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Abstract. Tropical Nevanlinna theory studies value distribution of continuous piecewise linear
functions of a real variable. In this paper, we use the reasoning from tropical Nevanlinna theory
to present tropical counterparts of some classical complex results related to Fermat type equations,
Hayman conjecture and Briick conjecture.

1. Introduction

Tropical Nevanlinna theory may be understood as a cross-road between tropical
mathematics and the classical Nevanlinna theory, see [17] for a general background
of tropical mathematics and [8], [12] and [13| for the tropical setting of the Nevan-
linna theory. Indeed, tropical Nevanlinna theory provides the flexibility of applying
complex analysis methods to considering real functions. Recall that Halburd and
Southall [8] described continuous piecewise linear functions on R with one-side inte-
ger derivatives as tropical meromorphic functions, and established tropical versions
of the first main theorem and the lemma on the logarithmic derivative. Laine and
Tohge [13] then showed that tropical Nevanlinna theory also holds to piecewise linear
functions with arbitrary real slopes, and obtained a tropical version of the second
main theorem.

Tropical Nevanlinna theory actually opens up possibilities for further investiga-
tions on value distribution and uniqueness theory of tropical meromorphic functions.
In this paper, we shall consider tropical meromorphic solutions y(z) to discrete equa-
tions of type

q
D nylr+4) =1,
j=0

where the coefficients n; are integers and ¢ = 1,2, 3. These considerations present, in
some sense, tropical variants of some classical complex analysis topics such as Fermat
type equations, a conjecture proposed to Hayman, and Briick conjecture type results.
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For the convenience of the reader, we shortly describe the respective complex analysis
background before proceeding to the corresponding tropical reasoning.
Recall that we are considering, throughout, a max-plus semi-ring endowing R U
{—o0} with tropical addition
r @y := max(z,y)

and tropical multiplication

TRQY:=x+Yy.
We also use z © y := x — y and 2%* = ax, for a € R. The identity element 0, for
tropical addition is 0, = —oo and the identity element 1, for multiplication is 1, = 0.

Such a structure is not a ring, for not all elements have tropical additive inverses.

Assume that the reader is familiar with the basic notations and results of the
tropical Nevanlinna theory, see e.g. [12] and [13|. However, for the convenience of
the reader, we recall here the following basic notations.

Definition 1.1. [8] Let f(x) be a tropical meromorphic function and
(11) (,Uf(l'o) = lim [f/(l'o + 8) — f/(ZL'Q — 8)]
e—0t
If wy(xg) > 0, then x¢ is called the root (zero) of f(z) with multiplicity wy(xg). If
w(zg) < 0, then g is called the pole of f(z) with multiplicity —w(zo).

The tropical proximity function for tropical meromorphic functions is defined as

(1.2 m(r, f) =5 (F0) + F7(=0)

where f*(r) := max{f(z),0} for x € R. The tropical counting function for poles in
(—r,7) is defined as

1 [ 1
(1.3 N f)i= 5 [l fyde =5 3 b )
0 [by|<r
where n(t, f) is the number of distinct poles of f in the interval (—r,r), each pole
multiplied by its multiplicity 7;. The tropical characteristic function T'(r, f) :=
m(r, f) + N(r, f). Following the usual classical notation, define the order of f(x) as

. log T'(r, f)
=1
pUf) = limsup ===

Y

and the hyper-order of f(x) by
) log log T'(r,
p2(f) := limsup M
r—00 ogr

In this paper, we typically need to work with tropical 1-periodic meromorphic
functions TI(z) and with tropical exponential functions. Concerning 1-periodic func-
tions, recall their representation in terms of the sawtooth functions

7@ (z) .=

> min{a(x — [z]), =b((x — [z]) — 1)}, a,b>0,

see [12], Theorem 6.7.

In what follows, we frequently shorten the notations by using the notations
H(a:),Hj(a:),H(x),ﬁ(x) etc. for tropical meromorphic functions of period 1, possi-
bly meaning different functions at different occasions. In particular, such notations
may be used to point out several independent 1-periodic functions are to be consid-
ered simultaneously. We can also write II(z) + II(x) = II(x), cIl(z) = II(z), etc.
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We also use the notation =(z) to denote tropical meromorphic functions that are
2-periodic and anti-1-periodic, again possibly meaning different functions at different
occasions.

Concerning tropical exponential functions, recall first their definitions, see [12,
Section 1.2.4]:

[x]—1

ea(2) = a¥l(z — [2]) + 3 o = ol <x—[a:]+ ! )

, a—1

j=—o00
where |a] > 1 is a real number. In this case, e, (z) is strictly increasing, and e, (z) is
a tropical entire function, since it has no poles. If then |5| < 1,  # 0, we define

o(r) = > B — 0o — ) = B (e —aha]).
’ Z{I} <1—f3 )

If 0 < 8 <1, eg(x) is a tropical entire function as well. However, if § < —1, then
es(x) is tropical meromorphic, but not tropical entire. For more details concerning
tropical exponential functions, see [12, Section 1.2.4]. In particular, note that tropical
exponentials y(x) := e, (x) satisfy the equation y(z + 1) = y(z)®*(= ay(x)), for all
a#0,1.

2. Fermat type equations in the tropical setting

The classical Fermat last theorem that equation ™ + y™ = 1 has no non-trivial
rational solutions, when n > 3, had been proved, after three centuries, by Wiles in
[20], see also [18]. Considering z,y in 2™ + y™ = 1 as elements in function fields, we
land at looking equations that may be called as Fermat type functional equations.
As to meromorphic solutions to the most simple case

(2.1) f(2)"+9(2)" =1,

it is known that (2.1) has no transcendental meromorphic solutions when n > 4,
while for n = 2,3 such meromorphic solutions are easy to find.
As to meromorphic solutions of the more general case

(2.2) f2)" +9(2)" + h(2)" =1,

it is known that meromorphic solutions f, g, h may be found for n < 6, see [6, 7|, and
the references therein, while for n > 9 no such meromorphic solutions exist. This non-
existence result has been proved by Hayman in [10]|, where a detailed presentation
for the more general situation

(2.3) PONICIES!

is to be found. Observe that the cases n = 7,8 remain open for (2.2).

We now proceed to considering certain Fermat type functional equations in the
tropical setting. Concerning the most simple case (2.1), one clearly gets two corre-
sponding tropical equations, namely

(2.4) (@)™ ® g(z)®* =1
and

(2.5) f@)®* @ g(2)™ =1,
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asking in both case possible tropical meromorphic solutions f and g, provided that
k is a natural number. However, as we are treating tropical meromorphic functions
with real slopes, it would be natural to consider

(2.6) f(@)® @ g(x)® =1
and
(2.7) f(@)® @ g(x)® =1,

where «, § are real numbers.

