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Abstract. We extend the mapping properties for the fractional integral operators, the convolu-

tion operators, the Fourier integral operators and the oscillatory integral operators to rearrangement-

invariant quasi-Banach function spaces. We also generalize the Fourier restriction theorem and the

Sobolev embedding theorem to rearrangement-invariant quasi-Banach function spaces. We obtain

the above results by introducing two families of rearrangement-invariant quasi-Banach function

spaces. Furthermore, these two families of rearrangement-invariant quasi-Banach function spaces

also give us some embedding and interpolation results of Triebel–Lizorkin type spaces and Hardy

type spaces built on rearrangement-invariant quasi-Banach function spaces.

1. Introduction

The main result of this paper aims to extend the studies of the Fourier integrals
and Sobolev embedding to rearrangement-invariant quasi-Banach function spaces
(r.i.q.B.f.s.). We achieve our result by introducing two families of rearrangement-
invariant quasi-Banach function spaces.

The studies of Fourier integrals and Sobolev embeddings are two important topics
of Fourier analysis and theory of function spaces. The development of these two topics
is so deep and vast, therefore, it is impossible to give a detail review in this paper.
For the study of the Fourier integrals on Lebesgue spaces, the reader is referred to
the standard references [30, 31] and the references therein.

The action of operators on rearrangement-invariant quasi-Banach function spaces
was first treated in [9]. For the Sobolev embedding of Sobolev spaces and Triebel–
Lizorkin spaces, the reader is referred to [2, 32, 33].

The classical results for the Fourier integrals and Sobolev embedding are devel-
oped for Lebesgue spaces. The Lebesgue space has several generalizations such as
the Lorentz spaces, the Lorentz–Karamata spaces and the Orlicz spaces and these
generalizations are all members of rearrangement-invariant Banach function spaces.
Notice that the Lorentz–Karamata spaces were first introduced in [9]. For a de-
tailed reference on the rearrangement-invariant Banach function spaces, the reader
is referred to [3].

Recently, by further developing of the extrapolation theory initiated by Rubio
de Francia, Curbera, García-Cuerva, Martell and Pérez, [6, 7] extend some impor-
tant results in Fourier analysis, such as the study of singular integral operators, to
rearrangement-invariant Banach function spaces.
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The main theme of this paper is to extend the study of the Fourier integrals
and Sobolev embedding to rearrangement-invariant quasi-Banach function spaces.
Roughly speaking, we obtain these extensions by introducing two families of rearrang-
ement-invariant quasi-Banach function spaces. We find that they are used to give the
mapping properties for the fractional integral operators, the convolution operators,
the Fourier integral operators and the oscillatory integral operators on r.i.q.B.f.s.
These two families of function spaces are introduced by using an interpolation functor
which is tailor-made for the rearrangement-invariant quasi-Banach function spaces.

It is well known that the Marcinkiewicz real interpolation functor [3, 4, 5] is a
powerful tool to extend the boundedness results of sublinear operators to Lebesgue
spaces and Lorentz spaces. Our interpolation functor plays the same role as the
Marcinkiewicz real interpolation with the Lorentz spaces replaced by the rearrange-
ment-invariant quasi-Banach function spaces.

There are several celebrated theorems of using interpolation to extend results
from the Lebesgue spaces to rearrangement-invariant Banach function spaces such as
the Calderón theorem [3, Chapter 3, Theorem 5.7] and [3, Chapter 5, Theorem 1.19].
On the other hand, these theorems only give an abstract result on the mapping
properties of linear operators on rearrangement-invariant Banach function spaces.
They do not provide a recipe to precisely construct the function spaces involved in
the mapping properties of the linear operators.

The interpolation functor used in this paper is not abstractly used to study
function spaces. Our interpolation functor is defined explicitly by using the K-
functional. Most importantly, our interpolation method is computable and generates
rearrangement-invariant quasi-Banach function spaces in an explicit form in term of
the non-decreasing rearrangement of Lebesgue measurable function. This is revealed
by its applications on the convolution operators, the Fourier integral operators, the
oscillatory integral operators and so on.

This paper is organized as follows. Section 2 presents those notions and notations
used in this paper. We introduce the two families of r.i.q.B.f.s. in Section 3. Our
interpolation functor is introduced in Section 4. It also establishes the action of this
interpolation functor on Lebesgue spaces.

Sections 5, 6 and 7 present the main results of this paper. We establish the
mapping properties of the convolution operators, the Fourier integral operators, the
Fourier transform and the oscillatory integral operators on r.i.q.B.f.s. Section 6 also
contains the Fourier restriction theorem on r.i.q.B.f.s. We study the Sobolev spaces
associated with r.i.q.B.f.s. and present the corresponding Sobolev embedding in Sec-
tion 7.

The Sobolev embedding theorem is further extended to the Triebel–Lizorkin
spaces associated with r.i.q.B.f.s. in Section 8. In this section, we also give the
mapping properties of the fractional integral operator on Hardy spaces associated
with r.i.q.B.f.s.

2. Definitions and preliminaries

For any Lebesgue measurable set E ⊆ R
n, let M(E) be the set of Lebesgue

measurable functions on E. Let S(Rn) and S ′(Rn) denote the class of Schwartz
functions and tempered distributions, respectively.

For any and f ∈ M(E) and s > 0, write

df(s) = |{x ∈ R
n : |f(x)| > s}|
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and

f ∗(t) = inf{s > 0: df (s) ≤ t}, t > 0.

We call f and g are equimeasurable if df(s) = dg(s) for all s > 0. We write f ≈ g if

Bf ≤ g ≤ Cf,

for some constants B,C > 0 independent of appropriate quantities involved in the
expressions of f and g.

We recall the definition of rearrangement-invariant quasi-Banach function space
(r.i.q.B.f.s.) from [18, Definition 4.1].

Definition 2.1. A quasi-Banach space X ⊂ M(Rn) is called a rearrangement-
invariant quasi-Banach function space if there exists a quasi-norm ρX : M(0,∞) →
[0,∞] satisfying

(1) ρX(f) = 0 ⇔ f = 0 a.e.,
(2) |g| ≤ |f | a.e.⇒ ρX(g) ≤ ρX(f),
(3) 0 ≤ fn ↑ fa.e.⇒ ρX(fn) ↑ ρX(f),
(4) χE ∈ M(0,∞) and |E| <∞ ⇒ ρX(χE) <∞,

so that

(2.1) ‖f‖X = ρX(f
∗), ∀f ∈ X.

Write

X̄ = {g ∈ M(0,∞) : ρX(g) <∞}.

It is obvious that X̄ is a r.i.q.B.f.s. on (0,∞). Recall that a Banach spaceX ⊂ M(Rn)
is a Banach function space if ‖ · ‖X is a norm and satisfies Items (1)–(3),

(2.2) χE ∈ M(Rn) and |E| <∞ ⇒ χE ∈ X

and

(2.3) χE ∈ M(Rn) and |E| <∞ ⇒

ˆ

E

f dx ≤ CEρX(f),

for some CE > 0. Moreover, X is a rearrangement-invariant Banach function space
(r.i.B.f.s) if X is a Banach function space and for any equimeasurable functions f
and g, ‖f‖X = ‖g‖X.

Whenever X is a r.i.B.f.s., the Luxemburg representation theorem [3, Chapter 2,
Theorem 4.10] guarantees the existence of ρX for X. Condition (2.3) assures that
χE belongs to the dual space of X. On the other hand, a quasi-Banach space may
not have a non-trivial dual spaces. For instance, (Lp)∗ = {0}, 0 < p < 1. This is the
reason why we do not impose (2.3) as a condition satisfied by r.i.q.B.f.s. When X is
a r.i.B.f.s., the associate space of X is denoted by X ′. The reader is referred to [3,
Chapter 1, Definitions 2.1 and 2.3] for the definition of associate space.

We give some classical examples of r.i.q.B.f.s., namely, the Lorentz spaces and
the Orlicz spaces. For 0 < p, q ≤ ∞, recall that the Lorentz space Lp,q consists of all
f ∈ M(Rn) such that ‖f‖Lp,q <∞ where

‖f‖Lp,q =







(

´∞

0

(

t
1
pf ∗(t)

)q dt
t

) 1
q
, q <∞,

supt>0 t
1
pf ∗(t), q = ∞.

The Lorentz spaces have been further generalized to the Lorentz–Karamata spaces,
see [10, Section 3.4.1].
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When Φ is a Young function, the Orlicz space LΦ consists of those f ∈ M(Rn)
satisfying

‖f‖LΦ = inf

{

λ > 0:

ˆ

Rn

Φ(|f(x)|/λ) dx ≤ 1

}

<∞.

For any s ≥ 0 and f ∈ M(0,∞), define (Dsf)(t) = f(st), t ∈ (0,∞). Let ‖Ds‖X̄→X̄

be the operator norm of Ds on X̄. We recall the definition of Boyd’s indices for
r.i.q.B.f.s. from [28].

Definition 2.2. Let X be a r.i.q.B.f.s. on R
n. Define the lower Boyd index of

X, pX , and the upper Boyd index of X, qX , by

pX = sup{p > 0: ∃C > 0 such that ∀ 0 ≤ s < 1, ‖Ds‖X̄→X̄ ≤ Cs−1/p},

qX = inf{q > 0: ∃C > 0 such that ∀ 1 ≤ s, ‖Ds‖X̄→X̄ ≤ Cs−1/q},

respectively.

