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Abstract. The improved Poincaré inequality

‖ϕ− ϕΩ‖Lp(Ω) ≤ C‖d∇ϕ‖Lp(Ω)

where Ω ⊂ R
n is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many

applications. In particular, it can be used to obtain a decomposition of functions with vanishing

integral into a sum of locally supported functions with the same property. Consequently, it can

be used to go from local to global results, i.e., to extend to very general bounded domains results

which are known for cubes. For example, this methodology can be used to prove the existence of

solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization

of these results to the case of weighted norms. When the weight is in Ap the arguments used in the

un-weighted case can be extended without great difficulty. However, we will show that the improved

Poincaré inequality, as well as its above mentioned applications, can be extended to a more general

class of weights.

1. Introduction

Estimates in weighted norms for classic operators such as the Hardy–Littlewood
maximal function, singular integrals of Calderón–Zygmund type and Riesz fractional
integrals have been the object of many papers in the last fifty years. Pioneering pa-
pers are [S3, SW], for weights of type |x|α, and [M, MW] for more general weights. In
particular, in [M], Muckenhoupt characterized the weights for which the one dimen-
sional Hardy–Littlewood maximal operator is continuous, for 1 < p < ∞, introducing
the now well known class Ap. In [CF], Coifman and Fefferman generalized this result
to n dimensions. Later, it was proved that the Ap condition is necessary and sufficient
also for the continuity of the Hilbert and Riesz transforms (see for example [S1]).

In many applications, particularly in the analysis of partial differential equations,
estimates in weighted norms arise naturally (see for example the pioneering paper
[FKS]). Many of these results are proved for weights in Ap, the reason being that the
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proofs involve the use of the Hardy–Littlewood maximal operator or the Calderón–
Zygmund singular integral operators theory. In particular, these classic tools have
been used in different proofs of the results that we are going to consider in this paper,
namely, the so-called improved Poincaré inequality and the existence of solutions of
the divergence in Sobolev spaces.

To be more precise let us first introduce some notation. In this paper we consider.
By a weight function we mean a nonnegative measurable function w defined in some
domain Ω ⊂ R

n with n ≥ 2, and, for 1 ≤ p < ∞, we define

‖f‖Lp
w(Ω) =

(
ˆ

Ω

|f(x)|pw(x) dx

)1/p

.

Given any measurable S ⊂ R
n, a weight w and a function ϕ, we write w(S) =

´

S
w(x) dx, ϕS,w = 1

w(S)

´

S
ϕ(x)w(x) dx and ϕΩ = 1

|Ω|

´

Ω
ϕ(x) dx, whenever these

integrals make sense. If w is such that Lp
w(Ω) ⊂ L1(Ω), which is the case when

w′ := w−1/p−1 ∈ L1(Ω), we denote with Lp
w,0(Ω) the subspace of functions in Lp

w(Ω)
with vanishing mean value. In the un-weighted case, for a bounded Ω, we write Lp

0(Ω)
for the corresponding subspace of Lp(Ω). We say that w is a doubling weight if it is
locally integrable and there is a constant M > 0 such that w(2Q) ≤ Mw(Q) for all
cubes Q, where 2Q is the cube with the same center as Q and twice the side of Q.

We will make use of a Whitney decomposition of an open set Ω ⊆ R
n (see [S2]).

That is, there exists a family of cubes W = {Q}, with disjoint interiors, and a
constant N > 0 such that,

• Ω =
⋃

Q =
⋃

Q∗

• diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q)
•
∑

χQ∗ ≤ NχΩ

where Q∗ is certain expanded cube of Q. We will say that a cube Q ⊂ Ω is of Whitney
type if

diam(Q) ≈ dist(Q, ∂Ω).

Here and in what follows we use the notation A ≈ B which means that there exist
positive constants C1 and C2 such that C1A ≤ B ≤ C2A. Let us recall that the
Q∗ can be selected as Whitney type cubes. Finally, by C we will denote a generic
constant which can change its value even in the same line.

Given a bounded domain Ω we denote with d(x) the distance from x to the
boundary. Then, the improved Poincaré inequality in the un-weighted case reads as
follows. For 1 ≤ p < ∞, there exists a constant C such that,

(1.1) ‖ϕ− ϕΩ‖Lp(Ω) ≤ C‖d∇ϕ‖Lp(Ω).

Many proofs of this result have been given under different assumptions on the domain
Ω. For example, in [BS], using compactness arguments, the authors proved (1.1) for
Lipschitz domains. Later, in [H1], using a more constructive approach based on
Whitney decompositions, the result was generalized to John domains. This class of
domains was first considered by John, in his work on elasticity [J], and was named
after him by Martio and Sarvas in [MS]. A different argument was given, also for
John domains, in [DD], where the proof makes use of the Hardy–Littlewood maximal
operator.

By classical functional analysis arguments one can show that inequality (1.1) has
the following dual version (this is a particular case of results given in [DMRT]). For
1 ≤ p < ∞, if p′ is the conjugate exponent of p then, there exists a constant C such
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that, given g ∈ Lp′

0 (Ω), there exists u satisfying

(1.2)

div u = g in Ω,
∥

∥

∥

u

d

∥

∥

∥

Lp′(Ω)
≤ C‖g‖Lp′(Ω).

On the other hand, in [DMRT] it was shown that, for 1 < p < ∞, (1.2) is equivalent
to the existence of a decomposition of a function with vanishing integral as a sum of
locally supported functions with the same property, namely, numerating the Whitney

expanded cubes introduced above, for any g ∈ Lp′

0 (Ω) there exist gj ∈ Lp′

0 (Ω) such
that supp gj ⊂ Q∗

j ,

(1.3) g =
∑

j

gj and ‖g‖p
′

Lp′(Ω)
≈
∑

j

‖gj‖
p

Lp′(Q∗
j )
.