Before proceeding, recall that tropical polynomials are tropical meromorphic
functions that admit finitely many roots and no poles. Equivalently, tropical poly-
nomials may be represented in the form

n
(28) f(x) = @(al ®x®3i) =a, ®x®5n @@n—l ®x®sn—1 @ . @al ®x®81 @ ap (gx(@So7
i=0
where the coefficients a; are constants and s; are real numbers, ¢ = 0,1,2,--- ,n and

S0 < 81 < -+ < s,. Evaluating tropical polynomials in the classical notation results
in

(2.9) f(z) = max{a, + $px, apn_1+ Sn_1Z, - ,a1 + $12, a9 + S }.

More generally, tropical meromorphic functions that admit no poles, may be
called as tropical entire functions, and they have a series expansion

(2.10)

o

f@) = Plan®@a™") = a4y @270 @ a1 @2 &+ G a1 @2 D, @2 -

n=0
that is,
2.11 Tr)= ma Ap + SpT},
(211) fa) = max {an + s}
where the exponents s, are real numbers and sy < 1 < -+- < 5, < -+, see [12,
Chapter 2.

Remark 2.1. To start with, observe that equation
f@)®* @ g(a)®F =1,

where k is a natural number, admits no non-constant tropical entire solutions. Indeed,
suppose that one of f, g, say f, is non-constant. If f now has no slope discontinuities,
then kf(z) > 1 for some points x with |z| large enough, a contradiction. Let then x
be a slope discontinuity of f, and consider the slopes s;,_1 and sj, on both sides of
Tp. Since f has no poles, we have sj, — sj,—1 > 0. If s;, > 0, then kf(x) > kf(zo) +
Sjo(x — x) for all x > g, hence kf(x) > 1 for all x large enough, a contradiction. If
then s;, <0, we have s;,_1 < 0, and we have kf(z) > kf(x) + sj,—1(x — z0) for all
x < xg, and so kf(x) > 1 for all x with |z| large enough, again a contradiction. On
the other hand, tropical meromorphic, non-entire solutions are immediate to find.
As a trivial example, take k = 1. Then f(x) := min(1, —z+2) and g(z) := min(1, )
are solutions to f(x) @ g(z) = 1.

The reasoning used in the remark above applies to prove the following more
general case.
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Theorem 2.2. There are no non-constant tropical entire functions fi,..., f,
that satisfy

(212) D ) =1,

where the exponents ay, ..., a, all are positive.

Proof. Applying the reasoning in used in the preceding remark, it is immediate
to see that a contradiction readily follows whenever one of the functions fi,..., f, is
tropical entire and non-constant. U

Remark 2.3. Of course, the same result follows whenever the exponents ay, . . .,
a, all are negative. However, if there are different signs among the exponents
aq, ..., Q,, the claim obviously fails. Take, e.g., f(z) = é and g(z) = % ®(r® %)
with @ > 0, 8 < 0. Then we have f(z)%*® g(z)®® = 1. Observe that —g(z) is not a
tropical entire function.

Remark 2.4. Again, it is immediate to observe that equation (2.12) always
admits non-trivial tropical meromorphic solutions. Suppose again, for simplicity,
that the exponents aq, ..., a, all are positive. Taking now f; := ail min(1, —x + 2),
f2 := L min(1, ) and max(fs, ..., f,) < min(fi, f2), a solution fi, ..., f, is at hand.

a2

We next proceed to considering tropical meromorphic solutions to equation
(2.13) F()% ® g(2)® =1

with real exponents «, 5. It is trivial to find f, g satisfying (2.13) for any «,f.
Indeed, we may take, for example, f(z) =z ® é and g(z) = 2%~ % However, finding
expressions for general solutions seems to be more complicated, and we are restricting
ourselves to considering equations that may be called tropical difference Fermat type
functional equations. Such an equation corresponding to (2.13) is

(2.14) fl@)®* @ flz+1)%7 =1,
where «, § are real numbers, hence
(2.15) af(z)+Bf(x+1) =1

The key parts of this paper are then treating similar equations
(2.16) Y niflz+j)=1
j=0

with s =2 and s = 3.

The remaining of the paper is now being organized as follows. In Section 3 we
collect a number of propositions that are either needed in the subsequent considera-
tions, or might appear useful in future considerations. In Section 4, equation (2.16),
i.e. the case s = 1, is shortly treated, while the next Section 5 is devoted to con-
sidering tropical difference Fermat type equations (2.16) with s = 2. Section 6 is
then treating, partially, the case s = 3. The last two sections are describing tropical
counterparts to the Hayman conjecture from complex analysis (Section 7) and the
Briick conjecture (Section 8).
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3. Preliminary propositions

We start this section by recalling the following theorem, see [12, Theorem 7.3
and Theorem 7.4] (and making use of the identity e.(x + 1) = ce.(x)). Observe that
this version is formulated for our subsequent needs.

Theorem 3.1. The equation
(3.1) y(z +1) = y(2)**

with ¢ € R\{0} admits non-constant tropical meromorphic solutions on R of hyper-
order py(f) < 1 if and only if ¢ = £1. Moreover, if f(x) is a non-constant tropical
meromorphic solution to (3.1), then the following representations follow:

(1) If c=1, then f(z) is 1-periodic. Hence,
f(x) = T(z).

(2) If c= —1, then f(x) is 2-periodic, anti-1-periodic. Hence
f(z) = E(x).

(3) If ¢ # +£1, then all solutions of (3.1) are finite linear combinations of tropical
exponentials of type f(x) = e.(x —b), where b € [0,1).

Remark 3.2. In what follows, we use the notation L,(e.(x — b)) for finite linear
combinations > 7, Bje.(x — b;), where c is fixed and b = {b;,...,b,} C [0,1). In
particular, if A is a constant, then L,(Ae.(x—0b)) = Ly(e.(x—b)), since, e.(r+1—b) =
cec(r —b), Ly(ec(z +1—10)) = Ly(e.(z — b)).

Proposition 3.3. All tropical meromorphic solutions to
fle+1)—= f(z)=¢, c€eR,
are of the form f(x) = Tl(x) + cx.
Remark 3.4. As for the trivial proof of this proposition, see [12, p. 157].

In what follows, we use the notation Il for 1-periodic tropical meromorphic
functions that satisfy I1,(0) = 0.

Proposition 3.5. All tropical meromorphic solutions to

(3.2) fla+1) = f(z) = Ho(x),
take the form

(3.3) f(x) =1(x) + &(x, o)
where

(3.4) O (z, 1) = [z]IIy(z).

Proof. 1t is straightforward to see that ®(z+1, o) —®(x, IIy) = ly(x). Therefore,
O (x,I1) is a special solution to (3.2). It remains to verify that ®(z, I1y) is continuous
and piecewise linear; this is immediate. On the other hand, if F'(x) is an arbitrary
solution to (3.2), then it is trivial to see that F'(z) — ®(x,Ily) is 1-periodic. O

Corollary 3.6. All tropical meromorphic solutions to

(3.5) fla+1) = f(z) = (),
where 11 is 1-periodic tropical meromorphic such that 11(0) = d, take the form

(3.6) f(z) =1(z) + ®(x,II) + dx,
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where
(3.7) O(x, 1) := [z](II(z) — d).

