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Abstract. In this paper, we study the following problem






−∆pu = µ|u|
Np

N−p
−2u+ |u|

(N−s)p
N−p

−2
u

|x|s + a(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

where 1 < p < N , 0 < s < p, µ ≥ 0 are constants, ∆p is the p-Laplacian operator, Ω ⊂ R
N is a

C2 bounded domain with 0 ∈ Ω̄ and a ∈ C1(Ω̄). By an approximation argument, we prove that

if N > p2 + p, a(0) > 0 and Ω satisfies some geometry conditions if 0 ∈ ∂Ω, for example, all the

principle curvatures of ∂Ω at 0 are negative, then the above problem has infinitely many solutions.

1. Introduction and main results

In this paper, we study the following quasilinear elliptic problem

(1.1)

{

−∆pu = µ|u|p
∗−2u+ |u|p

∗(s)−2u
|x|s

+ a(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

where 1 < p < N , 0 < s < p, p∗ = Np/(N − p), p∗(s) = (N − s)p/(N − p) and µ ≥ 0
are constants,

∆pu =
N
∑

i=1

∂xi
(|∇u|p−2∂xi

u), ∇u = (∂x1u, · · · , ∂xN
u)

is the p-Laplacian operator, Ω ⊂ R
N is a bounded C2 domain with 0 ∈ Ω̄ and

a ∈ C1(Ω̄). Equation (1.1) is known as the Euler–Lagrange equation of the energy
functional I : W 1,p

0 (Ω) → R defined as

(1.2) I(u) =
1

p

ˆ

Ω

(

|∇u|p − a(x)|u|p
)

dx−
µ

p∗

ˆ

Ω

|u|p
∗

dx−
1

p∗(s)

ˆ

Ω

|u|p
∗(s)

|x|s
dx
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for u ∈ W 1,p
0 (Ω). All of the integrals in energy functional I are well defined, due to

the Sobolev inequality
(
ˆ

Ω

|ϕ|p
∗

dx

)p/p∗

≤ C

ˆ

Ω

|∇ϕ|p dx, ∀ ϕ ∈ W 1,p
0 (Ω),

where C = C(N, p) > 0, and due to the Caffarelli–Kohn–Nirenberg inequality (see
[5])

(
ˆ

Ω

|ϕ|p
∗(s)

|x|s
dx

)p/p∗(s)

≤ C ′

ˆ

Ω

|∇ϕ|p dx, ∀ ϕ ∈ W 1,p
0 (Ω),

where C ′ = C ′(N, p, s) > 0.
Equations of type (1.1) has been studied extensively in the literature. A prototype

of equation (1.1) is the following semilinear equation

(1.3)

{

−∆u = |u|2
∗−2u+ λu in Ω,

u = 0 on ∂Ω,

where λ > 0 is a constant. As one of their main results, Brézis and Nirenberg [4]
proved that equation (1.3) has a positive solution if and only if 0 < λ < λ1 when
N ≥ 4, or λ∗ < λ < λ1 when N = 3, where λ1 is the first eigenvalue of the Laplacian
in the domain Ω with respect to zero Dirichlet boundary condition and λ∗ ∈ (0, λ1)
is a constant. For more existence results, we refer to e.g. [2, 3, 8, 9, 13, 15, 30] on
semilinear problems and [6, 11, 12, 14, 16, 20, 21, 26, 34] on quasilinear problems.

A natural question arises from the results of Brézis and Nirenberg [4] is whether
equation (1.3) has infinitely many solutions. This problem has been answered affir-
matively by Devillanova and Solimini [15] for all λ > 0, under the assumption that
N > 6, see also the references therein for more related results.

Since we are interested in quasilinear elliptic equations, let us first consider equa-
tion (1.1) without the Hardy term |x|−s|u|p

∗(s)−2u. Then equation (1.1) is reduced
to

(1.4)

{

−∆pu = µ|u|p
∗−2u+ a(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

where µ > 0 is assumed. By the same idea of Devillanova and Solimini [15], Cao,
Peng and Yan [6] proved the existence of infinitely many solutions to equation (1.4)
under the assumption that N > p2 + p and a ≡ constant > 0. We remark that their
results can be extended directly to equation (1.4) in the case when N > p2+p, µ > 0
and a ∈ C1(Ω̄) with a(0) > 0.

Recently, some attention is paid to elliptic problems with double critical terms
together with boundary geometry conditions on the domain. For instance, among
other problems, Hsia, Lin and Wadade [23] considered the following equation

(1.5)







−∆u = µ|u|2
∗−2u+

|u|2
∗(s)−2u

|x|s
in Ω,

u = 0 on ∂Ω,

where µ > 0. Note that equation (1.5) is the special case of equation (1.1) when
p = 2 and a ≡ 0. Assuming that 0 ∈ ∂Ω and the mean curvature of ∂Ω at 0 is
negative, Hsia, Lin and Wadade [23] proved the existence of positive solutions to
equation (1.5) for all 0 < s < 2 when N ≥ 4, and for 0 < s < 1 when N = 3. For
more results in this respect, we refer to e.g. [10, 18, 19, 24].
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As to the existence of infinitely many solutions to equations of type (1.1) with
double critical terms, to our best knowledge, the first result was obtained by Yan and
Yang [33] in the semilinear case (p = 2). Note that |x|−s is unbounded in Ω since
we assume that 0 ∈ Ω̄. This brings extra difficulties and requires careful analysis for
Yan and Yang to study their problem. Under the assumptions that N > 6, a(0) > 0
and that Ω ∈ C3 satisfies the following geometry condition:

(1.6) all the principle curvatures of ∂Ω at 0 are negative when 0 ∈ ∂Ω,

they proved the existence of infinitely many solutions for equation (1.1) with p = 2,
see [33, Theorem 1.2]. In this paper, our aim is to extend the results of Yan and
Yang [33] to the quasilinear setting. That is, we consider equation (1.1) for all
1 < p < N . We will use the same idea as in Yan and Yang [33], which was originally
from Devillanova and Solimini [15]. But in the quasilinear setting, it is expected that
there are much more complexity that will be encountered than that of Yan and Yang
[33]. In the following, we first illustrate the idea that will be used in this paper, and
then give the main results of this paper. See also [6, 7, 33] for more applications of
the same idea.

Note that the functional I defined by (1.2) does not satisfy the Palais–Smale
condition at large energy level. So it is impossible to apply the mountain pass lemma
[1] directly to obtain the existence of infinitely many solutions for equation (1.1).
Thus, to derive approximation solutions to equation (1.1), we turn to the following
perturbed problem:

(1.7)







−∆pu = µ|u|p
∗−2−ǫu+

|u|p
∗(s)−2−ǫu

|x|s
+ a(x)|u|p−2u in Ω,

u = 0 on ∂Ω,

where p∗(s) − 1 > ǫ > 0 is a constant which will tend to zero in the end. The
functional corresponding to equation (1.7) is given by

Iǫ(u) =
1

p

ˆ

Ω

(

|∇u|p − a(x)|u|p
)

dx−
µ

p∗ − ǫ

ˆ

Ω

|u|p
∗−ǫ dx

−
1

p∗(s)− ǫ

ˆ

Ω

|u|p
∗(s)−ǫ

|x|s
dx

(1.8)

for u ∈ W 1,p
0 (Ω). Now Iǫ is an even functional and satisfies the Palais–Smale condition

in all energy levels. It follows from the symmetric mountain pass lemma [1, 28] that
equation (1.7) has infinitely many solutions. See also [17, 20, 27, 29]. Precisely, for
fixed ǫ, ǫ > 0, there are positive numbers cl,ǫ and critical points ul,ǫ, l = 1, 2, · · · ,
such that

Iǫ(ul,ǫ) = cl,ǫ → ∞ as l → ∞.

Moreover, for each fixed l ≥ 1, the sequence {cl,ǫ}ǫ>0 is bounded and thus can be
assumed to converge to a finite limit cl as ǫ → 0. To obtain the existence of infinitely
many solutions for equation (1.1), the first step is to investigate whether ul,ǫ converges

strongly in W 1,p
0 (Ω) as ǫ → 0 for fixed l. That is, we need to study the compactness of

the set of solutions for equation (1.7) for all ǫ > 0 small. If ul,ǫ is proven to converge

to some ul strongly in W 1,p
0 (Ω), then ul is a solution to equation (1.1) and I(ul) = cl.

The next step is to investigate whether we obtained infinitely many different critical
values of {cl}l. This step will be disposed via index theory in case {cl}l is a finite
set, see e.g. [6, 7, 15, 17, 27, 33]. Both steps being confirmed implies that equation
(1.1) admits infinitely many solutions.
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Now it is time to present our assumptions in this paper. Throughout the paper,
we use ‖ · ‖ to denote the norm of W 1,p

0 (Ω). We assume that Ω is a bounded C2

domain satisfying the following geometry condition:

(1.9) x · ν ≤ 0 in a neighborhood of 0 in ∂Ω when 0 ∈ ∂Ω,

where ν is the outward unit normal of ∂Ω. Examples of domains that satisfy (1.9)
will be given in the below. Our main results are the following theorems.

Theorem 1.1. Suppose that a(0) > 0 and Ω ∈ C2 satisfies the condition (1.9).
If N > p2 + p, then for any un (n = 1, 2, · · · ), which is a solution to equation (1.7)
with ǫ = ǫn → 0, satisfying ‖un‖ ≤ C for some constant C independent of n, un

converges strongly in W 1,p
0 (Ω) up to a subsequence as n → ∞.

Combining Theorem 1.1 together with index theory, we obtain the following
existence result for equation (1.1).

Theorem 1.2. Suppose that a(0) > 0 and Ω ∈ C2 satisfies the condition (1.9).
If N > p2 + p, then equation (1.1) has infinitely many solutions.

Note that our assumption (1.9) on the boundary geometry of Ω when 0 ∈ ∂Ω is
slightly different from (1.6) of Yan and Yang [33]. In fact, our assumption (1.9) is
slightly weaker than (1.6). Indeed, suppose that Ω ∈ C3 and 0 ∈ ∂Ω such that (1.6)
is satisfied. Then we can choose a coordinate system such that

(1.10) Ω ∩Bδ(0) = {x : xN > ϕ(x′)} and ∂Ω ∩Bδ(0) = {x : xN = ϕ(x′)},

where δ > 0 is a small constant and ϕ : {x′ ∈ R
N−1 : |x′| < δ} → R is a C3 function

that has the following expansion at x′ = 0:

ϕ(x′) = −
N−1
∑

j=1

αjx
2
j +O(|x′|3) for |x′| small enough

with constants αj > 0, j = 1, · · · , N − 1. Then the outward unit normal ν of ∂Ω in
Bδ(0) is given by

ν(x) =
(∂x1ϕ(x

′), · · · , ∂xN−1
ϕ(x′),−1)

√

1 +
∑N−1

j=1 |∂xj
ϕ(x′)|2

for x ∈ ∂Ω ∩Bδ(0).

