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Abstract. We show that an ε-power-quasisymmetric map f : A → R
n can be extended to a

Cε-power-quasisymmetric map F : R
n → R

n if A ⊂ R
n satisfies a geometric thickness condition

and ε is small enough. The constant C depends on c and n only.

1. Introduction

Let A ⊂ R
n and let f : A → R

n be a mapping. A very general question is: Can
f be extended to a function F : Rn → R

n having similar properties as the original
function f? This question has been studied and solved in many different cases.
Classical results include the extension theorems for continuous (Tietze; or Brouwer,
Lebesgue in this setting) and smooth (Whitney, n = 1) functions f . In particular,
the general Whitney extension problem “F ∈ Cm(Rn)?” has been completely solved
by Fefferman and his collaborators; cf. the Introduction and references in [DF].

However, in the case of continuous and injective f there are still many open
problems, if the extension is required to be a homeomorphism. Sometimes, extensions
may not exist for topological reasons, but the most interesting cases arise when the
(geo)metric properties of A play a crucial role. Several results in the positive direction
can be found, for example, in [AH, Jo, MS, Pa, PV, Re, Tr1, Vä]. The last reference
also contains some basic counterexamples related to the quantitative properties of
extension.

The present authors have studied this problem for (1 + ε)-bilipschitz maps, and
we present a similar result for quasisymmetric maps in this article. More precisely,
it was proved by the authors and Väisälä in [ATV1] that (1 + ε)-bilipschitz maps
f : A → R

n can be well approximated by isometries if the set A satisfies a geometric
condition related to its thickness. This result was applied in [ATV2] to show that,
under similar conditions, the map f has a (1+Cε)-bilipschitz extension F : Rn → R

n.
In [AT1], the present authors gave a geometric characterization for plane sets having
this linear bilipschitz extension property. Note that here linear refers to the linear
growth of the error term Cε, which is optimal.

Before stating our main theorem, we recall the definition of a quasisymmetric
map.
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Definition 1.1. Let X, Y be metric spaces with distance written as |a− b|, and
let η : [0,∞) → [0,∞) be a homeomorphism, called a growth function. An embedding
f : X → Y is η-quasisymmetric (abbr. η-QS) if

|f(x)− f(y)|
|f(x)− f(z)| ≤ η

( |x− y|
|x− z|

)

for all x, y, z ∈ X satisfying x 6= z. A function f is quasisymmetric if it is η-
quasisymmetric with some growth function η.

Remark 1.2. An L-bilipschitz map is η-quasisymmetric with η(t) = L2t. Con-
versely, if the growth function η is of the form η(t) = Ct for some constant C, then
the corresponding map f : X → Y is a composition of a similarity and a bilipschitz
map; see [TuV, 2.3].

It follows from [TuV, 3.12] and [TrV, 6.5] that every growth function η can be
replaced by a power form

η(t) = C
(

tα ∨ t1/α
)

if the set X is relatively connected, a class of spaces containing all connected ones,
and even self-similar Cantor sets. Furthermore, this power-quasisymmetry property
was completely characterized in [TrV]. In the present paper, we shall use these maps
in the following case.

Definition 1.3. Let ε > 0. An embedding f : X → Y is ε-power-quasisymmetric

if it is η-QS with

η(t) = (1 + ε)
(

t1+ε ∨ t1/(1+ε)
)

.

Examples of mappings satisfying this condition include quasiconformal maps with
a small dilatation. In particular, suitable radial stretching maps provide examples
that are not bilipschitz.

Another concept, called s-quasisymmetry, can also be used to study how close
a mapping is to a similarity. We refer to [AT2] for details. However, it turns out
that s-QS mappings are not suitable for extension results with sharp linear bounds,
as in the following main theorem of the present article. See 2.2 for the definition of
sturdiness.

Theorem 1.4. Let A ⊂ R
n be c-sturdy and let f : A → R

n be ε-power-QS

with 0 < ε ≤ δ(c, n). Then f has a Cε-power-QS extension F : Rn → R
n, where

C = C(c, n).

2. Preliminary results

Our notation is standard and the same as in [AT1]. However, we recall the
abbreviation A(a, r) = A ∩B(a, r) for a subset A ⊂ R

n and the following geometric
properties of sets that are needed in our main result.

Definition 2.1. Thickness. For each unit vector e ∈ S
n−1 we define the projec-

tion πe : R
n → R by πex = x · e. Let A 6= ∅ be a bounded set in R

n, and let d(A)
denote the diameter of A. The thickness of A is the number

θ(A) = inf {d(πeA) : e ∈ S
n−1}.

Alternatively, θ(A) is the infimum of all t > 0 such that A lies between two
parallel hyperplanes F, F ′ with mutual distance d(F, F ′) = t. We always have 0 ≤
θ(A) ≤ d(A).
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Definition 2.2. Sturdiness. Let A ⊂ R
n. For a ∈ A we set s(a) = sA(a) =

d(a, A \ {a}), the distance from a to the rest of A. Then s(a) > 0 if and only if a is
isolated in A. Let c ≥ 1. We say that the set A ⊂ R

n is c-sturdy if

(1) θ(A(a, r)) ≥ 2r/c whenever a ∈ A, r ≥ cs(a), A 6⊂ B(a, r),
(2) θ(A) ≥ d(A)/c.

If A is unbounded, we omit (2), and the condition A 6⊂ B(a, r) of (1) is unnecessary.

Examples of sturdy sets in the plane include bounded Lipschitz-domains, Z2, and
the snowflake curve. We recall the definition of a nearisometry from [ATV1, 1.1].

Definition 2.3. Let X and Y be metric spaces, let f : X → Y , and let ε > 0.
We say that f is an ε-nearisometry if

|x− y| − ε ≤ |f(x)− f(y)| ≤ |x− y|+ ε

for all x, y ∈ X.

To shorten notation, we let a proper triple T in a metric space X consist of points
T = (x; y, z) such that y 6= x 6= z, and define the ratio of T as

|T | = |x− y|
|x− z| .