Remark 3.7. Observe that Remark 7.2 in [12] fails by Proposition 3.5. Note
that «Ily(x) satisfies equation (3.2), and therefore, g(z) := zllp(x) — (P(z,1l))) is
1-periodic. However, xIly(z) is not tropical meromorphic by its non-linearity, hence
g(z) is not tropical meromorphic as well. Moreover, we remark here that Theorem 7.7
in [12] becomes incomplete, see Theorem 5.1(1) below.

As an illustration, see the graph of ®(z,Il) in Figure 1, when IIy(z) = 7V (z).
0.75+
05+

025

~0.25 -

-05F

-0.75

il
Figure 1. ®(z,1ly), = € [-4,4], Th(z) = 7D ().
As for the subsequent reasoning, we need to proceed by proving
Proposition 3.8. All tropical meromorphic solutions to
(3.8) flz+1) = f(x) = @(x, ),

with the 1-periodic function ®(z,1ly) := [x]Ily(z) defined as in Proposition 3.5, take
the form

(3.9) f(z) = (z) + O(x, 1),
where
(3.10) O(x,Thy) := (1 + W)HO(@.
Proof. This is an elementary computation. U

To illustrate the situation, look at the graph of ©(z, I1y) in Figure 2, with IIy(z) =
71D (2) again.

-4 -3 -2 -1 1 2 3 4

Figure 2. O(x,1ly), = € [~4,4], Tj(z) = 7V (2).
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Corollary 3.9. All tropical meromorphic solutions to
(3.11) flx+1)— f(z) = &(z,I0)

with the 1-periodic function ®(z,II) := [z](II(x) — II(0)) defined as in Corollary 3.6,
take the form

(3.12) f(z) =1l(z) + O(z, II),

where

(3.13) O(z,II) == (1 + W)(H(I) — I1(0)).
Proposition 3.10. Tropical meromorphic solutions of

(3.14) flz+1) = f(x) = O(z, 1)

satisfy

(3.15) f(z) =1I(z) + Q(x, ),

where Q(z) = ([:17 -1+ w> y(x).

As an example for the graph Q(z, I), see Figure 3, where again ITy(z) = 7V (2).

4L

Figure 3. Q(z,1ly), = € [-3,4], Ty(z) = 7D ().

Similarly as before, we again obtain

Corollary 3.11. Tropical meromorphic solutions of

(3.16) flx+1)— f(x) = O(x, 1)
satisfy
(3.17) f(x) =1(x) + Q(x, ),

where Q(z) = ([o = 1] + FIE=0E=21) (11 (2) — 11o(0)).

We next introduce the notation Z(z) to mean anti-1-periodic, 2-periodic tropical
meromorphic functions such that Zy(0) = 0. We now proceed to prove

Proposition 3.12. Tropical meromorphic solutions to
(3.18) flz+1)+ f(x) =Zp(x)
satisfy
(3.19) fx) = B(x) — [2]Eo(x).
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Proof. Elementary computation again verifies that —[x]=,(z) is a special solution
to (3.18). Moreover, if F'(x) is an arbitrary solution to (3.18), it is an easy exercise
to see that F'(x) + [z]Zy(z) is an anti-1-periodic, 2-periodic tropical meromorphic
function. O

As for the general case é(m) of anti-1-periodic, 2-periodic tropical meromorphic
functions, it immediately follows by continuity and anti-1-periodicity that there exists
xo such that Z(zy) = 0. Therefore, we obtain

Proposition 3.13. Tropical meromorphic solutions to

(3.20) fle+1) + f(2) = E(x),
such that Z(xy) = 0, take the form

(3.21) flz) = 2(x) — [z — 20 2(x).
Proof. Defining Zo(z) := Z(z + o) and g(z) := f(z + ), equation (3.20) takes
the form
9(x +1) + g(x) = Zo(x),

where /E\S(O) = 0. By Proposition 3.12,

g(x) = E(z) = [2]=0(z) = E(2) — [2]Z(2 + 20),

[1]

hence
f(@) = g(z — x0) = E(z — m0) — [z — 2] =(2). u

Proposition 3.14. Given a 2-periodic, anti-1-periodic tropical meromorphic
function Z(x), all tropical meromorphic solutions to

fle+1) = f(z) = Z(x)

are of the form f(z) = 1Il(z) — 1=(z).

Proof. 1t is a trivial computation to verify that f(z) = —1Z(z) is a special

solution to f(x+1)— f(x) = Z(z). One can also immediately see that whenever f(z)

is an arbitrary tropical meromorphic solution, then f(z) + £Z(z) is 1-periodic. [
Proposition 3.15. Given a 2-periodic, anti-1-periodic tropical meromorphic

function Z(x) such that Z(xy) = 0, then all tropical meromorphic solutions to

flz+1) = f(z) = [z — xo]E()
are of the form f(z) = l(z) — 1[z — zo]=(z) + 1Z(x).
Proof. This is a straightforward computation. U

Proposition 3.16. All tropical meromorphic solutions to

flz+1) + fx) = (z),

where TI(z) is tropical meromorphic and 1-periodic, are of the form f(x) = Z(z) +
II(x)
T2
Proof. Clearly, the solutions to f(z+1)+ f(z) = 0 are 2-periodic, anti-1-periodic
I(x)

functions, while =* is a special solution to f(z + 1)+ f(z) = II(x). O
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Proposition 3.17. Provided a # «, all tropical meromorphic solutions to

flz+1) —af(z) = ea(z)
are of the form f(z) = G(z) + —=ea(z), where G(z) stands for the solutions of the
homogeneous equation f(x + 1) —af(xz) =0, as given in Theorem 3.1.

Proof. To determine the special solution of the form Ke,(x), it is sufficient to
substitute this into f(z + 1) — af(xz) = es(x), and recall that e,(x + 1) = ae,(z).
Moreover, if F'(x) is an arbitrary tropical meromorphic solution to f(z+1)—af(z) =

1

eo(), then an elementary computation shows that G(z) := F(r) — ——e,(r) satisfies

G(x+1) —aG(x) = 0. O
Remark 3.18. Clearly, all tropical meromorphic solutions to
flx+1) —af(x) = Aea(z)
with a constant multiplier A are of the form f(z) = G(z) + =2-e4(2).

Proposition 3.19. Provided that |a| # 1, and that o < 0, then all tropical
meromorphic solutions to

fl@+1) —af(x) =eulz)
are of the form f(z) = Ly(ea(z — b)) + =[x — molea(x), where eq(z) = 0.
Proof. 1t is an easy observation to see that [x —xo|e,(z) is tropical meromorphic.
What remains is a trivial computation. 0J

‘H

Remark 3.20. Observe that we may assume that zp = = € (0,1) in this
proposition. Indeed, all roots of the tropical exponential e, ()

=

=

orm the set xg + Z.
If now z1,x9 € xy + Z, then their difference is a solution to f(z + 1) — af(z) =0 as
one may immediately see.