Thus

x · ν(x) =
−
∑N−1

j=1 αjx
2
j +O(|x′|3)

√

1 +
∑N−1

j=1 |∂xj
ϕ(x′)|2

for x ∈ ∂Ω ∩Bδ(0),

which implies that

x · ν(x) ≤ 0 for x ∈ ∂Ω ∩ Bδ′(0),

for some 0 < δ′ < δ small enough. That is, (1.9) is satisfied. Thus we conclude that
assumption (1.6) is slightly stronger than our assumption (1.9).

On the other hand, assumption (1.9) does allow more possibilities than that of
(1.6). For instance, consider the case when ∂Ω has a piece of concave boundary close
to 0 if 0 ∈ ∂Ω. Precisely, let ϕ ∈ C1 be such that (1.10) holds, and

0 = ϕ(0) ≤ ϕ(x′) +

N−1
∑

j=1

∂xj
ϕ(x′)(0− xj)
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for x′ small enough. Then we have

x · ν(x) = −
ϕ(x′) +

∑N−1
j=1 ∂xj

ϕ(x′)(0− xj)
√

1 +
∑N−1

j=1 |∂xj
ϕ(x′)|2

≤ 0

for x′ small enough. That is, (1.9) is satisfied. In particular, if Ω has a piece of flat
boundary in a neighborhood of 0 when 0 ∈ ∂Ω, then (1.9) is satisfied, while in such
case all the principle curvatures of ∂Ω vanish in a neighborhood of 0, which is against
(1.6).

Our paper is organized as follows. In Section 2 we establish some integral es-
timates. In Section 3 we establish estimates for solutions of equation (1.7) in the
region which is close to but also suitably away from the blow up point. We prove
Theorems 1.1 and 1.2 in Section 4. In order to give a clear line of our framework,
we will list some necessary estimates on solutions of quasilinear equation with Hardy
potential in Appendix A, a decay estimate for solutions of equations with critical
Sobolev growth in Appendix B, some estimates on solutions of p-Laplacian equation
by Wolff potential in Appendix C, and a global compactness result for the solution
un of equation (1.7) in Appendix D, respectively.

Our notations are standard. BR(x) is the open ball in R
N centered at x with

radius R. We write
 

E

u dx =
1

|E|

ˆ

E

u dx,

whenever E is a measurable set with 0 < |E| < ∞, the n-dimensional Lebesgue
measure of E. Let D be an arbitrary domain in R

N . We denote by C∞
0 (D) the space

of smooth functions with compact support in D. For any 1 ≤ r ≤ ∞, Lr(D) is the
Banach space of Lebesgue measurable functions u such that the norm

‖u‖r,D =

{

(´

D
|u|r
)

1
r if 1 ≤ r < ∞

ess supD |u| if r = ∞

is finite. The local space Lr
loc
(D) consists of functions belonging to Lr(D′) for all

D′ ⊂⊂ D. We also denote dµs = |x|−s dx and ‖v‖q,µs =
(´

|v|q dµs

)1/q
when there

is no confusion on the domain of the integral. A function u belongs to the Sobolev
space W 1,r(D) if u ∈ Lr(D) and its first order weak partial derivatives also belong
to Lr(D). We endow W 1,r(D) with the norm

‖u‖1,r,D = ‖u‖r,D + ‖∇u‖r,D.

The local space W 1,r
loc

(D) consists of functions belonging to W 1,r(D′) for all open

D′ ⊂⊂ D. We recall that W 1,r
0 (D) is the completion of C∞

0 (D) in the norm ‖ · ‖1,r,D.
For the properties of the Sobolev functions, we refer to the monograph [35].

2. Integral estimates

Let un, n = 1, 2, . . . , be a solution of equation (1.7) with ǫ = ǫn → 0, satisfying
‖un‖ ≤ C for some constant C independent of n. In this section we deduce some
integral estimates for un. For any function u, we define

(2.1) ρx,λ(u) = λ
N−p

p u(λ(· − x))
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for any λ > 0 and x ∈ R
N . By Proposition D.1, un can be decomposed as

un = u0 +
m
∑

j=1

ρxn,j ,λn,j
(Uj) + ωn.

Here xn,j = 0 for j = k + 1, . . . , m.

To prove that un converges strongly in W 1,p
0 (Ω), we only need to show that

the bubbles ρxn,j ,λn,j
(Uj) will not appear in the decomposition of un. Among all the

bubbles, we can choose one bubble such that this bubble has the slowest concentration
rate. That is, the corresponding λ is the lowest order infinity among all the λ
appearing in the bubbles. For simplicity, we denote by λn the slowest concentration
rate and by xn the corresponding concentration point throughout the paper.

For any q > 1, denote

‖u‖∗,q =
(

ˆ

Ω

|u|qdx
)

1
q
+
(

ˆ

Ω

|u|
(N−s)q

N dµs

)
N

(N−s)q

and q′ = q/(q − 1). Here we write dµs = |x|−sdx. For any p∗/p′ < p2 < p∗ < p1,
α > 0 and λ ≥ 1, consider the following relation

(2.2)

{

‖u1‖∗,p1 ≤ α,

‖u2‖∗,p2 ≤ αλ
N
p∗

− N
p2 ,

and define

(2.3) ‖u‖∗,p1,p2,λ = inf α,

where the infimum is taken over all α > 0 for which there exist u1, u2 such that
|u| ≤ u1 + u2 and (2.2) holds. Our main result in this section is the following
estimate.

Proposition 2.1. Let un, n = 1, 2, . . . , be a solution of equation (1.7) with
ǫ = ǫn → 0, satisfying ‖un‖ ≤ C for some positive constant C independent of n. Then
for any p1, p2 ∈ (p∗/p′,∞), p2 < p∗ < p1, there exists a constant C = C(p1, p2) > 0,
independent of n, such that

‖un‖∗,p1,p2,λn ≤ C

for all n. Here λn is the slowest concentration rate of un.

Several lemmas are needed to prove Proposition 2.1. In the rest of this section,
let us fix a bounded domain D such that Ω ⊂⊂ D and set r = 1

3
dist(Ω, ∂D).

Lemma 2.2. Let w ∈ W 1,p
0 (D), w ≥ 0, be the solution of

(2.4)

{

−∆pw =
(

a1(x) +
a2(x)
|x|s

)

vp−1 in D,

w = 0 on ∂D,

where a1, a2, v ∈ L∞(D) are nonnegative functions in D. Then for any p1, p2 ∈
(p∗/p′,∞), p2 < p∗ < p1, there is a constant C = C(p1, p2) > 0, such that for any
λ ≥ 1,

(2.5) ‖w‖∗,p1,p2,λ ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
‖v‖∗,p1,p2,λ.

Proof. Let α, α > ‖v‖∗,p1,p2,λ, be an arbitrary constant. Then by the definition
of ‖v‖∗,p1,p2,λ, there exist v1, v2 such that |v| ≤ v1 + v2 and (2.2) holds with ui = vi,
i = 1, 2.
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Let wi ∈ W 1,p
0 (D), wi ≥ 0, i = 1, 2, be the solution of equation (2.4) with v = 2vi.

Then Corollary A.2 implies that

(2.6) ‖wi‖∗,pi ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

) 1
p−1

‖vi‖∗,pi.

Let w̃ ∈ W 1,p
0 (D), w̃ ≥ 0, be the solution of equation
{

−∆pw =
(

a1(x) +
a2(x)
|x|s

)

((2v1)
p−1 + (2v2)

p−1) in D,

w = 0 on ∂D.

Applying Corollary A.2 gives us

(2.7)

‖w̃‖∗,p2 ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
∥

∥

∥

(

(2v1)
p−1 + (2v2)

p−1
)

1
p−1

∥

∥

∥

∗,p2

≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1

(‖v1‖∗,p2 + ‖v2‖∗,p2)

≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
α.

Thus for any x ∈ Ω, we have

(2.8) inf
Br(x)

w̃ ≤

(
 

Br(x)

w̃p2dy

)
1
p2

≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
α.

Note that vp−1 ≤ (2v1)
p−1 + (2v2)

p−1. Thus w ≤ w̃ by comparison principle.
Applying Proposition C.1 gives us

w(x) ≤ w̃(x) ≤ C inf
Br(x)

w̃ + Cw1(x) + Cw2(x), ∀ x ∈ Ω.

Let w̃1(x) = C infBr(x) w̃+Cw1(x) and w̃2(x) = Cw2(x) for x ∈ Ω. Then w ≤ w̃1+w̃2

in Ω. By (2.6) and (2.8), we have that

‖w̃1‖∗,p1 ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

) 1
p−1

α,

and that

‖w̃2‖∗,p2 ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
αλ

N
p∗

− N
p2 .

Hence by definition (2.3), we obtain that

‖w‖∗,p1,p2,λ ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1

α.

Since α > ‖v‖∗,p1,p2,λ is arbitrary, we obtain (2.5). The proof of Lemma 2.2 is
completed. �

We also have the following result which will be used in the proof of Proposi-
tion 2.1.

Lemma 2.3. Let w ∈ W 1,p
0 (D), w ≥ 0, be the solution of

(2.9)

{

−∆pw = 2µvp
∗−1 + 2vp

∗(s)−1

|x|s
+ A

|x|s
in D,

w = 0 on ∂D,

where v ≥ 0 is a bounded function and A ≥ 0 is a constant. Then for any p1, p2 ∈
(p∗ − 1, N

p
(p∗ − 1)), p2 < p∗ < p1, and for any λ ≥ 1, there exists a constant
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C = C(p1, p2) > 0, such that

(2.10) ‖w‖∗,q1,q2,λ ≤ C‖v‖
p∗−1
p−1

∗,p1,p2,λ
+ C,

where q1, q2 are given by

q1 =
(p− 1)Np̂1
N − pp̂1

with p̂1 =
Np1

(p∗(s)− 1)N + sp1
,

and

q2 =
(p− 1)Np̂2
N − pp̂2

with p̂2 =
p2

p∗ − 1
.

Proof. Let α, α > ‖v‖∗,p1,p2,λ, be an arbitrary constant. Then by the definition
of ‖v‖∗,p1,p2,λ, there exist v1, v2 such that |v| ≤ v1 + v2 and (2.2) holds with ui = vi,
i = 1, 2.

Let w1 ∈ W 1,p
0 (D), w1 ≥ 0, be the solution of equation (2.9) with v = 2v1. Let

p̂1 = min

{

p1
p∗ − 1

,
Np1

(p∗(s)− 1)N + sp1

}

such that (p∗ − 1)p̂1 ≤ p1 and (p∗(s) − 1) (N−s)p̂1
N−sp̂1

≤ (N−s)p1
N

. By the assumptions on
the parameters N, p, s and p1, we obtain that

p̂1 =
Np1

(p∗(s)− 1)N + sp1
∈

(

1,
N

p

)

.

Then applying Proposition A.1 gives us

‖w1‖∗,q1 ≤ C

(

‖vp
∗−1

1 ‖p̂1 + ‖v
p∗(s)−1
1 + A‖ (N−s)p̂1

N−sp̂1
,µs

)
1

p−1

≤ C

(

‖v1‖
p∗−1
p1

+ ‖v1‖
p∗(s)−1
(N−s)p1

N
,µs

+ 1

)
1

p−1

≤ Cα
p∗−1
p−1 + C,

where q1 = (p− 1)Np̂1/(N − pp̂1).
Similarly, let w2 ∈ W 1,p

0 (D), w2 ≥ 0, be the solution of equation
{

−∆pw2 = 2µvp
∗−1 + 2vp

∗(s)−1

|x|s
in D,

w2 = 0 on ∂D.