The Boyd indices of the Lorentz space Lp,q are pLp,q = qLp,q = p. For the Boyd
indices of the Orlicz space LΦ, the reader is referred to [3].

Whenever X is a r.i.B.f.s., the Boyd indices of X given in the above definition
coincide with the ones defined in [27, Volume II, Definition 2.b.1]. Moreover, when
X is a r.i.B.f.s., we have 1 ≤ pX ≤ qX ≤ ∞ and

1

pX
+

1

qX′

= 1 and
1

qX
+

1

pX′

= 1.

For the proof of these identities, the reader is referred to [27, Volume II, Proposi-
tion 2.b.2]. Notice that the Boyd indices defined in [3, Chapter 3, Definition 5.12]
are the reciprocals of the ones given in the above definition. For any r.i.q.B.f.s. X,
according to Aoki–Rolewicz theorem [24, Theorem 1.3], there exists a 0 < κX ≤ 1
such that ρκXX satisfies the triangle inequality.

We restate some supporting results from [3, Chapter 2]. Whenever X is a
r.i.B.f.s., from [3, Chapter 2, Proposition 4.2], we have

(2.4) ρX(f) = sup

{
ˆ ∞

0

f ∗(s)g∗(s) ds : ρ′X(g) ≤ 1

}

where ρ′X is the associate norm of ρX . The reader may consult [3, Chapter 1, Defi-
nition 2.1] for the definition of associate norm. Moreover, [3, Chapter 2, Proposition
4.2] also assures that the norm ρ′X is rearrangement-invariant on M(0,∞). That is,
ρ′X(g

∗) = ρ′X(g), ∀g ∈ M(0,∞).
We present the Hardy lemma in the following form.

Lemma 2.1. Let ξ1, ξ2 ∈ M(0,∞) with

(2.5)

ˆ t

0

ξ1(s) ds ≤

ˆ t

0

ξ2(s) ds, ∀t > 0.

If η is a decreasing function on (0,∞), then

(2.6)

ˆ ∞

0

ξ1(t)η(t) dt ≤

ˆ ∞

0

ξ2(t)η(t) dt.

For the proof of the above lemma, the reader may consult [3, Chapter 2, Propo-
sition 3.6].
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3. Two families of rearrangement-invariant quasi-Banach function spaces

In this section, we introduce the two families of r.i.q.B.f.s. which are used to
establish the mapping properties of the Fourier integrals and Sobolev embedding.

3.1. The family {Xα}. We begin with the first family of r.i.q.B.f.s. which is
related to the mapping properties of the fractional integral operators, the convolution
operators and the Fourier integral operators. Moreover, it is also used in the Sobolev
embedding of the Sobolev spaces built on r.i.B.f.s.

Definition 3.1. Let α ≥ 0. For any r.i.q.B.f.s. X, Xα consists of those f ∈
M(Rn) such that

‖f‖Xα = ρX(t
−α

n f ∗(t)) <∞.

Write ρXα(g) = ρX(t
−α

n g(t)), ∀g ∈ M(0,∞).

Obviously, from (2.1), we have X0 = X. For instance, when X = Lp, then Xα =
L np

n−pα
,p. Thus, the set Xα can be considered as the Lorentz type space associated

with X. We have the following fundamental properties of Xα.

Proposition 3.1. Let α > 0 and X be a r.i.q.B.f.s. If 0 < pX ≤ qX < n
α
, then

Xα is a r.i.q.B.f.s.

Proof. As ρX fulfills (1)-(3) of Definition 2.1, ρXα also satisfies (1)–(3) of Defini-
tion 2.1. Furthermore, for any Lebesgue measurable set E = (0, b), b > 1,

ρXα(χE) = ρX(t
−α

nχ[0,b)(t)) ≤ ρX(t
−α

nχ[0,1)(t)) + ρX(χ[1,b)(t)).

Obviously, ρX(χ[1,b)(t)) <∞. It only needs to show that ρX(t
−α

nχ[0,1)(t)) <∞.
For any k ∈ N ∪ {0}, write Jk = [2−k−1, 2−k). Since [0, 1) = ∪∞

k=0Jk, we have

ρκXX (t−
α
nχ[0,1)(t)) ≤

∞
∑

k=0

2kκX
α
nρκXX (χJk(t))

where κX is the constant given by the Aoki–Rolewicz theorem [24, Theorem 1.3] for
ρX . Moreover, D2kχJ0 = χJk . Thus, there exists a qX < q0 <

n
α

such that

ρκXX (t−
α
nχ[0,1)(t)) ≤

∞
∑

k=0

2kκX
α
nρκXX (D2kχJ0(t)) ≤

∞
∑

k=0

2
kκX(α

n
− 1

q0
)
ρκXX (χJ0) <∞

because ρκXX satisfies the triangle inequality.
We have ρX(χJ0) < ∞ because ρX fulfills Item (4) of Definition 2.1. Therefore,

ρX(t
−α

nχ[0,1)(t)) < ∞. That is, ρXα fulfills (4) of Definition 2.1. In view of [3,
Chapter 2, (1.16)], we have

(f + g)∗(t) ≤ f ∗(t/2) + g∗(t/2).

Thus,

ρX(t
−α

n (f + g)∗(t)) ≤ C
(

ρX(t
−α

n f ∗(t/2)) + ρX(t
−α

n g∗(t/2))
)

.

Therefore, the condition 0 < pX assures that

‖f + g‖Xα ≤ C
(

‖f‖Xα + ‖g‖Xα

)

for some C > 0 independent of f and g. Thus, Xα is a r.i.q.B.f.s. �

Theorem 3.2. Let α > 0 and X be a r.i.B.f.s. If 0 < pX ≤ qX < n
α
, then Xα is

a r.i.B.f.s.
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Proof. We first show that ‖·‖Xα is a norm. Since X is a r.i.B.f.s, by the definition
of Xα and (2.4), for any f, g ∈ M(Rn), we have

‖f + g‖Xα = ρX(t
−α

n (f + g)∗(t))

= sup
{

ˆ ∞

0

t−
α
n (f + g)∗(t)h∗(t) dt : ρ′X(h) ≤ 1

}

.

For any h ∈ M(0,∞) with ρ′X(h) ≤ 1, we find that t−
α
nh∗(t) is decreasing and

(f + g)∗∗ ≤ f ∗∗ + g∗∗ [3, Chapter 2, Theorem 3.4]. According to the definition of
f ∗∗, ξ1 = (f + g)∗ and ξ2 = f ∗ + g∗ satisfy (2.5). Thus, Lemma 2.1 and the Hölder
inequality for ρX [3, Chapter 2, Corollary 4.3] assure that
ˆ ∞

0

t−
α
n (f + g)∗(t)h∗(t) dt ≤

ˆ ∞

0

t−
α
n f ∗(t)h∗(t) dt+

ˆ ∞

0

t−
α
n g∗(t)h∗(t) dt

≤ ρX(t
−α

n f ∗(t))ρ′X(h
∗(t)) + ρX(t

−α
n g∗(t))ρ′X(h

∗(t))

≤ ρX(t
−α

n f ∗(t)) + ρX(t
−α

n g∗(t)).

We obtain the last inequality because ρ′X is a rearrangement-invariant function norm
on M(0,∞) and h and h∗ are equimeasurable functions [3, Chapter 2, (1.19)]. There-
fore, ρ′X(h

∗) = ρ′X(h) ≤ 1. Hence,

‖f + g‖Xα ≤ ‖f‖Xα + ‖g‖Xα.

Finally, for any Lebesgue measurable set E with |E| <∞, the Hölder inequality
for ρX [3, Chapter 2, Corollary 4.3] guarantees that
ˆ

E

f(x) dx ≤

ˆ |E|

0

f ∗(t) dt ≤ ρX(t
−α

n f ∗(t))ρ′X(t
α
nχ[0,|E|]) ≤ |E|

α
nρ′X(χ[0,|E|])‖f‖Xα.

As ρ′X(χ[0,|E|]) = ‖χE‖X′ , in view of [3, Chapter 1, Theorem 2.2], ρ′X(χ[0,|E|]) < ∞.
Thus, ‖ · ‖Xα fulfills (5) of Definition 2.1. �

The subsequent result gives the relation of the Boyd indices of X and Xα.

Lemma 3.3. Let α > 0 and X be a r.i.q.B.f.s. If 0 < pX ≤ qX < n
α
, then

(3.1)
1

pXα

=
1

pX
−
α

n
and

1

qXα

=
1

qX
−
α

n
.

The proof of the above lemma follows from the definitions of the Boyd indices
and Xα. For brevity, we skip the proof. The main results for the family {Xα} are
presented in Sections 5, 7 and 8.

3.2. The family {X̂β}. Next, we introduce the second family of r.i.q.B.f.s. It
is associated with the mapping properties of the Fourier transform on r.i.q.B.f.s. For
any f ∈ S ′(Rn), we denote the Fourier transform of f by f̂ .

Definition 3.2. Let β > 0. For any r.i.q.B.f.s. X, the set X̂β consists of all
f ∈ M(Rn) such that

‖f‖X̂β
= ρX(t

−1f ∗(t−β)) <∞.

We write X̂1 = X̂.