Remark 3.21. It remains open whether equation f(z + 1) — af(z) = e,(x)
admits tropical meromorphic solutions, if |o| # 1, and o > 0. Indeed, if f is such
a solution, then f(x +2) — 2af(z 4+ 1) + o®f(z) = 0. By Theorem 5.1(4), f(z) €
Ly(eq(z — b)) are solutions to f(z + 2) — 2af(x + 1) + o%f(x) = 0, but not to
flx+1) —af(x) = es(x). Existence of tropical meromorphic solutions of different
type to f(z 4+ 2) — 2af(x + 1) + o f(z) = 0 remains open, see Remark 5.2.

We next define a special tropical meromorphic function ¥(zx) as follows:
Z%fiofnax(o,x _j)a T > 1>
(3.22) U(z) == ¢ S max(0, 2 — j), 0<z<l,
T+ Z?zm max(0, —z +j), = <0.
The idea to apply such a tropical meromorphic function goes back to Tohge, see

[19, p. 133]. The importance of this function becomes immediately clear below. For
practical computations, ¥(z) may be represented as follows:

(3.23) W) = (] + Dz — 5al(fa] + 1)

It is an elementary computation to see that these two representations for W(z) are
identical. As for the graph of W(x) for z € [—3, 3], see Figure 4.

Proposition 3.22. The tropical meromorphic function V(zx) is tropical entire
of order p(V) = 2 and satisfies the difference equation V(z) — V(x — 1) = x.
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6,

-3 -2 -1 1 2 3

Figure 4. ¥(x), = € [-3,3].

Proof. It is immediate to verify that W(z) satisfies the asserted difference equa-
tion. Indeed,

W(e) ~ U(e 1) = (o] + Do ~ el + 1) — ([al(e — 1) — 5lele] = 1) ==

Next we see that ¥(x) is a continuous piecewise linear function: Suppose that 0 <
e < 1. Then

V([2] + ) = (2] + D([2] +¢) = %[Sﬂ]([w] +1) = ([o] + 1)fa] - %[%]([w] +1)

as € — 0 and

1 1
V(] =€) = [a]([z] = &) = Slal(le] = 1) = [a]la] = 5 la]([x] = 1);
the limits are equal as one may readily check. The difference of the slopes around
each integer, say [z], equals to [x] + 1 — [z] = 1, hence U(x) has no poles, being

a tropical entire function. By elementary computation from T'(r, ¥) = m(r, ¥) =
s(([r]+ Dr = 3[r]([r] + 1) + ([=r] + 1)(=r) — 3[=r]([=r] + 1)), it readily follows that
p(¥) = 2, completing the proof. O

Proposition 3.23. All tropical meromorphic solutions to
flx+1)— f(x)=cx, ceR
are of the form f(x) = I(x) + ¢(V(x) — z).

Proof. 1t is, again, straightforward to verify that f(x) = c(¥(x)

— ) is a special
solution by substituting and making use of the identity ¥(x+ 1) — ¥ (x)

z+1. O

Proposition 3.24. All tropical meromorphic solutions to

(3.24) flx+1) = f(x) =¥(2)
are of the form f(x) =1Il(z) + Y(x), where Y (z) := £[2]([2] +1)(2(z — [z]) + © — 1).
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Proof. Recalling the definition of ¥ in (3.23), this is a straightforward computa-
tion. O

4. Tropical difference Fermat type equations with two terms

In this short section, we solve equation (2.15)

Bflx+1)+af(x)=1
for tropical meromorphic solutions:

Theorem 4.1. The tropical meromorphic solutions of (2.15) satisfy
(i) If @ = B3, then f(z) = E(x) + 35,
(i) if « = —f, then f(z) = II(z) + %x,

(iii) if a # &0, then f(x) = Ly(e—¢(z — b)) + a—iﬁ

Proof. If o = 3, then (2.15) takes the form

1
fl+1)+ f(z) = 5.

The claim now follows from Proposition 3.16.

If « =—p, then f(x 4+ 1) — f(z) = %, and an immediate application of Propo-
sition 3.3 proves the claim. As for the general case a # £/, we may rewrite (2.15)
as

fle+1)+ %f(x) 1.
Now, the general solution Lb(e_%(x — b)) to the homogeneous equation f(x + 1)+

5f(z) = 0 follows from Theorem 3.1. Finally, a special constant solution ﬁ to

f(z+1) 4+ 5f(z) =1 is nothing but a trivial observation. O

5. Tropical difference Fermat type equations with three terms

We next proceed to considering tropical difference Fermat type functional equa-
tions with three terms, such as

(5.1) y(2)*" @ y(z + 1" @y(x +2)% = 1.
In the classical notation, we have
(5.2) ny(x) + my(z+ 1) + py(x +2) = 1.

First observe that if n = 0 or p = 0, (5.2) reduces back to the preceding section.
However, if m = 0, we have ny(x) + py(z + 2) = 1, and this needs to be considered
separately, whenever n + p # 0, see below.

5.1. The case n +m +p = 0. If n+m + p = 0, then equation (5.2) takes
the form

n 1
5.3 Flr+1)——-F(x) = -
(5.3) (z+1) . (x) p
by setting F'(z) = y(z+ 1) — y(x).
If now n = p, then, by Proposition 3.3,
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Recalling then Proposition 3.5 and Proposition 3.23, we conclude that all tropical
meromorphic solutions to (5.2) may be written in the form

- 1
(5.4) y(x) = l(x) + &(z,II) + ¢(0, )z + E(W(x) — ).
If next n = —p, then we have m = 0. Reversed, if m = 0, then n = —p. In this
case,
1
Flx+1)+ F(z) = o

hence F(z) = y(z + 1) — y(z) = Z(z) + % by Proposition 3.16. Relying now on
Proposition 3.14 and Proposition 3.23, we obtain

1_ 1
y(x) =T(x) — =Z(x) + —x.
2 2p
It remains to consider the case n # +p. By Theorem 4.1, we obtain
1

F(z) = Ly(en/p(x — b)) + p—

Therefore, by linearity and Proposition 3.17, all tropical meromorphic solutions to
(5.2) now take the form

(5.5) y(a) = T@) + o Leny(e = D) + - =z

p—n
5.2. The case n + m + p # 0. Define F(z) := y(x) — n+;+p. Thus, (5.2)
takes the form

(5.6) nF(z)+mF(z+1)+pF(x+2) =0,

and all solutions to (5.2) follow as soon as all solutions to (5.6) have been obtained.
Writing now ¢ := —2 and d := 2, (5.6) may be written as

(5.7) Frx+1)—cF(x)+dF(x—1)=0.