Let

p̂2 = min

{

p2
p∗ − 1

,
Np2

(p∗(s)− 1)N + sp2

}

such that (N−s)p̂2
N−sp̂2

≤ (N−s)p2
N

and (p∗ − 1)p̂2 ≤ p2. Then by the assumptions on the

parameters N, p, s and p2, we obtain that

p̂2 =
p2

p∗ − 1
∈ (1, N/p).

Applying Proposition A.1 as above, we obtain that

‖w2‖∗,q2 ≤
(

Cα
p∗−1
p−1 + C

)

λ
N
p∗

− N
q2 ,

where q2 = (p−1)Np̂2/(N−pp̂2). To obtain the above estimate, we used the equality
that

(

N

p∗
−

N

p2

)

p∗ − 1

p− 1
=

N

p∗
−

N

q2
.
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Let w̃ ∈ W 1,p
0 (D), w̃ ≥ 0, be the solution of equation

{

−∆pw̃ = 2µ
(

(2v1)
p∗−1 + (2v2)

p∗−1
)

+ 2 (2v1)p
∗(s)−1+(2v2)p

∗(s)−1

|x|s
+ A

|x|s
in D,

w̃ = 0 on ∂D.

Estimate as that of (2.7). We obtain that

‖w̃‖∗,q2 ≤ Cα
p∗−1
p−1 + C,

which implies that

inf
Br(x)

w̃ ≤

(
 

Br(x)

w̃q2 dy

)
1
q2

≤ Cα
p∗−1
p−1 + C, ∀ x ∈ Ω.

Note that w ≤ w̃ in Ω. Argue as that of Lemma 2.2. We prove Lemma 2.3. This
completes the proof. �

Now define un = 0 in D\Ω. It is easy to see that
∣

∣

∣

∣

µ|u|p
∗−2−ǫu+

|u|p
∗(s)−2−ǫu

|x|s
+ a(x)|u|p−2u

∣

∣

∣

∣

≤ 2µ|u|p
∗−1 +

2|u|p
∗(s)−1 + A

|x|s

for sufficiently large constant A > 0. Let wn ∈ W 1,p
0 (D), wn ≥ 0, satisfy

(2.11)

{

−∆pwn = 2µ|un|
p∗−1 + 2|un|p

∗(s)−1

|x|s
+ A

|x|s
in D,

wn = 0 on ∂D.

Then by comparison principle,

(2.12) |un| ≤ wn in D.

Moreover, note that ‖un‖ ≤ C. Multiply both sides of equation (2.11) by wn and
then integrate on the domain D. We easily obtain that

(2.13) ‖wn‖p∗ + ‖wn‖p∗(s),µs ≤ C,

where C > 0 is independent of n.
To prove Proposition 2.1, it is enough to prove the estimate of Proposition 2.1

for wn. We have the following result.

Lemma 2.4. There exist p1, p2 ∈ (p∗/p′,∞), p2 < p∗ < p1, and constant C =
C(p1, p2) > 0, independent of n, such that

(2.14) ‖wn‖∗,p1,p2,λn ≤ C.

Proof. By Proposition D.1, un can be decomposed as

un = u0 +
k
∑

j=1

ρxn,j ,λn,j
(Uj) +

m
∑

j=k+1

ρ0,λn,j
(Uj) + ωn.

Write xn,j = 0 for j = k + 1, . . . , m. In the following proof, we denote

un,0 = u0, un,1 =
m
∑

j=1

ρxn,j ,λn,j
(Uj), and un,2 = ωn.

By (2.12), we have

2µ|un|
p∗−1 +

2|un|
p∗(s)−1

|x|s
+

A

|x|s
≤ C

2
∑

i=0

(

|un,i|
p∗−p +

|un,i|
p∗(s)−p

|x|s

)

wp−1
n +

A

|x|s
.
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Let w̃n ∈ W 1,p
0 (D), w̃n ≥ 0, satisfy

(2.15)











−∆pw̃n = C
2
∑

i=0

(

|un,i|
p∗−p +

|un,i|
p∗(s)−p

|x|s

)

wp−1
n +

A

|x|s
in D,

w̃n = 0 on ∂D.

Comparison principle implies that

wn ≤ w̃n in D.

Multiply both sides of equation (2.15) by w̃n. By (2.13) we obtain that

(2.16) ‖w̃n‖p∗ + ‖w̃n‖p∗(s),µs ≤ C.

Thus we have

(2.17) inf
Br(x)

w̃n ≤ C, ∀ x ∈ Ω.

Now let wi ∈ W 1,p
0 (D), wi ≥ 0, i = 0, 1, 2, be the solution of equation







−∆pw = C

(

|un,i|
p∗−p +

|un,i|
p∗(s)−p

|x|s

)

wp−1
n +

Aδi0
|x|s

in D,

w = 0 on ∂D,

respectively, where δ00 = 1 and δ10 = δ20 = 0. Then by Proposition C.1 and (2.17),
we obtain that

(2.18) w̃n(x) ≤ C + Cw0(x) + Cw1(x) + Cw2(x), ∀ x ∈ Ω.

In the following we estimate wi, i = 0, 1, 2, term by term.
First, we use Proposition A.1 to estimate w0. Since 0 < s < p, we can choose

q ≥ 1 such that
s

N
+

p− 1

p∗
<

1

q
<

p

N
+

p− 1

p∗
=

p∗ − 1

p∗

and that
q < N/p.

Then
(p− 1)Nq

N − pq
> p∗ and

(p− 1)(N − s)q

N − sq
< p∗(s).

Let p1 =
(p−1)Nq
N−pq

. Applying Proposition A.1 to w0 gives us

(2.19)

‖w0‖∗,p1 ≤ C

(

∥

∥|un,0|
p∗−pwp−1

n

∥

∥

q
+
∥

∥|un,0|
p∗(s)−pwp−1

n + A
∥

∥

(N−s)q
N−sq

,µs

)
1

p−1

≤ C

(

∥

∥wp−1
n

∥

∥

q
+
∥

∥wp−1
n

∥

∥

(N−s)q
N−sq

,µs
+ 1

)
1

p−1

≤ C
(

‖wn‖(p−1)q + ‖wn‖ (p−1)(N−s)q
N−sq

,µs
+ 1
)

≤ C
(

‖wn‖p∗ + ‖wn‖p∗(s),µs + 1
)

≤ C.

Here in the second inequality we used the boundedness of un,0 = u0 and in the last
inequality we used (2.13). So this gives estimate for w0.

Next, we use Corollary A.3 to estimate w1. We will choose p2 < p∗, p2 close to
p∗ enough such that

(2.20) ‖w1‖∗,p2 ≤ Cλ
N
p∗

− N
p2

n .
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Indeed, applying Corollary A.3 to w1 gives us that

‖w1‖∗,p2 ≤ C
(

∥

∥|un,1|
p∗−p

∥

∥

r1
+
∥

∥|un,1|
p∗(s)−p

∥

∥

r2,µs

)
1

p−1
‖wn‖∗,p∗,

where r1, r2 are defined as in (A.4), that is,

1

r1
= (p− 1)

(

1

p2
−

1

p∗

)

+
p

N
and

1

r2
= (p− 1)

(

N

(N − s)p2
−

1

p∗(s)

)

+
p− s

N − s
.

By (2.13), we have

(2.21) ‖w1‖∗,p2 ≤ C
(

∥

∥|un,1|
p∗−p

∥

∥

r1
+
∥

∥|un,1|
p∗(s)−p

∥

∥

r2,µs

)
1

p−1
.

We only need to estimate
∥

∥|un,1|
p∗−p

∥

∥

r1
and

∥

∥|un,1|
p∗(s)−p

∥

∥

r2,µs
.

For all 1 ≤ j ≤ m, we have
ˆ

RN

|ρxn,j ,λn,j
(Uj)|

(p∗−p)r1 dy = λpr1−N
n,j

ˆ

RN

|Uj|
(p∗−p)r1 dy.

By Proposition B.1, for all 1 ≤ j ≤ m,

|Uj(y)| ≤
C

1 + |y|
N−p
p−1

, ∀ y ∈ R
N .

Since N−p
p−1

(p∗−p)r1 →
pN
p−1

as p2 → p∗, we can choose p2 close to p∗ enough such that
N−p
p−1

(p∗ − p)r1 > N . Then
ˆ

RN

|Uj|
(p∗−p)r1 dy < ∞.

Thus for all 1 ≤ j ≤ m,
ˆ

RN

|ρxn,j ,λn,j
(Uj)|

(p∗−p)r1 dy ≤ Cλpr1−N
n,j .

Therefore

(2.22)

∥

∥|un,1|
p∗−p

∥

∥

1
p−1

r1
= ‖un,1‖

p∗−p
p−1

(p∗−p)r1
≤ C

m
∑

j=1

∥

∥ρxn,j ,λn,j
(Uj)

∥

∥

p∗−p
p−1

(p∗−p)r1

≤ C
m
∑

j=1

λ
pr1−N

(p∗−p)r1
· p

∗
−p

p−1

n,j ≤ Cλ
N
p∗

− N
p2

n .

We used the equality
pr1 −N

(p∗ − p)r1
·
p∗ − p

p− 1
=

N

p∗
−

N

p2

in the last inequality of (2.22). This gives estimate for
∥

∥|un,1|
p∗−p

∥

∥

r1
.

We can also choose p2 close to p∗ enough such that for all 1 ≤ j ≤ m,
ˆ

RN

|ρxn,j ,λn,j
(Uj)|

(p∗(s)−p)r2 dµs ≤ Cλ
(p−s)r2−N+s
n,j .

Indeed, we have
ˆ

RN

|ρxn,j ,λn,j
(Uj)|

(p∗(s)−p)r2 dµs = λ
(p−s)r2−N+s
n,j

ˆ

RN

|Uj(y)|
(p∗(s)−p)r2

|y + λn,jxn,j|s
dy.
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Write yn,j = −λn,jxn,j. Let

I1 =

ˆ

B1(yn,j)

|Uj(y)|
(p∗(s)−p)r2

|y − yn,j|s
dy and I2 =

ˆ

RN\B1(yn,j)

|Uj(y)|
(p∗(s)−p)r2

|y − yn,j|s
dy.

Since Uj is bounded and 0 < s < N , we have

I1 ≤ C.

Let δ > 0 be a number to be determined. By Hölder’s inequality, we have

I2 ≤

(

ˆ

RN\B1(yn,j)

1

|y − yn,j|N+δ
dy

)
s

N+δ
(

ˆ

RN\B1(yn,j)

|Uj(y)|
(p∗(s)−p)r2(N+δ)

N+δ−s dy

)
N+δ−s
N+δ

≤ Cδ

(
ˆ

RN

|Uj(y)|
(p∗(s)−p)r2(N+δ)

N+δ−s dy

)
N+δ−s
N+δ

.