This decomposition has interesting applications, for example, it can be used to prove
the following classic result. Denoting with Du the differential matrix of a vector field

u, given g ∈ Lp′

0 (Ω), there exists u ∈ W 1,p′

0 (Ω) such that,

(1.4)

div u = g in Ω

u = 0 on ∂Ω

‖Du‖Lp′(Ω) ≤ C‖g‖Lp′(Ω).

This result has many applications, in particular, it is fundamental in the analysis
of the Stokes equations. Let us mention that (1.3) was also proved in [DRS] using
a different argument. In that paper the authors extended the decomposition, and
consequently (1.4), to weighted norms. Since there arguments are based on the
Hardy–Littlewood maximal operator, their results require that the weights be in Ap.

A natural question that we address in this paper is whether it is possible to
generalize the above results for a class of weights more general than Ap. With this
goal we first consider, for 1 ≤ p < ∞, the weighted improved Poincaré inequality
which generalizes (1.1), namely,

(1.5) ‖ϕ− ϕΩ,w‖Lp
w(Ω) ≤ C‖d∇ϕ‖Lp

w(Ω).

It is known that this inequality is valid for bounded John domains if w ∈ Ap (see
[DD]). As we will see, this result can be extended for more general weights. For
example, for a class of weights introduced in [FKS] where the authors consider the
classic Poincaré inequality in weighted norms,

(1.6) ‖ϕ− ϕΩ,w‖Lp
w(Ω) ≤ C‖∇ϕ‖Lp

w(Ω)

as well as some weighted Sobolev–Poincaré type inequalities.
Apart from proving (1.6) for Ap weights, in [FKS] the authors consider, for p = 2,

a class of weights which are not in A2. Their technique is based on quasi-conformal
mappings, indeed, the authors proved (1.6) when Ω is a ball, n ≥ 3, p = 2, and

w(x) = Jf(x)1−
2
n , where Jf is the jacobian of a quasi-conformal mapping f . As a

particular interesting case of their results they obtained (1.6) for w(x) = |x|α with
any α > 0. Let us recall that this weight is not in A2 if α ≥ n. We will show that
(1.5) (and consequently (1.6)) is also valid for the weights considered in [FKS] and,
more generally, for Ω a bounded John domain and w(x) = Jf(x)1−

p
n when 1 ≤ p < n.

In particular, the result is valid for w(x) = |x|α for any α > 0.
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Moreover, as an application of our results, we prove (1.5) for positive power
weights without using quasi-conformal mappings and for 1 ≤ p < ∞, obtaining
consequently a different proof of (1.6) and removing the restriction in p.

It is now well known that Poincaré type estimates are valid for very general
bounded domains whenever they hold in balls or cubes. Indeed, this was proved in
[C, H2] with arguments based on [IN]. For example, inequality (1.6) was proved in
[C] for weights in Ap where Ω satisfies the Boman chain condition. As it is known, for
bounded domains, this condition is equivalent to being a John domain (see [BKL]).
In [H2] (1.6) is extended to a more general class of weights. On the other hand, the
proof of the improved Poincaré inequality (1.1) in [H1] mentioned above, uses similar
arguments to those in [C, H2].

Roughly speaking, our first theorem says that the weighted improved Poincaré
inequality (1.5) is valid in John domains whenever the weighted classic Poincaré
inequality holds for Whitney type cubes and w is doubling. The argument of our
proof is essentially contained in [C, H2, IN] but, as far as we know, the result has
not been written in the way we are doing here, and this is why we include details.

Once we have the generalization of the improved Poincaré inequality we analyze
its relation with a decomposition like (1.3) but for the case of weighted norms. It
turns out that this relation is valid for a very general class of weights. Finally we
apply this decomposition to obtain a weighted version of (1.4) for some weights which
are not necessarily in Ap.

The rest of the paper is organized as follows. In Section 2 we prove the weighted
improved Poincaré inequality (1.5) for John domains. Next, in Section 3 we give
examples of weights w /∈ Ap for which the inequality (1.5) holds. In particular, we
generalize for 1 ≤ p < n the arguments given in [FKS]. In Section 4, we analyze the
relation between the improved Poincaré inequality and the decomposition of functions
in the weighted case. Finally, in Section 5 we apply that decomposition to prove the
existence of solutions of the divergence in weighted Sobolev spaces for power type
weights which are not necessarily in A∞.

2. Weighted improved Poincaré inequality

The main goal of this section is to prove (1.5) for a wide class of weights. If Ω is
a John domain one can choose a Whitney decomposition satisfying also the following
property (see [H1, DRS]). There exist an open cube Q∗

0 (called central cube) that
can be connected with every cube Q∗ by a finite chain of cubes, Q∗

0, Q
∗
1, . . . , Q

∗
s = Q∗,

such that for every j = 0, 1, . . . , s− 1

Q∗ ⊆ NQ∗
j

and there exists a cube Rj such that

Rj ⊂ Q∗
j ∩Q∗

j+1 and Q∗
j ∪Q∗

j+1 ⊂ NRj .

Our argument makes use of the following known result.

Lemma 2.1. Let V = {Q} be an arbitrary family of cubes in R
n. If w is a

doubling weight, 1 ≤ p < ∞, N ≥ 1 and AQ are nonnegative real numbers, then

(2.1)

∥

∥

∥

∥

∥

∑

Q∈V

AQχNQ(x)

∥

∥

∥

∥

∥

Lp
w

≤ C

∥

∥

∥

∥

∥

∑

Q∈V

AQχQ(x)

∥

∥

∥

∥

∥

Lp
w

where the constant C depends only on n, N , p and w.
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Proof. See Lemma 2.3 in [StW, Page 299]. �

The proof of the next theorem follows the arguments given in [H1, Theorem1.3].

