundary,
denoted by {Xj

L}. The mapping class f acts on XL, preserving the set Ĉ (with some

power of Dehn twists around each component of Ĉ).

Lemma 3.5. There is a uniform constant K such that f is homotopic to a

K-quasiconformal mapping from XL to f(XL).

Proof. We use an argument of Bishop [5] to construct an explicit map between XL

and f(XL) with the required properties. We choose a geodesic pants decomposition
for each subsurface Xj

L. For each pair of pants with boundary curves {α1, α2, α3}
(the pair of pants is degenerate, some of the curves may be punctures), we can

deform it into a new one such that the boundary lengths
(
ℓα1

(Xj
L), ℓα2

(Xj
L), ℓα3

(Xj
L)
)

are replaced by
(
ℓα1

(f(Xj
L)), ℓα2

(f(Xj
L)), ℓα3

(f(Xj
L))

)
. Bishop [5] proved that such

a deformation can be constructed in such a way that the quasiconformal dilatation
only depends on the upper bound of

max

{∣∣∣∣∣log
ℓα1

(f(Xj
L))

ℓα1
(Xj

L)

∣∣∣∣∣ ,
∣∣∣∣∣log

ℓα2
(f(Xj

L))

ℓα2
(Xj

L)

∣∣∣∣∣ ,
∣∣∣∣∣log

ℓα3
(f(Xj

L))

ℓα3
(Xj

L)

∣∣∣∣∣

}
.

Furthermore, we can glue all the new pairs of pants together (in the same topological
pattern as before) with appropriate twists such that the resulting structure is f(Xj

L).
The gluing map is again a quasiconformal mapping, with dilatation controlled by (an
upper bound of) the lengths and twists of the curves in the pants decomposition (see
[3]).

We construct the above deformation for each Xj
L, and we obtain f(XL) by gluing

the resulting surfaces f(X1
L), · · · , f(X

s
L), in addition with some fixed power of Dehn

twists around each component of Ĉ. Note that as L → 0, the hyperbolic structures

XL are chosen such that on each component of XL \ Ĉ, the lengths and twists of
some pants decomposition are fixed (or almost fixed). Therefore, the quasiconformal
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dilatation of the above deformations have a uniform upper bound which does not
depend on the choice of L. �

Consider any simple closed geodesic γ on XL which intersects Ĉ. Let γj be a

segment of γ contained in a component, say Xj
L, of XL \ Ĉ. We assume that the two

endpoints of γj lie on β1 and β2, respectively. Denote the length of γj by Lj .
It is convenient to work in the universal cover H

2. As shown in Figure 2, the
geodesic β1 is lifted to the y-axis β̃1, with endpoints 0 and ∞. We can choose a
universal cover such that the point 1 is an endpoint of β̃2, a lift of β2, and the
geodesic segment γj is realized as a geodesic segment connecting β̃1 and β̃2. The
geodesic representative of γj on the subsurface XL

j (that is, the shortest geodesic

segment on XL
j homotopic to γj, by allowing the endpoints of γj to vary on the

boundary of XL
j ) corresponds to the geodesic segment γ̂j, which intersects β̃1 and β̃2

perpendicularly. A lift of γ, denoted by γ̃, is also drawn in the figure, with endpoints
x1 and x2.

One can see as in Figure 2 that the geodesic segments γj, γ̂j together with β̃1 and

β̃2 bound a geodesic quadrilateral.

x

y

1 x2

β̃2

0x1

y1

β̃1

y2

γj

γ̂j

γ̃

Figure 2.

x

y

1

O(1)

Figure 3.
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The length of the sides on the left and right of the quadrilateral will be denoted
by a and b, respectively. Note that a = | log y2 − log y1|. We apply the hyperbolic
quadrilateral formula. (We refer to [11, Chapter 8] for the hyperbolic quadrilateral
formula, and more generally for the hyperbolic geometry formulae used in the present
paper):

cosh(Lj) = − sinh(a) sinh(b) + cosh(a) cosh(b) cosh(ℓj).

As L → 0, both of Lj and ℓj are sufficiently large. Thus we have the following
approximation

Lj = a+ b+ ℓj +O(1).

We have to compare the above data with those of f(XL). We denote the
corresponding quantities of f(XL) by y′1, y

′
2, · · · . By Lemma 3.5, there is a K-

quasiconformal mapping between XL and f(XL). Such a mapping can be lifted to

a quasiconformal mapping f̃ on H
2, such that it preserves the three points 0, 1,∞.

There is a uniform constant M such that for any p, q, r, s on ∂H2,

1

M
|(p, q, r, s)| ≤ |(f(p), f(q), f(r), f(s))| ≤ M |(p, q, r, s)|.

This implies that

max{1,
x1

M
} ≤ f(x1) ≤ Mx1,max{

|x2|

M
, 0} ≤ |f(x2)| ≤ M |x2|.

An estimate using Figure 3 easily shows that |y2 − y′2| = O(1). In fact, since the

collar neighborhood of β1 is sufficiently large, the other endpoint of β̃2 is close to 1
(this is also true for f(β̃2)). Thus their projections on β̃1 is near i, up to an uniformly
bounded distance.

On the other hand, we have |y1 − y′1| = O(1). This can be seen by a direct
calculation. Note that the two endpoints of γ̃ are x1 and x2. It is easy to see that
y1 =

√
|x1x2|. Under deformation by f̃ , we have y′1 =

√
|x′

1x
′
2|.

As we noticed before,

1

M
|x1| ≤ |x′

1| ≤ M |x1|,
1

M
|x2| ≤ |x′

2| ≤ M |x2|.

This means that | log
y′
1

y1
| ≤ logM . As a corollary, under the deformation f̃ , a is

changed by a bounded amount, that is, |a′ − a| = O(1). The same argument applies
to |b′ − b|.

Applying the quadrilateral formula again

cosh(L′
j) = − sinh(a′1) sinh(a

′
2) + cosh(a′1) cosh(a

′
2) cosh(ℓ

′
j).

The above computations show that

Lj = a+ b+ ℓj +O(1),

L′
j = a′ + b′ ++ℓ′j +O(1),

|a− a′| = O(1), |b− b′| = O(1).

Thus (using the fact that Lj , ℓj → ∞ as L → 0)

L′
j

Lj

≤ (1 + o(1))max

{
1,

ℓ′j
ℓj

}
.

This completes the proof of Lemma 3.2. �
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