An injective map f : X → Y maps each proper triple T = (x; y, z) in X to another
proper triple T ′ = (f(x); f(y), f(z)) in Y .

We start with a couple of inequalities.

Lemma 2.4. Let 0 < x ≤ 1 ≤ y and let 0 ≤ ε ≤ 1. Then

a) x−ε ≤ 1 + ε(1− x)/x ≤ 1 + ε/x;

b) yε ≤ 1 + ε(y − 1).

Proof. a) The mean value theorem, applied to t 7→ tε gives

1− xε = εtε−1
1 (1− x) ≤ εxε−1(1− x),

since t1 ≥ x. Therefore

x−ε − 1 =
1− xε

xε
≤ ε(1− x)

x
,

which implies the first inequality, and the second follows trivially.
b) This follows from the first part by substituting x = 1/y. �

Lemma 2.5. Let a, b > 0. Then

a+ t

b− t
≤ a

b
+ 2t

a + b

b2

for 0 ≤ t ≤ b/2. Moreover, if a/b ≤ 1 and c = 4(a+ b)/ab, then

a + t

b− t
≤ (1 + ct)

(a

b

)1/(1+ct)

for 0 ≤ t ≤ b/2.

Proof. Let g(t) = (a+t)/(b−t) and h(t) = a/b+2t(a+b)/b2. Then g′′(t)−h′′(t) =
2(a+ b)/(b− t)3 ≥ 0, so that g−h is convex. Since g(0) = h(0) and g(b/2) = h(b/2),
the first inequality follows.

For the second one, we estimate

g′(t) =
a+ b

(b− t)2
≤ 4(a+ b)

b2
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for t ≤ b/2. On the other hand, for f(t) = (1 + ct)(a/b)1/(1+ct) we obtain

f ′(t) =
4(a+ b)(ab+ 4t(a + b) + ab ln(b/a)

ab(ab+ 4t(a+ b))

(a

b

)ab/(ab+4t(a+b))

≥ 4(a+ b)

ab
· a
b
=

4(a+ b)

b2
≥ g′(t),

since the logarithmic term is nonnegative, the exponent is at most 1, and a/b ≤ 1.
As f(0) = g(0) = a/b, we obtain g(t) ≤ f(t) for 0 ≤ t ≤ b/2, and the claim is
proved. �

Lemma 2.6. Let 0 ≤ ε ≤ 1 and let f : X → Y be ε-power-QS. Suppose that

there exist points a, b ∈ X such that |a− b| = d(X) = 1 and |f(a)− f(b)| = 1. Then

f is a 23ε-nearisometry.

Proof. Let x, y ∈ X, x 6= y. To prove the nearisometry condition, we may assume
that |x− a| ≥ 1/2.

Let T1 = (x; y, a) and T2 = (a; x, b). Then |x − y| = |T1||T2|, |f(x) − f(y)| =
|T ′

1||T ′

2|,

|T1| =
|x− y|
|x− a| ≤ 2 and |T2| =

|x− a|
|a− b| ≤ 1.

We shall obtain the upper bound for |f(x) − f(y)| by considering Cases 1 and 2
below, and the lower bound in Cases 3 and 4 after that.

Case 1. |T1| ≤ 1. Now we have

|f(x)− f(y)| ≤ (1 + ε)2|T1|1/(1+ε)|T2|1/(1+ε) ≤ (1 + 3ε)(|T1||T2|)1−ε

= (1 + 3ε)|x− y||x− y|−ε ≤ (1 + 3ε)(|x− y|+ ε) ≤ |x− y|+ 7ε

by 2.4.a.
Case 2. 1 ≤ |T1| ≤ 2. Now |T1|2ε ≤ 2ε(|T1| − 1) + 1 ≤ 2ε + 1 by 2.4.b, and we

obtain

|f(x)− f(y)| ≤ (1 + ε)2|T1|1+ε|T2|1/(1+ε) ≤ (1 + 3ε)|T1|1+ε|T2|1−ε

= (1 + 3ε)|T1|2ε(|T1||T2|)1−ε

≤ (1 + 3ε)(2ε+ 1)(|x− y|+ ε) ≤ |x− y|+ 23ε,

using 2.4.a again.
We have shown that |f(x) − f(y)| ≤ |x − y| + 23ε in both cases. It remains to

show that |f(x)− f(y)| ≥ |x− y| − 23ε as well.
Let T3 = (x; a, y) and T4 = (a; b, x). Then |T3||T4| = 1/|x − y|, |T ′

3||T ′

4| =
1/|f(x)− f(y)|,

|T3| =
|x− a|
|x− y| ≥

1

2
and |T4| =

|a− b|
|a− x| ∈ [1, 2].

Case 3. |T3| ≤ 1. Now (1− |T3|)/|T3| ≤ 2 and |T4| − 1 ≤ 1, and we get

1

|f(x)− f(y)| = |T ′

3||T ′

4| ≤ (1 + ε)2|T3|1−ε|T4|1+ε

≤ 1 + 3ε

|x− y| |T3|−ε|T4|ε ≤
1 + 3ε

|x− y|(1 + 2ε)(1 + ε) ≤ 1 + 23ε

|x− y|
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by 2.4. Thus

|f(x)− f(y)| ≥ |x− y|
1 + 23ε

≥ (1− 23ε)|x− y| ≥ |x− y| − 23ε,

since |x− y| ≤ 1.
Case 4. |T3| ≥ 1. Now |T3||T4| ≥ 1, so that using 2.4.b, we get

1

|f(x)− f(y)| ≤ (1 + ε)2|T3|1+ε|T4|1+ε ≤ 1 + 3ε

|x− y|(1 + ε(|T3||T4| − 1))

≤ 1 + 3ε

|x− y|

(

1 +
ε

|x− y|

)

.