Notice that
ˆ̂
X = X. This property for r.i.q.B.f.s. is consistent with the fact

that
ˆ̂
f(x) = f(−x), ∀f ∈ S(Rn). When X = Lp, 1 < p < ∞, we have ρLp(g) =



Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces 903

(´∞

0
g(t)p dt

) 1
p . Therefore,

‖f‖X̂ =

(
ˆ ∞

0

(t−1f ∗(t−1))p dt

)
1
p

=

(
ˆ ∞

0

sp−1(f ∗(s))p
ds

s

)
1
p

,

where we use the change of variable s = t−1 in the last identity. Thus, by the
definition of Lorentz spaces, we have

(3.2) L̂p = Lp′,p.

Thus, X̂ can be considered as another extension of the notion of Lorentz spaces
associated with r.i.q.B.f.s.

We now obtain a fundamental property for X̂β.

Theorem 3.4. Let β > 0. If X is a r.i.q.B.f.s. with 1 < pX ≤ qX <∞, then X̂β

is also a r.i.q.B.f.s.

Proof. Items (1)–(3) of Definition 2.1 are obviously fulfilled. It remains to show
that ‖ · ‖X̂β

is a quasi-norm and it satisfies Item (4) of Definition 2.1. As

(f + g)∗(t) ≤ f ∗(t/2) + g∗(t/2), ∀t > 0,

we obtain
t−1(f + g)∗(t−β) ≤ t−1f ∗(t−β/2) + t−1g∗(t−β/2).

Thus, that ‖ · ‖X̂β
is a quasi-norm follows from the assumption qX <∞.

To prove Item (4) of Definition 2.1, it suffices to consider E = (0, b) for some
b > 0. Let c = b−β . We find that

ρκXX (t−1χ(0,b)(t
−β)) = ρκXX (t−1χ(c,∞)(t)) ≤

∞
∑

k=0

ρκXX (t−1χ(2kc,2k+1c](t))

≤ C
∞
∑

k=0

2−kκXρκXX ((D2−kχ(c,2c])(t))

≤ C
∞
∑

k=0

2−kκX2
κXk(

1
pX

−ǫ)
ρκXX (χ(c,2c](t)).

Thus, Item (4) of Definition 2.1 follows from the assumption 1 < pX . �

The main results for {X̂β} are established in Section 6.

4. Interpolation

In this section, we present one of the tools used to obtain our main results in this
paper. As the definition of interpolation functor involves the notion of category and
compatible couples, for simplicity, we refer the reader to [32, Section 1.2] for details
of category and compatible couples. We recall the definition of K-functional from [3,
Section 3.1] and [32, Section 1.3.1].

Definition 4.1. Let (X0, X1) be a compatible couple of quasi-normed spaces.
For any f ∈ X0 +X1, the K-functional is defined as

K(f, t, X0, X1) = inf{‖f0‖X0 + t‖f1‖X1 : f = f0 + f1}

where the infimum is taking over all f = f0 + f1 for which fi ∈ Xi, i = 0, 1.

We will write K(f, t, X0, X1) as K(f, t) if no confusion may occur. We introduce
our interpolation functor in the following definition.
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Definition 4.2. Let 0 < θ, r < ∞ and X be a r.i.q.B.f.s. Let (X0, X1) be a
compatible couple of quasi-normed spaces. The space (X0, X1)θ,r,X consists of all f
in X0 +X1 such that

(4.1) ‖f‖(X0,X1)θ,r,X = ρX(t
− 1

rK(f, t
1
θ , X0, X1)) <∞

where ρX is the quasi-norm given in (2.1).

According to [32, Section 1.2.2, Definition 1], (·, ·)θ,r,X is an interpolation functor
if for any compatible couples (X0, X1), (·, ·)θ,r,X satisfies

(1) X0 ∩X1 →֒ (X0, X1)θ,r,X →֒ X0 +X1.
(2) For any compatible couples (X0, X1) and (Y0, Y1), if the linear operator L : X0+

X1 → Y0+Y1 is bounded from Xi to Yi, i = 0, 1, then L is also bounded from
(X0, X1)θ,r,X to (Y0, Y1)θ,r,X .

We now show that (·, ·)θ,r,X is indeed an interpolation functor.

Theorem 4.1. Let 0 < θ, r <∞ and X be a r.i.q.B.f.s. with 0 < pX ≤ qX <∞.
If 1

qX
+ 1

θ
> 1

r
and r < pX , then (·, ·)θ,r,X is an interpolation functor. In addition, if

(X0, X1) and (Y0, Y1) are compatible couples of quasi-normed spaces and T is a linear
operator such that

(4.2) ‖Tf‖Yi ≤Mi‖f‖Xi
, i = 0, 1,

then, for any ǫ, there exists a constant Cǫ > 0 independent of Mi, i = 0, 1 such that

(4.3) ‖Tf‖(Y0,Y1)θ,r,X ≤ CǫM‖f‖(X0,X1)θ,r,X

where

(4.4) M =

(

M1

M0

)
θ
r

M0 max

(

(

M1

M0

)− θ
pX

+ǫ

,

(

M1

M0

)− θ
qX

−ǫ
)

.

Proof. Let (X0, X1) be a compatible couple of quasi-normed spaces. The embed-
ding (X0, X1)θ,X →֒ X0 +X1 is obvious because

min(1, t)‖f‖X0+X1 ≤ K(f, t, X0, X1).

By the definition of K-functional, for any f ∈ X0 ∩X1, we have

K(f, t, X0, X1) ≤ min(1, t)‖f‖X0∩X1 .

Thus,

‖f‖(X0,X1)θ,r,X = ρX(t
− 1

rK(f, t
1
θ , X0, X1)) ≤ ‖f‖X0∩X1ρX(min(t−

1
r , t

1
θ
− 1

r )).

Since ρX is a quasi-norm, Aoki–Rolewicz theorem [24, Theorem 1.3] assures that
there exists a κX such that ρκXX satisfies the triangle inequality. Thus,

ρκXX (min(t−
1
r , t

1
θ
− 1

r )) ≤

0
∑

j=−∞

2jκX( 1
θ
− 1

r
)ρκXX (χ(2j−1,2j ]) +

∞
∑

j=1

2−κX
j
r ρκXX (χ(2j−1,2j ])

=
0
∑

j=−∞

2jκX( 1
θ
− 1

r
)ρκXX (D2−(j−1)χ(1,2]) +

∞
∑

j=1

2−κX
j
r ρκXX (D2−(j−1)χ(1,2]).

Definition 2.2 assures that for any ǫ > 0, there exists a constant C > 0 such that

ρX(D2−(j−1)χ(1,2]) ≤ C2
j( 1

qX
−ǫ)
ρX(χ(1,2]), j ∈ Z\N,

ρX(D2−(j−1)χ(1,2]) ≤ C2
j( 1

pX
+ǫ)
ρX(χ(1,2]), j ∈ N.
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As 1
qX

+ 1
θ
> 1

r
and r < pX , when ǫ is sufficiently small, we have

ρX(min(t−
1
r , t

1
θ
− 1

r )) =
0
∑

j=−∞

2
jκX( 1

θ
− 1

r
+ 1

qX
−ǫ)
ρX(χ(1,2]) +

∞
∑

j=1

2
jκX(− 1

r
+ 1

pX
+ǫ)
ρX(χ(1,2])

<∞.

Hence, X0 ∩X1 →֒ (X0, X1)θ,r,X.
Let (X0, X1) and (Y0, Y1) be compatible couples. Suppose that the linear operator

T : X0 + X1 → Y0 + Y1 satisfies (4.2). Write Kθ,r(t) = t−
1
rK(f, t

1
θ , X0, X1). By the

definition of K-functional, we find that

t−
1
rK(T (f), t

1
θ , Y0, Y1) ≤ t−

1
r inf

f=f0+f1
fi∈Xi,i=0,1

(‖T (f0)‖Y0 + t
1
θ ‖T (f1)‖Y1)

≤ M0t
− 1

rK

(

f,
M1

M0
t
1
θ , X0, X1

)

=

(

M1

M0

)
θ
r

M0(D(
M1
M0

)θ
Kθ,r)(t).

We obtain

(4.5) ρX(t
− 1

rK(T (f), t
1
θ , Y0, Y1)) ≤

(

M1

M0

)
θ
r

M0ρX

(

(D
(
M1
M0

)θ
Kθ,r)(t)

)

.

Hence, (4.3) and (4.4) follow from (4.1), (4.5), 0 < pX ≤ qX <∞ and Definition 2.2.
Therefore, (·, ·)θ,r,X is an interpolation functor. �

Let X be a r.i.q.B.f.s. For any 0 < p < ∞, the p-convexification of X, Xp is

defined byXp = {f : |f |p ∈ X}. We equipXp with the quasi-norm ‖f‖Xp = ‖|f |p‖
1/p
X ,

see [27, Volume II, p. 53] and [29, Section 2.2].
Let X be a r.i.q.B.f.s. The following theorem shows that Xα can be generated

from the action of the functor (·, ·)θ,r,X on the Lebesgue spaces.

Theorem 4.2. Let 0 ≤ α < ∞, 0 < p0 < p1 < ∞ and X be a r.i.q.B.f.s. with
0 < pX ≤ qX < n

α
. Let r, θ satisfy

(4.6)
1

θ
=

1

p0
−

1

p1
and

1

r
=

1

p0
+
α

n
.

Suppose that p1 > qX , p0 < pX and

(4.7)
1

p1
+
α

n
<

1

qX
≤

1

pX
<

1

p0
+
α

n
.

Then

(Lp0, Lp1)θ,r,X = Xα.

