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Abstract. In this paper, first, we define the weakly quasimöbius maps in quasi-metric spaces

and obtain a series of elementary properties of these maps. Then we find conditions under which a

weakly quasimöbius map is quasimöbius in quasi-metric spaces. With the aid of uniform perfectness,

three related results are proved, and some applications are also given.

1. Introduction

This paper is continuation to [32]. In [32], we investigated the uniform perfectness
in quasi-metric spaces. First, we established the equivalence of uniform perfectness
with homogeneous density, σ-density etc. Based on the obtained equivalence, the
invariant property of uniform perfectness under quasisymmetric or quasimöbius maps
was proved, and the relationships among uniform perfectness, (power) quasimöbius
maps and (power) quasisymmetric maps were discussed.

The main aim of the present paper is to define the weakly quasimöbius maps in
quasi-metric spaces, establish a series of elementary properties of these maps, and
then discuss the relations between weakly quasimöbius maps and quasimöbius maps
with the aid of uniform perfectness. We start with the definition of quasi-metric
spaces.

Definition 1.1. For a given set Z and a constant K ≥ 1,

(1) a function ρ : Z × Z → [0,+∞) is said to be K-quasi-metric if
(a) for all x and y in Z, ρ(x, y) ≥ 0, and ρ(x, y) = 0 if and only if x = y;
(b) ρ(x, y) = ρ(y, x) for all x, y ∈ Z;
(c) ρ(x, z) ≤ K(ρ(x, y) ∨ ρ(y, z)) for all x, y, z ∈ Z,

where the notations: r ∨ s and r ∧ s for numbers r, s in R mean r ∨ s =
max{r, s} and r ∧ s = min{r, s}.

(2) the pair (Z, ρ) is said to be a K-quasi-metric space if ρ is K-quasi-metric.
Also, we say that K is the quasi-metric coefficient of (Z, ρ).

In the following, we always assume that (Z, ρ) contains at least four points.
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Obviously, if (Z, ρ) is K1-quasi-metric, it must be K2-quasi-metric for any K2 ≥
K1. Hence, for convenience, in the following, we assume that the quasi-metric coef-
ficients of all quasi-metric spaces are the same, denoted by K, and also, we assume
that K > 1.

The following result easily follows from [7, Proposition 2.2.5].

Lemma 1.1. Let (X, ρ) be a K-quasi-metric space. If there exists some constant
0 < ε ≤ 1 such that Kε ≤ 2, then there is a metric dε on X such that

1

4
ρε(z1, z2) ≤ dε(z1, z2) ≤ ρε(z1, z2)

for all z1, z2 ∈ X.

For more properties concerning quasi-metric spaces, see [2, 3, 6, 7, 8, 9, 10, 12,
19, 22, 23, 26, 30, 31] etc.

Definition 1.2. Suppose η is a homeomorphism from [0,∞) to [0,∞). A home-
omorphism f : (Z1, ρ1) → (Z2, ρ2) between two quasi-metric spaces (Z1, ρ1) and
(Z2, ρ2) is said to be

(1) η-quasisymmetric if ρ1(x, a) ≤ tρ1(x, b) implies

ρ2(x
′, a′) ≤ η(t)ρ2(x

′, b′)

for all a, b, x in (Z1, ρ1) and t ≥ 0;
(2) weakly (h,H)-quasisymmetric if ρ1(x, a) ≤ hρ1(x, b) implies

ρ2(x
′, a′) ≤ Hρ2(x

′, b′)

for all a, b, x in (Z1, ρ1), where the constants h > 0 and H ≥ 1 are called the
weak quasisymmetry coefficients of f .

Here and in what follows, primes always denote the images of points under f , for
example, x′ = f(x) etc.

We remark that, in general, the weak quasisymmetry means the weak H-quasi-
symmetry (cf. [14]). Obviously, the weak (h,H)-quasisymmetry is a generalization
of the weak H-quasisymmetry since the weak H-quasisymmetry coincides with the
weak (1, H)-quasisymmetry.

It is known that every Möbius transformation in R
n leaves the cross ratio in-

variant. As a generalization of Möbius transformations in metric spaces, in [26],
Väisälä introduced a class of maps, i.e. quasimöbius maps, under which the cross
ratio is in a certain sense quasi-invariant, and got the close connections with qua-
sisymmetric maps and quasiconformal maps. The introduction of quasimöbius maps
has provided a handy tool when studying the quasisymmetric maps and the quasi-
conformal maps. Many references related to the relationships among quasimöbius
maps, quasisymmetric maps and quasiconformal maps have been in literature; see
[1, 5, 6, 7, 13, 15, 16, 17, 18, 19, 20, 21, 25, 29, 30] etc. The precise definition for
quasimöbius maps is as follows.

Definition 1.3. Suppose θ is a homeomorphism from [0,∞) to [0,∞). A home-
omorphism f : (Z1, ρ1) → (Z2, ρ2) between two quasi-metric spaces is said to be
θ-quasimöbius if r(a, b, c, d) ≤ t implies

r(a′, b′, c′, d′) ≤ θ(t)
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for all a, b, c, d in (Z1, ρ1) and t ≥ 0, where

r(a, b, c, d) =
ρ1(a, c)ρ1(b, d)

ρ1(a, b)ρ1(c, d)

denotes the cross ratio of the quadruple (a, b, c, d).

Similar to the definition of weak quasisymmetric maps, we introduce the following
definition of weakly quasimöbius maps.

Definition 1.4. A homeomorphism f : (Z1, ρ1) → (Z2, ρ2) between two quasi-
metric spaces is said to be weakly (h,H)-quasimöbius if r(a, b, c, d) ≤ h implies

r(a′, b′, c′, d′) ≤ H

for each quadruple (a, b, c, d) in (Z1, ρ1), where the constants h > 0 and H ≥ 1 are
called the weakly quasimöbius coefficients of f .

Clearly, every quasimöbius map is weakly quasimöbius. But the converse is
not always true. To find the conditions under which weakly quasimöbius maps are
quasimöbius is the main aim of this paper. We shall study this problem with the aid
of uniform perfectness. Our main results are Theorems 3.1, 5.1 and 5.2 below.

The organization of this paper is as follows. In Section 2, we will introduce some
necessary notations and concepts, recall some known results, and prove a series of
basic and useful results. In Section 3, we shall show that for a weakly quasimöbius
map in a uniformly perfect quasi-metric space, it is quasimöbius if and only if the im-
age space is also uniformly perfect and the inverse of the map is weakly quasimöbius
too. The goal of Section 4 is to check that between two uniformly perfect and
κ-HTB quasi-metric spaces, every weakly quasisymmetric map must be quasisym-
metric. This result is useful for the discussions in Section 5. But the result itself is
independently significant (See Remark 4.1 below). Based on the main results in Sec-
tions 3 and 4, we mainly demonstrate in Section 5 that between two uniformly perfect
and homogeneous quasi-metric spaces, every weakly quasimöbius map is quasimöbius.
Some applications of the main results in Section 5 will be given in the last section,
Section 6.

2. Basic terminology and results

In this section, we shall introduce necessary notations and concepts, recall some
known results and obtain a series of basic results which will be used later on. Most
results stated in this section are from the case of metric spaces. The methods of proofs
are also similar. We give the proofs just for completeness. This section consists of
six subsections.

2.1. Cross ratios. The following result is obvious (see [32, Proposition 2.1]):
For a quasi-metric space (Z, ρ) and points a, b, c, d, z in (Z, ρ),

(2.1) r(a, b, c, d) =
1

r(a, c, b, d)
and r(a, b, c, d) = r(a, b, z, d)r(a, z, c, d).

In [4], Bonk and Kleiner introduce the following useful notation:

〈a, b, c, d〉 = ρ(a, c) ∧ ρ(b, d)
ρ(a, b) ∧ ρ(c, d) .

Bonk and Kleiner established a relation between r(a, b, c, d) and 〈a, b, c, d〉 in the
setting of metric spaces [4, Lemma 3.3]. As shown in the following result from [32],
this useful property is also valid in quasi-metric spaces.
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Lemma A. [32, Lemma 2.1] Suppose (Z, ρ) is quasi-metric. Then for any a, b,
c, d in (Z, ρ), we have

(1) 1

θK

(
1

r(a,b,c,d)

) ≤ 〈a, b, c, d〉 ≤ θK(r(a, b, c, d));

(2) θ−1
K (〈a, b, c, d〉) ≤ r(a, b, c, d) ≤ 1

θ−1
K

(
1

〈a,b,c,d〉

) ,

where θK(t) = K2(t ∨
√
t) and K denotes the quasi-metric coefficient of (Z, ρ).