Ideas to solving (5.7) can be found in [13] and in [12]|, where the case d = 1 has been
treated. However, by Proposition 3.5 and Proposition 3.8 above, the statements in
Theorem 7.7 and Theorem 7.8 in [12] are incomplete. It had been pointed out in
[13] that a similar method could be used to solving (5.7) for arbitrary real numbers
d # 0,1. Due to the incomplete reasoning in [12], we prove the following theorem in
detail.

Theorem 5.1. Tropical meromorphic solutions F' of equation (5.7) exist as fol-
lows:

(1) If ¢ =2, d =1, then all tropical meromorphic solutions F' to (5.7) are linear
combinations of 1I(z), of L(z) = x and all tropical meromorphic functions
O (x,Iy) := [z]Ilo(x), where Iy is an arbitrary tropical meromorphic function
that is 1-periodic and satisfies 115(0) = 0.

(2) If c= =2, d =1, then all tropical meromorphic solutions F' to (5.7) are linear
combinations of tropical meromorphic functions that are either 2-periodic and
anti-1-periodic, or of type F(x) = [x — x|=(x), where zo € R is arbitrary
= is an arbitrary 2-periodic, anti-1-periodic meromorphic function such that



936 Ilpo Laine, Kai Liu and Kazuya Tohge

(3) If *—4d =0, d # 0,1, and ¢ < 0, then all tropical meromorphic solutions to
(5.7) are either linear combinations of functions of type F(x) = Ly(ec/2(x—0)),
or linear combinations of functions of type (2) F(x) = [z — bo|Ly(ec/2(x — b)),
where e./2(bg — b) = 0.

(4) If > —4d =0, d # 0,1, and ¢ > 0, then all tropical meromorphic functions
of type F(x) = Ly(ec/2(x — b)) are solutions to (5.7).

(5) If i —4d > 0, d # 0,1, then all tropical meromorphic solutions F to (5.7)
are linear combinations of functions that are either in Ly(e,(x — b)) or in
Ly(eg(z — b)), where a, 3 are the roots of \X* — e\ +d = 0.

Remark 5.2. (1) In Theorem 5.1(4), it remains open to us, whether the solutions
described therein are indeed all tropical meromorphic solutions to (5.7).

(2) Observe that the case ¢ — 4d < 0 remains open, if d # 1, compare to [12,
p. 165]. Following the ideas in [12], see also [13], for the case d = 1, natural candidates
for solutions to (5.7) in the case d # 1 might be

0[z])(cos @ — 1) + sin(f[z]) sind
2(1 — cosf) ’

Fi(x)= rlzl cos([z])(z — [z]) + 1] cos(

and
jsin(@[z])(cos @ — 1) + cos(f[z]) sin ¢

Fy(z) = rsin(0[z])) (z — [2]) + 20 —cosd) ,

where 12 =d # 1, ¢ = 2rcosf, 0 € (0, 7). However, it is straightforward to see that
rl*l is discontinuous at integers, whenever d # 1, hence Fy(x), Fy(x) are not tropical
meromorphic.

Proof. To prove Case (1), it is elementary to verify that II(xz) and L(z) are,
separately, solutions to (5.7) as well as ®(x,Ilj) for an arbitrary IIp. On the other
hand, is f(z) is an arbitrary non-vanishing tropical meromorphic solution to (5.7),
that is not 1-periodic, we anyway have f(z + 1) — f(z) = f(x) — f(z — 1). Hence,
IIy(z) = f(z) — f(z — 1) is non-vanishing and 1-periodic, meaning that f(z) =
O (z,I1y) + [1y(0)z by Proposition 3.5.

As to Case (2), it is immediate to verify that all 2-periodic, anti-1-periodic trop-
ical meromorphic functions are solutions to (5.7) as well as tropical meromorphic
solutions of type F(x) = [v — 20)=(x) such that Z(x¢) = 0. Moreover, if F' is an
arbitrary solution, then we may write (5.7) in the form

F(z +1)+ F(z) = —(F(z) + F(z — 1)).

If now T'(z) := F(x) + F(x — 1) vanishes, then F' has to be 2-periodic and anti-1-
periodic. Otherwise, 1" is 2-periodic, anti-1-periodic, and F' has to be of the asserted
form by Proposition 3.13.

We next proceed to prove Case (3). Since ¢® —4d = 0 and d # 1, then £(# 1) is
the root of A> — cA + d = 0. Equation (5.7) can be stated as

(5.8) Flz+1)— gF(@ - g (F@) . gF(:c - 1)) .
Denoting T'(z) := F(x) — §F(x — 1), we see that T'(z) satisfies T'(x + 1) = $T'(x). If

T vanishes, then

Fla) — %F(x 1) =0,
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meaning that F'(z) must be of type F(x) = Ly(ec/2(x — b)). Otherwise, T'(x) has to
be of type Ly(ec/2(x — b)) as well and we may write

(5.9) F()——Fx—l Zajecx—b

Suppose first ¢ < —2 and recall that

C\lo—b, 2
ec(r —b;) = (5)[ Ul —b; — o = b)) + Cj)-
To determine a point by ; where ec(boj —b;) =0, We may take by ; so that 0 <
bo,j—x; < 1. Then [by ;—b;] = 0, and we get by ; = b;——=. It is now a straightforward
computation to verify that F'(z) := [z — by j]ec(z — b, ) is tropical meromorphic and

satisfies equation (5.7). A similar reasoning may be used to treat the case —2 < ¢ < 0.
Case (4) is nothing else than a straightforward computation.
As to Case (5), it is again straightforward to verify the all functions mentioned
in the claim are solutions to (5.7). To see that an arbitrary solution to (5.7) is a
linear combination of functions in the claim, it is sufficient to refer to the proof of
[12, Theorem 7.9] the reasoning therein carries over verbatim. O

6. Tropical difference Fermat type functional equations with four terms

We proceed to considering tropical difference Fermat type functional equations
with four terms, such as

(6.1) Y(2)®" @ y(r + 1" @ ylx +2)*P @ y(x + 3)%7 =1,

where n, m, p, g are non-zero real numbers. Using classical notations, equation (6.1)
equals to

(6.2) ny(x) +my(xr +1) +py(r +2) + qy(z + 3) = L.

The considerations can be divided in two parts, assuming that either n + m +
p+q=0,orn+m+p+q#0.

6.1. The case n+m+p—+q = 0. This subsection splits in two parts, assuming
that either 3n+2m+p = 0 or that 3n+2m+ p # 0. Before proceeding, observe that
our assumption n, m, p,q # 0 actually could be deleted. Indeed, if n =0, or if ¢ = 0,
then (6.2) returns back to the considerations in the preceding section. If then m = 0,
resp. p = 0, then denoting g(z) := y(x +2) —y(x +3), (6.2) reduces to (n+p)g(x) +
ng(x —1)+ng(x —2) =1, resp. to (n+m)g(z) + (n+m)g(x — 1) +ng(x —2) =1,
and we may again proceed by the arguments in the preceding sections.