Proof. By (4.7), we have

1

qX
+

1

θ
=

1

qX
+

1

p0
−

1

p1
=

1

qX
+

1

r
−
α

n
−

1

p1
>

1

r
,

1

pX
<

1

p0
+
α

n
=

1

r
.

Theorem 4.1 assures that the functor (·, ·)θ,p0,X is well defined.
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The Holmstedt formulas for the K-functionals of Lebesgue spaces [22] yield

t−
1
rK(f, t

1
θ , Lp0, Lp1) ≈ t

− 1
p0

−α
n

(
ˆ t

0

(f ∗(s))p0 ds

)
1
p0

+ t
− 1

p1
−α

n

(
ˆ ∞

t

(f ∗(s))p1 ds

)
1
p1

.

Thus,

ρX(t
− 1

rK(f, t
1
θ , Lp0, Lp1))

≤ CρX

(

t
− 1

p0
−α

n

(
ˆ t

0

(f ∗(s))p0 ds

)
1
p0

)

+ CρX

(

t
− 1

p1
−α

n

(
ˆ ∞

t

(f ∗(s))p1 ds

)
1
p1

)

= CρX

(

t−
α
n

(
ˆ 1

0

(f ∗(ts))p0 ds

)

1
p0

)

+ CρX

(

t−
α
n

(
ˆ ∞

1

(f ∗(ts))p1 ds

)
1
p1

)

= I + II

for some C > 0.
We first consider I. As f ∗ is non-increasing, we find that

I ≤ Cρ
1
p0

X
1
p0

(

t−
p0α

n

ˆ 1

0

(f ∗(ts))p0 ds

)

≤ Cρ
1
p0

X
1
p0

(

t−
p0α

n

0
∑

j=−∞

2j−1(f ∗(2j−1t))p0

)

.

Write f ∗
α(t) = t−

α
n f ∗(t). Then, ρX(f

∗
α) = ρXα(f). The Aoki–Rolewicz theorem [24,

Theorem 1.3] offers a 0 < κ0 ≤ 1 such that ρκ0
X

1
p0

satisfies the triangle inequality.

Thus,

Ip0κ0 ≤ Cρκ0
X

1
p0

(

t−
p0α
n

0
∑

j=−∞

2j−1(f ∗(2j−1t))p0

)

≤ C
0
∑

j=−∞

2(j−1)(1+
p0α
n

)κ0ρκ0
X

1
p0

((D2j−1f ∗
α)
p0)

= C

0
∑

j=−∞

2(j−1)(1+
p0α
n

)κ0(ρX(D2j−1f ∗
α))

p0κ0 .

According to Definition 2.2, for any ǫ > 0, there exists a constant C > 0 such that

Ip0κ0 ≤ C
0
∑

j=−∞

2(j−1)(1+
p0α
n

)κ02
−

(j−1)p0κ0
pX−ǫ (ρX(f

∗
α))

p0κ0.

In view of (4.7), when ǫ is sufficiently small, we find that 1 + p0α
n

− p0
pX−ǫ

> 0.
Consequently,

(4.8) I ≤ CρXα(f
∗) = C‖f‖Xα.

Next, we deal with II. Similar to the proof of I, the Aoki–Rolewicz theorem [24,
Theorem 1.3] provides a 0 < κ1 ≤ 1 such that ρκ1

X
1
p1

fulfills the triangle inequality.

Consequently,

IIp1κ1 ≤ Cρκ1
X

1
p1

(

t−
αp1
n

(

∞
∑

j=0

(f ∗(2jt))p12j

))

≤ C

∞
∑

j=0

2
jp1κ1(

1
p1

+α
n
)
ρκ1p1X (D2jf

∗
α).
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By the definition of qX , we find that for any ǫ > 0, there exists a constant C > 0
such that

IIp1κ1 ≤ C
∞
∑

j=0

2
jp1κ1(

1
p1

+α
n
)
2
−

jp1κ1
qX+ǫ ρκXX (f ∗

α).

Thus, (4.7) guarantees that for any sufficiently small ǫ > 0, there exists a constant
C > 0 such that

(4.9) II ≤ CρXα(f
∗) = C‖f‖Xα.

Therefore, (4.8) and (4.9) conclude that Xα →֒ (Lp0 , Lp1)θ,r,X.
For the reverse embedding, we get

ρX(t
− 1

rK(f, t
1
θ , Lp0, Lp1)) ≥ CρX

(

t
− 1

p0
−α

n

(
ˆ t

0

(f ∗(s))p0 ds

)
1
p0

)

≥ CρX

(

t
− 1

p0
−α

n t
1
p0 f ∗(t)

)

= CρXα(f
∗)

because f ∗ is non-increasing. That is, the embedding (Lp0, Lp1)θ,r,X →֒ Xα is valid.
�

In particular, when α = 0, we have the following interpolation theorem for
r.i.q.B.f.s.

Corollary 4.3. Let 0 < p0 < p1 < ∞ and X be a r.i.q.B.f.s. with 0 < pX ≤
qX <∞. Suppose that p0 and p1 satisfy p1 > qX , p0 < pX and 1

θ
= 1

p0
− 1

p1
. Then

(Lp0 , Lp1)θ,p0,X = X.

Some important examples of r.i.q.B.f.s. are Orlicz spaces and Lorentz–Karamata
spaces. There are some interpolation functors generates these function spaces as the
interpolation spaces of Lp. For the Orlicz spaces, the reader may consult [14]. For
the Lorentz–Karamata spaces, the reader is referred to [13, 19]. The above corollary
shows that the interpolation functor introduced in this paper provides an unified
method for generating Orlicz spaces and Lorentz–Karamata spaces from Lebesgue
spaces.

5. Convolutions and Fourier integral operators

In this section, we present the first group of the main results of this paper on the
fractional integral operators, the convolution operator and Fourier integral operators.
We begin with the mapping property of the fractional integral operator

(Iαf)(x) =

ˆ

Rn

f(y)

|x− y|n−α
dy

where 0 < α < n.

Theorem 5.1. Let 0 < α < n and X be a r.i.q.B.f.s. If 1 < pX ≤ qX < n
α
, then

‖Iα(f)‖Xα ≤ C‖f‖X , ∀f ∈ X

for some C > 0.

Proof. It is well-known that Iα : L
s → Lq is bounded when

1 < s <
n

α
and

1

s
=

1

q
+
α

n
.



908 Kwok-Pun Ho

Since 1 < pX ≤ qX < n
α
, there exist s1, s0 such that qX < s1 <

n
α

and 1 < s0 < pX .
The mappings Iα : L

s0 → Lq0 and Iα : L
s1 → Lq1 with

1

si
=

1

qi
+
α

n
, i = 0, 1,

are bounded. Let 1
θ
= 1

s0
− 1

s1
= 1

q0
− 1

q1
. Furthermore, as

1

q1
+
α

n
=

1

s1
<

1

qX
≤

1

pX
<

1

s0
=

1

q0
+
α

n
,

(4.6) and (4.7) are fulfilled for the interpolation (Lq0 , Lq1)θ,s0,X. Theorem 4.2 and
Corollary 4.3 yield

‖Iαf‖Xα ≤ C‖Iαf‖(Lq0 ,Lq1)θ,s0,X
≤ C‖f‖(Ls0 ,Ls1)θ,s0,X

= ‖f‖X. �

Next, we have with the mapping properties of the convolution operators on
r.i.q.B.f.s.

Theorem 5.2. Let 1 < p < ∞ and X be a r.i.q.B.f.s. If 1 < pX ≤ qX < p′ and
f ∈ Lp, then we have

(5.1) ‖f ∗ g‖X n
p′

≤ C‖f‖Lp,∞‖g‖X

for some C > 0 independent of f and g.

Proof. For any f ∈ Lp,∞, write Tf (g) = f ∗g. According to the Young inequality,
Tf : L

q → Ls is bounded when

1

p
+

1

q
=

1

s
+ 1.

Moreover, we have
‖f ∗ g‖Ls ≤ Cp,q‖f‖Lp,∞‖g‖Lq

for some Cp,q > 0 independent of f and g.
We first select q0 and q1 satisfying

1 < q0 < pX ≤ qX < q1 < p′

and

(5.2)
1

q0
−

1

p′
>

1

pX
.

Since
1

q1
>

1

p′
and

1

q0
−

1

p′
>

1

pX
,

we have s0, s1 fulfilling
q0 < s0 < pX ≤ qX < q1 < s1

and

(5.3)
1

q0
−

1

s0
=

1

q1
−

1

s1
=

1

p′
= 1−

1

p
.

Thus, we find that

‖Tf(g)‖Lsi ≤ Cp,qi‖f‖Lp,∞‖g‖Lqi , i = 0, 1.

We apply the interpolation functor (·, ·)θ,q0,X on Tf with

(5.4)
1

θ
=

1

s0
−

1

s1
=

1

q0
−

1

q1
.
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We have the last identity in view of (5.3). Therefore, Tf : (L
q0, Lq1)θ,q0,X →

(Ls0, Ls1)θ,q0,X is bounded. Since q0 < pX ≤ qX < q1, Corollary 4.3 yields

(5.5) (Lq0 , Lq1)θ,q0,X = X.

Next, we apply the functor (·, ·)θ,q0,X to Ls0 and Ls1 . Thus, we need to show that
(4.7) is satisfied. With respect to the notation used in Theorem 4.2, we have r = q0
and

(5.6)
α

n
=

1

q0
−

1

s0
.