As a consequence of Lemma A, we have

Lemma 2.1. Suppose that f : (Z1, ρ1) → (Z2, ρ2) is a homeomorphism, where
each (Zi, ρi) is a quasi-metric space (i = 1, 2), and that h > 1 and H ≥ 1 are
constants. For any a, b, c and d in (Z1, ρ1), if

〈a, b, c, d〉 > 1

hK2
implies 〈a′, b′, c′, d′〉 > 1

H
,

then

r(a, b, c, d) >
1

h
implies r(a′, b′, c′, d′) >

1

H2K4
.

Proof. If r(a, b, c, d) > 1
h
, then by Lemma A, we have

〈a, b, c, d〉 > 1

hK2
,

which implies

〈a′, b′, c′, d′〉 > 1

H
.

Again by Lemma A, we obtain that

r(a′, b′, c′, d′) >
1

H2K4
.

Hence the proof of the lemma is complete. �

2.2. (Weakly) quasisymmetric maps and (weakly) quasimöbius maps.
Obviously, if f is weakly (h,H)-quasisymmetric (resp. weakly (h,H)-quasimöbius),
then it is weakly (h1, H1)-quasisymmetric (resp. weakly (h1, H1)-quasimöbius) for
any h1 ≤ h and H1 ≥ H . Hence, in the following, we always assume that H > 1.

In the rest of this subsection, we always assume that (Z1, ρ1), (Z2, ρ2) and (Z3, ρ3)
are quasi-metric. First, let us recall a result from [32] concerning quasimöbius maps.

Lemma B.

(1) [32, Lemma 2.2(1)] If f : (Z1, ρ1) → (Z2, ρ2) is η-quasisymmetric, then it is
θ-quasimöbius, where θ(t) = 1

θ−1
K

(
1

η◦θK(t)

) .

(2) [32, Lemma 2.3(1)] If f : (Z1, ρ1) → (Z2, ρ2) and g : (Z2, ρ2) → (Z3, ρ3) are
θ1-quasimöbius and θ2-quasimöbius, respectively, then g ◦ f is θ-quasimöbius
with θ = θ2 ◦ θ1.

Then we have the following lemmas.

Lemma 2.2. (1) If f : (Z1, ρ1) → (Z2, ρ2) is an η-quasisymmetric map, then
it is weakly (h,H)-quasisymmetric, where H = η(h) for any h > 0;

(2) Suppose f : (Z1, ρ1) → (Z2, ρ2) is η-quasisymmetric. Then its inverse f−1 :

(Z2, ρ2) → (Z1, ρ1) is η1-quasisymmetric with η1(t) =
(
η−1(t−1)

)−1
for t > 0

(cf. [24, Theorem 2.2]);
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(3) If f : (Z1, ρ1) → (Z2, ρ2) and g : (Z2, ρ2) → (Z3, ρ3) are η1-quasisymmetric and
η2-quasisymmetric, respectively, then g◦f is η-quasisymmetric with η = η2◦η1
(cf. [24, Theorem 2.2]);

(4) Suppose f : (Z1, ρ1) → (Z2, ρ2) is a θ-quasimöbius map. Then its inverse

f−1 : (Z2, ρ2) → (Z1, ρ1) is θ1-quasimöbius with θ1(t) =
(
θ−1(t−1)

)−1
for t > 0

(cf. [28, Theorem 6.23]).

Proof. The assertions (1) and (3) are obvious. In order to prove (2), we let a, b,
c ∈ Z1, and let t > 0 be such that

ρ2(a
′, b′) ≤ tρ2(a

′, c′).

Suppose ρ1(a, b) > η1(t)ρ1(a, c). Then

ρ2(a
′, c′) < η

(
1

η1(t)

)
ρ(a′, b′) =

1

t
ρ2(a

′, b′),

which is a contradiction. Hence (2) is true.
The proof of (4) is similar, and so we prove this lemma. �

Lemma 2.3. Suppose f : (Z1, ρ1) → (Z2, ρ2) is a homeomorphism.

(1) If f is weakly (h,H)-quasimöbius, then for any a, b, c and d in (Z1, ρ1),

〈a, b, c, d〉 ≤ h1 implies 〈a′, b′, c′, d′〉 ≤ H1,

where h1 =
1

θK( 1
h
)

and H1 = K2H .

(2) If for any a, b, c and d in (Z1, ρ1),

〈a, b, c, d〉 ≤ h implies 〈a′, b′, c′, d′〉 ≤ H,

then f is weakly (h2, H2)-quasimöbius, where h2 = θ−1
K (h) and H2 =

1
θ−1
K

( 1
H
)
.

Proof. We only need to prove the first statement in the lemma since the proof
of the second one is similar. Since 〈a, b, c, d〉 ≤ h1, we have r(a, b, c, d) ≤ h, because
otherwise, it follows from Lemma A that 〈a, b, c, d〉 ≥ 1

θK

(
1

r(a,b,c,d)

) > h1. Then the

assumption “f being weakly (h,H)-quasimöbius” leads to

r(a′, b′, c′, d′) ≤ H.

Again, Lemma A guarantees that

〈a′, b′, c′, d′〉 ≤ H1.

Hence the proof of the lemma is finished. �

Lemma 2.4. If f : (Z1, ρ1) → (Z2, ρ2) is weakly (h,H)-quasisymmetric, then it
is weakly (θ−1

K (h), 1
θ−1
K

( 1
H
)
)-quasimöbius.

Proof. To prove this lemma, by Lemma 2.3, it suffices to check that for any
points z1, z2, z3, z4 ∈ Z, if 〈z1, z2, z3, z4〉 ≤ h, then

〈z′1, z′2, z′3, z′4〉 ≤ H.

To this end, we assume that ρ1(z1, z3) ≤ ρ1(z2, z4). Then it follows from 〈z1, z2, z3,
z4〉 ≤ h that

ρ1(z1, z3) ≤ h(ρ1(z1, z2) ∧ ρ1(z3, z4)).
Hence

ρ2(z
′
1, z

′
3) ≤ H(ρ2(z

′
1, z

′
2) ∧ ρ2(z′3, z′4)),
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since f is (h,H)-weakly quasisymmetric, and thus

〈z′1, z′2, z′3, z′4〉 ≤
ρ2(z

′
1, z

′
3)

ρ2(z′1, z
′
2) ∧ ρ2(z′3, z′4)

≤ H,

as required. �

Lemma 2.5. Suppose f : (Z1, ρ1) → (Z2, ρ2) and g : (Z2, ρ2) → (Z3, ρ3) are
homeomorphisms.

(1) If f is weakly (h,H)-quasimöbius and g is θ-quasimöbius, then g ◦f is weakly
(h, θ(H))-quasimöbius;

(2) If f is θ-quasimöbius and g is weakly (h,H)-quasimöbius, then g ◦f is weakly
(θ−1(h), H)-quasimöbius;

(3) If f is weakly (h,H)-quasimöbius and g is weakly (H,H1)-quasimöbius, then
g ◦ f is weakly (h,H1)-quasimöbius.

Proof. Obviously, we only need to demonstrate the first statement in the lemma
since the proofs for the remaining two are similar. For the proof, let z1, z2, z3, z4
be four points in Z1. Assume that 〈z1, z2, z3, z4〉 ≤ h. Then it follows from the
assumption “f being weakly (h,H)-quasimöbius” that

〈z′1, z′2, z′3, z′4〉 ≤ H.

Since g is θ-quasimöbius, we see that

〈z′′1 , z′′2 , z′′3 , z′′4 〉 ≤ θ(H),

which is what we want, where z′′i denotes the image of z′i in Z3 under g for i ∈
{1, . . . , 4}. �

The following corollary is a direct consequence of Lemmas B, 2.2, 2.4 and 2.5.

Corollary 2.1. Suppose f : (Z1, ρ1) → (Z2, ρ2) and g : (Z2, ρ2) → (Z3, ρ3) are
homeomorphisms.