Theorem 2.2. Let Ω be a bounded John domain and w ∈ L1(Ω) be a doubling
weight satisfying

(2.2) ‖ϕ− ϕQ,w‖Lp
w(Q) ≤ C diam(Q)‖∇ϕ‖Lp

w(Q)

for all ϕ ∈ C1(Q̄) and all Whitney type cube Q ⊂ Ω, where C is a constant that
does not depend on the cube. Then, for 1 ≤ p < ∞ and all ϕ ∈ C1(Ω),

‖ϕ− ϕΩ,w‖Lp
w(Ω) ≤ C‖d∇ϕ‖Lp

w(Ω).

Proof. Let W = {Q} be a Whitney decomposition satisfying the properties
described in the previous section. Let us observe that,

(2.3) max
{

w(Q∗
j), w(Q

∗
j+1)

}

≤ Cw(Q∗
j ∩Q∗

j+1)

j = 0, 1, . . . , s − 1 cubes from the chain associated with Q∗. Since w ∈ L1(Ω) it is
enough to prove

‖ϕ− ϕQ∗
0,w

‖Lp
w(Ω) ≤ C‖d∇ϕ‖Lp

w(Ω)

where Q∗
0 is the central cube. We have

ˆ

Ω

|ϕ(x)− ϕQ∗
0,w

|pw(x) dx

≤ 2p
∑

Q∈W

ˆ

Q∗

|ϕ(x)− ϕQ∗,w|
pw(x) dx+ 2p

∑

Q∈W

ˆ

Q∗

|ϕQ∗
0,w

− ϕQ∗,w|
pw(x) dx.

To estimate the first sum we use (2.2) and that the cubes Q∗ are of Whitney type,

∑

Q∈W

ˆ

Q∗

|ϕ(x)− ϕQ∗,w|
pw(x) dx ≤

∑

Q∈W

C diam(Q∗)p
ˆ

Q∗

|∇ϕ(x)|pw(x) dx

≤ C
∑

Q∈W

ˆ

Q∗

|∇ϕ(x)|pd(x)pw(x) dx

= C

ˆ

Ω

|∇ϕ(x)|pd(x)pw(x) dx

where for the last inequality we have used that
∑

χQ∗ ≤ NχΩ.
Now, we estimate the second sum. We have

(2.4) |ϕQ∗
0,w

− ϕQ∗,w| ≤

s−1
∑

j=0

|ϕQ∗
j ,w

− ϕQ∗
j+1,w

|

using again
∑

χQ∗ ≤ NχΩ, the triangle inequality, (2.2) and that the cubes Q∗
j are

of Whitney type, we obtain

|ϕQ∗
j ,w

− ϕQ∗
j+1,w

|p =
1

w(Q∗
j ∩Q∗

j+1)

ˆ

Q∗
j∩Q

∗
j+1

|ϕQ∗
j ,w

− ϕQ∗
j+1,w

|pw(y) dy

≤ 2pC

j+1
∑

α=j

1

w(Q∗
α)

ˆ

Q∗
α

|∇ϕ(y)|pd(y)pw(y) dy.
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Since Q∗ ⊆ NQ∗
α for 0 ≤ α ≤ s, we have

|ϕQ∗
j ,w

− ϕQ∗
j+1,w

|pχQ∗(x) ≤ C

j+1
∑

α=j

χNQ∗
α
(x)

w(Q∗
α)

ˆ

Q∗
α

|∇ϕ(y)|pd(y)pw(y) dy

and therefore,

(2.5)

|ϕQ∗
0,w

− ϕQ∗,w|χQ∗(x) ≤ C
s−1
∑

j=0

(

j+1
∑

α=j

χNQ∗
α
(x)

w(Q∗
α)

ˆ

Q∗
α

|∇ϕ(y)|pd(y)pw(y) dy

)1/p

≤ C
∑

R∈W

χNR∗(x)

(

1

w(R∗)

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

)1/p

then,

∑

Q∈W

ˆ

Q∗

|ϕQ∗
0,w

− ϕQ∗,w|
pw(x) dx ≤

∑

Q∈W

ˆ

Q∗

|ϕQ∗
0,w

− ϕQ∗,w|
pχQ∗(x)w(x) dx

≤ C
∑

Q∈W

ˆ

Q∗

∣

∣

∣

∣

∣

∑

R∈W

(

1

w(R∗)

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

)1/p

χNR∗(x)

∣

∣

∣

∣

∣

p

w(x) dx

≤ C

ˆ

Rn

∣

∣

∣

∣

∣

∑

R∈W

(

1

w(R∗)

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

)1/p

χNR∗(x)

∣

∣

∣

∣

∣

p

w(x) dx

and using now (2.1) and
∑

R∈W χR∗(x) ≤ NχΩ(x) we obtain

∑

Q∈W

ˆ

Q∗

|ϕQ∗
0,w

− ϕQ∗,w|
pw(x) dx

≤ C

ˆ

Rn

∣

∣

∣

∣

∣

∑

R∈W

(

1

w(R∗)

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

)1/p

χR∗(x)

∣

∣

∣

∣

∣

p

w(x) dx

≤ C

ˆ

Rn

∑

R∈W

(

1

w(R∗)

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

)

χR∗(x)w(x) dx

= C
∑

R∈W

ˆ

Rn

1

w(R∗)
χR∗(x)w(x) dx

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy

= C
∑

R∈W

ˆ

R∗

|∇ϕ(y)|pd(y)pw(y) dy ≤ C

ˆ

Ω

|∇ϕ(y)|pd(y)pw(y) dy

concluding the proof. �

Remark 2.3. It is known that (2.2) holds for Ap weights (this is proved in
[FKS]). Moreover, in [C, Theorem 2.14], Chua gives a more general sufficient con-
dition. Indeed, he proves that (2.2) holds for any doubling weight w which satisfies
the following condition: there exists r > 1 such that for all cube Q0 ⊂ R

n,

sup
Q⊂Q0

|Q|1/n
(

1

|Q|

ˆ

Q

wr

)1/pr (
1

|Q|

ˆ

Q

w−r/(p−1)

)1/p′r

< ∞.