Theorem 6.1. If n+m +p+q =0 and 3n + 2m + p = 0, then the following
conclusions hold for tropical meromorphic solutions y(z) of equation (6.2):

(1) If 2n 4+ m = n, then

~ 1 1
y(z) = (z) + (z, 1) — 2 E(2) + o~ (¥(2) — 2);

(2) If 2n +m = —n, then
() = Ti(e) + B(a, TD) — O, 1) — X(@) + () + (11(0) ~ ).
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(3) If 2n 4+ m # £n,0, then
~ 2 1
=1I D(x, 11 I1(0) —
) = () + (e, T + ((0) = 5ot o

Proof. To prepare the separate proofs for each of the subcases, denote g(x) :=
y(x +2) —y(x + 3). Equation (6.2) then takes the form
(6.3) (n+m+p)g(x)+ n+m)glx—1)+nglx —2)=1
and, making use of the assumption that 3n 4+ 2m + p = 0, further

(6.4) (n+m)(g(z —1) —g(x)) + nlg(x - 2) — g(z)) = 1.

Denoting now H(z) := g(z — 1) — g(z), we obtain

(6.5) 2n+m)H(z) +nH(x —1) =1.

We now proceed to considering the subcases separately (observing first that if 2n +

m = 0, then ¢ = 0, contradicting our assumptions):
(1) In the case 2n 4+ m = n, we have n = —m and equation (6.5) takes the form
1

H(x)+H(z—1):E,

U(x) + Ly(e—n/@ntm)(z — b))

resulting in H(z) = Z(z) + 5= by Proposition 3.16. Hence

glx+1)—gx) = 1 + =(2).

2n
Solving termwise by linearity, and making use of Propositions 3.3 and 3.5, we obtain
1_ 1
g() = ylw +2) — yl(o+3) = T(x) = 25(x) — 5.
Therefore,
1 1
ylx +1) —y(x) =1(z) + iE(x) + 7%
Applying now Propositions 3.3, 3.5, 3.14 and 3.23, we get
~ 1 1
y() = () + B, 1) — 1 2(2) + 5 (¥(r) — o).

Observe that (6.2) reduces in this case to

y(m)—y(m+1)—y(:c+2)+y(:c+3):%.

(2) In the case 2n +m = —n, we have m = —3n and equation (6.5) takes the
form )
H(z)—H(x—1)=——
n

being solved by H(z) = g(x — 1) — g(x) = lI(z) — ta. Therefore,

oo+ 1) = gle) =T1() + -,

hence

g(z) =ylr+2) —y(lr+3) =1(z) + &(x, 1) + %(\If(x) — )

and

ylx+1) —y(x) =T(x) — ®(x — 2,11) — %\If(a: —2)+ %a:
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Since ®(x — 2,1I) — ®(z,II) = —2(II(z — 2) — I1(0)) is 1-periodic, and ¥(z — 2) =
U(x) — 2x + 1, we may further write
~ 1 3
ylx +1) —y(x) =1(z) — &(x,II) — E\I/(x) + .
Making now use of Corollary 3.6, Corollary 3.9, Proposition 3.23, Proposition 3.24
and linearity, the required solution may be written in the form

o = 1 3 3
y(w) = 11(x) + @(2, TT) = O, 1) = ~T(x) + =¥() + (T1(0) — ~)a.
(3) It remains to consider the case 2n + m # £n. Equation (6.5) now takes the

form

1

H{(z) + 2n +m’

H(x-1)=

2n+m
and we immediately obtain

1
3n+m’
We next proceed, by using Proposition 3.17, to solving

H(z) = Ly(e—nj@n+m)(z — b)) +

1

9(2) = 9l = 1) = ~H(z) = Lufe-ayansm) (& — ) = 5——

to obtain
1

— x.
3n+m

g(x — 1) = (z) + Ly(e—n/@ntm)(z — b))

Solving next y(x + 1) from

1
z,
3n+m

y(z+2) —y(z + 1) = —g(z = 1) = I(2) + Ly(e—n/@nim)(z = b)) +

we conclude that

y(x + 1) =(z) + @(z,II) + I1(0)x +

U(x) — Ly(e_n/cntm)(x —b)).
o ((2) = )+ Lafeaonim (2 =)
Shifting now = + 1 to z, recalling the difference equations satisfied by W(x) and
€_n/m+2n(T — ¢;j), and observing that ®(z — 1,1I) can be replaced as ®(x,II) as in
the preceding case, we get

~ 2 1

y(w) = () + (e, IT) + (11(0) = i )1+ o - —0(2) + Ly(en/(znsm) (@ — D).

O

Theorem 6.2. If n+m+ p+ ¢ =0 and 3n+ 2m + p # 0, then the following
conclusions hold for tropical meromorphic solutions y(z) of equation (6.2):

(1) If n+m =0 and n = p, then y(z) = Z(z) + Il(z) — 5~z

(2) If n +m = 0 and n # *£p, then y(x) = Ly(e_n/p(5 — b)) + H(z) — #px.

(3) If n+m #0, 22 =2 and —2— =1, then

> nt+m+p n+m-+p

where Z(zg) = 0.
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2
(4)Ifn+m7é0and<"+m) — 2 _ —( and i 7 1, then

n+m+p n+m+p n+m

y(z) = T1(2) — 2 + Lyfe_oim (- 1b)

4 2(n+m+p)

2
andifn+m7é0and<”+m) — n_ >0, then

@) = T1(e) = 7+ Lafeals = b) + Lo(es(s — b)),

where «, 3 are the roots of \* + n_”;ﬁpA + o = 0.

Remark 6.3. Observe that by Remark 5.2, the case when n+m + p+ g = 0,

2
n+m 4n :
n+2m+p#0,n+m+#0 and <n+m+p> — i < 0 remains open.

Proof. Suppose first that we have, in addition, n+m = 0. Then n+m+p = p # 0.
If now n = —p, we have 3n + 2m + p = 2(n+ m) = 0, contradicting our assumption.
If then n = p, then one may immediately see that m = —n and ¢ = —n, and (6.2)
takes the form

S|

(6.6) ylz)—ylz+ 1) +ylx+2) —ylx+3) =

Setting G(x) := y(x) + y(z + 2), (6.6) turns into G(z + 1) — G(z) = —%. Thus,
G(z) =1I(z) — 2z, hence y(z + 2) + y(z) = II(z) — 1z. It is now easy to solve this

equation termwise to obtain y(z) = Z(x) + Hg ) _ + + 5. The claim now follows

by changing the notation. It remains to assume that n # 4+p. Equation now (6.2)
reduces to

(6.7) ny(x) —ny(r +1) + py(z +2) —py(z +3) = 1.
By setting F'(z) := ny(z) + py(z + 2), we get F(z + 1) — F(z) = —1. Thus
F(z) = py(z + 2) + ny(z) = II(z) — .
By an easy modification of Theorem 3.1 and of Proposition 3.16, we have y(z) =

Ly(e_nsp(5 —0)) + gfg — T (ni—’;)z, where x4, ...,k are the slope discontinuities

of f(x) in the interval [0,1). The claim again follows by a slight change of notation.
For the rest of this proof, we have n+m+p # 0 and n+m # 0. Thus (6.3) may

be written as

n+m n

6.8 r+1)+—glx) + ——g(x—1) = 1.
(63 o+ 1)+ () + T —g(a 1)
To apply now Theorem 5.1, we have to look all cases therein separately.