(1) [32, Lemma 2.3(2)] If f is θ-quasimöbius and g is η-quasisymmetric, then g◦f
is θ1-quasimöbius, where θ1(t) =

1

θ−1
K

(
1

η◦θK◦θ(t)

) ;

(2) [32, Lemma 2.2(1)] If f is η-quasisymmetric and g is θ-quasimöbius, then g◦f
is θ2-quasimöbius, where θ2(t) = θ

(
1

θ−1
K

(
η◦θK (t)

));
(3) If f is θ-quasimöbius and g is weakly (h,H)-quasisymmetric, then g ◦ f is

weakly
(
θ−1 ◦ θ−1

K (h), 1
θ−1
K

( 1
H
)

)
-quasimöbius;

(4) If f is weakly (h,H)-quasimöbius and g is η-quasisymmetric, then g ◦ f is
weakly

(
h, 1

θ−1
K

( 1
η◦θK (H)

)

)
-quasimöbius;

(5) If f is weakly (h,H)-quasimöbius and g is weakly (K2H,H2)-quasisymmetric,
then g ◦ f is weakly

(
h, 1

θ−1
K

( 1
H2

)

)
-quasimöbius;

(6) If f is η-quasisymmetric and g is weakly (h,H)-quasimöbius, then g ◦ f is
weakly

(
θ−1
K ◦ η−1( 1

θK( 1
h
)
), H

)
-quasimöbius;

(7) If f is weakly (h,H)-quasisymmetric and g is θ-quasimöbius, then g ◦ f is
weakly

(
θ−1
K (h), θ( 1

θ−1
K

( 1
H
)
)
)
-quasimöbius;

(8) If f is weakly (h,H)-quasisymmetric and g is weakly
(

1
θ−1
K

( 1
H
)
, H3

)
-quasimöbius,

then g ◦ f is weakly (θ−1
K (h), H3)-quasimöbius.
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2.3. Uniform perfectness, homogeneous density and σ-density.

Definition 2.1. A quasi-metric space (Z, ρ) is called uniformly perfect if there
is a constant τ ∈ (0, 1) such that for each x in (Z, ρ) and every r > 0, B(x, r) \
B(x, µr) 6= ∅ provided that Z \ B(x, r) 6= ∅. Also, we say that (Z, ρ) is uniformly
τ -perfect.

Let us recall the following useful result from [32] concerning the invariant of
uniform perfectness under the quasisymmetric or quasimöbius maps.

(In the rest of this paper, we make the following notational convention: Suppose
A denotes a condition with data v and A′ another condition with data v′. We say
that A implies B quantitatively if A implies B so that v′ depends only on v. If
A and A′ imply each other quantitatively, then we say that they are quantitatively
equivalent.)

Lemma C. [32, Theorem 1.2 and Lemma 3.2] Let f : (Z1, ρ1) → (Z2, ρ2) be
η-quasisymmetric or θ-quasimöbius, where both (Zi, ρi) (i = 1, 2) are quasi-metric.
Then (Z1, ρ1) is uniformly τ -perfect if and only if (Z2, ρ2) is uniformly τ ′-perfect,
quantitatively.

Definition 2.2. Suppose {xi}i∈Z denotes a sequence of points in a quasi-metric
space (Z, ρ) with a 6= xi 6= b.

(1) If xi → a as i → −∞ and xi → b as i → +∞, then {xi} is called a chain

joining a and b; Further, if there is a constant σ > 1 such that for all i,

| log r(a, xi, xi+1, b)| ≤ log σ,

then {xi} is called a σ-chain.
(2) (Z, ρ) is said to be σ-dense (σ > 1) if any pair of points in (Z, ρ) can be joined

by a σ-chain.

We remark that (1) a σ-dense space does not contain any isolated point, and (2)
a σ-dense space is σ′-dense for any σ′ ≥ σ.

Definition 2.3. A quasi-metric space (Z, ρ) is said to be homogeneously dense,
abbreviated HD, if for each pair of points a, b ∈ Z, there is a point x in Z such that

λ1ρ(a, b) ≤ ρ(a, x) ≤ λ2ρ(a, b),

where λ1 and λ2 are constants with 0 < λ1 ≤ λ2 < 1. To emphasize the parameters,
we also say that (Z, ρ) is (λ1, λ2)-HD.

The following results from [32] will be applied several times later in this paper.

Lemma D. [32, Lemma 3.1(1)] If a quasi-metric space is (λ1, λ2)-HD, then it
must be (λn1 , λ

n
2)-HD for any positive integer n.

Lemma E. [32, Theorem 1.1] Let (Z, ρ) be a quasi-metric space. Then the
following are quantitatively equivalent:

(1) Z is uniformly τ -perfect;
(2) Z is (λ1, λ2)-HD;
(3) Z is σ-dense;
(4) there are numbers µ1 and µ2 with 0 < µ1 ≤ µ2 < 1 such that for any triple

(a, c, d) in (Z, ρ), there is a point x ∈ Z satisfying µ1 ≤ r(a, x, c, d) ≤ µ2.
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2.4. Doubling and κ-HTB quasi-metric spaces.

Definition 2.4. A quasi-metric space (Z, ρ) is called C-doubling if there is a
constant C such that every ball B in (Z, ρ) can be covered with at most C balls of
half the radius of B.

Definition 2.5. A quasi-metric space (Z, ρ) is κ-homogeneously totally bounded,
abbreviated κ-HTB, if there is an increasing function κ : [1

2
,∞) → [1,∞) such that

for each α ≥ 1
2
, every closed ball B(x, r) in (Z, ρ) can be covered with sets A1 , · · ·,As

in (Z, ρ) such that s ≤ κ(α) and diam(Ai) < r/α for all i.

The following result concerning κ-HTB in the setting of metric spaces is from
[24] or [27] (see [24, Remarks 2.8] or [27, Section 2.8]).

Lemma 2.6. If (Z, ρ) is a κ-HTB quasi-metric space and if a1, . . ., as are points
in the closed ball B(x, r) with ρ1(ai, aj) ≥ t > 0 whenever i 6= j, then s ≤ κ

(
r
t

)
.

Proof. Since (Z, ρ) is κ-HTB, by definition, we see that for α = r
t
, the closed ball

B(x, r) can be covered by A1, A2, · · · , As1 with

s1 ≤ κ(α) = κ
(r
t

)
and diam(Ai) <

r

α
= t for all i.

Then we claim that each Ai contains at most one element from {a1, . . . , as}. Suppose
not. Then there are an i ∈ {1, . . . , s} and two points aj1 6= aj2 ∈ {a1, . . . , as} such
that

aj1, aj2 ∈ Ai,

which implies that

diam(Ai) ≥ ρ(aj1 , aj2) ≥ t.

It is impossible, and hence

s ≤ s1 ≤ κ
(r
t

)
,

as required. �

The following equivalence between doubling quasi-metric spaces and κ-HTB
quasi-metric spaces is needed in the proof of Lemma 2.8 below and the discussions
in Section 5.

Lemma 2.7. A K-quasi-metric space is doubling if and only if it is κ-HTB,
quantitatively.

Proof. Assume that (Z, ρ) is a quasi-metric space. If it is κ-HTB, by letting
α = 2, then we see from the definition that for any z ∈ Z and r > 0, there are
s ≤ κ(2) sets Ai in (Z, ρ) with diam(Ai) <

r
2

such that

B(z, r) ⊂
s⋃

i=1

Ai.

Obviously, for each i, there is a point zi ∈ Z such that Ai ⊂ B(zi,
r
2
). Hence

B(z, r) ⊂
s⋃

i=1

B

(
zi,

r

2

)
,

which shows that (Z, ρ) is κ(2)-doubling. Hence the sufficiency is true.
In the following, we prove the necessity. For any α ≥ 1

2
, r > 0 and z ∈ Z,

consider the closed ball B(z, r) in (Z, ρ). Without loss of generality, we may assume
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that Kα > 1. Then there is a unique integer N ≥ 1 such that

2N−1 ≤ Kα < 2N .

Since (Z, ρ) is C-doubling, we see that there are at most C balls B(zi,
r
2
) such that

B(z, r) ⊂
C⋃

i=1

B

(
zi,

r

2

)
,

where zi ∈ (Z, ρ). By induction, we can know that there are at most CN balls
B(zj,

r
2N

) which cover B(z, r). Let Aj = B(zj,
r
2N

). Then

diam(Aj) ≤
Kr

2N
<
r

α
.

Clearly, B(z, r) is covered by A1, . . . , As with

s = CN ≤ C
log(Kα)

log 2
+1.

Let

κ(α) = C
log(Kα)

log 2
+1.

Then we see that (Z, ρ) is κ-HTB, and so, the lemma is proved. �

Lemma 2.8. Suppose that f : (Z1, ρ1) → (Z2, ρ2) is η-quasisymmetric between
two quasi-metric spaces. Then (Z1, ρ1) is κ-HTB if and only if (Z2, ρ2) is κ′-HTB,
quantitatively.

Proof. By Lemma 2.2, it is sufficient to prove the necessity. For any y′ ∈ Z2

and r > 0, let {y′i}i∈Λ be a maximal r
2
-separated subset of the ball B(y′, r) ⊂ Z2,

where “ r
2
-separated” means that ρ(zi, zj) ≥ r

2
for all i 6= j ∈ Λ. The existence of

this maximal subset in B(z0, r) is guaranteed by Zorn’s lemma. Obviously, the union
of the balls B(y′i,

r
2
) covers B(y′, r). Hence, to prove that (Z2, ρ2) is κ′-HTB, by

Lemma 2.7, it suffices to show that there is a constant M > 0 such that the number
card(Λ) of elements in Λ satisfies

card(Λ) ≤M,

where M is independent of y′ and r.
Let

r0 = inf{s ≤ r : B(y′, s) = B(y′, r)}.
If r0 = 0, then B(y′, r) = {y′}, and clearly, card(Λ) = 1.
In the following, we assume that 0 < r0 ≤ r. By the choice of r0, there must be

a point y′0 ∈ B(y′, r) such that

r0
2
< ρ2(y

′, y′0) < r.