By using (5.3)–(5.6), we have

1

s1
+
α

n
=

1

s1
+

1

q0
−

1

s0
=

1

q0
−

1

q0
+

1

q1
=

1

q1
<

1

qX
.

Similarly,
1

s0
+
α

n
=

1

s0
+

1

q0
−

1

s0
=

1

q0
>

1

pX
.

Thus, condition (4.7) is fulfilled and we are allowed to apply Theorem 4.2 to obtain

(Ls0, Ls1)θ,q0,X = Xα.

According to (5.3) and (5.6), we find that

α

n
=

1

q0
−

1

s0
=

1

p′
.

That is, Xα = X n
p′

. Therefore, Tf : X → X n
p′

is bounded. In view of (4.3) and (4.4),

we have

‖f ∗ g‖X n
p′

≤ C‖f‖Lp,∞‖g‖X

for some C > 0 independent of f and g. �

When X is the Lebesgue spaces, (5.1) is also named as the Young inequality.
Therefore, (5.1) is also a generalization of Young’s inequalities to r.i.q.B.f.s. In fact,
Corollary 5.1 is a consequence of Theorem 5.2 because fα ∈ L n

n−α
,∞ where fα(x) =

|x|n−α, 0 < α < n.
At the end of this section, we establish the mapping properties of the Fourier

integral operators on r.i.q.B.f.s. We recall some basic idea for defining the Fourier
integral operators from [31, Chapter IX, Section 3].

Let m ∈ R. The class Sm consists of those infinitely differentiable function
a(x, ξ) : Rn ×R

n → R satisfying

|∂τx∂
γ
ξ a(x, ξ)| ≤ Aγ,τ (1 + |ξ|)m−|γ|,

for all multi-indices γ, τ . The Fourier integral operator Ta associated with the symbol
a ∈ Sm is given by

(Taf)(x) =

ˆ

Rn

e2πiφ(x,ξ)a(x, ξ)f̂(ξ) dξ

where the phase function φ : Rn ×R
n → R is real-valued, homogeneous of degree 1

in ξ, and smooth in (x, ξ) when ξ 6= 0, on the support of a. It is also assumed that
φ satisfies the non-degeneracy condition

(5.7) det

(

∂2φ

∂xi∂ξj

)

6= 0
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on the support of a. For details of the Fourier integral operators, the reader is referred
to [31, Chapter IX, Section 3].

Corollary 5.3. Let Ta be a Fourier integral operator with a ∈ Sm, −n
2
< m < 0.

If X is a r.i.q.B.f.s. with p < pX ≤ qX < 2 where

(5.8)
1

p
=

1

2
−
m

n
.

Then, we have

(5.9) ‖Taf‖X−m ≤ C‖f‖X

for some C > 0 independent of f .

Proof. According to [31, Proposition 3.1.4], the Fourier integral operator T sat-
isfies

‖Taf‖L2 ≤ C‖f‖Lp and ‖Taf‖Lq ≤ C‖f‖L2

for some C > 0, where

(5.10)
1

q
=

1

2
+
m

n
.

We apply the interpolation functor (·, ·)−m
n
,p,X on Ta. According to (5.8), Corol-

lary 4.3 yields

(Lp, L2)−m
n
,p,X = X.

In view of (5.8) and (5.10), we have

1

q
−
m

n
=

1

2
<

1

qX
≤

1

pX
<

1

p
=

1

2
−
m

n
.

The above inequalities and (5.10) guarantee that we can apply Theorem 4.2 to the
interpolation (L2, Lq)−m

n
,p,X. Identity (5.8) shows that α = −m. Thus, Theorem 4.2

assures that

(L2, Lq)−m
n
,p,X = X−m.

Hence, we obtain (5.9). �

6. Fourier transform, oscillatory integral operator

and restriction theorem

In this section, we give the main results corresponding to the family {X̂β}. We
extend the mapping properties of the Fourier transform and the oscillatory integral
operators to r.i.q.B.f.s. in this section. At the end of this section, we also present
the restriction theorem of Fourier transform on r.i.q.B.f.s. as an application of the
mapping properties of the oscillatory integral operators.

We present the mapping property for Fourier transform on r.i.q.B.f.s. in the
following.

Theorem 6.1. Let X be a r.i.q.B.f.s. with 1 < pX ≤ qX < 2. Then

(6.1) ‖f̂‖X̂ ≤ C‖f‖X

for some C > 0.
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Proof. We have

‖f̂‖L∞ ≤ C‖f‖L1, ‖f̂‖L2 = ‖f‖L2.

We apply the functor (·, ·)2,1,X on the Fourier transform. Corollary 4.3 gives

(L1, L2)2,1,X = X.

By the definition of K-functional and the Holmstedt formula, we find that

(6.2) K(f̂ , t, L∞, L2) = tK(f̂ , t−1, L2, L∞) ≈ t
(

ˆ t−2

0

(f̂ ∗(s))2ds
)

1
2
.

Thus, the fact that f̂ ∗ is non-increasing yields

ρX(t
−1K(f̂ , t

1
2 , L∞, L2)) ≥ CρX



t−
1
2

(

ˆ t−1

0

(f̂ ∗(s))2 ds

)
1
2





≥ CρX(t
−1f̂ ∗(t−1)) = ‖f̂‖X̂ .

That is, we have the embedding (L∞, L2)2,1,X →֒ X̂. In conclusion, the action of the
functor (·, ·)2,1,X on the Fourier transform establishes (6.1). �

The above mapping property for the Fourier transform is one of the main reason
why we consider r.i.q.B.f.s. instead of only r.i.B.f.s. in this paper.

When X = Lp with 1 < p < 2, according to (3.2) and Theorem 6.1, we obtain

‖f̂‖Lp′,p
≤ C‖f‖Lp.

By using the embedding of Lorentz space [3, Chapter 4, Proposition 4.2]

Lp′,q →֒ Lp′,r, 0 < p ≤ ∞, and 0 < q < r ≤ ∞,

we recover the classical Hausdorff–Young inequality

‖f̂‖Lp′ ≤ C‖f‖Lp

because p′ > p when 1 < p < 2.
Next, we study a generalization of the Fourier transform, the oscillatory integral

operator. The oscillatory integral operator associated with a(x, y) ∈ C∞
0 (Rn ×R

n)
and φ ∈ C∞(Rn ×R

n) is given by

(Tλf)(x) =

ˆ

Rn

eiλφ(x,y)a(x, y)f(x) dy, λ > 0.

We call φ the phase function. For the details of the study of the oscillatory integral
operator, the reader is referred to [30, Chapter 2] and [31, Chapter IX].

Theorem 6.2. Let X be a r.i.q.B.f.s. with 1 < pX ≤ qX < 2. If φ satisfies the
non-degeneracy condition

(6.3) det

(

∂2φ

∂xi∂yj

)

6= 0

on the support of a. Then, for any λ, ǫ > 0, there exists a Cǫ > 0 independent of λ,

(6.4) ‖Tλf‖X̂ ≤ Cǫλ
−nmax(λ

n
pX

−ǫ
, λ

n
qX

+ǫ
)‖f‖X , ∀f ∈ X.
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Proof. According to [30, Theorem 2.1.1], we have

‖Tλf‖L∞ ≤ K‖f‖L1

for some K > 0. Moreover, as φ satisfies the non-degeneracy condition (6.3) on the
support of a, we also have

‖Tλf‖L2 ≤ Kλ−
n
2 ‖f‖L2.

Applying the functor (·, ·)2,1,X on Tλ, Corollary 4.3 gives (L1, L2)2,1,X = X. The

proof of Theorem 6.1 yields (L∞, L2)2,1,X →֒ X̂.
Finally, (4.4) with M0 = K and M1 = Kλ−

n
2 guarantees that for any λ, ǫ > 0,

there exists a Cǫ > 0 independent of λ,

‖Tλf‖X̂ ≤ Cǫλ
−nmax(λ

n
pX

−ǫ
λ

n
qX

+ǫ
)‖f‖X. �

The above result is an extension of the mapping property for Fourier transform
on X. On the other hand, some important applications of the boundedness of the
oscillatory integral operators lies in the case where the phase function does not satisfy
the non-degeneracy condition (6.3). Some oscillatory integral operators of this type
are of the form

(Tλf)(z) =

ˆ

Rn−1

eiλφ(z,y)a(z, y)f(y) dy, λ > 0,

where a ∈ C∞
0 (Rn ×R

n−1) and φ : Rn ×R
n−1 → R is a real C∞ phase function in

a neighborhood of supp a.
In this situation we assume that φ fulfills the Carleson–Sjölin condition. More

precisely, the Carleson–Sjölin condition assumes that φ satisfies

(6.5) rank
( ∂2φ

∂yi∂zj

)

≡ n− 1

and

(6.6) Sz0 = ΠT ∗
z0

Rn(Cφ)

has everywhere non-vanishing Gaussian curvature on T ∗
z0
R
n, where T ∗

z0
R
n is the

vector space of all cotangent vector at z0 on R
n,

Cφ = {(z, φ′
z(z, y), y,−φ

′
y(z, y)) : (z, y) ∈ R

n ×R
n−1}

and ΠT ∗
z0

Rn : Cφ → T ∗
z0
R
n is the natural projection.

Obviously, Tλ maps functions defined on R
n−1 to functions on R

n. Thus, for any
r.i.q.B.f.s. X defined on R

n−1, we have to introduce the corresponding r.i.q.B.f.s. on
R
n.