Since
N − p

p− 1

(p∗(s)− p) r2(N + δ)

N + δ − s
→

p(N − s)(N + δ)

(p− 1)(N + δ − s)
as p2 → p∗,

and
p(N − s)(N + δ)

(p− 1)(N + δ − s)
> N for δ > 0 small enough,

we can choose p2 close to p∗ enough and δ > 0 small enough such that

N − p

p− 1

(p∗(s)− p) r2(N + δ)

N + δ − s
> N.

Then
ˆ

RN

|Uj(y)|
(p∗(s)−p)r2(N+δ)

N+δ−s dy < ∞,

and we obtain
I2 ≤ C.

Combining the estimates of I1 and I2 yields
ˆ

RN

|ρxn,j ,λn,j
(Uj)|

(p∗(s)−p)r2dµs ≤ Cλ
(p−s)r2−N+s
n,j .

Hence we have

(2.23)

∥

∥|un,1|
p∗(s)−p

∥

∥

1
p−1

r2,µs
=
∥

∥un,1

∥

∥

p∗(s)−p
p−1

(p∗(s)−p)r2,µs
≤ C

m
∑

j=1

λ
(p−s)r2−N+s
(p∗(s)−p)r2

·
p∗(s)−p

p−1

n,j

≤ Cλ
N
p∗

− N
p2

n .

In the above inequality we used the equality

(p− s)r2 −N + s

(p∗(s)− p) r2
·
p∗(s)− p

p− 1
=

N

p∗
−

N

p2
.

Combining (2.21)–(2.23) gives (2.20).
Finally, we use Lemma 2.2 to estimate w2. By Lemma 2.2, we have

(2.24)
‖w2‖∗,p1,p2,λn ≤ C

(

‖|un,2|
p∗−p‖N

p
+ ‖|un,2|

p∗(s)−p‖N−s
p−s

,µs

)
1

p−1
‖wn‖∗,p1,p2,λn

≤
1

2C ′
‖wn‖∗,p1,p2,λn,

since ωn → 0 in W 1,p
0 (Ω), where the constant C ′ is given by (2.18).
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Now combining (2.13), (2.18)–(2.20) and (2.24), we obtain that

‖w̃n‖∗,p1,p2,λn ≤ C + C‖w0‖∗,p1,p2,λn + C‖w1‖∗,p1,p2,λn + C‖w2‖∗,p1,p2,λn

≤ C + C‖w0‖∗,p1 + C‖w1‖∗,p2 +
1

2
‖wn‖∗,p1,p2,λn

≤ C +
1

2
‖w̃n‖∗,p1,p2,λn,

which completes the proof. �

Now we can prove Proposition 2.1.

Proof of Proposition 2.1. Recall that wn is a solution to equation (2.11). It is
standard to prove Proposition 2.1 by Lemma 2.2 and Lemma 2.3. See details in
e.g. [6]. This finishes the proof of Proposition 2.1. �

3. Estimates on safe regions

Since the number of the bubbles of un is finite, by Proposition D.1 we can always
find a constant C̄ > 0, independent of n, such that the region

A1
n =

(

B
(C̄+5)λ

−
1
p

n

(xn)\B
C̄λ

−
1
p

n

(xn)
)

∩Ω

does not contain any concentration point of un for any n. We call this region a safe
region for un. Also denote

A2
n =

(

B
(C̄+4)λ

−
1
p

n

(xn)\B
(C̄+1)λ

−
1
p

n

(xn)
)

∩Ω.

In this section, we prove the following result.

Proposition 3.1. Let un, n = 1, 2, · · · , be a solution of equation (1.7) with
ǫ = ǫn → 0, satisfying ‖un‖ ≤ C for some positive constant C independent of n.
Then for any q ≥ p, there is a constant C > 0 independent of n, such that

ˆ

A2
n

|un|
q dx ≤ Cλ

−N
p

n .

In order to prove Proposition 3.1, we need the following lemma.

Lemma 3.2. Let D be a bounded domain with Ω ⊂⊂ D and let wn be the
solution of equation (2.11). Then there exist a number γ > p − 1 and a constant
C > 0 independent of n, such that

(3.1)

(

1

rN

ˆ

Br(y)∩Ω

wγ
n dx

)
1
γ

≤ C, ∀y ∈ Ω,

for all r ≥ C̄λ
− 1

p
n .

Proof. We will combine Proposition 2.1 and Proposition C.2 to prove Lemma 3.2.
Since wn is the solution of equation (2.11), applying Proposition C.2 gives us a number
γ ∈ (p− 1, (p− 1)N/(N − p+ 1)) and a constant C = C(N, p, γ) such that

(

1

rN

ˆ

Br(y)∩Ω

wγ
n

)
1
γ

≤ C + C

ˆ R

r

(
ˆ

Bt(y)

(

2µ|un|
p∗−1 +

2|un|
p∗(s)−1

|x|s
+

A

|x|s

))

1
p−1 dt

t
N−1
p−1

≤ C + C

ˆ R

r

(

1

tN−p

ˆ

Bt(y)

(

|un|
p∗−1 +

|un|
p∗(s)−1

|x|s

))

1
p−1 dt

t
,
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for all 0 < r < R, where R = dist(Ω, ∂D). Let

I1 =

ˆ R

r

(

1

tN−p

ˆ

Bt(y)

|un|
p∗−1dx

)
1

p−1 dt

t

and

I2 =

ˆ R

r

(

1

tN−p

ˆ

Bt(y)

|un|
p∗(s)−1

|x|s
dx

)

1
p−1 dt

t

such that

(3.2)

(

1

rN

ˆ

Br(y)∩Ω

wγ
n dx

) 1
γ

≤ C + CI1 + CI2.

We now estimate I1 and I2 for r ≥ C̄λ
−1/p
n .

By Proposition 2.1, ‖un‖∗,p1,p2,λ ≤ C for any p1, p2 ∈ (p∗/p′,∞), p2 < p∗ < p1.
Let p1 > p∗ be a number to be determined and p2 = p∗ − 1. There exist un,1, un,2

with |un| ≤ un,1 + un,2 such that ‖un,1‖∗,p1 ≤ C and ‖un,2‖∗,p2 ≤ Cλ
N
p∗

− N
p2

n . Then

ˆ

Bt(y)

|un,1|
p∗−1 dx ≤ C

(
ˆ

Bt(y)

|un,1|
p1 dx

)
p∗−1
p1

|Bt(y)|
1− p∗−1

p1 ≤ Ct

(

1− p∗−1
p1

)

N
,

and
ˆ

Bt(y)

|un,2|
p∗−1 dx =

ˆ

Bt(y)

|un,2|
p2 dx ≤ Cλ

(

N
p∗

− N
p2

)

p2
n = Cλ

p−N
p

n .

Thus
ˆ

Bt(y)

|un|
p∗−1 dx ≤ C

ˆ

Bt(y)

|un,1|
p∗−1 dx+ C

ˆ

Bt(y)

|un,2|
p∗−1 dx

≤ Ct

(

1− p∗−1
p1

)

N
+ Cλ

p−N
p

n .

Since N
p−1

(

1− p∗−1
p1

)

+ p−N
p−1

→ p
p−1

as p1 → ∞, we can choose p1 large enough such

that N
p−1

(

1− p∗−1
p1

)

+ p−N
p−1

> 0. Then

ˆ R

0

t

(

1− p∗−1
p1

)

N
p−1

+ p−N
p−1

dt

t
< C.

Note also that for r ≥ C̄λ
−1/p
n , we have

ˆ ∞

r

t
p−N
p−1

dt

t
≤ Cλ

N−p
p(p−1)
n .

Therefore

(3.3)
I1 ≤

ˆ R

r

(

Ct

(

1− p∗−1
p1

)

N
+ Cλ

p−N
p

n

) 1
p−1

t
p−N
p−1

dt

t

≤ C

ˆ R

0

t
N

p−1

(

1− p∗−1
p1

)

+ p−N
p−1

dt

t
+ Cλ

p−N
p(p−1)
n

ˆ ∞

r

t
p−N
p−1

dt

t
≤ C.

This gives estimate for I1.
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Next we estimate I2. Let p̄1 > p∗ be a number to be determined and p̄2 =
N (p∗(s)− 1) /(N − s). There exist ūn,1, ūn,2 with |un| ≤ ūn,1 + ūn,2 such that

‖ūn,1‖∗,p̄1 ≤ C and ‖ūn,2‖∗,p̄2 ≤ Cλ
N
p∗

− N
p̄2

n . Then

ˆ

Bt(y)

|ūn,1|
p∗(s)−1 dµs ≤

(
ˆ

Bt(y)

|ūn,1|
N−s
N

p̄1 dµs

)

(p∗(s)−1)N
(N−s)p̄1

(
ˆ

Bt(y)

dµs

)1−
(p∗(s)−1)N
(N−s)p̄1

≤ Ct
N−s−

(p∗(s)−1)N
p̄1 ,

and
ˆ

Bt(y)

|ūn,2|
p∗(s)−1 dµs =

ˆ

Bt(y)

|ūn,2|
N−s
N

p̄2 dµs ≤ Cλ
p−N

p
n .

Arguing as above yields

(3.4) I2 ≤ C,

if we choose p̄1 large enough. This gives estimate for I2.
By (3.2)–(3.4), we obtain (3.1). The proof of Lemma 3.2 is complete. �

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Let γ > p − 1 be as in Lemma 3.2. Since |un| ≤ wn,
we have

(3.5)

ˆ

B
λ
−1/p
n

(y)

|un|
γ dx ≤ Cλ

−N
p

n , ∀y ∈ A2
n.

Let vn(x) = un(λ
− 1

p
n x), x ∈ Ωn = {x;λ

− 1
p

n x ∈ Ω}. Then vn is a solution to
equation










−∆pvn = λ−1
n

(

µ|vn|
p∗−p−ǫn +

λ
s
p
n |vn|

p∗(s)−p−ǫn

|x|s
+ a

(

λ
− 1

p
n x

)

)

|vn|
p−2vn x ∈ Ωn,

vn = 0 on ∂Ωn.

Let z = λ
1
p
ny, y ∈ A2

n. Since B
λ
−1/p
n

(y) does not contain any concentration point

of un, we can deduce that
ˆ

B1(z)

∣

∣λ−1
n

(

µ|vn|
p∗−p−ǫn + a(λ

− 1
p

n x)
)∣

∣

N
p dx ≤ C

ˆ

B1(z)

|λ−1
n (|vn|

p∗−p + 1)|
N
p dx

≤ C

ˆ

B
λ
−

1
p

n

(y)

|un|
p∗ dx+ Cλ

−N
p

n → 0,

and that

ˆ

B1(z)

|λ−1
n λ

s
p
n |vn|

p∗(s)−p−ǫn|
N−s
p−s

|x|s
dx ≤ C

ˆ

B1(z)

|λ
s−p
p

n (|vn|
p∗(s)−p + 1)|

N−s
p−s

|x|s
dx

≤ C

ˆ

B
λ
−

1
p

n

(y)

|un|
p∗(s)

|x|s
dx+ Cλ

−N−s
p

n → 0,

as n → ∞.
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Thus for any q > p∗, we obtain by Lemma A.4 and (3.5) that,

‖vn‖q,B1/2(z) ≤ C

(
ˆ

B1(z)

|vn|
γ dx

)
1
γ

= C





 

B
λ
−1/p
n

(y)

|un|
γ dx





1
γ

≤ C.