Moreover, we have the following assertion.

Claim 2.1. For all i 6= j ∈ Λ,

xi ∈ B(x, η′(2)ρ1(x, x0)) and ρ1(xi, xj) ≥
ρ1(x, x0)

Kη′(2K)
,

where xi = f−1(y′i), x = f−1(y′), x0 = f−1(y′0) and η′(t) = 1
η−1( 1

t
)
.
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Note first that the inverse f−1 of f is η′-quasisymmetric with η′(t) = 1
η−1( 1

t
)

(cf.

Lemma 2.2). Since ρ2(y
′
i, y

′) ≤ r0 < 2ρ2(y
′, y′0), we have

ρ1(xi, x) < η′(2)ρ1(x0, x),

and so xi ∈ B(x, η′(2)ρ1(x, x0)).
Similarly, since ρ2(y

′
i, y

′) < r ≤ 2ρ2(y
′
i, y

′
j) for i 6= j ∈ Λ, we know that

ρ1(xi, x) < η′(2)ρ1(xi, xj).

On the other hand, it follows from

ρ2(y
′
i, y

′
0) ≤ K(ρ2(y

′
i, y

′) ∨ ρ2(y′, y′0)) < Kr < 2Kρ2(y
′
i, y

′
j)

that

ρ1(xi, x0) < η′(2K)ρ1(xi, xj).

Furthermore, we obtain that

ρ1(x, x0) ≤ K(ρ1(x, xi) ∨ ρ1(xi, x0)) ≤ Kη′(2K)ρ1(xi, xj),

as desired.

Now, let us continue the proof. Since (Z1, ρ1) is κ-HTB, by Claim 2.1 and
Lemma 2.6, we see that

card(Λ) ≤ κ(Kη′(2K)2),

and hence the proof of this lemma is complete. �

We remark that, in the metric spaces, Lemma 2.8 coincides with Theorem 2.10
in [24]. But our method of proof is different.

2.5. Doubling measure spaces, homogeneous spaces and Ahlfors reg-
ular spaces. In the following, we assume that (Z, ρ) is a quasi-metric space and a
positive measure µ is defined on a σ-algebra of subsets of (Z, ρ), which contains the
balls B(x, r) in (Z, ρ).

Definition 2.6. Let (Z, ρ) be a quasi-metric space. A positive Borel measure µ
is said to be C-doubling if there is a constant C such that

µ(2B) ≤ Cµ(B) <∞
for all balls B in (Z, ρ).

Definition 2.7. If a quasi-metric space (Z, ρ) carries a C-doubling measure µ,
then it is called a homogeneous space, which is denoted by (Z, ρ, µ). Also, we say that
(Z, ρ, µ) is (K,C)-HS, where we recall that K denotes the quasi-metric coefficient
of (Z, ρ).

Lemma 2.9. Every homogeneous space is doubling.

Proof. Assume that (Z, ρ, µ) is (K,C)-HS. For any z0 ∈ Z and r > 0, let
{zi}ni=0 be a maximal r

2
-separated subset of B(z0, r). Obviously, the union of the

balls B(zi,
r
2
) covers the ball B(z0, r). Hence, to prove that (Z, ρ) is doubling as a

quasi-metric space, it suffices to show the number n is independent of z0 and r.
First, we know that there is a unique integer m such that

2m ≤ K < 2m+1.

Here, we assume that m ≥ 1.



Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-metric spaces 267

Second, by the choice of points zi, one easily sees that the balls B(zi,
r
2K

) are
disjoint subsets of B(z0, Kr), and also B(z0, Kr) ⊂ B(zi, K

2r) for i = 0, 1, . . . , n.
Hence the assumption in the lemma implies

µ(B(z0, Kr)) ≤ µ(B(zi, K
2r)) ≤ C3m+4µ

(
B

(
zi,

K2r

23m+4

))
≤ C3m+4µ

(
B

(
zi,

r

2K

))
,

and so

n+ 1

C3m+4
µ(B(z0, Kr)) ≤

n∑

i=0

µ
(
B

(
zi,

r

2K

))
≤ µ(B(z0, Kr)).

Hence

n ≤ C3m+4 ≤ C
3 logK
log 2

+4,

which is what we need. �

Definition 2.8. A quasi-metric space (Z, ρ) is said to be Ahlfors Q-regular if
(Z, ρ) admits a positive Borel measure µ such that

C−1RQ ≤ µ(B(x,R)) ≤ CRQ

for all x ∈ Z and 0 < R < diam(Z) (possibly, diam(Z) = ∞), where the constants
C ≥ 1 and Q > 0 are called the Ahlfors regularity coefficients of (Z, ρ).

Lemma 2.10. Every Ahlfors regular space is uniformly perfect and homoge-
neous. Also it is doubling.

Proof. Assume that the quasi-metric space (Z, ρ) is Ahlfors regular. That is,
(Z, ρ) admits a positive Borel measure µ such that for all x ∈ Z and 0 < R <
diam(Z),

(2.2) C−1RQ ≤ µ(B(x,R)) ≤ CRQ,

where C ≥ 1 and Q > 0 are the Ahlfors regularity coefficients of (Z, ρ). Obviously,
we have

µ(B(x, 2R)) ≤ C22Qµ(B(x,R)).

Hence (Z, ρ, µ) is (K,C22Q)-HS.
To finish the proof, by Lemma 2.9, it remains to show the uniform perfectness of

(Z, ρ). For this, we set

τ =
1

2C2/Q
.

Then for any x ∈ Z and r > 0 with Z \B(x, r) 6= ∅, it follows from (2.2) that

µ(B(x, τr)) ≤ C(τr)Q =
1

2QC
rQ < µ(B(x, r)).

Hence

B(x, r) \B(x, τr) 6= ∅,
which guarantees that (Z, ρ) is uniformly τ -perfect. �

We remark that the assertions in Lemma 2.10 in the setting of metric spaces were
stated by David and Semmes in [9] (see [9, §5.4] and [9, Lemma 16.3]).
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3. Weakly quasimöbius maps, quasimöbius maps
and uniform perfectness

This section is devoted to the proof of Theorem 3.1 below. Before this proof, we
shall establish a result concerning quasisymmetric maps and weakly quasisymmetric
maps, i.e. Lemma 3.1 below. Based on this result, Theorem 3.1 will be proved. Also,
Lemma 3.1 plays a key role in the proof of the main result in Section 4.

3.1. The main result.

Theorem 3.1. Suppose f : (Z1, ρ1) → (Z2, ρ2) is a homeomorphism, where
(Z1, ρ1) is a uniformly τ -perfect quasi-metric space and (Z2, ρ2) is a quasi-metric
space. Then the following statements are quantitatively equivalent.

(1) If f is weakly (h1, H1)-quasimöbius with h1 > 1 and H1 ≥ 1, then it is
θ-quasimöbius;

(2) (Z2, ρ2) is uniformly τ ′-perfect and f−1 is weakly (h2, H2)-quasimöbius with
h2 > 1 and H2 ≥ 1.

3.2. An auxiliary result.

Lemma 3.1. Under the assumptions of Theorem 3.1, the following statements
are quantitatively equivalent.

(1) The weak (h1, H1)-quasisymmetry of f implies its η-quasisymmetry, where
h1 > 1 and H1 ≥ 1;

(2) (Z2, ρ2) is uniformly τ ′-perfect and f−1 is weakly (h2, H2)-quasisymmetric
with h2 > 1 and H2 ≥ 1.

Proof. By Lemmas 2.2 and C, we see that the implication from (1) to (2) is
obvious. So we only need to show the one from (2) to (1).

We assume that f is weakly (h1, H1)-quasisymmetric, f−1 is weakly (h2, H2)-
quasisymmetric and (Z2, ρ2) is uniformly τ ′-perfect. To prove that f is η-quasisym-
metric, we need some preparation.

By Lemma E, there are constants λi and µi (i = 1, 2) such that (Z1, ρ1) is (λ1, λ2)-
HD and (Z2, ρ2) is (µ1, µ2)-HD, where λi = λi(K, τ) ∈ (0, 1) and µi = µi(K, τ

′) ∈
(0, 1). (Here and in what follows, the notation λi = λi(K, τ) means that the constant
λi depends only on K and τ .) Without loss of generality, we may assume that

h1 = h2 = h > 1, H1 = H2 = H and H =
1

λ2
∨ 1

µ2
∨ h.