Let X be a r.i.q.B.f.s. on R
n−1. The set X(Rn) consists of those f ∈ M(Rn)

such that
‖f‖X(Rn) = ρX(f

∗) <∞.

It is easy to show that whenever X is a r.i.q.B.f.s., X(Rn) is also a r.i.q.B.f.s.

Theorem 6.3. Let X be a r.i.q.B.f.s. on R
n−1 with 1 < pX ≤ qX < 2. If φ

satisfies the Carleson–Sjölin condition. Then, for any ǫ > 0, there exists a constant
Cǫ > 0 independent of λ > 0 such that

(6.7) ‖Tλf‖X̂n+1
n−1

(Rn) ≤ CǫΛ(λ)‖f‖X

where

(6.8) Λ(λ) = λ−
n(n−1)
n+1 max

(

λ
−

n(n−1)
pX (n+1)

+ǫ
, λ

−
n(n−1)
qX (n+1)

−ǫ)
.
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Proof. From [30, Theorem 2.2.1] and [31, Chapter IX, Section 1.2, Theorem 1],
we have

‖Tλf‖Lq(Rn) ≤ Aλ−n/q‖f‖Lp(Rn−1)

where

q =

(

n+ 1

n− 1

)

p′, and 1 ≤ p ≤ 2.

We apply the interpolation functor (·, ·)2,1,X for the operator Tλ. In view of Corollary
4.3, we find that (L1, L2)2,1,X = X.

Next, we consider (L∞, L2(n+1
n−1

))2,1,X . Similar to (6.2), we obtain

K(Tλf, t, L
∞(Rn), L2(n+1

n−1
)(Rn)) = tK(Tλf, t

−1, L2(n+1
n−1

)(Rn), L∞(Rn))

≈ t





ˆ t
−2( n+1

n−1 )

0

((Tλf)
∗(s))2(

n+1
n−1

) ds





1

2(n+1
n−1 )

.

Thus,

‖Tλf‖
(L∞(Rn),L

2(n+1
n−1 )

(Rn))2,1,X
= ρX(t

−1K(Tλf, t
1
2 , L∞(Rn), L2(n+1

n−1
)(Rn)))

≥ CρX






t−

1
2





ˆ t
−(n+1

n−1 )

0

((Tλf)
∗(s))2(

n+1
n−1

) ds





1

2(n+1
n−1 )







≥ CρX(t
−1(Tλf)

∗(t−
n+1
n−1 )) = C‖Tλf‖X̂n+1

n−1
(Rn)

for some C > 0. Hence, we establish (6.7). Finally, (6.8) follows from (4.4) with

M0 = A and M1 = Aλ−
n(n−1)
2(n+1) . �

Notice that when X is the Lebesgue space Lp, the epsilon ǫ in (6.4) and (6.8) can
be taken to be zero because ‖Ds‖Lp→Lp = Cs−1/p for some C > 0. Therefore, (6.4)
becomes [30, Corollary 2.1.2] and (6.8) reduces to Λ(λ) = λ−n/q.

As an important consequence of the mapping properties of the oscillatory integral
operators, we present the restriction theorem for the Fourier transform on r.i.q.B.f.s.
For the study of the Fourier restriction theorem on Lp, the reader may consult [30,
Corollary 2.2.2] and [31, Chapter IX, Proposition 2.1].

Suppose that S ⊂ R
n, n ≥ 2, is a C∞ hypersurface with non-vanishing Gaussian

curvature.

Theorem 6.4. Let S0 be a compact subset of S. Let X be a r.i.q.B.f.s. on R
n

with 1 < pX ≤ qX < 2(n+1)
n+3

. Then,

(6.9) ‖f̂χS0‖X̂n−1
n+1

≤ C‖f‖X , ∀f ∈ S(Rn).

Proof. By [30, Corollary 2.2.2] and [31, Chapter IX, Proposition 2.1],we have

‖f̂χS0‖Lr ≤ C‖f‖Lp, ∀f ∈ S(Rn)

where r = n−1
n+1

p′ and 1 ≤ p ≤ 2(n+1)
n+3

. We apply the interpolation functor (·, ·) 2n+2
n−1

,1,X

for the mapping f → f̂χS0 . Corollary 4.3 offers (L1, L
2(n+1)
n+3 ) 2n+2

n−1
,1,X = X.
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Let θ = 2(n+1)
n−1

. Then, 1
θ
= 1 − 1

2(n+1)
n+3

. Similar to the proof of Theorem 6.3, we

find that for any g ∈ L2 + L∞

t−1K(g, t
1
θ , L∞, L2) = t−

1
θ′





ˆ t−
2
θ

0

(g∗(s))2 ds





1
2

.

Consequently,

ρX(t
−1K(g, t

1
θ , L∞, L2)) ≥ ρX(t

−1g∗(t−
n−1
n+1 )).

Hence, the embedding (L∞, L2) 2n+2
n−1

,1,X →֒ X̂n−1
n+1

is valid and the mapping property

(6.9) is established. �

7. Sobolev spaces

In this section, we establish the Sobolev embedding theorem for Sobolev spaces
built on r.i.q.B.f.s. For the details of the Sobolev embedding theorem of the classical
Sobolev spaces, the reader may consult [2, Chapter 4]. We first give the definition of
the Sobolev spaces associated with r.i.q.B.f.s.

Definition 7.1. Let k ∈ N and X be a r.i.q.B.f.s. The Sobolev space WX
k

consists of those Lebesgue measurable functions f on R
n such that

(7.1) ‖f‖WX
k
=
∑

|γ|≤k

‖Dγf‖X <∞,

where γ = (γ1, · · · , γn) is a multi-index and Dγf is the distributional derivative of
f . Write

Dkf =
∑

|γ|≤k

|Dγf |.

In order to match with the classical notion for Sobolev spaces, write W p
k for WX

k

when X = Lp, 1 ≤ p ≤ ∞. The following formula represents the K-functional of
Sobolev spaces in terms of Dk and Lebesgue spaces.

Proposition 7.1. Let k ∈ N and 1 < p < q <∞. We have

(7.2) K(f, t,W p
k ,W

q
k ) ≈ K(Dkf, t, L

p, Lq).

Proof. In view of [3, Chapter 5, Corollary 5.13], we have

(7.3) W p
k = (W 1

k ,W
∞
k ) 1

p′
,p,

where (·, ·) 1
p′
,p is the Marcinkiewicz real interpolation functor.

We apply the Holmstedt formula for the K-functional for Marcinkiewicz real
interpolation functor [3, Chapter 5, Theorem 2.1] to (7.3) and obtain

K(f, t,W p
k ,W

q
k )

≈

(
ˆ t

1
δ

0

(

s
− 1

p′K(f, t,W 1
k ,W

∞
k )
)pds

s

)
1
p

+ t
1
δ

(
ˆ ∞

t
1
δ

(

s
− 1

q′K(f, t,W 1
k ,W

∞
k )
)q ds

s

)
1
q

.

The K-functional of Sobolev spaces [8] is given by

K(f, t,W 1
k ,W

∞
k ) ≈

ˆ t

0

(Dkf)
∗(s) ds.
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Therefore,

K(f, t,W p
k ,W

q
k )

≈

(
ˆ t

1
δ

0

(

s−1

ˆ s

0

(Dkf)
∗(u)du

)p

ds

)
1
p

+ t
1
δ

(
ˆ ∞

t
1
δ

(

s−1

ˆ s

0

(Dkf)
∗(u)du

)q

ds

)
1
q

where δ = 1
p
− 1

q
.

By applying Hardy’s inequality [10, Theorem 2.2.1] on the intervals (0, t
1
δ ) and

(tδ,∞), the Holmstedt formulas for the K-functionals of Lebesgue spaces [22] assure
that

K(f, t,W p
k ,W

q
k ) ≤ C









ˆ t
1
δ

0

(

(Dkf)
∗(s)





p

ds
) 1

p
+ t

1
δ

(
ˆ ∞

t
1
δ

(

(Dkf)
∗(s)

)q
ds

)
1
q





≤ CK(Dkf, t, L
p, Lq)

for some C > 0.
For the reserve inequality, since (Dkf)

∗ is a non-increasing function, we have,

K(f, t,W p
k ,W

q
k ) ≥ C











ˆ t
1
δ

0

((Dkf)
∗(s))p

ds

s





1
p

+ t
1
δ

(
ˆ ∞

t
1
δ

((Dkf)
∗(s))q

ds

s

)
1
q







≥ CK(Dkf, t, L
p, Lq). �

We now give the interpolation results of the Sobolev spaces under the functor
(·, ·)θ,r,X.

Theorem 7.2. Let k ∈ N, 0 ≤ α < ∞ and X be a r.i.q.B.f.s. with 0 < pX ≤
qX < n

α
. Suppose 0 < p0 < pX ≤ qX < p1 <∞ and r, θ satisfy (4.6) and (4.7). Then,

(7.4) (W p0
k ,W

p1
k )θ,r,X = WXα

k .

Proof. The definition of (·, ·)(θ,r,X) and (7.2) assures that

‖f‖(W p0
k ,W

p1
k )θ,r,X

= ρX(t
− 1

rK(f, t
1
θ ,W p0

k ,W
p1
k )) ≈ ρX(t

− 1
rK(Dkf, t

1
θ , Lp0, Lp1))

= ‖Dkf‖(Lp0 ,Lp1)θ,r,X = ‖Dkf‖Xα.

It is obvious that the quasi-norms ‖ · ‖WXα
k

and ‖Dk(·)‖Xα are mutually equivalent.