Equivalently, we arrive at
ˆ

B
1
2λ

−1/p
n

(y)

|un|
q dx ≤ Cλ

−N
p

n , ∀y ∈ A2
n.

Now by a covering argument we proves Proposition 3.1 in the case when q > p∗.
For p ≤ q ≤ p∗, we apply Hölder’s inequality to obtain that

(
 

A2
n

|un|
q dx

)
1
q

≤

(
 

A2
n

|un|
2p∗ dx

)
1

2p∗

≤ C.

The proof of Proposition 3.1 is complete. �

Let

A3
n =

(

B
(C̄+3)λ

−
1
p

n

(xn)\B
(C̄+2)λ

−
1
p

n

(xn)

)

∩ Ω.

In the end of this section, we prove the following gradient estimate for un.

Proposition 3.3. We have

(3.6)

ˆ

A3
n

|∇un|
p dx ≤ C

ˆ

A2
n

(

|un|
p∗ +

|un|
p∗(s)

|x|s
+ 1

)

dx+ Cλn

ˆ

A2
n

|un|
p dx.

In particular, we have

(3.7)

ˆ

A3
n

|∇un|
p dx ≤ Cλ

p−N
p

n .

Proof. Let φ ∈ C∞
0 (A2

n) be a cut-off function with φ = 1 in A3
n, 0 ≤ φ ≤ 1 and

|∇φ| ≤ Cλ
1
p
n . Multiply the equation of un by φpun and integrate on the domain A2

n.
We obtain that
ˆ

A2
n

|∇un|
p−2∇un · ∇(φpun) dx =

ˆ

A2
n

(

µ|un|
p∗−ǫn +

|un|
p∗(s)−ǫn

|x|s
+ a|un|

p

)

φp dx.

Then we have
ˆ

A2
n

|∇un|
pφp dx ≤ C

ˆ

A2
n

|∇φ|p|u|pn dx+ C

ˆ

A2
n

(

|un|
p∗ +

|un|
p∗(s)

|x|s
+ |un|

p

)

φp dx.

(3.6) follows easily from above inequality.
Let q > p∗(s). By Proposition 3.1, we have

(3.8)

ˆ

A2
n

φp|un|
p∗(s)

|x|s
dx ≤

(
ˆ

A2
n

φp|un|
q dx

)
p∗(s)

q
(
ˆ

A2
n

φp|x|−
sq

q−p∗(s) dx

)
q−p∗(s)

q

≤ Cλ
−

p∗(s)N
pq

n λ
− 1

p(N− sq
q−p∗(s))

(

q−p∗(s)
q

)

n = Cλ
s−N
p

n .

Now from (3.8), (3.6) and Proposition 3.1, we obtain that
ˆ

A3
n

|∇un|
p dx ≤ Cλ

−N
p

n + Cλ
p−N

p
n + Cλ

s−N
p

n ≤ Cλ
p−N

p
n .

This proves (3.7). The proof of Proposition 3.3 is complete. �
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4. Proofs of main results

In this section we prove Theorem 1.1 and Theorem 1.2. For notational simplicity,
we write pn = p∗ − ǫn and pn(s) = p∗(s)− ǫn. Choose tn ∈ [C̄ + 2, C̄ + 3] such that

ˆ

∂B
tnλ

−
1
p

n

(xn)

(

µ|un|
pn + |un|

p + λ−1
n |∇un|

p + λ
− s

p
n

|un|
pn(s)

|x|s

)

dσ

≤ Cλ
1
p
n

ˆ

A3
n

(

µ|un|
pn + |un|

p + λ−1
n |∇un|

p + λ
− s

p
n

|un|
pn(s)

|x|s

)

dx.

(4.1)

By Proposition 3.1, (3.7) and (3.8), we obtain that

(4.2)

ˆ

∂B
tnλ

−
1
p

n

(xn)

(

µ|un|
pn + |un|

p + λ−1
n |∇un|

p + λ
− s

p
n

|un|
pn(s)

|x|s

)

dσ ≤ Cλ
1−N

p
n .

We also have the following Pohozaev identity for un on Bn = B
tnλ

−
1
p

n

(xn) ∩ Ω

(

N

pn
−

N − p

p

)

µ

ˆ

Bn

|un|
pn dx+

ˆ

Bn

[

a(x)−
1

p
∇a(x) · (x− x0)

]

|un|
p dx

+

(

N − s

pn(s)
−

N − p

p

)
ˆ

Bn

|un|
pn(s)

|x|s
dx+

s

pn(s)

ˆ

Bn

|un|
pn(s)

|x|2+s
(x0 · x) dx

=
N − p

p

ˆ

∂Bn

|∇un|
p−2∂un

∂ν
undσ +

ˆ

∂Bn

|∇un|
p−2∇un · (x− x0)

∂un

∂ν
dσ

−
1

p

ˆ

∂Bn

|∇un|
p(x− x0) · ν dσ

+

ˆ

∂Bn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

(x− x0) · ν dσ,

where ν is the outward unit normal to ∂Bn and x0 ∈ R
N . Since pn < p∗ and

pn(s) < p∗(s), we have N
pn

− N−p
p

> 0 and N−s
pn(s)

− N−p
p

> 0. Thus we deduce from

above the following inequality that

(4.3)

ˆ

Bn

[

a(x)−
1

p
∇a(x) · (x− x0)

]

|un|
p dx+

s

pn(s)

ˆ

Bn

|un|
pn(s)

|x|2+s
(x0 · x) dx

≤
N − p

p

ˆ

∂Bn

|∇un|
p−2∂un

∂ν
un dσ +

ˆ

∂Bn

|∇un|
p−2∇un · (x− x0)

∂un

∂ν
dσ

−
1

p

ˆ

∂Bn

|∇un|
p(x− x0) · ν dσ

+

ˆ

∂Bn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

(x− x0) · ν dσ.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Since {xn} ⊂ Ω is a bounded sequence, we may assume
that xn → x∗ ∈ Ω̄ as n → ∞. We have two cases:

Case 1. x∗ = 0;
Case 2. x∗ 6= 0.
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In Case 1, choose x0 = 0 in (4.3). Then we obtain that

(4.4)

ˆ

Bn

[

a(x)−
1

p
∇a(x) · x

]

|un|
p dx

≤
N − p

p

ˆ

∂Bn

|∇un|
p−2∂un

∂ν
un dσ +

ˆ

∂Bn

|∇un|
p−2∇un · x

∂un

∂ν
dσ

−
1

p

ˆ

∂Bn

|∇un|
px · ν dσ

+

ˆ

∂Bn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

x · ν dσ.

Decompose ∂Bn into ∂Bn = ∂iBn ∪ ∂eBn, where ∂iBn = ∂Bn ∩ Ω and ∂eBn =
∂Bn ∩ ∂Ω. Consider the case 0 ∈ ∂Ω. Note that un = 0 on ∂Ω. Thus (4.4) implies
that

(4.5)

L1 :=

ˆ

Bn

[

a(x)−
1

p
∇a(x) · x

]

|un|
p dx−

(

1−
1

p

)
ˆ

∂eBn

|∇un|
px · ν dσ

≤
N − p

p

ˆ

∂iBn

|∇un|
p−2∂un

∂ν
un dσ +

ˆ

∂iBn

|∇un|
p−2∇un · x

∂un

∂ν
dσ

−
1

p

ˆ

∂iBn

|∇un|
px · ν dσ

+

ˆ

∂iBn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

x · ν dσ =: R1.

By assumption (1.9), we have that
ˆ

∂eBn

|∇un|
px · ν dσ ≤ 0.

Recall that we assume a(0) > 0. Thus (4.5) gives us

(4.6) L1 ≥
1

2
a(0)

ˆ

Bn

|un|
p dx.

On the other hand, since |x| ≤ Cλ
−1/p
n for x ∈ ∂Bn, we have by (4.2) that

R1 ≤ Cλ
− 1

p
n

ˆ

∂iBn

(

|un|
pn + |un|

p + |∇un|
p +

|un|
pn(s)

|x|s

)

dσ

+ C

ˆ

∂iBn

|∇un|
p−1|un| dσ ≤ Cλ

p−N
p

n .

(4.7)

Thus combining (4.5), (4.6) and (4.7) yields that

(4.8)

ˆ

Bn

|un|
p dx ≤ Cλ

p−N
p

n .

Now we can follow the argument of [6] to obtain that
ˆ

Bn

|un|
p dx ≥ C ′λ−p

n .

Therefore we arrive at

(4.9) λ−p
n ≤ Cλ

p−N
p

n .
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Since λn → ∞, (4.9) can not happen under the assumption that

N > p2 + p.

Now we consider the case 0 ∈ Ω. Then ∂eBn = ∅. So (4.5) holds with
´

∂eBn
|∇un|

px·
νdσ = 0. By the same argument, we obtain (4.9). We reach a contradiction.

In Case 2, we have two possibilities: B
tnλ

−
1
p

n

(xn) ⊂⊂ Ω or B
tnλ

−
1
p

n

(xn)∩(R
N\Ω) 6=

∅.
Suppose that B

tnλ
−

1
p

n

(xn) ⊂⊂ Ω. Then Bn = B
tnλ

−
1
p

n

(xn). Take x0 = xn in (4.3).

We obtain that
(4.10)

L2 :=
s

pn(s)

ˆ

Bn

|un|
pn(s)

|x|2+s
(xn · x) dx

≤ −

ˆ

Bn

[

a(x)−
1

p
∇a(x) · (x− xn)

]

|un|
p dx

+
N − p

p

ˆ

∂Bn

|∇un|
p−2∂un

∂ν
un dσ +

ˆ

∂Bn

|∇un|
p−2∇un · (x− xn)

∂un

∂ν
dσ

−
1

p

ˆ

∂Bn

|∇un|
p(x− xn) · ν dσ

+

ˆ

∂Bn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

(x− xn) · ν dσ =: R2.

Since xn → x∗, we have xn · x ≥ 1
2
|xn|

2 ≥ 1
4
|x∗|2 > 0 for x ∈ Bn. Thus

L2 ≥ C

ˆ

Bn

|un|
pn(s) dx.

Again, applying the same argument as that of [6] gives us that

(4.11) L2 ≥ C

ˆ

Bn

|un|
pn(s) dx ≥ C ′λ

−N+pn(s)
N−p

p
n .

On the other hand, by the same argument as that of (4.7), we obtain that

(4.12) R2 ≤ Cλ
p−N

p
n + C

ˆ

Bn

|un|
p dx,

in which the assumption a ∈ C1(Ω̄) was used. We claim that

(4.13)

ˆ

Bn

|un|
p dx ≤ Cλ−p

n .

Indeed, let p1 > p∗ such that N
p
(1 − p

p1
) > p. This is possible since N > p2 + p.

Also, let p2 = p. Then we have p∗/p′ < p2 < p∗. By Proposition 2.1, there exist
vi ≥ 0, i = 1, 2, such that |un| ≤ v1 + v2 and

‖v1‖∗,p1 ≤ C, ‖v2‖∗,p ≤ Cλ
N−p

p
−N

p
n = Cλ−1

n .