Let a, b, x be distinct points in (Z1, ρ1), and set

t =
ρ1(x, a)

ρ1(x, b)
and t′ =

ρ2(x
′, a′)

ρ2(x′, b′)
.

To find the needed homeomorphism η, we need to obtain a relation between t and t′.
For this, we divide the discussion into two cases.

Case 3.1. t ≤ 1.

It follows from the assumption “H ≥ 1
λ2

” that there is an integer n ≥ 2 such that

λn2 <
1

H
≤ λn−1

2 .

Then we have the following claim.
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Claim 3.1. There exist an integer s ≥ 1 and a finite sequence {b0 = b, · · · , bs}
in (Z1, ρ1) such that

(1) for each i ∈ {0, . . . , s− 1}, λn1ρ1(bi, x) ≤ ρ1(bi+1, x) ≤ λn2ρ1(bi, x);
(2) λn1ρ1(bs, x) ≤ ρ1(a, x) ≤ ρ1(bs, x).

Let b0 = b. Since (Z1, ρ1) is (λn1 , λ
n
2 )-HD, we see that there is a point b1 ∈ Z1

such that

λn1ρ1(b0, x) ≤ ρ1(b1, x) ≤ λn2ρ1(b0, x) <
1

H
ρ1(b, x).

If

ρ1(b1, x) < ρ1(a, x) ≤ ρ1(b0, x),

then we take s = 1. Otherwise, there must exist a point b2 ∈ Z1 such that

λn1ρ1(b1, x) ≤ ρ1(b2, x) ≤ λn2ρ1(b1, x) <
1

H2
ρ1(b, x).

If

ρ1(b2, x) < ρ1(a, x) ≤ ρ1(b1, x),

then we take s = 2. Otherwise, there must exist a point b3 ∈ Z1 such that

λn1ρ1(b2, x) ≤ ρ1(b3, x) ≤ λn2ρ1(b2, x) <
1

H3
ρ1(b, x).

By repeating this procedure, we easily see that there is an integer s such that

λn1ρ1(bs, x) ≤ ρ1(bs+1, x) ≤ λn2ρ1(bs, x)

and

ρ1(bs+1, x) < ρ1(a, x) ≤ ρ1(bs, x).

Obviously, this s and the finite sequence {b0 = b, · · · , bs} are the required.

Next, we find a relation between t and t′ by two steps. First, we get a relation
between t′ and s. It follows from the first assertion in Claim 3.1 that

ρ1(bi+1, x) ≤ λn2ρ1(bi, x) <
1

H
ρ1(bi, x).

By the assumption “f−1 being weakly (h,H)-quasisymmetric”, necessarily, we obtain

ρ2(b
′
i+1, x

′) ≤ 1

h
ρ2(b

′
i, x

′),

and thus we have

ρ2(b
′
s, x

′) ≤ 1

hs
ρ2(b

′, x′).

Meanwhile, the second assertion in Claim 3.1 implies

ρ1(a, x) ≤ ρ1(bs, x) < hρ1(bs, x),

and so it follows from the assumption “f being weakly (h,H)-quasisymmetric” that

ρ2(a
′, x′) ≤ Hρ2(b

′
s, x

′) ≤ Hh−sρ2(b
′, x′),

which leads to

(3.1) t′ ≤ Hh−s.

Second, we find a relation between t and s as follows. Again, it follows from the
second assertion in Claim 3.1 that

ρ1(a, x) ≥ λn1ρ1(bs, x) ≥ · · · ≥ λ
n(s+1)
1 ρ1(b, x),
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and thus

(3.2) t ≥ λ
n(s+1)
1 .

Now, by (3.1) and (3.2), we can easily get a relation between t and t′, which is
as follows.

t′ ≤ Hht
log h log λ2

logλ1(logH−log λ2) .(3.3)

Case 3.2. t > 1.

If t′ ≤ 1, then

(3.4) t′ < t.

In the following, we assume that t′ > 1. It follows from the assumption “H ≥ 1
µ2

”

that there is an integer m ≥ 2 such that

µm
2 <

1

H
≤ µm−1

2 .

Since (Z2, ρ2) is (µm
1 , µ

m
2 )-HD, the similar reasoning as in Claim 3.1 guarantees

that the following claim holds.

Claim 3.2. There are an integer k ≥ 1 and a finite sequence {a′0 = a′, a′1, · · · ,
a′k} in (Z2, ρ2) such that

(1) for each i ∈ {0, · · · , k − 1}, µm
1 ρ2(a

′
i, x

′) ≤ ρ2(a
′
i+1, x

′) ≤ µm
2 ρ2(a

′
i, x

′);
(2) µm

1 ρ2(a
′
k, x

′) ≤ ρ2(b
′, x′) ≤ ρ2(a

′
k, x

′).

Next, we are going to find a relation between t and k. It follows from Claim 3.2(1)
that

ρ2(a
′
i+1, x

′) ≤ µm
2 ρ2(a

′
i, x

′) <
1

H
ρ2(a

′
i, x

′),

and so by the assumption “f being weakly (h,H)-quasisymmetric”, necessarily, we
get that

ρ1(ai+1, x) ≤
1

h
ρ1(ai, x),

which leads to

ρ1(ak, x) ≤
1

hk
ρ1(a, x).

Since Claim 3.2(2) shows that

ρ2(b
′, x′) ≤ ρ2(a

′
k, x

′) < hρ2(a
′
k, x

′),

from the assumption “f−1 being weakly (h,H)-quasisymmetric”, we deduce that

ρ1(b, x) ≤ Hρ1(ak, x),

which implies
ρ1(b, x) ≤ Hh−kρ1(a, x).

Hence

(3.5) t ≥ H−1hk,

as required.
It follows from the fact

ρ2(b
′, x′) ≥ µ

m(k+1)
1 ρ2(a

′, x′)

that
t′ ≤ µ

−m(k+1)
1 ,
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and then (3.5) leads to

(3.6) t′ ≤ µ
logH−logµ2
log h log µ2

log(Hh)

1 t
logH−logµ2
logh log µ2

log µ1 .

Now, we are ready to construct the needed homeomorphism. Let

η(t) =

{
Mt

logh log λ2
logH−log λ2) log λ1 , if 0 < t ≤ 1,

Mt
log H−log µ2
log h log µ2

log µ1 , if t > 1,

where M = Hh∨µ
logH−logµ2
log h log µ2

log(Hh)

1 . Then it follows from (3.3), (3.4) and (3.6) that f
is η-quasisymmetric, and thus, the proof of the lemma is complete. �

3.3. The proof of Theorem 3.1. It follows from Lemmas 2.2 and C that the
implication from (1) to (2) is obvious. So, we only need to prove the one from (2) to
(1).

We assume that f is weakly (h1, H1)-quasimöbius, f−1 is weakly (h2, H2)-quasi-
möbius and (Z2, ρ2) is uniformly τ ′-perfect. To finish the proof, we need to construct
a desired homeomorphism θ : [0,+∞) → [0,+∞) which depends only on the given
data. We start with some preparation.

By Lemma E, there exist constants σ = σ(τ) > 1 and σ′ = σ′(τ ′) > 1 such that
(Z1, ρ1) and (Z2, ρ2) are σ-dense and σ′-dense, respectively.

For simplicity, in the following, we assume that

h1 = h2 = h > 1, H1 = H2 = H ≥ 1 and K ≥ max{σ, σ′, h,H}.
Claim 3.3. For a, d in (Z1, ρ1), there is a chain {xi}i∈Z in (Z1, ρ1) joining a and

d such that for all i,

(3.7)
1

K2
≤ r(a, xi+1, xi, d) ≤

1

K
.

In order to prove this claim, we let {wj}j∈Z be a σ-chain in (Z1, ρ1) joining a and
d, i.e.

1

σ
≤ r(a, wj, wj+1, d) ≤ σ,

wj → a as j → −∞ and wj → d as j → +∞.

We find the required chain from {wj}j∈Z in the following way.
Since r(a, w0, w1, d) ≤ K and r(a, w0, wj, d) → +∞ as j → +∞, we see that

there is a j > 1 such that r(a, w0, wj, d) > K. Let

j0 = min{j > 1: r(a, w0, wj, d) > K}.
Similarly, it follows from r(a, wj0, wj0+1, d) ≤ K and r(a, wj0, wj, d) → +∞ as

j → +∞ that there is a j > j0 + 1 such that r(a, wj0, wj, d) > K. Let

j1 = min{j > j0 + 1: r(a, wj0, wj, d) > K}.
Then we have

1

K
≥ r(a, wj1, wj0, d) = r(a, wj1−1, wj0, d)r(a, wj1, wj1−1, d) ≥

1

σK
≥ 1

K2
.