Actually, Chua does not give an explicit expression for the constant in (2.2) but
it can be obtained using a standard scaling argument.
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3. Examples

The goal of this section is to give some examples which show that the class of
weights satisfying the conditions of Theorem 2.2 is larger than Ap.

Example 3.1. Consider the weights

(3.1) w(x) = (1 + |x|)δ
m
∏

i=1

[

|x− ai|

1 + |x− ai|

]γi

v(x)

where δ ≥ 0, γi ≥ 0, {ai}
m
i=1 are points in R

n, ai 6= aj if i 6= j, and v ∈ Ap. These
weights belong to A∞ (see [StW]) but, in general, they do not belong to Ap. It was
proved in [CW] that they satisfy the inequality (2.2).

Example 3.2. Let Γ be a closed subset of ∂Ω and dΓ(x) be the distance from
x to Γ. Define w(x) = dΓ(x)

α, for α > 0. It is easy to show that (2.2) follows from
the classic un-weighted Poincaré inequality. Indeed, if Q is a Whitney type cube we
have, for x, y ∈ Q,

dΓ(y) ≤ |x− y|+ dΓ(x) ≤ diam(Q) + dΓ(x) ≈ d(x) + dΓ(x) ≤ 2dΓ(x),

and therefore, w behaves like a constant in Q.
An interesting application is obtained considering a bounded John domain Ω

such that 0 ∈ Ω. Considering Ω̃ := Ω \ {0} and w as above with Γ = {0}, we have
dΓ(x) = |x|. Then, w is in L1(Ω̃) and is doubling. Therefore, applying Theorem 2.2

in Ω̃ we obtain, for 1 ≤ p < ∞,
ˆ

Ω̃

|ϕ(x)− ϕΩ̃,|x|α|
p|x|α dx ≤ C

ˆ

Ω̃

|∇ϕ(x)|p|x|α dist(x, ∂Ω̃)p dx

but we can obviously replace Ω̃ by Ω in the integrals, and using that dist(x, ∂Ω̃) ≤
d(x), we obtain

(3.2) ‖ϕ− ϕΩ,|x|α‖Lp

|x|α
(Ω) ≤ C‖d∇ϕ‖Lp

|x|α
(Ω).

Below we will use this estimate for α > −n (the case −n < α ≤ 0 is known because
for those values of α the weight |x|α is in Ap).

Example 3.3. The weighted Poincaré inequality (3.2) in balls was proved for
p = 2 and n ≥ 3, with a totally different argument, by Fabes, Kenig and Serapioni
in [FKS]. Indeed, they showed in that paper that w(x) = |x|α, for α > 0, is a
particular case of a general class of weights introduced there, for which the weighted
Poincaré inequality in balls holds (although, as this example shows, their weights are
not necessarily in Ap). One can trivially change balls by cubes in their arguments
and consequently Theorem 2.2 applies for this class of weights.

Here we extend their results for any n ≥ 2 and p < n. This extension is straight-
forward but we include details for completeness. Actually, our argument is simpler
because we are interested only in Poincaré inequality while in [FKS] the authors
proved Sobolev–Poincaré inequalities.

Let f : Rn → R
n be a quasi-conformal mapping, that is, f is a homeomorphism,

the components fi of f have distributional derivatives in Ln(Ω), and there is a con-
stant M > 0 such that, almost everywhere,

(3.3) |Df(x)| :=

(

∑

i,j

(

∂fi
∂xj

(x)

)2
)1/2

≤ MJf(x)1/n
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where Jf is the absolute value of the determinant of Df .

Lemma 3.4. Given p such that 1 ≤ p < n, define w(x) = Jf(x)1−p/n. There
exists a constant C such that for all cube Q and all ϕ ∈ C1(Q̄)

(3.4) ‖ϕ− ϕQ,w‖Lp
w(Q) ≤ C diam(Q)‖∇ϕ‖Lp

w(Q)

Proof. Since w ∈ L1(Ω) it is enough to prove the inequality (3.4) replacing ϕQ,w

by a constant cQ. The main idea of the proof is to reduce the weighted inequality to
an unweighted one by making the change of variables y = f(x).

Observe that

diam(Q) = C|Q|1/n = C

(
ˆ

Q

dx

)1/n

= C

(
ˆ

f(Q)

Jf−1(y) dy

)1/n

.

Then, using the Hölder inequality with exponents n/(n−p) and its dual n/p we have,
ˆ

Q

|ϕ(x)− cQ|
pw(x) dx =

ˆ

f(Q)

|(ϕ ◦ f−1)(y)− cQ|
pJf−1(y)p/n dy

≤

(
ˆ

f(Q)

|(ϕ ◦ f−1)(y)− cQ|
p∗ dy

)p/p∗(ˆ

f(Q)

Jf−1(y) dy

)p/n

≤ C diam(Q)p
(
ˆ

f(Q)

|(ϕ ◦ f−1)(y)− cQ|
p∗ dy

)p/p∗

where we have used the standard notation for the Sobolev–Poincaré exponent p∗ =
pn/(n− p).