Thus, we obtain (7.4). �

We are now apply Theorem 7.2 to establish the main result of this section, the
Sobolev embedding theorem for WX

k .

Theorem 7.3. Let k ∈ N and X be a r.i.q.B.f.s. with 0 < pX ≤ qX < n
k
. We

have

(7.5) WX
k →֒ Xk.

Proof. We choose p0, p1 such that

(7.6) 0 < p0 < pX ≤ qX < p1 <
n

k
.
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The classical Sobolev embedding theorem on Lebesgue spaces assures that

W p0
k →֒ Lq0 ,

1

q0
=

1

p0
−
k

n
,(7.7)

W p1
k →֒ Lq1 ,

1

q1
=

1

p1
−
k

n
.(7.8)

We apply the interpolation (·, ·)θ,p0,X on the embedding operator with 1
θ
= 1

p0
− 1

p1
.

Theorem 7.2 gives
(W p0

k ,W
p1
k )θ,p0,X =WX

k .

The q0 and q1 given in (7.7) and (7.8) satisfy

1

θ
=

1

p0
−

1

p1
=

1

q0
−

1

q1
, and

1

p0
=

1

q0
+
k

n
.

Therefore, (4.6) is fulfilled for the interpolation (Lq0, Lq1)θ,p0,X . Furthermore, we have

1

q1
+
k

n
=

1

p1
<

1

qX
≤

1

pX
<

1

p0
=

1

q0
+
k

n
.

That is, (4.7) is also satisfied for the interpolation (Lq0, Lq1)θ,p0,X . Thus, Theorem 4.2
asserts that

WX
k = (W p0

k ,W
p1
k )θ,r,X →֒ (Lq0 , Lq1)θ,p0,X = Xk. �

Obviously, the above result generalizes the classical Sobolev embedding theorem
for Lebesgue spaces to r.i.q.B.f.s. In the next section, we present some further gen-
eralizations of the Sobolev embedding theorem by extending the Sobolev–Jawerth
embedding theorem to Triebel–Lizorkin spaces associated with r.i.q.B.f.s.

8. Triebel–Lizorkin spaces and Hardy spaces

The Triebel–Lizorkin spaces provide a unified framework for the studies of a
number of important function spaces in analysis such as the Lebesgue spaces, the
Sobolev spaces and the Hardy spaces [32, 33].

Recently, there are some extensions of the notion of the Triebel–Lizorkin spaces
with the Lebesgue spaces replaced by some general function spaces. In [16], a new
family of Triebel–Lizorkin spaces is introduced by using the Littlewood–Paley func-
tions and the spectral synthesis and Luzin approximation of this family of function
spaces are investigated. Moreover, the smooth atomic and molecular decompositions
are obtained in [18, Section 3]. The duality properties of these function spaces are
investigated in [21].

Another type of generalization of the Triebel–Lizorkin spaces by using the Pee-
tre’s maximal function is introduced in [26]. The main theme of this section is to
study the Triebel–Lizorkin spaces associated with r.i.q.B.f.s. Especially, we are in-
terested on the interpolation properties of these function spaces.

Let us recall the definition of the Triebel–Lizorkin spaces associated with
r.i.q.B.f.s. via the Littlewood–Paley functions from [18, Definition 2.1]. Let P denote
the class of polynomials in R

n.

Definition 8.1. Let α ∈ R, 0 < q < ∞ and X be a r.i.q.B.f.s. with 0 < pX ≤
qX <∞. The Triebel–Lizorkin space Ḟ α

q,X consists of those f ∈ S ′(Rn)/P satisfying

(8.1) ‖f‖Ḟα
q,X

=

∥

∥

∥

∥

∥

∥

(

∞
∑

j=−∞

(2jα|f ∗ ϕj|)
q

)
1
q

∥

∥

∥

∥

∥

∥

X

<∞,
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where ϕj(x) = 2jnϕ(2jx), j ∈ Z and ϕ ∈ S(Rn) satisfy

supp ϕ̂ ⊆ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2} and(8.2)

|ϕ̂(ξ)| ≥ C, 3/5 ≤ |ξ| ≤ 5/3(8.3)

for some C > 0.

We also recall the definition of the corresponding sequence space [18, Defini-
tion 2.3]. Let Q = {Qi,k : i ∈ Z, k ∈ Z

n} denote the set of dyadic cubes, where
Qi,k = {(x1, . . . , xn) ∈ R

n : kj ≤ 2ixj < kj + 1, j = 1, . . . , n} and k = (k1, . . . , kn).
We denote the Lebesgue measure of Q ∈ Q by |Q| and the side length of Q by l(Q).

Definition 8.2. Let α ∈ R, 0 < q < ∞ and X be a r.i.q.B.f.s. with 0 <
pX ≤ qX < ∞. The Triebel–Lizorkin sequence space ḟαq,X consists of those complex
sequence s = {sQ}Q∈Q

(8.4) ‖f‖ḟαq,X
=

∥

∥

∥

∥

∥

∥

(

∑

Q∈Q

(|Q|−α/n|sQ|χ̃Q)
q

)
1
q

∥

∥

∥

∥

∥

∥

X

<∞

where χ̃Q = |Q|−1/2χQ.

When X = Lp, Ḟ α
q,X and ḟαq,X becomes the well-known Triebel–Lizorkin space

F α
q,p and the Triebel–Lizorkin sequence space fαq,p, respectively [12, 33]. All results

obtained for the Littlewood–Paley spaces in [18] are also valid for Ḟ α
q,X . For instance,

when 0 < pX ≤ qX <∞, the definition of Ḟ α
q,X is independent of the function ϕ [18,

Theorems 3.1 and 4.4].
Additionally, the ϕ-ψ transforms are also bounded. Precisely, the ϕ-ψ transforms

consist of two operators Sϕ and Tψ generated by a pair of functions ϕ, ψ ∈ S(Rn)
satisfying (8.2), (8.3) and

∑

j∈Z

ϕ̂(2−jξ)ψ̂(2−jξ) = 1, ξ 6= 0,

(see [12, p. 45, (2.1)–(2.4)]).
We set ϕν(x) = 2νnϕ(2νx), ψν(x) = 2νnψ(2νx) and ϕQ(x) = |Q|−1/2ϕ(2νx − k),

ψQ(x) = |Q|−1/2ψ(2νx−k), ν ∈ Z, k ∈ Z
n and Q = Qν,k. For any f ∈ S ′(Rn)/P and

for any complex-valued sequence s = {sQ}Q∈Q, we define Sϕ(f) = {(Sϕf)Q}Q∈Q =
{〈f, ϕQ〉}Q∈Q and Tψ(s) =

∑

Q sQψQ. It is well known that Tψ ◦Sϕ = id in S ′(Rn)/P

(see [17, Theorem 6.1]). By [18, Theorems 3.1 and 4.8], when 0 < pX ≤ qX <∞, the
operators

Sϕ : Ḟ
α
q,X → ḟαq,X , and Tψ : ḟ

α
q,X → Ḟ α

q,X

are bounded. Furthermore,

(8.5) ‖f‖Ḟα
q,X

≈ ‖Sϕ(f)‖ḟαq,X
.

Moreover, Ḟ α
q,X also possesses the atomic decompositions and molecular characteri-

zations [18, Theorems 3.1 and 3.6].
We restate the definitions ofGαq, mαq and Aαq from [12]. We need these operators

to state the formula for the K-functional of Ḟ α
q,p.
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Definition 8.3. Let α ∈ R and 0 < q < ∞. For any complex sequence s =
{sQ}Q∈Q and Q ∈ Q, define

Gαq
Q (s)(x) =

(

∑

P⊂Q

(|P |−α/n|sP |χ̃P (x))
q

)
1
q

,(8.6)

Gαq(s)(x) =

(

∑

P∈Q

(|P |−α/n|sP |χ̃P (x))
q

)
1
q

.(8.7)

Set

(8.8) mαq
Q (s) = inf{ǫ : |{x ∈ Q : Gαq

Q (s)(x) > ǫ}| < |Q|/4}.

We call mαq
Q (s) the “ 1

4
-median” of Gαq

Q (s) on Q. Let

(8.9) mαq(s)(x) = sup
Q∈Q

mαq
Q (s)χQ(x).

For any f ∈ S ′(Rn), write

(8.10) Aαqf = mαq(Sϕf).

According to the definition of ḟαq,X , we have

(8.11) ‖Gαq(s)‖X ≈ ‖s‖ḟαq,X
.

We give an estimate for the K-functional of Ḟ α
q,X in the following.

Proposition 8.1. Suppose α ∈ R, 0 < q <∞ and 0 < p0 < p1 <∞. Then,

K(f, t, Ḟ α
q,p0

, Ḟ α
q,p1

) ≈ K(Aαqf, t, Lp0, Lp1).

For the proof of the above result, the reader is referred to [12, Corollary 6.7].

We present the interpolation result for the Triebel–Lizorkin spaces Ḟ α
q,p under the

action of functor (·, ·)θ,r,X. The proof of the following result follows from the ideas of
the proof of [12, Proposition 5.5].

Theorem 8.2. Let 0 ≤ α < ∞, β ∈ R, 0 < q < ∞ and X be a r.i.q.B.f.s. with
0 < pX ≤ qX < n

α
. Suppose 0 < p0 < pX ≤ qX < p1 < ∞ and r, θ satisfy (4.6) and

(4.7). Then,

(Ḟ β
q,p0

, Ḟ β
q,p1

)θ,r,X = Ḟ β
q,Xα

.