Also, r(a, wj0−1, wj0, d) ≤ K and r(a, wj, wj0, d) → +∞ as j → −∞. Then there
is a j < j0 − 1 such that r(a, wj, wj0, d) > K. Let

j−1 = max{j < j0 − 1: r(a, wj, wj0, d) > K}.
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Hence we have

1

K
≥ r(a, wj0, wj−1, d) = r(a, wj0, wj−1+1, d)r(a, wj−1+1, wj−1, d) ≥

1

K2
.

By repeating this procedure, we can find a subsequence {wji}i∈Z of {wj}j∈Z such
that

1

K2
≤ r(a, wji+1

, wji, d) ≤
1

K
.

Since wji → d as i → +∞ and wji → a as i → −∞, by letting xi = wji for each
i, we easily know that the claim is true.

Since (Z2, ρ2) is σ′-dense, a similar argument as in the proof of Claim 3.3 guar-
antees that the following claim holds.

Claim 3.4. For a′, d′ in (Z2, ρ2), there is a chain {y′j}j∈Z in (Z2, ρ2) joining a′

and d′ such that for all j, we have

1

K2
≤ r(a′, y′j+1, y

′
j, d

′) ≤ 1

K
.

For a, b, c and d in (Z1, ρ1), let

T = r(a, b, c, d) and T ′ = r(a′, b′, c′, d′).

The next thing we want to do is to find a relation between T and T ′. For this,
we divide the discussion into two cases.

Case 3.3. T = r(a, b, c, d) ≤ h2

K2 .

By Claim 3.3, there exists a chain {xi}i∈Z in (Z1, ρ1) joining a and d such that
for all i,

1

K2
≤ r(a, xi+1, xi, d) ≤

1

K
.

Let

p = min

{
i : r(a, b, xi, d) ≥

h

K2

}
and q = min

{
i : r(a, c, xi, d) ≥

1

h

}
.

Since

min{r(a, b, xi, d), r(a, c, xi, d)} → +∞ as i→ +∞
and

max{r(a, b, xi, d), r(a, c, xi, d)} → 0 as i→ −∞,

we see that both p and q exist. Next, we prove p ≥ q. It follows from

h2

K2
≥ T =

r(a, b, xp, d)

r(a, c, xp, d)
≥ h

K2r(a, c, xp, d)

that

r(a, c, xp, d) ≥
1

h
.

Obviously, p ≥ q.
The following estimates on the cross ratios r(a, b, xp, d) etc are useful. By Claim

3.3, one can easily get the following estimates on r(a, b, xp, d) and r(a, xq, c, d), re-
spectively:

(3.8)
h

K2
≤ r(a, b, xp, d) = r(a, xp−1, xp, d)r(a, b, xp−1, d) ≤ h
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and

(3.9)
h

K2
≤ r(a, xq, xq−1, d)r(a, xq−1, c, d) = r(a, xq, c, d) ≤ h,

and so we infer from the assumption “f being weakly (h,H)-quasimöbius” that

(3.10) r(a′, b′, x′p, d
′) ≤ H and r(a′, x′q, c

′, d′) ≤ H.

To get a relation between T and T ′, we need to consider two possibilities. The
first possibilities is when p = q. Under this assumption, by (3.8) and (3.9), we obtain
that

T = r(a, b, xp, d)r(a, xp, c, d) ≥ h2K−4.

Moreover, (3.10) implies

T ′ = r(a′, b′, x′p, d
′)r(a′, x′p, c

′, d′) ≤ H2.

Hence we get

(3.11) T ′ ≤ h−2H2K4T.

Now, we consider the remaining possibility, that is, p > q. Under this assumption,
we need a lower bound for p− q in terms of T . It follows from Claim 3.3 that

T = r(a, b, xp, d)r(a, xp, xp−1, d) · · · r(a, xq, xq−1, d)r(a, xq−1, c, d) ≥ h2K2(q−p−2),

which implies

p− q ≥ 2 log h− log T

2 logK
− 2,

as required.

Now, we can establish a relation between T and T ′ as follows. Since

r(a, xi+1, xi, d) ≤
1

K
≤ 1

H
,

by the assumption “f−1 being weakly (h,H)-quasimöbius”, necessarily, we have

r(a′, x′i+1, x
′
i, d

′) ≤ 1

h
,

and so,

T ′ = r(a′, b′, x′p, d
′)r(a′, x′p, x

′
p−1, d

′) · · · r(a′, x′q+1, x
′
q, d

′)r(a′, x′q, c
′, d′) ≤ H2hq−p.

Hence we easily get

(3.12) T ′ ≤ h2H2h−
log h
logK T

log h
2 logK .

Case 3.4. T = r(a, b, c, d) > h2

K2 .

By Claim 3.4, there is a chain {y′j}j∈Z in (Z2, ρ2) joining a′ and d′ such that for
all j,

(3.13)
1

K2
≤ r(a′, y′j+1, y

′
j, d

′) ≤ 1

K
.

Let

m = min{j : r(a′, b′, y′j, d′) ≥ H} and n = min{j : r(a′, c′, y′j, d′) ≥
1

HK2
}.

Since

r(a′, b′, y′j, d
′) → +∞ as j → +∞ and r(a′, b′, y′j, d

′) → 0 as j → −∞,
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we see that both m and n exist. Then we have

(3.14) H ≤ r(a′, b′, y′m, d
′) = r(a′, y′m−1, y

′
m, d

′)r(a′, b′, y′m−1, d
′) ≤ HK2

and

(3.15)
1

HK2
≤ r(a′, c′, y′n, d

′) = r(a′, y′n−1, y
′
n, d

′)r(a′, c′, y′n−1, d
′) ≤ 1

H
,

and, necessarily, we have

(3.16) r(a, b, ym, d) ≥ h and r(a, yn, c, d) ≥ h,

since f is weakly (h,H)-quasimöbius.
To get a relation between T and T ′, we need to consider three possibilities:

n = m, n > m and n < m. We first consider the possibility when n = m. It follows
from (3.16) that

T = r(a, b, yn, d)r(a, yn, c, d) ≥ h2.

Moreover, (3.14), together with (3.15), implies

T ′ = r(a′, b′, y′n, d
′)r(a′, y′n, c

′, d′) ≤ H2K4.

Hence we get

(3.17) T ′ ≤ h−2H2K4T.

For the remaining possibilities when n > m and when n < m, since the discus-
sions are similar, obviously, we only need to consider the possibility when n > m.
Under this assumption, we still need an upper bound of n−m in terms of T . Since,
necessarily, it follows from (3.13) that

r(a, yj, yj+1, d) ≥ h,

we see that

T = r(a, b, ym, d)r(a, ym, ym+1, d) · · · r(a, yn−1, yn, d)r(a, yn, c, d) ≥ hn−m+2.

So we can get

n−m ≤ log T

log h
− 2.

It is the right time for us to get a relation between T and T ′ in this possibility.
Since (3.13) leads to

T ′ = r(a′, b′, y′m−1, d
′)r(a′, y′m−1, y

′
m, d

′) · · · r(a′, y′n−1, y
′
n, d

′)r(a′, y′n, c
′, d′)

≤ H2K2(n−m+2),

we have

(3.18) T ′ ≤ H2T
2 logK
log h .

Now, we are ready to complete the proof of the implication from (2) to (1). Let

θ(t) = h−2H2K4(tα ∨ t 1
α ),

where α = log h
2 logK

. By (3.11), (3.12), (3.17) and (3.18), obviously, we see that f is

θ-quasimöbius. �



Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-metric spaces 275

4. Weak quasisymmtry and quasisymmetry of homeomorphisms
in certain quasi-metric spaces

It is known that the weak (1, H)-quasisymmetry of homeomorphisms between
two κ-HTB metric or doubling spaces implies the quasisymmetry provided that the
preimage space is path-connected (see [27, Theorem 2.9] or [12, Theorem 10.19]).
Consequently, by Lemma C, the image space must be uniformly perfect. In this
section, we consider the case when the preimage space need not be connected. With
the aid of the uniform perfectness, we get the following result, Theorem 4.1, which
will be useful in the proofs of the main results in the next section.

4.1. The main result.

Theorem 4.1. Suppose

(1) f : (Z1, ρ1) → (Z2, ρ2) is a homeomorphism between two quasi-metric spaces;
(2) (Z2, ρ2) is uniformly τ -perfect and κ-HTB.

Then the following statements are quantitatively equivalent.