Case ni:{ip = —2 and n+;ﬁb+p = 1. In this case, 3n+m = 0 and m +p = 0. This
implies that 3n 4+ 2m + p = 0, a contradiction.

n+m_ __ n _ : — —

Case i = 2 and T 1. In this case, we have m = —p, m = n and
g = —n. Equation now (6.2) reduces to
(6.9) ny(x) —py(z +1) + py(z +2) —ny(z +3) = 1.

Denoting, as before, g(x) := y(x + 2) — y(z + 3), and further, H(z) := g(z) — §, we
obtain

H(z+1)+2H(z)+ H(z—1)=0.
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Recalling now Theorem 5.1, we have

o) = ylw +2) — (o +3) = Z@) + [ — wl=(@) + 7.

where Z(z9) = 0. Therefore, f(x) = —y(z + 2) satisfies

F@+1) = f(z) = 3(@) + [z — 20 5(x) + i

By Proposition 3.14 and Proposition 3.15, we conclude that

1~ 1 1 1
f(z) =TI(z) — 55(:5) — 5[3: — zo)=(x) + ZE(ZL’) + i
Therefore, by combining together 1-periodic functions, resp. 2-periodic, anti-1-
periodic functions into just one such respective function, by slight change in notation

and simplifying, we finally obtain

= 1 _ 1
y(z) = () + =(2) = 5z — w]=(2) - 72,
where =(zy) = 0.
2
Case (n_ﬁjn"lp) - Jj‘;‘ - =0 and —~ - # 1, we may use the preceding notations

to obtain

(6.10) Ha+1)+—"" gy —"  Ha—1) =0

n+m-+p n+m-+p

Therefore, all tropical meromorphic functions of type

H(z) = y(x +2) —y(r +3) = Ly(e nm_ (2 = b))

2(n+m+p)

are solutions to (6.10). Denoting again f(z) := —y(z + 2), we get

Fr+1) — f(z) = Lyl nim (z—b)) + i

2(n+m+p)
hence
1
f(z) =1I(z) + 1% + Lb(ezdfﬂp) (x =)
and so
1
y(z) =H(z) - 17 + Lb@%(l’ —b)).
2
Case (nﬁﬁp) - nﬁZer > 0, we have
1
H(z) =y(r+2) —y(z+3) = Ly(ea(x — b)) + Ly(eg(z — b)) + 7
where «, B are the roots of A2 4 ni;’ip)\ + o —- =0 This implies that
1
flx) = —y(x+2) =1(x) + id + Ly(eq(x — b)) + Ly(es(z — b)).
Therefore,

y(x) =I(x) — ix + Ly(eq(x — b)) + Ly(eg(z — b)). O
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2
Remark 6.4. Observe that in Case ( nen ) ——An _ —(Qand —2— #£1, all

n+m+p n+m+p n+m-+p
solutions to (6.10) are

1
H(@) = Lole gragncs (@ = 0) + o = bolLolepamn (0 = D)) + 7,
where ¢__nim__(bg —b) = 0. To find all solutions y(x) to y(z+2) —y(z +3) = H(x),

2(n+m+p)

we should be able to find tropical meromorphic solutions to f(x + 1) — f(z) =

[ — bgle n+m (x —b). This remains open to us.
2(n+m+p)

6.2. The case n+m+ p+ q # 0. In this case, equation (6.2) may be written
as

p m n _
(6.11) F(x+2)+ gF(x +1)+ ;F(:c) + gF(:c —1)=0

by setting F(z) = y(z + 1) — y(z) — 555+ We will discuss all possible forms of

F(z) in the following, then the expressions of y(z) follows easily.

Let &1, &, &3 be the roots of A3+ g)\Q + %)\ —i—% = 0; to avoid similar complications
as in Theorem 5.1, we assume that all roots &1, &, &5 are real. Vieta’s formulas imply
that

618283 = =1,
(6.12) G +&+8&=-1,
§18&2 + §283 + &6 = 7,
where &, &, &3 are not equal to 0,1. Let
G(r) = Flz+1) = (& + &)F(2) + L&l (r - 1)
= Flz+1) - &F(2) — &[F(x) - & F(x —1)].
Then the equation (6.11) equals to
(6.14) Gz + 1) = &G(2).
The considerations are now divided in two cases, {3 # —1 and & = —1.

Case 1. If & # —1, denote first H(x) := F(x) — & F(x — 1). From (6.13) and
(6.14), we have

(6.15) H(z +1) — &H(z) = G(z) = Lylee, (x — b)).

The necessary reasoning for this case is now to be carried through in a number of
subcases, depending on possible relatiions between the roots &1, &, &s.

Case 2. If {3 = —1, then from (6.13) and (6.14), we now obtain
(6.16) H(z+1)—&H(x) = G(x) = Z(x).

Again, a number of subcases are to be treated separately.

(6.13)

7. Hayman conjecture in tropical setting

In this section, we proceed to presenting tropical versions on the Hayman con-
jecture [9], recalled as follows:

Hayman conjecture. Let f be a transcendental meromorphic function and
n > 1. Then f"f" — 1 has infinitely many zeros.

Actually, Hayman proved the claim for n > 3, and Mues [16] for n = 2. The final
case n = 1 has been proved, later on, by Clunie [5] for transcendental entire functions,
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Bergweiler and Eremenko [1], Chen and Fang [3] for transcendental meromorphic
functions. Laine and Yang [14], Theorem 2, proposed a difference analogue to the
Hayman conjecture, proving

Theorem A. Let f be a transcendental entire function of finite order and a be
a non-zero constant. If n > 2, then f(z)"f(z + ¢) — a has infinitely many zeros.

Liu and Yang [15], Theorem 1.4, also proved a related result on the value distri-
bution of difference polynomials.

Theorem B. Let f be a transcendental entire function of finite order and a be
a non-zero constant. If n > 2, then f(2)"[f(z + ¢) — f(2)] — a has infinitely many
ZEros.

We now consider tropical versions of the Hayman conjecture. In fact, we consider
values of f(x)®* ® f(x + ¢) for different . This problem can be expressed as the
problem of the existence of tropical meromorphic solutions of ultra-discrete equations
of type f(2)®* ® f(z 4 ¢) = b(x). We also can consider equations of type f(x)®* ®
[f(z+c) @ f(x)] = b(x), i.e. of equations of type f(z)®*™t @ f(z + c) = b(x).