Hence by Hölder’s inequality, we deduce that
ˆ

Bn

|un|
p dx ≤ 2p−1

ˆ

Bn

|v1|
p dx+ 2p−1

ˆ

Bn

|v2|
p dx ≤ Cλ

−N
p
(1− p

p1
)

n + Cλ−p
n ≤ Cλ−p

n .

This gives (4.13). Now combining (4.11)-(4.13) yields

(4.14) λ
−N+N−p

p
pn(s)

n ≤ Cλ−p
n + Cλ

p−N
p

n ≤ Cλ−p
n ,
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since N > p2 + p. That is,

λ
p−s−N−p

p
ǫn

n ≤ C,

which is impossible since s < p. We reach a contradiction.
It remains to consider B

tnλ
−

1
p

n

(xn)∩(R
N\Ω) 6= ∅. In this case, we take x0 ∈ R

N\Ω

in (4.3) such that |x0 − xn| ≤ 2tnλ
− 1

p
n and ν · (x− x0) ≤ 0 on ∂Ω ∩Bn. With this x0,

we get from (4.3),

s

pn(s)

ˆ

Bn

|un|
pn(s)

|x|2+s
(xn · x) dx

≤ −

ˆ

Bn

[

a(x)−
1

p
∇a(x) · (x− xn)

]

|un|
p dx

+
N − p

p

ˆ

∂iBn

|∇un|
p−2∂un

∂ν
un dσ +

ˆ

∂iBn

|∇un|
p−2∇un · (x− xn)

∂un

∂ν
dσ

−
1

p

ˆ

∂iBn

|∇un|
p(x− xn) · ν dσ

+

ˆ

∂iBn

(

1

pn
|un|

pn +
1

pn(s)

|un|
pn(s)

|x|s
+

1

p
a(x)|un|

p

)

(x− xn) · ν dσ.

Arguing as above, we find that (4.14) still holds. Thus we obtain a contradiction.
The proof of Theorem 1.1 is complete. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. The proof is standard. We give a sketch of proof for the
readers’ convenience, and refer to Cao, Peng and Yan [6] for more details. First we
prove that for each k ≥ 1, there exists a bounded sequence of {uk,ǫn}n ⊂ W 1,p

0 (Ω)
and {ck,ǫn} ⊂ R such that I ′ǫn(uk,ǫn) = 0, Iǫn(uk,ǫn) = ck,ǫn and ck,ǫn → ck ∈ R

as n → ∞. Indeed, this follows from a standard min-max argument as below (see
e.g. Ghoussoub [17]).

For each k, define the Z2-homotopy class Fk by

Fk = {A : A ⊂ W 1,p
0 (Ω) is compact,Z2-invariant, and γ(A) ≥ k},

where the genus γ(A) is the smallest integer m, such that there exists an odd contin-
uous mapping φ ∈ C(A,Rm\{0}), and then define the min-max value (see property
(I3) in page 134 of Ghoussoub [17])

ck,ǫ = min
A∈Fk

max
u∈A

Iǫ(u)

for all ǫ > 0. Since Iǫ is an even functional that satisfies the Palais–Smale condition
in all energy levels, we use Corollary 7.12 of Ghoussoub [17] to conclude that ck,ǫ is
a critical value of Iǫ. Thus, there exists uk,ǫ such that Iǫ(uk,ǫ) = ck,ǫ. By the same
argument as in Cao, Peng and Yan [6], we can deduce that ck,ǫ is bounded uniformly

for ǫ small, and that {uk,ǫ} ⊂ W 1,p
0 (Ω) is a bounded sequence as ǫ → 0. Hence we

can apply Theorem 1.1 to infer that (up to a subsequence) uk,ǫn → uk strongly in

W 1,p
0 (Ω) as n → ∞, and I ′(uk) = 0 with I(uk) = ck.

Thus we get a sequence {ck}k of critical values of I. Now, two cases may occur:
Case I: the set {ck}k is infinite. In this case, it is obvious that I has infinitely

many different critical points, and thus Theorem 1.2 holds;
Case II: for some m ≥ 1, we have ck = c for all k ≥ m.
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We have to prove that Theorem 1.2 holds in the latter case as well. With no loss
of generality, assume that c is an isolated critical value of I in the sense that, for
some δ0 > 0, I has no critical value in (c− δ0, c+ δ0)\{c}. Fix such δ0. Denote

Kc = {u ∈ W 1,p
0 (Ω) : I(u) = c, I ′(u) = 0}.

Note that Kc is Z2-invariant since I is an odd functional, and Kc is also compact
due to Theorem 1.1. The idea is to prove that Kc is an infinite set, from which
Theorem 1.2 follows. Since any finite Z2-invariant set has genus one, it suffices to
prove

(4.15) γ(Kc) ≥ 2.

We argue by contradiction. Suppose, on the contrary, that γ(Kc) = 1. Denote

K = {u ∈ W 1,p
0 (Ω) : ‖u−Kc‖ ≤ δ1},

where 0 < δ1 < δ0 is so small that γ(K) = 1. Such δ1 exists due to the fact that Kc

is compact and Z2-invariant (see page 132 of Ghoussoub [17]). For each ǫ > 0, define

Dǫ =
(

Ic+δ1
ǫ \Ic−δ1

ǫ

)

\K,

where I tǫ denotes the level set of Iǫ given by

I tǫ = {u ∈ W 1,p
0 (Ω) : Iǫ(u) < t}.

We claim that Iǫ has no critical point in Dǫ for ǫ sufficiently small. Otherwise,
there exist ǫn → 0 and un ∈ Dǫn such that I ′ǫn(un) = 0 and Iǫn(un) ∈ [c− δ1, c+ δ1).
Then, applying Theorem 1.1 yields that (up to a subsequence) un converges to u
strongly in W 1,p

0 (Ω) as n → ∞. Then we have I ′(u) = 0 and I(u) ∈ (c− δ0, c+ δ0).
Thus u ∈ Kc ⊂ K holds since c is assumed to be an isolated critical value of I.
However, note also that un 6∈ K implies u 6∈ K. We reach a contradiction. Hence, we
conclude that for every ǫ > 0 sufficiently small, there exists c∗ǫ such that

‖I ′ǫ(u)‖ ≥ c∗ǫ > 0 for u ∈ Dǫ.

With the help of above lower bound, standard deformation techniques (pseudo-
gradient flow) yield an odd homeomorphism η : W 1,p

0 (Ω) → W 1,p
0 (Ω) such that

η(Ic+δ1
ǫ \K) ⊂ Ic−δ1

ǫ .

See for example the proof of Theorem 1.9 of Rabinowitz [27]. Note that we need to
replace the modified pseudo-gradient vector field V defined in page 150 of Rabinowitz
[27] by V/c∗ǫ .

Now we are ready to prove (4.15). Fix k > m. Since ck,ǫ and ck+1,ǫ → c as ǫ → 0,
we have

ck,ǫ, ck+1,ǫ ∈ (c− δ1/4, c+ δ1/4)

for ǫ sufficiently small. By the definition of ck+1,ǫ, there exists A ∈ Fk+1 such that

max
A

Iǫ < ck+1,ǫ + δ1/4 < c+ δ1,

which implies that A ⊂ Ic+δ1
ǫ . Then Ã := η(A\K) ⊂ Ic−δ1

ǫ holds. That is,

Iǫ(u) < c− δ1 for u ∈ Ã.

We claim that Ã ∈ Fk. Indeed, since γ is subadditive, we deduce that γ(A\K) ≥
γ(A) − γ(K) ≥ k since we assume γ(K) = 1. Thus A\K ⊂ Fk holds. Hence the
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supervariant of γ implies that Ã ∈ Fk (see Theorem 1.9 of Rabinowitz [27]). As a
result,

ck,ǫ ≤ sup
Ã

Iǫ ≤ c− δ1.

This contradicts to ck,ǫ ≥ c− δ1/4. Hence γ(Kc) ≥ 2 and the proof of Theorem 1.2
is complete. �
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Appendix A. Estimates for quasilinear problems with Hardy potential

In this section, we deduce some elementary estimates for solutions of a quasilinear
elliptic problem involving a Hardy potential. Let D be a bounded domain in R

N and
0 ∈ D. For any 0 ≤ t < p, write dµt = |x|−t dx and ‖w‖qq,µt

=
´

D
|w|q dµt. We also

use the notation ‖w‖q = ‖w‖q,µ0. Let us recall that

‖w‖∗,q = ‖w‖q + ‖w‖ (N−s)
N

q,µs
.

Proposition A.1. For any f
i
≥ 0 and fi ∈ L∞(D), i = 1, 2, let w ∈ W 1,p

0 (D) be
the solution of

{

−∆pw = f1(x) +
f2(x)
|x|s

x ∈ D,

w = 0 on ∂D.

Then, for any 1 < q < N/p, there exists C = C(N, p, s, q) > 0 such that

‖w‖
∗,

(p−1)Nq
N−pq

≤ C
(

‖f1‖q + ‖f2‖ (N−s)q
N−sq

,µs

)

1
p−1 .

Proof. By the maximum principle, we find that w ≥ 0. We claim that if r > 1/p′,
then

(A.1) ‖w‖pr∗,p∗r ≤ C

ˆ

D

(

f1 +
f2
|x|s

)

w1+p(r−1) dx,

for C = C(N, p, s, r) > 0.
First, we consider the case when r ≥ 1. Since f1, f2 are bounded functions, it is

standard to prove that w ∈ L∞(D) by Moser’s iteration method [25]. Then we can
take a test function ξ = w1+p(r−1) so that

(A.2)
1 + p(r − 1)

rp

ˆ

D

|∇wr|p dx =

ˆ

D

(

f1 +
f2
|x|s

)

w1+p(r−1) dx.

Applying the Sobolev inequality and the Caffarelli–Kohn–Nirenberg inequality gives
us

‖w‖prp∗r + ‖w‖prp∗(s)r,µs
≤ C

ˆ

D

|∇wr|p dx

for C = C(N, p, s, r) > 0. That is,

(A.3) ‖w‖pr∗,p∗r ≤ C

ˆ

D

|∇wr|p dx.

Then, combining (A.2) and (A.3) yields (A.1).
Next, consider the case when 1/p′ < r < 1. Let ǫ > 0. Define ξ = w(w+ ǫ)p(r−1).

It is direct to verify that ξ ∈ W 1,p
0 (D) and

∇ξ = (w + ǫ)p(r−1)∇w + p(r − 1)w(w + ǫ)p(r−1)−1∇w.
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Take ξ as a test function. We have
ˆ

D

|∇w|p−2∇w · ∇ξ dx =

ˆ

D

(

f1 +
f2
|x|s

)

ξ dx.

A direct calculation gives that
ˆ

D

|∇w|p−2∇w · ∇ξ dx ≥ (1 + p(r − 1))

ˆ

D

(w + ǫ)p(r−1)|∇w|p dx

=
1 + p(r − 1)

rp

ˆ

D

|∇ ((w + ǫ)r − ǫr) |p dx

≥ C
(

‖((w + ǫ)r − ǫr)‖pp∗ + ‖((w + ǫ)r − ǫr)‖pp∗(s),µs

)

,

for C = C(N, p, s, r) > 0.