(1) If f is weakly (h,H)-quasisymmetric with h > 0 and H ≥ 1, then f is η-
quasisymmetric;

(2) (Z1, ρ1) is uniformly τ ′-perfect and κ′-HTB.

Remark 4.1. By Lemmas C and E, we easily see that Theorem 4.1 is a gen-
eralization of [27, Theorem 2.9] and [12, Theorem 10.19] in two aspects: (1) The
condition “the preimage space being a connected κ-HTB space” in [27, Theorem 2.9]
and [12, Theorem 10.19] is replaced by the one “the preimage space being a uni-
formly perfect and κ-HTB space”. Note that the connectedness implies the uniform
perfectness; (2) The condition “f being weakly (1, H)-quasisymmetric with H ≥ 1 in
[27, Theorem 2.9] and [12, Theorem 10.19]” is replaced by the one “f being weakly
(h,H)-quasisymmetric with h > 0 and H ≥ 1”.

4.2. An auxiliary result. The following result plays a key role in the proof of
Theorem 4.1.

Lemma 4.1. Suppose

(1) f : (Z1, ρ1) → (Z2, ρ2) is weakly (h,H)-quasisymmetric between two quasi-
metric spaces with h > 0 and H ≥ 1;

(2) (Z1, ρ1) is uniformly τ -perfect, and
(3) (Z2, ρ2) is κ-HTB.

Then f−1 is weakly (h1, H1)-quasisymmetric, where h1 = H , H1 = λ
−κ(KH3)−1
1 and

λ1 = λ1(τ,K).

Proof. We start with some preparation. Without loss of generality, we assume
that h < K. (Here, we recall that K denotes the coefficient of the quasi-metric
spaces.) From Lemmas D and E, together with the assumption that (Z1, ρ1) is
uniform τ -perfect, we deduce that there are two constants λ1 = λ1(τ,K) and λ2 =
λ2(τ,K) such that

(1) 0 < λ1 ≤ λ2 <
h
K2 <

h
K
< 1; and

(2) (Z1, ρ1) is (λ1, λ2)-HD.

With this preparation, obviously, to prove Lemma 4.1, it is sufficient to demonstrate
the following.
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Claim 4.1. For points x, a, b in (Z1, ρ1), if ρ1(x, a) <
1
H1
ρ1(x, b), then

ρ2(x
′, a′) <

ρ2(x
′, b′)

h1
.

Now, we prove the claim. Since H1 = λ
−κ(KH3)−1
1 , we see that there is a unique

integer n ≥ 2 such that

λn1 ≤ 1

H1
< λn−1

1 ,

and so

− logH1

log λ1
≤ n < 1− logH1

log λ1
.

Let b0 = b. Since (Z1, ρ1) is (λ1, λ2)-HD, we know that there is a finite sequence
{bi}ni=1 such that for each i ∈ {1, . . . , n},

λ1ρ1(x, bi−1) ≤ ρ1(x, bi) ≤ λ2ρ1(x, bi−1).

We assert that

(4.1) ρ1(x, bj) ∨ ρ1(bj, a) ≤ hρ1(bj , bi)

for 0 ≤ i < j < n.
By the choice of bi and the fact λ2 <

h
K2 <

h
K
< 1, we have

(4.2) ρ1(x, bj) ≤ λ2ρ1(x, bi) <
h

K
(ρ1(x, bj) ∨ ρ1(bj , bi)) =

h

K
ρ1(bj , bi),

and so

(4.3) ρ1(bj , a) ≤ K(ρ1(x, bj) ∨ ρ1(x, a)) = Kρ1(x, bj) ≤ hρ1(bj , bi),

since the assumption in the claim guarantees that

ρ1(x, a) <
1

H1
ρ1(x, b) < λn−1

1 ρ1(x, b) ≤ ρ1(x, bj).

Hence we conclude from (4.2) and (4.3) that the assertion (4.1) is true.

We continue the proof of Claim 4.1. We shall finish the proof by applying
Lemma 2.6. For this, we do some preparation. Since f is weakly (h,H)-quasisym-
metric, from (4.1), it follows that

ρ2(x
′, b′j) ∨ ρ2(b′j , a′) ≤ Hρ2(b

′
j , b

′
i),

and so

ρ2(b
′
j , b

′
i) ≥

1

KH
ρ2(x

′, a′).

Meanwhile, since

ρ1(x, bj) ≤ λ2ρ1(b, x) <
h

K2
ρ1(b, x) < hρ1(b, x)

for 1 ≤ j < n, we also have

ρ2(b
′
j , x

′) ≤ Hρ2(b
′, x′),

which implies that the points b′j lie inside B(x′, Hρ2(b
′, x′)) for all j in {0, 1, . . . , n−1}.

Now, we are ready for the application of Lemma 2.6. Since (Z2, ρ2) is κ-HTB,
Lemma 2.6 guarantees that

− logH1

log λ1
≤ n ≤ κ

(KH2ρ2(b
′, x′)

ρ2(x′, a′)

)
,
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from which, necessarily,

ρ2(x
′, a′) <

ρ2(x
′, b′)

h1
.

Hence Claim 4.1 is proved, and thus, the proof of Lemma 4.1 is complete. �

4.3. The proof of Theorem 4.1. The necessity easily follows from Lemmas 2.2,
C and 2.8. To prove the sufficiency, we first check the weak quasisymmetry of f−1.
Since f : (Z1, ρ1) → (Z2, ρ2) is weakly (h,H)-quasisymmetric, (Z1, ρ1) is uniformly τ ′-
perfect and (Z2, ρ2) is κ-HTB, we infer from Lemma 4.1 that f−1 is weakly (h1, H1)-

quasisymmetric, where h1 = H , H1 = λ
−κ(KH3)−1
1 and λ1 = λ1(τ

′, K) ∈ (0, 1).
Further, we prove that f is weakly (h2, H2)-quasisymmetric with h1 > 1 and

H2 > 1. Since f−1 is weakly (h1, H1)-quasisymmetric, (Z2, ρ2) is uniformly τ -perfect
and (Z1, ρ1) is κ′-HTB, again, we deduce from Lemma 4.1 that f is weakly (h2, H2)-

quasisymmetric, where h2 = H1, H2 = λ
−κ′(KH3

1 )−1
2 and λ2 = λ2(τ,K) ∈ (0, 1).

Then the quasisymmetry of f easily follows from Theorem 3.1, and so, the proof of
Theorem 4.1 is finished. �

5. Weakly quasimöbius maps and quasimöbius maps in
uniformly perfect and homogeneous spaces

In this section, we shall show that in uniformly perfect and homogeneous quasi-
metric spaces, every weakly quasimöbius map must be quasimöbius map (Theo-
rem 5.1 below), and also, a generalized form of this result (Theorem 5.2 below) will
be proved.

5.1. The main results.

Theorem 5.1. Suppose f : (Z1, ρ1) → (Z2, ρ2) is a homeomorphism between
two uniformly perfect and homogeneous quasi-metric spaces. Then the following
statements are quantitatively equivalent.

(1) f is weakly (h,H)-quasimöbius with h > 0 and H ≥ 1;
(2) it is θ-quasimöbius.

By Lemma 2.10, the following result is a direct consequence of Theorem 5.1.

Corollary 5.1. Every weakly quasimöbius homeomorphism between two Ahlfors
regular spaces is quasimöbius.

Theorem 5.2. Suppose

(1) (Z1, ρ1) is a quasi-metric space;
(2) (Z2, ρ2) is a uniformly perfect and homogeneous space.

Then the following statements are quantitatively equivalent.

(1) If f : (Z1, ρ1) → (Z2, ρ2) is weakly (h,H)-quasimöbius with h > 1 and H ≥ 1,
then f is θ-quasimöbius;

(2) (Z1, ρ1) is uniformly perfect.

Remark 5.1. By comparing Theorem 5.2 with Theorem 5.1, we see that there
is no assumption “(Z1, ρ1) being homogeneous” in Theorem 5.2. But the assumption
“h > 0” in Theorem 5.1 is replaced by a stronger one “h > 1” in Theorem 5.2. We
do not know if Theorem 5.2 still holds when h > 0.

5.2. The proof of Theorem 5.1. The implication from (2) to (1) is clear,
it suffices to show the reverse implication. Assume that f : (Z1, ρ1) → (Z2, ρ2) is
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weakly (h,H)-quasimöbius between two uniformly perfect and homogeneous spaces.
We start the proof with the following claim.

Claim 5.1. There is an η-quasisymmetric embedding ψ from (Z1, ρ1) to R
N ,

where the control function η and the dimension N ∈ N depend only on the given
data and some constants in (0, 1).