Thus

|f(x)− f(y)| ≥ |x− y|
(1 + 3ε)(1 + ε/|x− y|) ≥ |x− y|

1 + 7ε/|x− y|

≥ |x− y|
(

1− 7ε

|x− y|

)

= |x− y| − 7ε.

This completes the proof for the lower bound, and the lemma is proved. �

3. Approximation by similarities

In this section we go through some preliminary results related to the question:
How to approximate power-QS maps by similarities? The approximating similarities
will be the main tool in constructing the extension needed for our main theorem.

Definition 3.1. For a similarity S : Rn → R
n let ‖S‖ denote its similarity ratio.

Since S is affine, this is also the norm of the corresponding linear transforma-
tion. When approximating a function f : A → R

n with a similarity, we employ two
equivalent ways to express the error of approximation:

‖f − S‖A = sup{|f(x)− Sx| | x ∈ A} ≤ C‖S‖ε ⇐⇒ ‖S−1 ◦ f − id‖A ≤ Cε.

Theorem 3.2. Let A ⊂ R
n be compact and let f : A → l2 be ε-power-QS. Then

there is a surjective similarity S : l2 → l2 such that ‖S−1 ◦ f − id‖A ≤ cnd(A)
√
ε.

Also, we can choose S so that SRn = R
n.

Proof. Choose points a, b ∈ A such that |a − b| = d(A) and let A0 = A/d(A),
M = |f(a)−f(b)|. The map g : A0 → l2, defined by g(x) = f(d(A)x)/M , is ε-power-
QS. From Lemma 2.6 it follows that g is a 23ε-nearisometry. By Theorem [ATV1,
2.2], there is a surjective isometry S0 : l2 → l2 satisfying ‖S0 − g‖A0

≤ cn
√
23ε.

Setting S−1x = d(A)S−1
0 (x/M) we obtain a surjective similarity S : l2 → l2 with

‖S−1 ◦ f − id‖A ≤ cn
√
23εd(A). �

In a similar way, using [ATV1, 3.3] instead of [ATV1, 2.2], we obtain the following
result.

Theorem 3.3. Suppose that c ≥ 1 and A ⊂ R
n is a compact set such that

θ(A) ≥ d(A)/c. Let f : A → R
n be ε-power-QS with ε ≤ 1. Then there is a

similarity S : Rn → R
n such that ‖S−1 ◦ f − id‖A ≤ cncεd(A). �

For easy reference, we note the following corollary to the preceding theorem.

Corollary 3.4. Let A ⊂ R
n be c-sturdy and let f : A → R

n be ε-power-QS.

Then for all a ∈ A and 0 < r ≤ d(A), there is a similarity S = Sa,r such that

Sa = f(a) and ‖S − f‖A(a,r) ≤ c1(c, n)‖S‖εr.
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Proof. Since A is c-sturdy, we have

θ(A(a, r)) ≥ 2r/c ≥ d(A(a, r))/c.

Thus 3.3 gives a similarity S1 satisfying

‖S1 − f‖A(a,r) ≤ 2‖S1‖ccnεr.
We claim that S = S1 − S1a+ f(a) is the required similarity. If x ∈ A(a, r), then

|f(x)− Sx| ≤ |f(x)− S1x|+ |S1a− f(a)| ≤ 4‖S1‖ccnεr.
Since ‖S‖ = ‖S1‖, this proves the claim with c1(c, n) = 4ccn. �

Definition 3.5. A similarity S satisfying the properties of the preceeding corol-
lary is called a c1-special similarity for (f, a, r).

Lemma 3.6. Let X ⊂ R
n be a bounded set with diameter r = d(X) > 0, and

let f : X → R
n be a map that can be approximated by similarities S1 and S2 so that

|S−1
i f(x)− x| ≤ εr

for all x ∈ X, i = 1, 2. If 0 ≤ ε ≤ 1/16, then the similarity ratios satisfy the double

inequality

(1− 8ε)‖S2‖ ≤ ‖S2‖/(1 + 8ε) ≤ ‖S1‖ ≤ (1 + 8ε)‖S2‖.
Proof. Choose points u, v ∈ A satisfying |u − v| = r, and write xi = S−1

i f(u),
yi = S−1

i f(v). By assumption, we have |xi − u| ≤ εr and |yi − v| ≤ εr for i = 1, 2.
Now

‖S2‖
‖S1‖

=
‖S−1

1 ‖
‖S−1

2 ‖ =
|x1 − y1|

|f(u)− f(v)|
|f(u)− f(v)|
|x2 − y2|

=
|x1 − y1|
|x2 − y2|

≤ r + 2εr

r − 2εr
≤ 1 + 8ε

by 2.5. This proves the second inequality, and the last one follows by interchanging
S1 and S2. �

The following result was essentially proved by the second author in [Tr2], but
in a somewhat different context. We therefore give a reformulation which is better
suited for our needs, and a complete proof. See also [Vä, 3.9].

Theorem 3.7. Let 0 ≤ ε ≤ 1/100 and let F : Rn → R
n be a mapping having the

following approximation property: For every x ∈ R
n and r > 0, there is a similarity

S = Sx,r of Rn satisfying

‖S ◦ F − id‖B(x,r) ≤ εr.

Then f is 50ε-power-quasisymmetric.

Proof. Let x, y, z ∈ R
n be distinct points, and let T = (x; y, z), T ′ = (f(x); f(y),

f(z)). We shall prove that

(3.1) (1− 25ε)|T |1+12ε ≤ |T ′| ≤ (1 + 25ε)|T |1−16ε

in the case where |x − y| ≤ |x − z|, i.e. |T | ≤ 1. Because of the double inequality
(3.1), the case |T | ≥ 1 follows by interchanging y and z, and using 1/(1 + 2a) ≤
1− a ≤ 1/(1 + a).

We thus assume that |x − y| ≤ |x − z| = r, and then y, z ∈ B(x, r). Let
Bi = B(x, r/2i) and choose an integer k such that

r

2k+1
< |x− y| ≤ r

2k
.
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For every 0 ≤ i < k, there is a similarity Si such that

‖Sif − id‖Bi
≤ εr

2i
and ‖Si+1f − id‖Bi+1

≤ εr

2i+1
.