Now, it follows from the condition (3.3) for f−1, that
ˆ

f(Q)

|∇(ϕ ◦ f−1)(y)|p dy ≤ C

ˆ

Q

|∇ϕ(x)|pw(x) dx

and therefore, it is enough to prove

(3.5)

(
ˆ

f(Q)

|(ϕ ◦ f−1)(y)− cQ|
p∗ dy

)1/p∗

≤ C

(
ˆ

f(Q)

|∇(ϕ ◦ f−1)(y)|p
)1/p

But, f(Q) is a John domain, and the Sobolev–Poincaré inequality (3.5) for this
kind of domains was proved in [B]. Moreover, the constant C in (3.5) depends only
on n and the John constant of f(Q) (this is proved, for example, in [DD]) which,
according to Lemma 2.3 in [HK, page 539], depends only on n and the A∞ constant
of Jf . Finally, it was proved in [G] that the A∞ constant of Jf depends only on M
and n (for the last observation recall that we are assuming that f is quasi-conformal
in R

n). �

Consequently we obtain the following result.

Theorem 3.5. Let Ω be a bounded John domain and w(x) = Jf(x)1−p/n, 1 ≤
p < n, with f : Rn → R

n a quasi-conformal mapping. Then the following inequality
holds

‖ϕ− ϕΩ,w‖Lp
w(Ω) ≤ C‖d∇ϕ‖Lp

w(Ω).

Proof. It is known from the results in [G] that w ∈ A∞, and so, it is doubling.
Therefore, in view of (3.4), the result follows from Theorem 2.2. �

Remark 3.6. Following [FKS], given α > 0, we can take f(x) = |x|βx with
β = α

n−p
to obtain (3.2) for 1 ≤ p < n (see [FKS] for details).
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4. Decomposition of functions of vanishing integral

The improved Poincaré inequality (1.5) has many applications. In particular, it
was shown in [DMRT], that it is related with a useful decomposition for functions
of vanishing integral in Ω as a sum of locally supported functions with the same
property. An interesting application of this decomposition is the solvability of the
divergence in Sobolev spaces (see [DMRT, DRS]).

The goal of this section is to extend the arguments given in [DMRT] and to show
that solutions of the divergence in weighted Sobolev spaces can be obtained for some
weights which are not in Ap. We start with the following lemma which generalizes a
result of [DMRT].

Recall that w′ := w−1/(p−1) and that, if w′ ∈ L1(Ω) then Lp
w ⊂ L1(Ω) and

therefore the space

Lp
w,0(Ω) =

{

f ∈ Lp
w(Ω) :

ˆ

Ω

f = 0

}

is well defined.

Lemma 4.1. Let Ω ⊂ R
n be a bounded domain, and 1 < p < ∞, {Qj} a

Whitney decomposition of Ω and
{

Q∗
j

}

expanded cubes of Qj as in Section 1 and
let {φj} be the usual partition of unity associated with the decomposition (see for
example [S2]). Given a weight w such that w′ ∈ L1(Ω), we consider the following
properties,

(1) ‖h− hΩ,w′‖
Lp′

w′ (Ω)
≤ C ‖d∇h‖

Lp′

w′ (Ω)
∀h ∈ Lp′

w′(Ω) ∩ C1(Ω) such that ∇h ∈

Lp′

dp′w′(Ω)
n.

(2) If g ∈ Lp
w,0(Ω) there exists u ∈ Lp

d−pw(Ω)
n such that

(4.1)

ˆ

Ω

u · ∇h =

ˆ

Ω

gh ∀h ∈ Lp′

w′(Ω) ∩ C1(Ω) such that ∇h ∈ Lp′

dp′w′(Ω)
n

and

(4.2)
∥

∥

∥

u

d

∥

∥

∥

Lp
w(Ω)

≤ C ‖g‖Lp
w(Ω) .

(3) If g ∈ Lp
w,0(Ω) there exists a decomposition

g =
∑

j

gj

with gj ∈ Lp
w,0(Ω), supp gj ⊂ Q∗

j , and

‖g‖p
Lp
w(Ω)

≈
∑

j

‖gj‖
p
Lp
w(Q∗

j )
.

Then,

(1) ⇔ (2) ⇒ (3)

Proof. (1) ⇒ (2): Let S ⊂ Lp′

dp′w′(Ω)
n be the subspace given by

S =
{

v ∈ Lp′

dp′w′(Ω)
n : v = ∇h with h ∈ Lp′

w′(Ω) ∩ C1(Ω)
}

,
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and set L(∇h) =
´

Ω
gh. Since

´

Ω
g = 0, L defines a linear form on S. Moreover, it

follows from (1) that

|L(∇h)| =

∣

∣

∣

∣

ˆ

Ω

g(h− hΩ,w′)

∣

∣

∣

∣

≤ C ‖g‖Lp
w(Ω) ‖h− hΩ,w′‖

Lp′

w′ (Ω)

≤ C ‖g‖Lp
w(Ω) ‖d∇h‖

Lp′

w′ (Ω)
.

By the Hahn–Banach theorem L can be extended as a linear continuous functional

defined on Lp′

dp′w′(Ω)
n, and therefore, by duality there exists u ∈ Lp

d−pw(Ω)
n such that

L(v) =

ˆ

Ω

u · v and
∥

∥

∥

u

d

∥

∥

∥

Lp
w(Ω)

≤ C ‖g‖Lp
w(Ω)

in particular, taking v = ∇h ∈ S, we obtain (2).