Write wǫ = ((w + ǫ)r − ǫr)1/r. Then there exists C > 0 such that
ˆ

D

|∇w|p−2∇w · ∇ξ dx ≥ C ‖wǫ‖
pr
∗,p∗r .

Thus

‖wǫ‖
pr
∗,p∗r ≤ C

ˆ

D

(

f1 +
f2
|x|s

)

w(w + ǫ)p(r−1) dx ≤ C

ˆ

D

(

f1 +
f2
|x|s

)

w1+p(r−1) dx.

Letting ǫ → 0, we obtain (A.1) in the case when r ∈ (1/p′, 1).
To prove Proposition A.1, we apply Hölder’s inequality to (A.1) and obtain that

‖w‖pr∗,p∗r ≤ C

(

‖f1‖ p∗r
p∗r−(1+p(r−1))

+ ‖f2‖ p∗(s)r
p∗(s)r−(1+p(r−1))

,µs

)

(

‖w‖1+p(r−1)
p∗r + ‖w‖

1+p(r−1)
p∗(s)r,µs

)

≤ C

(

‖f1‖ p∗r
p∗r−(1+p(r−1))

+ ‖f2‖ p∗(s)r
p∗(s)r−(1+p(r−1))

,µs

)

‖w‖1+p(r−1)
∗,p∗r ,

which implies that

‖w‖∗,p∗r ≤ C

(

‖f1‖ p∗r
p∗r−(1+p(r−1))

+ ‖f2‖ p∗(s)r
p∗(s)r−(1+p(r−1))

,µs

)
1

p−1

.

Now for any q ∈ (1, N/p). Let r ∈ (1/p′,∞) be such that q = p∗r
p∗r−(1+p(r−1))

. Then

p∗(s)r

p∗(s)r − (1 + p(r − 1))
=

(N − s)q

N − sq
and p∗r =

(p− 1)Nq

N − pq
.

Hence

‖w‖
∗,

(p−1)Nq
N−pq

≤ C
(

‖f1‖q + ‖f2‖ (N−s)q
N−sq

,µs

)

1
p−1 .

We finish the proof. �

As an application of Proposition A.1 we have the following corollary.

Corollary A.2. Let w ∈ W 1,p
0 (D) be the solution of







−∆pw =

(

a1(x) +
a2(x)

|x|s

)

vp−1 x ∈ D,

w = 0 on ∂D,

where a1, a2, v ∈ L∞(D) are nonnegative functions. Then for any ∞ > q > p∗/p′,
there holds

‖w‖∗,q ≤ C
(

‖a1‖N
p
+ ‖a2‖N−s

p−s
,µs

)
1

p−1
‖v‖∗,q
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for C = C(N, p, s, q) > 0.

Proof. Let ∞ > q > p∗/p′ and define r = Nq/(N(p−1)+pq). Then 1 < r < N/p
and q = (p− 1)Nr/(N − pr).

By applying Proposition A.1 with fi = aiv
p−1, i = 1, 2, we obtain that

‖w‖∗,q ≤ C
(

‖f1‖r + ‖f2‖ (N−s)r
N−sr

,µs

)

1
p−1 ,

for C = C(N, p, s, q) > 0. By Hölder’s inequality and the definition of ‖ · ‖∗,q, we
have that

‖f1‖r ≤ ‖a1‖N
p
‖v‖p−1

q ≤ ‖a1‖N
p
‖v‖p−1

∗,q

and that

‖f2‖ (N−s)r
N−sr

,µs
≤ ‖a2‖N−s

p−s
,µs
‖v‖p−1

(N−s)q
N

,µs
≤ ‖a2‖N−s

p−s
,µs

‖v‖p−1
∗,q .

Combining the above inequalities gives Corollary A.2. �

We also have the following corollary.

Corollary A.3. Let w ∈ W 1,p
0 (D) be the solution of

{

−∆pw =
(

a1(x) +
a2(x)
|x|s

)

vp−1 x ∈ D,

w = 0 on ∂D,

where a1, a2, v ∈ L∞(D) are nonnegative functions. Then for any p∗ > p2 > p∗/p′,
there holds

‖w‖∗,p2 ≤ C (‖a1‖r1 + ‖a2‖r2,µs)
1

p−1 ‖v‖∗,p∗

for C = C(N, p, s, p2) > 0 , where r1, r2 are defined by

(A.4)
1

r1
= (p− 1)

(

1

p2
−

1

p∗

)

+
p

N
,

and

(A.5)
1

r2
= (p− 1)

(

N

(N − s)p2
−

1

p∗(s)

)

+
p− s

N − s
.

Proof. The proof is similar to that of Corollary A.2. By applying Proposition A.1
with fi = aiv

p−1, i = 1, 2, we obtain

‖w‖∗,p2 ≤ C

(

‖f1‖ Np2
(p−1)N+pp2

+ ‖f2‖ (N−s)p2
(p−1)N+(p−s)p2

,µs

)

1
p−1

.

Let r1, r2 be defined as in (A.4) (A.5). Applying Hölder’s inequality gives us that

‖f1‖ Np2
(p−1)N+pp2

≤ ‖a1‖r1‖v‖
p−1

p∗ ,

and that

‖f2‖ (N−s)p2
(p−1)N+(p−s)p2

,µs
≤ ‖a2‖r2,µs‖v‖

p−1

p∗(s),µs
.

Combining the above inequalities gives Corollary A.3. �

In the end of this section, we give the following result.

Lemma A.4. Let w ∈ W 1,p
loc

(RN), w ≥ 0, be a weak solution of the equation

−∆pw ≤

(

a1(x) +
a2(x)

|x|s

)

wp−1
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in R
N , where a1, a2 ∈ L∞

loc
(RN) are nonnegative functions. Then, for any unit ball

B1(y) ⊂ R
N and for any q > p∗, there is a small constant δ = δ(q) > 0 such that if

(
ˆ

B1(y)

a
N
p

1 dx

)
p
N

+

(
ˆ

B1(y)

a
N−s
p−s

2 dµs

)
p−s
N−s

< δ,

then for any γ ∈ (0, p∗), there holds

‖w‖q,B1/2(y) ≤ C‖w‖γ,B1(y)

for C = C(N, p, s, q, γ) > 0.

Proof. For simplicity, we write Br = Br(y) for r > 0 in the following proof. It
is standard to show that w ∈ L∞

loc
(RN) by Moser’s iteration method [25]. For any

η ∈ C∞
0 (B1), take ϕ = ηpw1+p(τ−1), τ ≥ 1, as a test function. We have

(A.6)

ˆ

B1

|∇w|p−2∇w · ∇ϕdx ≤

ˆ

B1

(

a1(x) +
a2(x)

|x|s

)

ηpwpτ dx.

First, a simple calculation gives us that
ˆ

B1

|∇w|p−2∇w · ∇ϕdx ≥ C

ˆ

B1

|∇(ηwτ)|p dx− C

ˆ

B1

|∇η|pwpτ dx

for C = C(N, p, τ) > 0. Second, by Hölder’s inequality, we have
ˆ

B1

a1(x)η
pwpτ dx ≤

(
ˆ

B1

a
N
p

1 dx

)
p
N
(
ˆ

B1

(ηwτ )p
∗

dx

)
p
p∗

,

and
ˆ

B1

a2(x)

|x|s
ηpwpτ dx ≤

(
ˆ

B1

a
N−s
p−s

2 dµs

)
p−s
N−s

(
ˆ

B1

(ηwτ)p
∗(s) dµs

)
p

p∗(s)

.

Thus (A.6) implies that

(A.7)

ˆ

B1

|∇(ηwτ)|p dx ≤ C

ˆ

B1

|∇η|pwpτ dx

+ CA

(

(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

+

(
ˆ

B1

(ηwτ)p
∗(s) dµs

)
p

p∗(s)

)

,

where C = C(N, p, s, τ) > 0 and

A =

(
ˆ

B1

a
N
p

1 dx

)
p
N

+

(
ˆ

B1

a
N−s
p−s

2 dµs

)
p−s
N−s

.

By the Sobolev inequality and the Caffarelli–Kohn–Nirenberg inequality, we obtain
that

(A.8)

(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

+

(
ˆ

B1

(ηwτ)p
∗(s)dµs

)
p

p∗(s)

≤ C(N, p, s)

ˆ

B1

|∇(ηwτ)|p dx.

Combining (A.7) and (A.8) yields that
(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

+

(
ˆ

B1

(ηwτ)p
∗(s) dµs

)
p

p∗(s)

≤ C

ˆ

B1

|∇η|pwpτ dx+ CA

(

(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

+

(
ˆ

B1

(ηwτ)p
∗(s) dµs

)
p

p∗(s)

)

.
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Thus we can choose

(A.9) δ = δ(τ) > 0

small enough such that if A < δ = δ(τ), then CA < 1/2 and thus
(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

+

(
ˆ

B1

(ηwτ)p
∗(s) dµs

)
p

p∗(s)

≤ C

ˆ

B1

|∇η|pwpτ dx,

for C = C(N, p, s, τ) > 0. In particular, if A < δ, we have

(A.10)

(
ˆ

B1

(ηwτ)p
∗

dx

)
p
p∗

≤ C

ˆ

B1

|∇η|pwpτ dx

for C = C(N, p, s, τ) > 0.
Let 0 < r < R ≤ 1 and η ∈ C∞

0 (BR) be a cut-off function such that 0 ≤ η ≤ 1,
η ≡ 1 in Br and |∇η| ≤ 2/(R− r). Substituting η into (A.10) gives us that

(A.11)

(
ˆ

Br

wpχτ dx

) 1
χ

≤
C(τ)

(R− r)p

ˆ

BR

wpτ dx,

where χ = p∗/p > 1.
Now for any fixed q > p∗, there exists k ∈ N such that pχk ≤ q < pχk+1. Let

τi = χi, ri = r + (R − r)/2i−1, i = 1, . . . , k, and let

δ = min{δ(τ1), · · · , δ(τk)},

where δ(τi) is defined by (A.9) with τ = τi, i = 1, · · · , k. Then if A < δ, we obtain
by (A.11)

(

ˆ

Bri+1

wpχi+1

dx

)
1

pχi+1

≤
C(τi)

(ri − ri+1)1/χ
i

(

ˆ

Bri

wpχi

dx

)
1

pχi

,

for i = 1, . . . , k. Iterate the above inequality from i = 1 to i = k. We obtain
(

ˆ

Brk+1

wpχk+1

dx

)
1

pχk+1

≤
C

(R− rk+1)σ

(
ˆ

BR

wp∗ dx

)
1
p∗

for some constants C > 0 and σ > 0. As a result, we have

(A.12)

(
ˆ

Br

wq dx

)
1
q

≤
C

(R− r)σ

(
ˆ

BR

wp∗ dx

)
1
p∗

,

since q < pχk+1.
Fix γ ∈ (0, p∗). There exists θ ∈ (0, 1) such that

1

p∗
=

θ

γ
+

1− θ

q
.