Thus ‖Sjf − id‖Bi+1
≤ 2ε · r/2i+1 = εd(Bi+1) for j = i and j = i + 1. Applying

lemma 3.6 to the successive balls Bi and Bi+1, it follows that

(1− 8ε)k‖S0‖ ≤ ‖Sk‖ ≤ (1 + 8ε)k‖S0‖.
By construction, we have k ≤ log2(1/|T |) < k + 1. Therefore

(1 + 8ε)k ≤ |T |−12ε,

using the inequality (1 + t)log2 s ≤ s1.5t, which is valid for s ≥ 1 and 0 ≤ t ≤ 1/2.
Similarly,

(1− 8ε)k ≥ |T |16ε,
using the inequality (1 − t)log2 s ≥ s−2t, valid for s ≥ 1 and 0 ≤ t ≤ 1/2. Combining
the above inequalities, we obtain the estimates

(3.2) |T |16ε‖S0‖ ≤ ‖Sk‖ ≤ |T |−12ε‖S0‖.
We are now ready to estimate |f(x)−f(y)| and |f(x)−f(z)| separately, starting

from the first expression. Since |Skf(y)− y| ≤ εr/2k, we first obtain

|x− y| − εr

2k
≤ |Skf(y)− x| ≤ |x− y|+ εr

2k
.

Using this and |Skf(x)− x| ≤ εr/2k ≤ 2ε|x− y|, we have

(1− 4ε)|x− y| ≤ |Skf(x)− Skf(y)| ≤ (1 + 4ε)|x− y|.
Combining this with the equation

‖Sk‖ =
|Skf(x)− Skf(y)|

|f(x)− f(y)|
and with (3.2), we get

(3.3)
(1− 4ε)|x− y|
|T |−12ε‖S0‖

≤ |f(x)− f(y)| ≤ (1 + 4ε)|x− y|
|T |16ε‖S0‖

.

Next we estimate |f(x)− f(z)|. Using the approximation S0 for both f(x) and
f(z), we obtain

(1− 2ε)|x− z| ≤ |S0f(x)− S0f(z)| ≤ (1 + 2ε)|x− z|.
From this we get the double inequality

(1− 2ε)|x− z|
|f(x)− f(z)| ≤ ‖S0‖ =

|S0f(x)− S0f(z)|
|f(x)− f(z)| ≤ (1 + 2ε)|x− z|

|f(x)− f(z)| .

Combining these estimates for ‖S0‖ with (3.3), we obtain the double inequality

(1− 4ε)|x− y|
|T |−12ε(1 + 2ε)|x− z| ≤

|f(x)− f(y)|
|f(x)− f(z)| ≤

(1 + 4ε)|x− y|
|T |16ε(1− 2ε)|x− z| .

From this, the estimates (3.1) easily follow, and the proof is complete. �

Definition 3.8. Suppose that A ⊂ R
n, a ∈ A, r > 0, and c ≥ 1. We say that

an n-simplex ∆ is c-special for (A, a, r), or briefly a c-special simplex of A, if

(1) ∆0 ⊂ A(a, r), and
(2) the smallest height b(∆) of ∆ satisfies b(∆) ≥ r/c.
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Since d(∆) ≤ 2r, we have ρ(∆) = d(∆)/b(∆) ≤ 2c for every c-special simplex ∆
of A.

Lemma 3.9. Let A ⊂ R
n be closed, unbounded, and c-sturdy. If a ∈ A and

r ≥ cs(a), then there is a c-special simplex for (A, a, r).

Proof. See [ATV2, 3.6]. �

The following lemma is almost identical with [ATV2, 3.12], and we do not repeat
the proof.

Lemma 3.10. Let A ⊂ R
n be closed, unbounded, and c-sturdy, and let f : A →

R
n be (1 + ε)-power-QS. Suppose that a, b ∈ A and r1 ≥ cs(a), r2 ≥ cs(b). If S and

T are c1-special similarities for (f, a, r1) and (f, b, r2), respectively, then they have

the same orientation, provided that 0 ≤ ε ≤ δ(c, n).

Lemma 3.11. Let ∆ ⊂ R
n be an n-simplex, and let S, T : ∆ → R

n be similari-

ties such that ‖S − T‖∆0 ≤ η. Then
∣

∣‖S‖ − ‖T‖
∣

∣ ≤ 2η/d(∆) and

|Sx− Tx| ≤ η(1 +M |x− v|/d(∆))

for all x ∈ ∆ and v ∈ ∆0, where M = 4 + 6nρ(∆)(1 + ρ(∆))n−1.

Proof. See [Vä, 2.11]. �

4. Proof of the main theorem

The following result reduces the extension problem to the case of unbounded
sturdy sets. This makes it easier to handle the definition of sturdiness, because
Condition 2.2(2) can be omitted.

Theorem 4.1. Suppose that all unbounded c-sturdy sets A ⊂ R
n have the

following property: There is δ = δ(c, n) > 0 such that every ε-power-QS map f : A →
R

n with 0 ≤ ε ≤ δ extends to a Cε-power-QS map F : Rn → R
n, where C =

C(c, n). Then all c-sturdy sets A ⊂ R
n have the same property with δ replaced by

δ′ = δ(6c, n)/34cnc and C replaced by C ′ = 34cncC(6c, n)). Here cn is the constant

from 3.3.

Proof. Suppose that A ⊂ R
n is bounded and c-sturdy. Let ε ≤ δ′(c, n) and let

f : A → R
n be ε-power-quasisymmetric. Setting R = d(A), we have θ(A) ≥ R/c by

sturdiness. By 3.3, there is a similarity S : Rn → R
n such that ‖S◦f−id‖A ≤ cncεR.