(2) ⇒ (1): Let h ∈ Lp′

w′(Ω) ∩ C1(Ω) be such that ∇h ∈ Lp′

dp′w′(Ω)
n. Then,

(4.3) ‖h− hΩ,w′‖
Lp′

w′ (Ω)
= sup

‖g‖
L
p

w′ (Ω)=1

ˆ

Ω

(h− hΩ,w′)gw′ = sup
‖g‖

L
p

w′ (Ω)=1

ˆ

Ω

h(g − gΩ,w′)w′

but, since (g − gΩ,w′)w′ ∈ Lp
w,0(Ω) with

‖(g − gΩ,w′)w′‖Lp
w(Ω) = ‖g − gΩ,w′‖Lp

w′ (Ω) ≤ C‖g‖Lp

w′(Ω),

we know from (2) that there exists u ∈ Lp
d−pw(Ω)

n such that
ˆ

Ω

u · ∇h =

ˆ

Ω

h(g − gΩ,w′)w′

satisfying
∥

∥

∥

u

d

∥

∥

∥

Lp
w(Ω)

≤ C ‖(g − gΩ,w′)w′‖Lp
w(Ω) ≤ C‖g‖Lp

w′(Ω).

Therefore,
ˆ

Ω

h(g − gΩ,w′)w′ =

ˆ

Ω

u · ∇h ≤ ‖d∇h‖
Lp′

w′(Ω)

∥

∥

∥

u

d

∥

∥

∥

Lp
w(Ω)

≤ C‖d∇h‖
Lp′

w′ (Ω)
‖g‖Lp

w′(Ω)

and replacing in (4.3) we obtain (1).

(2) ⇒ (3) Given g ∈ Lp
w,0(Ω) let u ∈ Lp

d−pw(Ω)
n as in (2). Observe that, in

particular, we can take h ∈ C∞
0 (Ω) in (4.1), and therefore, div u = g in Ω. Then, we

define
gj = div(φju)

and so, we have

g = div u = div
(

u
∑

j

φj

)

=
∑

j

div(φju) =
∑

j

gj.

Since supp φj ⊆ Q∗
j we have supp gj ⊆ Q∗

j and
´

gj = 0. Moreover, each point in Ω
is contained in at most N of the cubes Q∗

j , consequently

|g(x)|p ≤ C
∑

j

|gj(x)|
p

and then
‖g‖p

Lp
w(Ω)

≤ C
∑

j

‖gj‖
p
Lp
w(Q∗

j )

where the constant C depends only on p and n.



Improved Poincaré inequalities and solutions of the divergence in weighted norms 221

To prove the other inequality we use that ‖φj‖L∞ ≤ 1 and ‖∇φj‖L∞ ≤ C/dj,
where dj is the distance of Qj to ∂Ω. Then, we have

‖gj‖
p
Lp
w(Q∗

j )
=

ˆ

Q∗
j

|gj|
pw =

ˆ

Q∗
j

| div(φju)|
pw =

ˆ

Q∗
j

|∇φj · u+ φj div u|
pw

≤ C

(

ˆ

Q∗
j

|∇φj|
p|u|pw +

ˆ

Q∗
j

|φj(x)|
p| div u|pw

)

≤ C

(

∥

∥

∥

u

d

∥

∥

∥

p

Lp
w(Q∗

j )
+ ‖g‖p

Lp
w(Q∗

j )

)

and therefore, using that
∑

j χQ∗
j
≤ NχΩ, it follows from (4.2) that

�(4.4)
∑

j

‖gj‖
p
Lp
w(Q∗

j )
≤ C ‖g‖p

Lp
w(Ω)

.

5. Solvability of the divergence in weighted Sobolev spaces

As a consequence of the results given in the previous section we obtain a result
which generalizes the arguments given in [DMRT, DRS] to show the existence of
solutions of the divergence in weighted Sobolev spaces for weights which are not nec-
essarily in Ap. Roughly speaking, the divergence can be solved in weighted Sobolev
spaces in John domains whenever it can be solved in cubes.

Given a domain Ω and weights w0 and w1, such that Lp
w0
(Ω) ⊂ L1

loc(Ω), we define

W 1,p
w0,w1

(Ω) =
{

v : Ω → R
n : v ∈ Lp

w0
(Ω), |Dv| ∈ Lp

w1
(Ω)
}

,

with its natural norm, and

W 1,p
0,w0,w1

(Ω) = C∞
0 (Ω) ∩W 1,p

w0,w1(Ω).

Theorem 5.1. Given Ω ⊂ R
n and 1 < p < ∞. Let w0 and w1 be weights with

w′
0, w

′
1 ∈ L1(Ω) and such that the inequality

∥

∥h− hΩ,w′
1

∥

∥

Lp′

w′
1
(Ω)

≤ C ‖d∇h‖
Lp′

w′
1
(Ω)

holds for all h ∈ Lp′

w′
1
(Ω) ∩ C1(Ω). Assume that, for any g ∈ Lp

w1,0
(Q) and any

Whitney type cube Q ⊂ Ω, there exists u ∈ W 1,p
0,w0,w1

(Q) satisfying

div u = g in Q

and

‖u‖Lp
w0

(Q) + ‖Du‖Lp
w1

(Q) ≤ C‖g‖Lp
w1

(Q)

where the constant C is independent of the cube Q. Then, for any g ∈ Lp
w1,0(Ω) there

exists u ∈ W 1,p
0,w0,w1

(Ω) such that

div u = g in Ω

and

‖u‖Lp
w0

(Ω) + ‖Du‖Lp
w1

(Ω) ≤ C‖g‖Lp
w1

(Ω).

Proof. First of all observe that w′
0 ∈ L1(Ω) implies that Lp

w0
(Ω) ⊂ L1(Ω), and

therefore, derivatives of functions in Lp
w0
(Ω) exist in the distributional sense and so

the space W 1,p
w0,w1

(Ω) is well defined. Now, since w′
1 ∈ L1(Ω), we can apply Lemma 4.1,
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and so, given g ∈ Lp
w1,0(Ω) we decompose g =

∑

gj as in (3) of that lemma. By our

hypothesis, for each j, there exists uj ∈ W 1,p
0,w0,w1

(Q∗
j) satisfying

div uj = gj in Q∗
j

and

‖uj‖Lp
w0

(Q∗
j
) + ‖Duj‖Lp

w1
(Q∗

j
) ≤ C‖gj‖Lp

w1
(Q∗

j
).