Thus by Hölder’s inequality and Young’s inequality, (A.12) implies that
(
ˆ

Br

wq dx

)
1
q

≤
1

2

(
ˆ

BR

wq dx

)
1
q

+
C

(R − r)σ/θ

(
ˆ

BR

wγ dx

)
1
γ

.

In particular, there holds
(
ˆ

Br

wq dx

)
1
q

≤
1

2

(
ˆ

BR

wq dx

)
1
q

+
C

(R− r)σ/θ

(
ˆ

B1

wγ dx

)
1
γ

.
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Now Applying Lemma 4.3 of Han and Lin [22, Chapter 4] (see Lemma A.5 below)
yields

(
ˆ

Br

wq dx

)
1
q

≤
C

(R − r)σ/θ

(
ˆ

B1

wγ dx

)
1
γ

for some constants C > 0 . Choose r = 1/2 and R = 1. We complete the proof. �

We attach Lemma 4.3 of Han and Lin [22, Chapter 4] here for the readers’
convenience.

Lemma A.5. Let f ≥ 0 be a bounded function in [τ0, τ1] with τ0 ≥ 0. Suppose
for τ0 ≤ t < s ≤ τ1 we have

f(t) ≤ θf(s) +
A

(s− t)α
+B

for some θ ∈ (0, 1] and some nonnegative constants A,B, α. Then, there exists
c(α, θ) > 0 such that, for any τ0 ≤ t < s ≤ τ1, there holds

f(t) ≤ c(α, θ)

{

A

(s− t)α
+B

}

.

Appendix B. A decay estimate

We use R
N
∗ to denote either R

N or RN
+ . Consider the following equation

(B.1)







−∆pu = µ|u|p
∗−2u+

|u|p
∗(s)−2u

|x|s
in R

N
∗ ,

u ∈ D1,p
0 (RN

∗ ),

where D1,p
0 (RN

∗ ) is the completion of C∞
0 (RN

∗ ) in the seminorm ‖u‖D1,p
0 (RN

∗
) = ‖∇u‖p,RN

∗

.

In this section, we give an estimate for the decay of solutions to equation (B.1) at
the infinity. We have the following result.

Proposition B.1. Let u be a solution of (B.1). Then there exists a constant
C > 0 such that

(B.2) |u(x)| ≤
C

1 + |x|
N−p
p−1

, ∀ x ∈ R
N
∗ .

To prove Proposition B.1, the following preliminary estimate is needed.

Lemma B.2. Let u be a solution of (B.1). Then there is a constant C > 0 such
that

|u(x)| ≤
C

1 + |x|
N−p

p
+σ

, ∀ |x| ≥ 1,

for some σ > 0.

The same estimate of Lemma B.2 was obtained in [6, Lemma B.3] for solutions
to equation

{

−∆pu = |u|p
∗−2u in R

N ,

u ∈ W 1,p(RN),

and in [31, Proposition 2.1] for solutions to more general equations. The proof
of Lemma B.2 is the same as that of Lemma B.3 in [6] and of Proposition 2.1 in
[31]. So we omit the details. To prove Proposition B.1, we will use the following
comparison principle which is a special case of [31, Theorem 1.5]. Denote D1,p(Ω) =
{

u ∈ Lp∗(Ω) : ∇u ∈ Lp(Ω)
}

.
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Theorem B.3. Let Ω be an exterior domain such that Ωc = R
N\Ω is bounded

and f ∈ L
N
p (Ω). Let u ∈ D1,p(Ω) be a subsolution of equation

(B.3) −∆pu = f |u|p−2u in Ω,

and v ∈ D1,p(Ω) a positive supersolution of

(B.4) −∆pv = g|v|p−2v in Ω,

such that inf∂Ω v > 0, where g ∈ L
N
p (Ω) satisfies f ≤ g in Ω. Moreover, assume that

(B.5) lim sup
R→∞

1

R

ˆ

B2R(0)\BR(0)

|u|p|∇ log v|p−1 dx = 0.

Then if u ≤ v on ∂Ω, we have that

u ≤ v in Ω.

Now we can prove Proposition B.1.

Proof of Proposition B.1. We will use Theorem B.3 to prove Proposition B.1.
First we consider the case when R

N
∗ = R

N . Let u be a solution to equation (B.1)
with R

N
∗ = R

N and set

f(x) = µ|u(x)|p
∗−p +

|u(x)|p
∗(s)−p

|x|s
.

Then f ≥ 0. By Lemma B.2, we have

(B.6) f(x) ≤ C|x|−α for |x| ≥ 1,

where

α = min

{

(p∗ − p)

(

N − p

p
+ σ

)

, s+ (p∗(s)− p)

(

N − p

p
+ σ

)}

.

Since 0 < s < p and σ > 0, we have α = p + (p∗(s) − p)σ > p. Thus f ∈

L
N
p (RN\B1(0)).

Let ǫ > 0 and write γ = (N − p)/(p− 1). Let v(x) = |x|−γ(1 + |x|−ǫ) for x 6= 0.
A simple calculation shows that

−∆pv = g(x)vp−1 for x 6= 0,

where

g(x) =
(p− 1)(γ + ǫ)p−1ǫ

(1 + |x|−ǫ)p−1|x|p+(p−1)ǫ
.

It is easy to derive from the above formula that

(B.7) C|x|−p−(p−1)ǫ ≥ g(x) ≥ C ′|x|−p−(p−1)ǫ for |x| ≥ 1,

for C,C ′ > 0 depending on N, p and ǫ. As a result, we have g ∈ L
N
p (RN\B1(0))

since ǫ > 0.
Choose ǫ > 0 small such that p+ (p− 1)ǫ < α. Then by (B.6) and (B.7), we can

find a large number R0 > 1 such that

g(x) ≥ f(x) for |x| ≥ R0.
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To verify (B.5), we note that |∇ log v(x)| ≤ C|x|−1 for |x| large enough. Hence by
Lemma B.2, we have for R ≥ R0 large enough,

1

R

ˆ

B2R(0)\BR(0)

|u|p|∇ log v|p−1 dx ≤
C

R

ˆ

B2R(0)\BR(0)

|x|−(
N−p

p
+σ)p−(p−1) dx

≤ CR−p−(N−p
p

+σ)p+N

= CR−pσ,

which implies that (B.5) holds. Therefore, we can apply Theorem B.3 with Ω =
R

N\BR0(0) to conclude that

u(x) ≤ v(R0)
−1
(

sup
|y|=R0

|u(y)|
)

v(x) for |x| ≥ R0,

where v(R0) = v(x) with |x| = R0. We can prove the same estimate as above for −u
similarly. Therefore, we obtain that

(B.8) |u(x)| ≤ C|x|−
N−p
p−1 for |x| ≥ R0.

So we obtain an estimate for the decay of u at infinity. To prove (B.2), it is
enough to note that u ∈ L∞

loc
(RN), which can be proved by Moser’s iteration method

[25]. In particular, we obtain that

(B.9) |u(x)| ≤ C ′ for |x| ≤ R0

for a constant C ′ > 0. Combining (B.8) and (B.9) yields (B.2). This finishes the
proof of the case when R

N
∗ = R

N .
Next, consider the case when R

N
∗ = R

N
+ . In this case, for any solution u, we use

the odd extension

ũ(x) =

{

u(x′, xN) if xN ≥ 0,

−u(x′,−xN ) if xN < 0,

for x = (x′, xN ) ∈ R
N . It is direct to verify that ũ ∈ D1,p(RN) and that ũ is a solution

of equation (B.1) with R
N
∗ = R

N . Thus our problem is reduced to the previous case.
We then conclude easily that Proposition B.1 holds true for the second case. The
proof of Proposition B.1 is complete. �

Appendix C. Estimates for solutions of p-Laplacian equations

In this section, we copy two results on p-Laplacian equation from [6] without
proof. We assume that D is a bounded domain with Ω ⊂⊂ D. The following result
is Lemma 2.2 of [6].

Proposition C.1. For any functions f1(x) ≥ 0 and f2(x) ≥ 0, let w ≥ 0 be the
solution of

{

−∆pw = f1 + f2 in D,

w = 0 on ∂D.

Let wi, i = 1, 2, be the solution of
{

−∆pw = fi in D,

w = 0 on ∂D,
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respectively. Then, there is a constant C > 0, depending only on r = 1
3
dist(Ω, ∂D),

such that

w(x) ≤ C inf
y∈Br(x)

w(y) + Cw1(x) + Cw2(x), ∀x ∈ Ω.

Next result is Proposition C.1 of [6] which gives an estimate for solutions of
p-Laplacian equation by Wolff potential.

Proposition C.2. There is a constant γ ∈ (p− 1, (p− 1)N/(N − p + 1)), such
that for any solution u ∈ W 1,p(D) ∩ L∞(D) to equation

−∆pu = f in D,

where f ∈ L1(D), f ≥ 0, there exists a constant C = C(N, p, γ) > 0, such that for
any x ∈ D and r ∈ (0, dist(x, ∂D)),

(
 

Br(x)

uγ dy

)
1
γ

≤ C + C

ˆ

dist(x,∂D)

r

(

1

tN−p

ˆ

Bt(x)

f dy

)
1

p−1 dt

t
.

Appendix D. A global compactness result

Recall that by (2.1) we define, for any function u,

ρx,λ(u) = λ
N−p

p u(λ(· − x))

for any λ > 0 and x ∈ R
N . In this section, we give a global compactness result in

the following proposition.

Proposition D.1. Let un, n = 1, 2, . . . , be a solution of equation (1.7) with
ǫ = ǫn → 0, satisfying ‖un‖ ≤ C for some constant C independent of n. Then un

can be decomposed as

un = u0 +

k
∑

j=1

ρxn,j ,λn,j
(Uj) +

m
∑

j=k+1

ρ0,λn,j
(Uj) + ωn,

where u0 is a solution for (1.1), ωn → 0 strongly in W 1,p
0 (Ω), xn,j ∈ Ω. And as

n → ∞, λn,j → ∞ for all 1 ≤ j ≤ m, λn,jdist(xn,j, ∂Ω) → ∞ for all 1 ≤ j ≤ k. For
j = 1, 2, · · ·, k, Uj is a solution of

{

−∆pu = bjµ|u|
p∗−2u in R

N ,

u ∈ D1,p(RN),

for some bj ∈ (0, 1]. For j = k + 1, k + 2, · · ·, m, Uj is a solution of
{

−∆pu = bjµ|u|
p∗−2u+ bj

|u|p
∗(s)−2u
|x|s

in R
N
∗ ,

u ∈ D1,p
0 (RN

∗ ),

for some bj ∈ (0, 1], where R
N
∗ = R

N when 0 ∈ Ω, and R
N
∗ = R

N
+ when 0 ∈ ∂Ω.

Moreover, set xn,i = 0 for i = k + 1, · · · , m. For i, j = 1, 2, · · ·, m, if i 6= j, then

λn,j

λn,i

+
λn,i

λn,j

+ λn,jλn,i|xn,i − xn,j|
2 → ∞

as n → ∞.

Proof. The proof is standard, see e.g. [6, 7, 32]. We omit the details. �
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