We may assume that 0 ∈ A, so that A ⊂ B(R). Let A1 = A∪(Rn\B(2R)). Then
it follows from [ATV2, 4.1] that A1 is 6c-sturdy. We extend f to a map f1 : A1 → R

n

by setting f1(x) = S−1(x) in case |x| ≥ 2R.
We shall prove below that f1 is 34cncε-power-quasisymmetric. Since A1 is un-

bounded and 6c-sturdy, the assumptions give a C ′ε-power-quasisymmetric extension
F : Rn → R

n of f1. This will be the required extension of f also.
It remains to prove that f1 is 34cncε-power-quasisymmetric. Let thus x, y, z ∈ A1

be distinct points and let T = (x; y, z). We divide the proof into six nontrivial cases.
Let σ = ‖S−1‖ be the similarity ratio of S−1.

Case 1. x ∈ A, y, z 6∈ A. Using the approximation S−1, we obtain

|f(x)− S−1(y)| = σ|Sf(x)− y| ≤ σ(|Sf(x)− x|+ |x− y|) ≤ σ(|x− y|+ cncεR).
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We shall use similar estimates quite often, and also in the opposite direction in the
form |f(x)− S−1(z)| ≥ σ(|x− y| − cncεR). Thus in this case

|T ′| = |f(x)− S−1(y)|
|f(x)− S−1(z)| =

|Sf(x)− y|
|Sf(x)− z| ≤

|x− y|+ cncεR

|x− z| − cncεR
.

If |x− z| ≤ |x− y| and ε ≤ 1/2cnc, then the first part of 2.5 gives

|T ′| ≤ |T |+ 2cncεR
|x− y|+ |x− z|

|x− z|2

≤ |T |+ 4cncεR
|x− y|
|x− z|2 ≤ (1 + 4cncε)|T |,

since |x− z| ≥ R. If |x− y| ≤ |x− z|, then |T | ≤ 1 and the second part of 2.5 gives

|T ′| ≤ (1 +McncεR)|T |1/(1+McncεR).

Here

McncεR = 4cncεR
|x− y|+ |x− z|
|x− y||x− z| ≤ 8cncε,

since |x− y| ≥ R. This completes the proof of Case 1.
Case 2. y ∈ A, x, z 6∈ A. In this case, we have

|T ′| = S−1(x)− f(y)

|S−1(x)− S−1(z)| =
|x− Sf(y)|

|x− z| ≤ |x− y|+ cncεR

|x− z| ≤ (1 + cncε)|T |,

since R ≤ |x− y|. Case 2 is thus proved.
Case 3. z ∈ A, x, y 6∈ A. In this case |x− z| ≥ R, and we have

|T ′| = |S−1(x)− S−1(y)|
|S−1(x)− f(z)| =

|x− y|
|x− Sf(z)| ≤

|x− y|
|x− z| − cncεR

≤ |x− y|
|x− z|

(

1 +
2cncεR

|x− z|

)

≤ (1 + 2cncε)
|x− y|
|x− z|

if ε ≤ 1/2cnc. Case 3 is now proved.
Case 4. y, z ∈ A, x 6∈ A. Now

|T ′| = |x− Sf(y)|
|x− Sf(z)| ≤

|x− y|+ cncεR

|x− z| − cncεR
.

From this, the proof goes on as in Case 1 with two subcases, since |x − y| ≥ R and
|x− z| ≥ R also here.

Case 5. x, z ∈ A, y 6∈ A. We have

|T ′| = |f(x)− S−1(y)|
|f(x)− f(z)| =

σ|Sf(x)− y|
|f(x)− f(z)| .

Choose w ∈ A such that |x− w| is maximal. Then R/2 ≤ |x− w| ≤ R. Now

|f(x)− f(w)| = σ|Sf(x)− Sf(w)| ≥ σ(|x− w| − 2cncεR),

and since

|f(x)− f(w)|
|f(x)− f(z)| ≤ (1 + ε)

( |x− w|
|x− z|

)1+ε

,
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we obtain

1

|f(x)− f(z)| ≤ (1 + ε)

( |x− w|
|x− z|

)ε
1

σ(1− 2cncεR/|x− w|) ·
1

|x− z|

≤ (1 + ε)(1 + 8cncε)

( |x− y|
|x− z|

)ε
1

σ|x− z| ,

where we used |x− w|ε ≤ |x− y|ε and R ≤ 2|x− w|.
Combining these estimates and using R ≤ |x− y|, we get

|T ′| ≤ |x− y|+ cncεR

|x− z| (1 + ε)(1 + 8cncε)

( |x− y|
|x− z|

)ε

≤ (1 + cncε)(1 + ε)(1 + 8cncε)

( |x− y|
|x− z|

)1+ε

≤ (1 + 34cncε)

( |x− y|
|x− z|

)1+ε

.

This completes the proof of case 5.
Case 6. x, y ∈ A, z 6∈ A. We have |x−y| ≤ R ≤ |x−z| in this case. Choose again

w ∈ A such that |w−x| is maximal; thus R/2 ≤ |x−w| ≤ R and |x−y|/|x−w| ≤ 2.
Subcase 6a. 1 ≤ |x− y|/|x− w| ≤ 2. Now

|f(x)− f(w)| ≤ σ(|x− w|+ 2cncεR)

and
( |x− y|
|x− w|

)1+ε

≤ 2ε
|x− y|
|x− w| ≤ (1 + ε)

|x− y|
|x− w| .

Using ε-power-quasisymmetry, we obtain

|f(x)− f(y)| ≤ (1 + ε)

( |x− y|
|x− w|

)1+ε

|f(x)− f(w)|

≤ (1 + ε)2σ(|x− w|+ 2cncεR)
|x− y|
|x− w|

≤ (1 + ε)2σ(1 + 2cncε)|x− y| ≤ (1 + 7cncε)σ|x− y|.