Proof. We have

‖f‖(Ḟβ
q,p0

,Ḟβ
q,p1

)θ,r,X
= ρX(t

− 1
rK(f, t

1
θ , Ḟ β

q,p0, Ḟ
β
q,p1)) ≈ ρX(t

− 1
rK(Aβqf, t

1
θ , Lp0 , Lp1)))

= ‖Aβqf‖(Lp0 ,Lp1)θ,r,X ≈ ‖Aβqf‖Xα.

Therefore, it remains to show that

(8.12) ‖Aβqf‖Xα ≈ ‖f‖Ḟβ
q,Xα

.

Moreover, in view of (8.5) and (8.10), (8.12) follows from

(8.13) ‖s‖Ḟβ
q,Xα

≈ ‖mβq(s)‖Xα.

To prove (8.13), notice that we have

|{x : mβq(s)(x) > t}| ≤ C‖{x : Gβq(s)(x) > t}|, ∀t > 0

for some C > 0, see the proof of [12, Propositin 5.5]. That is,

(mβq(s))∗(t) ≤ (Gβq(s))∗(t/B)
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for some B > 0 independent of t. Thus,

‖mβq(s)‖Xα = ρX(t
α/n(mβq(s))∗(t)

≤ CρX((t/B)−α/n(Gβq(s))∗(t/B)) ≤ C‖Gβq(s)‖Xα

for some C > 0. We use the assumption 0 < pX ≤ qX < ∞ for the last inequality.
Thus, (8.11) gives

‖mβq(s)‖Xα ≤ C‖s‖Ḟβ
q,Xα

.

To establish the reserve inequality, we recall some notation from [12]. For any
Q ∈ Q, let

EQ = {x ∈ Q : Gβq
Q (s)(x) ≤ mβq(s)(x)}.

According to [12, (5.10)], we have
|EQ|

|Q|
≥ 3

4
and

(8.14)

(

∑

Q

(|Q|−β/n|sQ|χ̃EQ
(s))q

)1/q

≤ Cmβq(s)(x), ∀x ∈ R
n.

Since X is a r.i.q.B.f.s. with 0 < pX ≤ qX < n/α, (3.1) guarantees that 0 <
pXα ≤ qXα <∞. Therefore, the Fefferman–Stein vector-valued maximal inequalities
are valid on Xα [18, Theorem 4.8]. That is, there exists an a > 0 such that

(8.15)

∥

∥

∥

∥

∥

∥

(

∑

k∈N

(M fk)
q/a

)a/q
∥

∥

∥

∥

∥

∥

X
1/a
α

≤ C

∥

∥

∥

∥

∥

∥

(

∑

k∈N

|fk|
q/a

)a/q
∥

∥

∥

∥

∥

∥

X
1/a
α

for some C > 0 where M f denote the Hardy–Littlewood maximal function of f .
Similar to the proof of [12, Proposition 2.7], with the constant a given in (8.15),

inequality (8.15) ensures that for any s = {sQ}Q∈Q,

‖s‖Ḟβ
q,Xα

≤ (4/3)−1/a

∥

∥

∥

∥

∥

∥

(

∑

Q

(M(|Q|−β/n|sQ|χ̃EQ
)a)q/a

)a/q
∥

∥

∥

∥

∥

∥

1/a

X
1/a
α

≤ C

∥

∥

∥

∥

∥

∥

(

∑

Q

(|Q|−β/n|sQ|χ̃EQ
)q

)
1
q

∥

∥

∥

∥

∥

∥

Xα

.(8.16)

Thus, inequalities (8.14) and (8.16) assert that

‖s‖Ḟβ
q,Xα

≤ C‖mβq(s)‖Xα.

Finally, (8.12) and (8.13) are valid and hence, we establish our promised interpolation
results. �

Let X be a r.i.q.B.f.s. In view of the Littlewood–Paley characterization of r.i.q.
B.f.s. [18, Theorem 4.10], whenever 1 < pX ≤ qX < ∞, X = Ḟ 0

2,X . Therefore, the
above theorem is a generalization of Theorem 4.2.

Similarly, the following theorem is an extension of the Sobolev embedding of WX
k .

Precisely, we have the Sobolev–Jawerth embedding of Ḟ α
q,X which is an extension of

the classical Sobolev–Jawerth embedding [23, 32].

Theorem 8.3. Let −∞ < β1 ≤ β0 <∞, 0 < u, v <∞. Suppose that

(8.17) α = β0 − β1.
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If X is a r.i.q.B.f.s. with 0 < pX ≤ qX < n
α
, then

Ḟ β0
u,X →֒ Ḟ β1

v,Xα
.

Proof. Select p0, p1 such that

(8.18) 0 < p0 < pX ≤ qX < p1 <
n

α
.

By [33, Theorem 2.7.1], we have the following embedding

Ḟ β0
u,p0

→֒ Ḟ β1
v,q0

, where
n

q0
=

n

p0
− β0 + β1,(8.19)

Ḟ β0
u,p1

→֒ Ḟ β1
v,q1

, where
n

q1
=

n

p1
− β0 + β1.(8.20)

We apply the interpolation (·, ·)θ,p0,X on the embedding operator with 1
θ
= 1

p0
− 1

p1
.

Theorem 8.2 assures that

(Ḟ β0
u,p0, Ḟ

β0
u,p1)θ,p0,X = Ḟ β0

u,X .

Next, we deal with the interpolation (Ḟ β1
v,q0
, Ḟ β1

v,q1
)θ,p0,X . From the conditions im-

posed on q0 and q1 in (8.19) and (8.20), we find that

1

θ
=

1

p0
−

1

p1
=

1

q0
−

1

q1
.

Moreover,
1

p0
=

1

q0
+
β0 − β1

n
=

1

q0
+
α

n
.

Therefore, (4.6) is satisfied for the interpolation (Ḟ β1
v,q0

, Ḟ β1
v,q1

)θ,p0,X .
Furthermore, (8.17), (8.18), (8.19) and (8.20) also guarantee that

1

q1
+
β0 − β1

n
=

1

p1
<

1

qX
≤

1

pX
<

1

p0
=

1

q0
+
β0 − β1
n

.

Thus, (4.7) is also fulfilled for the interpolation (Ḟ β1
v,q0

, Ḟ β1
v,q1

)θ,p0,X . Hence, Theorem
8.2 yields

(Ḟ β1
v,q0 , Ḟ

β1
v,q1)θ,p0,X = Ḟ β1

v,Xα
.

In conclusion, the embedding Ḟ β0
u,X →֒ Ḟ β1

v,Xα
is established. �

The above results are also valid for the inhomogeneous version of Ḟ α
q,X . Notice

that the Sobolev spaces WX
k is a member of the inhomogeneous version of Ḟ α

q,X . For
simplicity, we leave the details to the reader.

We apply the above results to another important member of Ḟ α
q,X , the Hardy

spaces associated with X.

Definition 8.4. Let X be a r.i.q.B.f.s. with 0 < pX ≤ qX < ∞. The Hardy
space associated with X, HX , consists of those f ∈ S ′(Rn)/P such that

‖f‖HX
=

∥

∥

∥

∥

∥

∥

(

∑

j∈Z

|ϕj ∗ f |
2

)
1
2

∥

∥

∥

∥

∥

∥

X

<∞

where ϕ ∈ S(Rn) satisfying (8.2) and (8.3).
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In order to match with the notations for the classical Hardy spaces, when X = Lp

with 0 < p ≤ 1, we write HX by Hp. When X is a Lorentz space, then HX is the
Hardy–Lorentz spaces studied in [1]. If X is generated by a growth function of lower
type (see [34, p.403]), then HX is the Hardy type Orlicz spaces considered in [34].
The Littlewood–Paley characterization of r.i.q.B.f.s. is given in [18, Theorem 4.10].

Proposition 8.4. Let X be a r.i.q.B.f.s. If 1 < pX ≤ qX <∞, then HX = X.

Thus, similar to the Hardy spaces associated with Lebesgue spaces Hp, 0 < p ≤ 1,
we are particular interested on HX with 0 < pX ≤ 1. The following is a special case
of Theorem 8.2.

Corollary 8.5. Let X be a r.i.q.B.f.s. with 0 < pX ≤ qX < n
α
. Suppose 0 <

p0 < pX ≤ qX < p1 <∞ and r, θ satisfy (4.6) and (4.7). Then,

(Hp0, Hp1)θ,r,X = HXα .

Let 0 < p ≤ 1, 0 < α < n and 1
q
+ α

n
= 1

p
. From [25], we have

(8.21) ‖Iα(f)‖Hq ≤ C‖f‖Hp, ∀f ∈ Hp

for some C > 0 By applying Proposition 8.4, Corollary 8.5 and (8.21) on the fractional
integral operator Iα, we establish the following theorem.

Theorem 8.6. Let 0 < α < n and X be a r.i.q.B.f.s. If 0 < pX ≤ qX <∞, then

‖Iα(f)‖HXα
≤ C‖f‖HX

, pX ≤
n

n+ α
,

‖Iα(f)‖Xα ≤ C‖f‖HX
, pX >

n

n + α

for some C > 0.

In particular, the above result recovers the mapping properties for the fractional
integral operators on Hardy–Lorentz spaces, see [20, Theorem 5.5].

Acknowledgement. The author would like to thank the reviewer for his/her valu-
able suggestions to improve the presentation of this paper.
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