As our first observation, we have

Lemma 7.1. If f(z) is a non-linear tropical entire function and o > 0, then
f(2)®*® f(x + ¢) is tropical entire as well.

Proof. Suppose G(z) := f(2)?*® f(z+¢) = af(x) + f(x + ¢) has a pole at xy,
say. If f(x) has no root at xo, then f must have a pole at xy + ¢, contradicting the
fact that f has no poles. If then af(z) has a root at zy, then —af(x) has a pole at
xg, hence f(x + ¢) = G(z) — af(x) has a pole at zp, a contradiction again. O

Theorem 7.2. If f(x) is a non-linear tropical entire function and o > 0, then
f(2)®* ® f(x + ¢) must have at least one root.

Proof. By the preceding lemma, G(z) := f(2)** ® f(x +¢) = af(x) + f(x +¢)
is tropical entire. Assume that f(z)®* ® f(z + ¢) has no roots. Then G(z) should
be a linear function px + ¢, thus

(7.1) af(@)+ flz+c)=pr+q,

where p and ¢ are constants. Since f(x) is non-linear tropical entire function, which
implies that o f (x) has at least one root, say at xo. But then zg is a pole of f(x+c¢),
a contradiction. U

We now state a partial tropical counterpart to the Hayman conjecture:

Theorem 7.3. If f(x) is a tropical transcendental entire function and if o > 0,
then f(z)®* ® f(x + ¢) must have infinitely many roots.

Proof. By Lemma 7.1, G(z) := f(2)®* ® f(z + ¢) is tropical entire. If it has,
contrary to the assertion, finitely many roots only, then G(x) is a tropical polynomial.
Let 4,...x, be its roots. If af(z) has a root at x such that z; < z < x4, then
G(z) is linear around z, hence f must have a pole at x+ 7, a contradiction. Therefore,
the only possible roots of f are at {x1,...,2z,, 21+ ¢, ..., x, + ¢}, implying that f is
a tropical polynomial, contradicting the assumption that f is transcendental. O]

Remark 7.4. If a < 0, the conclusion of Theorem 7.3 is not true. For example,
if « = —2, then the tropical exponential function es(z) satisfies es(x+1) —2es(x) = 0.
This implies that e(2)®2 ® eg(z + 1) = ea(z + 1) — 2e2(x) has no roots.
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Theorem 7.5. If f(x) is a tropical transcendental meromorphic function with
hyper-order ps(f) < 1 and a # £1, then f(z)®*® f(xz+c) cannot be a linear function.

Proof. Let f(x) be a tropical meromorphic function. Assume that
(7.2) f(@)%*® f(x+¢) =ax + b,

LTt 1+La Ty is a solution of (7.2).

All tropical meromorphic functions of (7.2) can be represented as the sum of fy(z)
and the tropical meromorphic solutions of g(x)®* ® g(x + ¢) = 0. By [13, Theorem
9.1], g(2)®* ® g(x + ¢) = 0 has no non-constant tropical meromorphic solutions of
hyper-order po(f) < 1. But then f = fy + ¢ is a tropical polynomial, contradicting
the assumption that f is transcendental. 0

where a, b are constants. Obviously, fo(x) =

Remark 7.6. The following two examples to show that if « = £1, Theorem 7.5
is not true.

Example 1. If « = 1, Theorem 7.5 is not true. This can be seen by the following
example, due to Chen [?| Define m,(x) = max{(1 — a)([z] — z), a([—x] — (—x))} for
0 < a < 1, see the graphs below for a = 0.5. From these graphs, we observe that
7o(x) + me(x —0.5) = —1 is a constant. By an easy calculation, we see that the order
of p(m.(z)) = 2, hence the hyper-order ps(m,(x)) = 0.

Figure 6. m,(z —0.5), a = 0.5.

Example 2. The counter-example when o« = —1 can be from ¥(z) in Proposi-
tion 3.22 with modifications. Define

(%]
>
(7.3) Fz) = Z[ D nax(0, 7 — gj), 0<a<q,
:L'—I—Z =y max(0, —x + jg), x <O0.

q

Tomax(0,z — qj), x 2 q,

We see that F(x) is a continuous piecewise linear function, hence F'(x) is a tropical
meromorphic function of po(f) = 0 and satisfies F'(x) — F'(z — ¢) = x, which implies
that F(2)*CY @ F(z —q) = —

8. Briick conjecture in the tropical setting

In this final section, we add some remarks on the tropical counterpart to the
Briick conjecture [2], originally formulated as follows:

Conjecture. If f is a non-constant entire function with hyper-order po(f) <
+o0, where po(f) is not a positive integer, and if f and f’ share one finite value a
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CM, then

for some constant ¢ # 0.

Recently, using difference analogues of logarithmic derivative lemma, Heitto-
kangas et al. [11] proved a difference result related to the Briick conjecture:

Theorem C. |11, Theorem 2.1| Let f be a transcendental meromorphic function
with finite order p(f) < 2, and let ¢ € C. If f(z) and f(z + ¢) share the value a € C
and oo CM, then

flz+c¢)—a
f(z) —a

for some constants T.
As a tropical counterpart to the preceding Theorem C, we prove

Theorem 8.1. Let f(x) be a tropical entire function, a € R be fixed and suppose
that max(f(z+1),a) and max(f(z), a) have the same roots with the same multiplicity
for all x € R. Then three alternatives may appear, namely either

f(z) =1l(z) + Bz
for all x close enough to —oo, or

f(@) = TI(z) + Ba
for all x close enough to +oo, or

f(zx) = AV (z) +(z) + (B — A)x
for all = such that |z| is large enough. Here A, B are real constants, I1(x) is a tropical
1-periodic function and V(x) is as defined in (3.23).
Proof. By [12, Proposition 6.5|, (max(f(x + 1),a)) @ (max(f(z),a)) is linear,

hence

(8.1) max(f(z+1),a) = max(f(z),a) + Az + B

for some real constants A, B. As f(x) is tropical entire, it cannot be upper bounded.

Suppose first that either lim,, . f(z) € R U {—o00} or lim, ,,, f(x) € RU
{—o0}. If we now have x — +o00, then it is immediate to conclude from (8.1) that
A = 0. Letting then x be close enough to —oo, (8.1) takes the form

fx+1)= f(x)+ B.

Solving this implies f(z) = II(x) + Bz. Similar reasoning applies the case of
lim, o f(z) € RU{—00}.

It remains to consider the case when |f(z)| — 400 as x — £oo. Suppose first
x — 400. Letting x be large enough so that (8.1) takes the form

flx+1) = f(x) + Az + B.

An immediate solution to this equation is f(z) = AV (z) + [I(z) + (B — A)z for all
x large enough. The corresponding case when x — —oo is immediate. U

Remark 8.2. The corresponding considerations for f(x) being tropical mero-
morphic and non-entire are apparently more complicated, to be treated elsewhere.
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