Therefore, we get

|T ′| = |f(x)− f(y)|
|f(x)− S−1(z)| ≤

(1 + 7cncε)σ|x− y|
σ(|x− z| − cncεR)

≤ (1 + 7cncε)(1 + 2cncε)
|x− y|
|x− z| ≤ (1 + 23cncε)|T |.

Subcase 6b. |x− y| ≤ |x− w|. We write 1− ε′ = 1/(1 + ε) to simplify notation,
and then

|f(x)− f(y)|
|f(x)− f(w)| ≤ (1 + ε)

( |x− y|
|x− w|

)1−ε′

.

Here

|f(x)− f(w)| ≤ σ(|x− w|+ 2cncεR)

and

|f(x)− S−1(z)| ≥ σ(|x− z| − cncεR).
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Combining these estimates and using |x− w|ε′ ≤ |x− z|ε′, we get

|T ′| ≤ (1 + ε)
|x− y|
|x− w|

|x− w|ε′

|x− y|ε′
|x− w|+ 2cncεR

|x− z| − cncεR

≤ (1 + ε)
|x− y|
|x− w|

|x− z|ε′

|x− y|ε′
1 + 2cncε

1− cncε

≤ (1 + 18cncε)
|x− y|1−ε′

|x− z|1−ε′
≤ (1 + 18cncε)

( |x− y|
|x− z|

)1/(1+ε)

.

This completes the proof of Subcase 6b.
Finally, comparing the constants and restrictions obtained in different cases, we

obtain the expressions for δ′ and C ′ given in the theorem. �

Proof of the main theorem 1.4. The proof will be carried out in several steps,
some of which are similar to the ones used in the proof of [ATV2, Section 4]. We give
here an essentially complete proof, but some technical details that can be found in
the above-mentioned article are omitted. Also, some very similar cases and subcases
are compressed in the last part of the proof.

By 4.1 we may assume that A ⊂ R
n is closed, unbounded, and c-sturdy, and

f : A → R
n is ε-power-QS. Let K be a decomposition of G = R

n \ A into Whitney
cubes Q such that

(i) 1 ≤ d(Q,A)/d(Q) < 3;
(ii) 1/2 ≤ d(Q)/d(Q′) ≤ 2 if Q,Q′ ∈ K and Q ∩Q′ 6= ∅.
We first define the extension F in the set K0 in the vertices of the cubes Q ∈ K.

Let v ∈ K0 and choose a point av ∈ A such that rv = |v − av| = d(v, A). Let
tv = s(av) ∨ 8rv. By 3.5 there is a C0-special similarity Sv for (f, av, ctv) satisfying
Svav = f(av) and

(4.1) ‖Sv − f‖A(av,ctv) ≤ C0‖Sv‖tvε,

where C0 = 4c2cn. We choose Su = Sv whenever au = av = a and u, v ∈ B(a, s(a)/8).
Furthermore, by 3.10 we may assume that all these similarities have positive orien-
tation. We define F (v) = Svv.

Next we triangulate each Q ∈ K in a standard way to obtain a collection W of
n-simplexes W = {∆ ∈ Q | Q ∈ K}. These simplexes satisfy

d(∆) = λ
√
n, b(∆) = λ/

√
2, ρ(∆) =

√
2n,

if ∆ ∈ Q and Q has sides of length 2λ.
After this, we extend F to each ∆ ∈ W in an affine way. Setting F | A = f , we

obtain a map F : Rn → R
n that extends f .

Fact 1. Let Q ∈ K and u, v ∈ Q ∩K0. Then

(i) |au − av| ≤ 3(ru ∨ rv);
(ii) rv ≤ 2ru;
(iii) ‖Su − Sv‖Q ≤ C1(‖Su‖ ∨ ‖Sv‖)(ru ∨ rv)ε;
(iv) tu ≤ 2tv and B(au, tu) ⊂ B(av, 3tv);
(v) (1− 16C0ε)‖Sv‖ ≤ ‖Su‖ ≤ (1 + 16C0ε)‖Sv‖.
Proof. The first two inequalities are the same as in [ATV2, p. 965]. To prove (iii)

we may assume that ru ≤ rv.
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If tv = s(av) ≥ 8rv, then av is isolated in A. We claim that au = av in this case.
If not, then (i) and (ii) imply

s(av) ≤ |au − av| ≤ 3rv ≤ 3s(av)/8,

a contradiction. Thus au = av, and since ru ≤ rv ≤ 3s(av)/8, we have Su = Sv.
Therefore, (iii) is trivially true in this case.

We now assume that tv = 8rv ≥ s(av).
Case 1. ru ≥ cs(au). Now tu = 8ru and rv ≥ ru ≥ cs(au). By 3.9 there is a

c-special simplex ∆u for (A, au, rv) satisfying

∆0
u ⊂ A(au, rv), b(∆u) ≥ rv/c, ρ(∆u) ≤ 2c.

Since rv ≤ 2ru < tu by (ii), we obtain by (4.1) the inequality

‖Su − f‖∆0
u
≤ C0‖Su‖εtu ≤ C0‖Su‖εtv.

By (i), we also have B(au, rv) ⊂ B(av, 4rv), and thus (4.1) implies that

‖Sv − f‖∆0
u
≤ C0εtv‖Sv‖.

Consequently,
‖Su − Sv‖∆0

u
≤ 2C0εtv(‖Su‖ ∨ ‖Sv‖),

and 3.11 implies that
∣

∣‖Su‖ − ‖Sv‖
∣

∣ ≤ 4C0εtv(‖Su‖ ∨ ‖Sv‖)/d(∆u) = 32C0εrv(‖Su‖ ∨ ‖Sv‖)/d(∆v)

≤ 192C0ε(‖Su‖ ∨ ‖Sv‖).
Let x ∈ Q. Choose a vertex z ∈ ∆0

u and apply 3.11 to get

|Sux− Svx| ≤ 2C0εtv(1 +M |x− z|/d(∆u))(‖Su‖ ∨ ‖Sv‖).
Here

M = 4 + 6nρ(∆u)(1 + ρ(∆u))
n−1 ≤ 4 + 12n(1 + 2c)n−1 ≡ M1(c, n),

|x−z| ≤ |x−u|+ |u−au|+ |au−z| ≤ 3rv, and d(∆u) ≥ b(∆u) ≥ rv/c. Since tv = 8rv,
these estimates imply (iii) with C1 = 16C0(1 + 3cM1).