Then, defining u =
∑

j uj, we have div u = g. Moreover,

‖u‖p
Lp
w0

(Ω)
+ ‖Du‖p

Lp
w1

(Ω)
=

ˆ

Ω

∣

∣

∣

∑

j

uj

∣

∣

∣

p

w0(x) dx+

ˆ

Ω

∣

∣

∣

∑

j

Duj

∣

∣

∣

p

w1(x) dx

≤ C
∑

j

ˆ

Q∗
j

{

|uj(x)|
pw0(x) + |Duj(x)|

p w1(x)
}

dx

≤ C
∑

j

ˆ

Q∗
j

|gj(x)|
p w1(x) dx ≤ C||g||p

Lp
w1

(Ω)
. �

As an example we show that Theorem 5.1 can be applied to solve the divergence
equation in power weighted spaces.

Theorem 5.2. Let Ω ⊂ R
n be a bounded John domain such that 0 ∈ Ω, 1 <

p < ∞, and −∞ < γ < n(p− 1). Given g ∈ Lp
|x|γ ,0(Ω) there exists u ∈ W 1,p

0,|x|γ ,|x|γ(Ω)

such that

div u = g in Ω

and

(5.1) ‖u‖Lp

|x|γ
(Ω) + ‖Du‖Lp

|x|γ
(Ω) ≤ C‖g‖Lp

|x|γ
(Ω).

Proof. First of all observe that, if w(x) = |x|γ, then w′ = |x|−
γ

p−1 ∈ L1(Ω),
indeed, from our hypotheses, − γ

p−1
> −n. In particular Lp

|x|γ(Ω) ⊂ L1(Ω) and so

Lp
|x|γ ,0(Ω) and W 1,p

0,|x|γ ,|x|γ(Ω) are well defined.

Now, if −n < γ < n(p − 1), the weight |x|γ is in Ap, and therefore, the result
was proved in [DRS, page 103]. Although the authors of that paper only state the
bound for the second term on the left hand side of (5.1), the estimate for the other
term follows immediately by the weighted Poincaré inequality (which is known to be
valid for Ap weights).

On the other hand, for the case γ ≤ −n, we proceed as in Example 3.2 and
introduce Ω̃ = Ω \ {0}. It is easy to see that, if φ ∈ C∞

0 (Ω)∩Lp
|x|γ(Ω), then φ(0) = 0,

and therefore,

W 1,p
0,|x|γ,|x|γ(Ω̃) = W 1,p

0,|x|γ ,|x|γ(Ω).

Then, we conclude the proof applying Theorem 5.1 in Ω̃. Indeed, the hypotheses
of that theorem, concerning the existence of solutions in Whitney type cubes, are
easily verified because the weight restricted to those cubes behaves like a constant
(see details in Example 3.2). �

In what follows we are going to show that, for 1 < p < n, Theorem 5.2 can be
improved replacing the term ‖u‖Lp

|x|γ
(Ω) in (5.1) by the stronger one ‖u‖Lp

|x|γ−p(Ω).
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To do this we use the technique based in quasi-conformal mappings. Let us re-
mark that this improvement does not follow from the bound obtained for the deriva-
tives of u because there is no constant C such that the inequality

‖φ‖Lp

|x|γ−p(Ω) ≤ C‖∇φ‖Lp

|x|γ
(Ω),

holds for a general φ ∈ C∞
0 (Ω). Indeed, if −n < γ ≤ −n+ p and φ is equal to one in

a neighborhood of 0, the right hand side is finite while the left one is not.
For −∞ < γ ≤ −n the result in the following theorem can be proved by the same

argument used in Theorem 5.1, and therefore, the interesting case in the following
proof is when −n < γ < n(p − 1). However, since the argument is independent of
the value of γ, we write the proof in the general case.

Theorem 5.3. Let Ω ⊂ R
n be a bounded John domain such that 0 ∈ Ω, 1 <

p < n, and −∞ < γ < n(p−1). Given g ∈ Lp
|x|γ ,0(Ω) there exists u ∈ W 1,p

0,|x|γ−p,|x|γ(Ω)

such that
div u = g in Ω

and
‖u‖Lp

|x|γ−p(Ω) + ‖Du‖Lp

|x|γ
(Ω) ≤ C‖g‖Lp

|x|γ
(Ω).

Proof. We start as in the proof of Theorem 5.2 observing that Lp
|x|γ ,0(Ω) and

W 1,p
0,|x|γ−p,|x|γ(Ω) are well defined. Defining w1(x) = |x|γ we have w′

1(x) = |x|α with

α = − γ
p−1

> −n and so, in view of Example 3.2, the weighted improved Poincaré
inequality

∥

∥h− hΩ,w′
1

∥

∥

Lp′

w′
1
(Ω)

≤ C ‖d∇h‖
Lp′

w′
1
(Ω)

,

holds. Therefore, the result will be a consequence of Theorem 5.1, if we show the
solvability of the divergence in cubes. This will be done in the following lemma. �

Lemma 5.4. Let Q be a cube, 1 < p < n, and −∞ < γ < n(p − 1). Given
g ∈ Lp

|x|γ ,0(Q) there exists u ∈ W 1,p
0,|x|γ−p,|x|γ(Q) such that

div u = g in Q

and
‖u‖Lp

|x|γ−p(Q) + ‖Du‖Lp

|x|γ
(Q) ≤ C‖g‖Lp

|x|γ
(Q).