Case 2. ru ≤ cs(au). By 3.9 we can choose a c-special simplex ∆u for (A, au, cs(au)).
Since s(au) ≤ tu, we have

‖Su − f‖∆0
u
≤ C0‖Su‖εtu

by (4.1).
We next show that

(4.2) s(au) ≤ 8rv, ∆0
u ⊂ A(av, 8crv).

Let w ∈ ∆0
u. If au 6= av, then s(au) ≤ |au − av| ≤ 3rv by (i), and

|w − av| ≤ cs(au) + |au − av| ≤ 6crv.

If au = av, then s(au) = s(av) ≤ 8rv, proving (4.2).
Since tv = 8rv, it follows from (4.2) that tu ≤ tv and ‖Sv − f‖∆0

u
≤ 16C0(‖Sv‖ ∨

‖Su‖)εrv. As in Case 1, we choose a vertex z of ∆u and apply 3.11. For each x ∈ Q
we have

|x− z| ≤ d(Q) + ru + cs(au) ≤ 3cs(au)

and d(∆u) ≥ b(∆u) ≥ s(au). Thus we obtain (iii) with C1 = 16C0(1 + 3cM1).
We next prove (iv). If s(au) ≥ 8ru, then au = av as above. This implies that

tu = s(au) = s(av) ≤ tv. If s(au) < 8ru, then by (i) and (ii), we have tu = 8ru ≤
16rv ≤ 2tv.
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To prove the inclusion of balls in (iv), let x ∈ B(au, tu). Then

|x− av| ≤ |x− au|+ |au − av| ≤ tu + 6rv ≤ 2tv +
3

4
tv ≤ 3tv.

This completes the proof of (iv).
To prove (v), we apply 3.6 with X = A(au, tu). Since tu ≥ s(au), we have

tu ≤ d(X), and by (iv), also tv ≤ 2tu ≤ 2d(X). Assuming that c ≥ 3, these and (iv)
imply that the similarities Su and Sv satisfy the approximation conditions of 3.6 in
X, with ε replaced by 2C0ε, and (v) follows.

We have thus completed the proof of Fact 1. �

Fact 2. There is a number δ2(c, n) > 0 such that if ε ≤ δ2 and ∆ ∈ W , then

F | ∆ is sense-preserving and L-bilipschitz with

‖Sv‖
1 + C2ε

≤ L ≤ ‖Sv‖(1 + C2ε),

for all vertices v ∈ ∆.

Proof. Let Q ∈ K be the cube containing ∆ and let v ∈ Q ∩K0 be such that
rv = |v − av| = d(v, A) is maximal. From Fact 1(iii) and from the construction of F
it follows that

‖Sv − F‖∆ ≤ C1rvε‖Sv‖.
Here

rv ≤ d(Q,A) + d(Q) ≤ 4d(Q) = 8b(∆)
√
2n,

and thus ‖Sv − F‖∆ ≤ αb(∆)/(n+ 1), where

α = 8C1

√
2n(n+ 1)ε ≤ 1

2

if ε ≤ δ2(c, n) = (16
√
2n(n+ 1)C1)

−1.
The claim now follows from [Vä, 2.7] for this particular vertex v. Also, F | ∆ is

L-bilipschitz with L satisfying

‖Sv‖/(1 + 2α) ≤ L ≤ ‖Sv‖(1 + 2α).

Finally, from 3.6 the claim follows for all vertices of ∆. �

Finally, we show that F can be well approximated by similarities in all balls. Our
main theorem then follows from 3.7. The most important case is dealt with in Fact 3
below, and the rest are postponed into Fact 4 because of many cases and subcases
that complicate the proof.

Fact 3. For each a ∈ A and r > 0, there is a sense-preserving similarity S of Rn

such that Sa = f(a) and

‖S−1F − id‖B(a,r) ≤ C3εr.

Proof. If s(a) > 0, then F | K0 agrees with a similarity S in B(a, s(a)/8). This
implies that F = T in B(a, s(a)/16). We may thus assume that s(a) ≤ 16r.

By 3.5 there is a special similarity S for (f, a, 20cr). The map S is sense-
preserving and Sa = f(a). Let x ∈ B(a, r). We show that |Sx − F (x)| ≤ C3ε‖S‖r
for x ∈ B(a, r), which implies that S is the required similarity. Since

‖S − f‖A(a,20cr) ≤ 20C0ε‖S‖r
with C0 = 4c2cn as before, we may assume that x ∈ G = R

n \ A.
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Let Q ∈ K be a cube containing x and let v ∈ Q ∩ K0. It suffices to find an
estimate |Sv − F (v)| ≤ C3ε‖S‖r. We have F (v) = Svv and

‖Sv − f‖A(av,ctv) ≤ C0εtv‖Sv‖
with tv = s(av)∨8rv. Since ctv ≥ cs(av), there is a c-special simplex ∆v for (A, av, ctv).
As d(Q) ≤ d(Q,A) ≤ r, we have

rv ≤ |v − a| ≤ |v − x|+ |x− a| ≤ 2r.

If av 6= a, this implies that s(av) ≤ |av − a| ≤ 4r. If av = a, then s(av) = s(a) ≤ 16r.
Hence

tv ≤ 16r ∨ 8rv = 16r,

and thus ∆0
v ⊂ A(a, 20cr). This implies that

‖Sv − S‖∆0
v
≤ 20C0ε‖S‖r + C0ε‖Sv‖tv ≤ 68cC0εr‖S‖,

since we show in the lemma below that tv‖Sv‖ ≤ 48cr‖S‖. Fix a point z ∈ ∆0
v. Then

|F (v)− Sv| ≤ 136cC0εr‖S‖(1 +M1|v − z|/d(∆v)),

where M1 = M1(c, n) is the constant from the proof of Fact 1, and |v − z| ≤ rv +
ctv ≤ 9ctv/8, d(∆v) ≥ b(∆v) ≥ tv. Thus we obtain the required inequality with
C3 = 136cC0(1 + 2cM1). �

Lemma. Using the notation above, we have tv‖Sv‖ ≤ 48cr‖S‖.
Proof. We have tv ≤ 16r from above. Choose an integrer N such that 2N tv ≥ 24cr

and 2N−1tv < 24cr. Let Sk be a special similarity for (f, av, 2
kctv) so that S0 = Sv and

SN = S, and let ∆k be a special simplex for A(av, 2
kctv). Then d(∆k) ≥ b(∆k) ≥ 2ktv,

and we can use 3.6 with r = 2ktv and ε 7→ 2C0ε. In the last step we also use

B(a, 20cr) ⊂ B(av, 24cr) ⊂ B(av, 2
N tv).

This implies that ‖Sk‖ ≤ (1 + 16C0ε)‖Sk+1‖ ≤ 2‖Sk+1‖ under the requirement
ε ≤ 1/16C0. It follows that ‖Sv‖ ≤ 2N‖S‖ ≤ 48c(r/tv)‖S‖, which proves the
lemma. �

Fact 4. The corresponding result for Fact 3 is true for balls B(x, r) centered

outside A.

Proof. Let x ∈ R
n \ A and r > 0. The proof breaks up into several cases. All

details are straightforward but rather long, cf. Fact 3, and therefore we omit most
technicalities. As in the proof of Fact 3, the main idea in most cases is to find a
suitable ball B(av, R) ⊃ B(x, r) so that the special similarity for (f, av, R) is the
required one.

Case 1. The ball B(x, r) does not contain any vertices of the triangulation.
Subcase 1a. The ball B(x, r) is contained in some simplex ∆ of the triangulation.

In this case the extension F is the convex combination of similarities Sv for v ∈ ∆0.
The claim follows from Facts 1 and 2.

Subcase 1b. The ball B(x, r) is not included in a single simplex. In this case
B(x, r) is contained in a finite union of adjacent Whitney cubes, whose number is
bounded by a fixed constant depending on n. It follows from Facts 1 and 2 that the
required similarity can be any of the similarities Sv, where v is a vertex of a simplex
containing x.

Case 2. The ball B(x, r) contains vertices of the triangulation. Choose a vertex
v ∈ K0 ∩ B(x, r) such that d(v, A) is maximal. Excluding the trivial case (i) below,
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we claim that a special similarity S for (f, av, R) is the required one for a suitable
radius R.

Subcase 2a(i). s(av) > 0, |x− av| ≤ s(av)/16, and r ≤ s(av)/16. In this case all
the approximating similarities Su used to define F (u) in B(x, r)∩K0 coincide. Thus
F itself is a similarity in B(x, r).

Subcase 2a(ii). s(av) > 0, |x− av| ≤ s(av)/16, and r ≥ s(av)/16. In this case

B(x, r) ⊂ B(av, 2r) ⊂ B(av, 16cr).

Since 16cr ≥ cs(av), we can use an approximating similarity S for (f, av, 16cr).
Subcase 2a(iii). s(av) > 0, |x − av| > s(av)/16, and r ≥ rv/2. In this case

|x− av| ≤ |x− v|+ |v − av| ≤ r + rv ≤ 3r, and thus

B(x, r) ⊂ B(av, 4r) ⊂ B(av, 128cr).

Since s(av) < 16|x− av| ≤ 64rv, we have 128cr ≥ 64crv ≥ cs(av). In this case we use
a special similarity S for (f, av, 128cr).

Subcase 2a(iv). s(av) > 0, |x − av| > s(av)/16, and r < rv/2. In this case
|x− av| ≤ 3rv/2, so that

B(x, r) ⊂ B(x, 2rv) ⊂ B(av, 7rv/2) ⊂ B(av, 24crv).

Since s(av) < 16|x− av| ≤ 24rv, we can use a special similarity S for (f, av, 24crv).
Subcase 2b(i). s(av) = 0 and rv ≤ 2r. Let S be a special similarity for

(f, av, 22cr). Then

‖S − f‖A(av,22cr) ≤ 22C0ε‖S‖r.

For u ∈ B(x, r)∩K0 we must estimate |Su− F (u)| = |Su− Suu|, where Su satisfies
‖Su − f‖A(au,ctu) ≤ C0‖Su‖tu. If au 6= av, then

s(au) ≤ |au − av| ≤ ru + 2r + rv ≤ 6r,

so that tu = s(au) ∨ 8ru ≤ 6r ∨ 8rv ≤ 16r. This is obviously true also in the case
au = av, since then s(au) = s(av) = 0. Let w be a vertex of a special simplex ∆u for
(A, au, ctu). Then

|w − av| ≤ ctu + |au − av| ≤ 16cr + 6r ≤ 22cr.

This implies that ∆0
u ⊂ A(av, 22cr), and we can use ∆u for estimating |Su − Suu|.

The details are essentially similar to the proof of Fact 3, and are therefore omitted.
Subcase 2b(ii). s(av) = 0 and rv ≥ 2r. This case is very similar to the previous

one, but now we choose a similarity S satisfying

‖S − f‖A(av ,12crv) ≤ 12C0ε‖S‖rv.

If au 6= av, then

s(au) ≤ |au − av| ≤ ru + 2r + rv ≤ 3rv,

so that tu = s(au) ∨ 8ru ≤ 3rv ∨ 8ru ≤ 8rv, which is true also in the case au = av.
Since B(au, ctu) ⊂ B(av, 12crv) in this case, we can again proceed as in the proof of
Fact 3.

This completes the proof of our main theorem. �
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