Proof. Given γ we take β such that γ = βn(1−p) < n(p−1). Since γ < n(p−1)
we have β > −1, and therefore, f(x) = |x|βx is a quasi-conformal mapping. Using the
change of variables y = f(x) we define h(y) = g(x)Jf−1(f(x)). Then, h ∈ Lp

0(f(Q)),
and therefore, since f(Q) is a John domain (actually, for the particular f considered
here it is a Lipschitz domain), we know that there exists v ∈ W 1,p

0 (f(Q)) such that

(5.2) div v = h in f(Q)

and

(5.3)

ˆ

f(Q)

|y|−p|v(y)|p dy +

ˆ

f(Q)

|Dv(y)|p dy ≤ C

ˆ

f(Q)

|h(y)|p dy,

see, for example, [ADM] or [Ga] for the existence of v satisfying (5.2) and ‖Dv‖Lp(f(Q))

≤ C‖h‖Lp(f(Q)). The estimate for the first term on the right hand side of (5.3) is a
consequence of

ˆ

f(Q)

|y|−p|v(y)|p dy ≤ C

ˆ

f(Q)

|Dv(y)|p dy
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which can be obtained from the results for fractional integrals given in [SW] (and it is
also a particular case of the so-called Caffarelli–Kohn–Nirenberg inequalities [CKN]).

Now, using the so-called Piola transform, we define

(5.4) u(x) = Jf(x)Df−1(f(x))v(f(x)).

Then, we have
div u = g

and, since Jf(x) ≈ |x|nβ(1−p) = |x|γ, we have to prove that
ˆ

Q

|Du(x)|pJf(x)1−p dx ≤ C

ˆ

Q

|g(x)|pJf(x)1−p dx

and
ˆ

Q

|u(x)|p|x|−pJf(x)1−p ≤ C

ˆ

Q

|g(x)|pJf(x)1−p dx.

Changing variables we have
ˆ

f(Q)

|h(y)|p dy =

ˆ

Q

|g(x)|pJf(x)1−p dx,

and therefore, it is enough to show that

(5.5)

ˆ

Q

|Du(x)|pJf(x)1−p dx ≤ C

ˆ

f(Q)

|h(y)|p dy.

and

(5.6)

ˆ

Q

|u(x)|p|x|−pJf(x)1−p dx ≤ C

ˆ

f(Q)

|h(y)|p dy.

But, we have

Du(x) = D
[

Jf(x)Df−1(f(x))
]

v(f(x)) + Jf(x)Df−1(f(x))Dv(f(x))Df(x)

and therefore,
ˆ

Q

|Du(x)|pJf(x)1−p dx ≤ I + II

with

I :=

ˆ

Q

∣

∣D
[

Jf(x)Df−1(f(x))
]
∣

∣

p
|v(f(x))|p Jf(x)1−p dx

and

II :=

ˆ

Q

∣

∣Df−1(f(x))
∣

∣

p
|Df(x)|p |Dv(f(x))|p Jf(x) dx.

But, using that f and f−1 are quasi-conformal mappings, and (5.3), we obtain

II ≤ C

ˆ

Q

|Dv(f(x))|p Jf(x) dx = C

ˆ

f(Q)

|Dv(y)|p dy ≤ C

ˆ

f(Q)

|h(y)|p dy.

On the other hand we have,

(5.7)

I ≤ C
{

ˆ

Q

|DJf(x)|p
∣

∣Df−1(f(x))
∣

∣

p
|v(f(x))|p Jf(x)1−p dx

+

ˆ

Q

∣

∣D2f−1(f(x))
∣

∣

p
|Df(x)|p |v(f(x))|p Jf(x) dx

}

.

Now, recalling that y = f(x), it is easy to check that

|DJf(x)| ≤ C|x|βn−1 = |y|
βn−1
β+1 ,
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and, using also that f−1 is quasi-conformal and that

(5.8) Jf−1(y) ≤ C|y|−
βn
β+1 and Jf(x) = Jf(f−1(y)) ≤ C|y|

βn
β+1

we obtain that the first term on the right hand side of (5.7) is less than or equal to

C

ˆ

f(Q)

|y|
p(βn−1)

β+1 |y|−
pβ
β+1 |y|

βn(1−p)
β+1 |y|−

βn
β+1 |v(y)|p dy = C

ˆ

f(Q)

|y|−p|v(y)|p dy,

Now, for the second term on the right hand side of (5.7), changing variables and
using that

|D2f−1(y)| ≤ C|y|−
2β+1
β+1 and |Df(f−1(y))| ≤ C|y|

β
β+1 ,

we obtain
ˆ

Q

∣

∣D2f−1(f(x))
∣

∣

p
|Df(x)|p |v(f(x))|p Jf(x) dx

=

ˆ

f(Q)

∣

∣D2f−1(y)
∣

∣

p ∣
∣Df(f−1(y))

∣

∣

p
|v(y)|p dy ≤ C

ˆ

f(Q)

|y|−p|v(y)|p dy.

Collecting these estimates and using (5.3) we obtain

I ≤ C

ˆ

f(Q)

|y|−p|v(y)|p dy ≤ C

ˆ

f(Q)

|h(y)|p dy,

and therefore (5.5) is proved.
Finally, from the definition of u given in (5.4) and changing variables, we have

ˆ

Q

|u(x)|p|x|−pJf(x)1−p dx =

ˆ

f(Q)

∣

∣Df−1(y))
∣

∣

p
|y|−

p
β+1 |v(y)|p dy

and using that f−1 is quasi-conformal, the first estimate in (5.8), and (5.3), we obtain
(5.6). �
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