By Lemma 2.9, we know that (Z1, ρ1) is C3-doubling as a quasi-metric space.
Also, Lemma 1.1 guarantees that there exists a constant δ ∈ (0, 1) such that the
identity map id1 : (Z1, ρ1) → (Z1, d) is η1-quasisymmetric with η1(t) = 4tδ, where
(Z1, d) is a metric space. It follows from Lemmas 2.7 and 2.8 that (Z1, d) is C4-
doubling, and thus we infer from [9, §5.4] or [2] that for any ǫ ∈ (0, 1), there is a
bilipschitz embedding ϕ : (Z1, d

ε) → R
N , where N ∈ N and the bilipschitz constant L

depend only on ε and C4. Note that, in R
n, we take the Euclidean metric. Obviously,

ϕ is η2-quasisymmetric with η2(t) = 16t.
Since the identity map id2 : (Z1, d) → (Z1, d

ǫ) is η3-quasisymmetric, where η3(t) =
tǫ, it follows from Lemma 2.2 that the composed map ϕ ◦ id2 ◦ id1 is the desired.

Now, let us prove Theorem 5.1. By Claim 5.1, we know that there are quasisym-
metric embeddings ψ1 and ψ2 such that

ψ1 : (Z1, ρ1) →W1 and ψ2 : (Z2, ρ2) → W2,

where W1 ⊂ R
N1, W2 ⊂ R

N2 with N1, N2 ∈ N, and the control function of ψ1 (resp.
ψ2) is η1 (resp. η2). Without loss of generality, in the following, we assume that
N1 = N2 = N . Since the uniform perfectness is an invariant property with respect
to quasisymmetric maps (cf. Lemma C), we know from Lemma 2.5 that

f̃ = ψ2 ◦ f ◦ ψ−1
1 : W1 →W2

is weakly (h1, H1)-quasimöbius between W1 and W2 which are uniformly perfect
subsets of RN .

By using translations qi (i = 1, 2) in R
N

, where R
N

= R
N ∪ {∞}, we assume

that the origin 0 ∈ q1(W1) ∩ q2(W2) ⊂ R
N

and q2 ◦ ψ2 ◦ f ◦ ψ−1
1 ◦ q−1

1 (0) = 0. Let

u(x) =
x

|x|2

be the reflection about the unit sphere centered at the origin in R
N

, and let

f̂ = u ◦ q2 ◦ f̃ ◦ q−1
1 ◦ u−1 : u ◦ q1(W1) → u ◦ q2(W2).

Since each translation in R
n is θ1-quasimöbius with θ1(t) = t and u is θ2-

quasimöbius, where θ2(t) = 81t (cf. [28, Theorem 6.22]), we get from Lemma 2.5 that

f̂ is weakly (h2, H2)-quasimöbius. Furthermore, u◦q1(W1) and u◦q2(W2) are two uni-

formly perfect subsets of R
N

, since uniform perfectness is preserved by quasimöbius

maps (cf. Lemma C). Obviously, f̂(∞) = ∞ and r(x, a, b,∞) = |x− b|/|x− a| for all

x, a, b ∈ Z. These facts show that f̂ is weakly (h2, H2)-quasisymmetric.
We are now in a position to complete the proof by means of Theorem 4.1. Note

that any subset of R
N

is κ-HTB since R
N

itself is κ-HTB. It follows from Theo-

rem 4.1 that f̂ is η-quasisymmetric, and so Lemmas 2.2 and 2.5 guarantee that

f = ψ−1
2 ◦ q−1

2 ◦ u−1 ◦ f̂ ◦ u ◦ q1 ◦ ψ1

is θ-quasimöbius, where the control function θ depends only on the given data. �
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5.3. The proof of Theorem 5.2. Since the inverse of a quasimöbius map is
still quasimöbius, we see that the necessity easily follows from Lemmas 2.2 and C.
In the following, we prove the sufficiency.

Under the assumptions in the theorem, to prove that f is quasimöbius, by The-
orem 3.1, it is enough to show that f−1 is weakly (H,H2

1K
4)-quasimöbius, where

H1 ≥ 1 is a constant depending only on the given data. (Here we assume that
H > 1. Otherwise, we can replace H by H+1.) For this, by Lemma 2.1, it is enough
to demonstrate that for distinct points x1, x2, x3, and x4 in (Z1, ρ1), if

(5.1) t = 〈x′1, x′2, x′3, x′4〉 >
1

HK2
,

then there is a constant H1 ≥ 1 such that

s = 〈x1, x2, x3, x4〉 >
1

H1

.

Without loss of generality, we assume that r1 = ρ1(x1, x3) ≤ ρ1(x2, x4) and both
(Z1, ρ1 and (Z2, ρ2) are uniformly τ -perfect with 0 < τ < 1. Under this convention,
to find the needed H1, we divide the discussions into two cases.

Case 5.1. s > τ
2K5 .

In this case, we take

(5.2) H ′
1 =

2

τ
K5.

Case 5.2. s ≤ τ
2K5 .

In this case, we start with some preparation. Since

r1
ρ1(x1, x2) ∧ ρ1(x3, x4)

=
ρ1(x1, x3) ∧ ρ1(x2, x4)
ρ1(x1, x2) ∧ ρ1(x3, x4)

= s,

we obtain that

min{ρ1(xi, xj) : i ∈ {1, 3}, j ∈ {2, 4}}∨ρ1(x1, x3) ≥
1

K
(ρ1(x1, x2)∧ρ1(x3, x4)) =

r1
Ks

,

and thus it follows from the case assumption s ≤ τ
2K5 that

min{ρ1(xi, xj) : i ∈ {1, 3}, j ∈ {2, 4}} ≥ r1
Ks

.(5.3)

Since 1
Ks

> 2K4

τ
, we see that there must be a unique integer m ≥ 1 such that

(5.4)

(
K4

τ

)m

≤ 1

Ks
<

(
K4

τ

)m+1

.

Next, we need to find some special points in (Z1, ρ1). For each i ∈ {1, . . . , m},
it follows from (5.3) that

Z1 \B
(
x1,

(
K4

τ

)i

r1

)
6= ∅.

Then the assumption that (Z1, ρ1) is uniformly τ -perfect guarantees that there exists
a point zi in (Z1, ρ1) such that

zi ∈ B

(
x1,

(
K4

τ

)i

r1

)
\B

(
x1,

(
K4

τ

)i

τr1

)
.
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In this way, we have got a finite sequence {zi}mi=1. For this finite sequence, we have
the following lower bound of ρ1(zi, zj) in terms of r1.

Claim 5.2. For all i 6= j ∈ {1, . . . , m}, ρ1(zi, zj) ≥ 1
K
ρ1(zj, x1) ≥

(
K4

τ

)j
τ
K
r1.

Since

ρ1(zi, x1) <

(
K4

τ

)i

r1,

we easily see that for 1 ≤ i < j ≤ m,

ρ1(zj , x1) ≥
(
K4

τ

)j

τr1 ≥
(
K4

τ

)i+1

τr1 > Kρ1(zi, x1),

and thus

ρ1(zi, zj) ∨ ρ1(zi, x1) ≥
1

K
ρ1(zj , x1) > ρ1(zi, x1).

Hence

ρ1(zi, zj) = ρ1(zi, zj) ∨ ρ1(zi, x1) ≥
1

K
ρ1(zj, x1) ≥

(
K4

τ

)j
τ

K
r1,

as required.

Further, we need an analogous result for the images z′i. First, we establish the
following lower bound for 〈z′i, a′, z′j , b′〉.

Claim 5.3. For 1 ≤ i < j ≤ m,

〈z′i, a′, z′j , b′〉 ≥
1

HK2
,

where a ∈ {x1, x3} and b ∈ {x2, x4}.
Obviously, for i ∈ {1, . . . , m}, one easily has

ρ1(zi, a) ≤ ρ1(zi, x1) ∨ ρ1(zi, x3) ≤ K(ρ1(zi, x1) ∨ ρ1(x1, x3)) ≤
(
K4

τ

)i

Kr1,

and so (5.3), (5.4) and Claim 5.2 lead to

〈zi, a, zj , b〉 =
ρ1(zi, zj) ∧ ρ1(a, b)
ρ1(zi, a) ∧ ρ1(zj, b)

≥

((
K4

τ

)j τr1
K

)
∧ r1

Ks
(

K4

τ

)j−1

Kr1

= K2.

Hence it follows from Lemma A that

r(zi, a, zj , b) ≥ θ−1
K (〈zi, a, zj , b〉) ≥ θ−1

K (K2) = 1 >
1

h
,

and so
r(zi, zj , a, b) < h.

Here we recall that θK(t) = K2(t ∨
√
t) for t > 0.

Since f is weakly (h,H)-quasimöbius, we obtain that

〈z′i, a′, z′j , b′〉 =
1

〈z′i, z′j , a′, b′〉
≥ 1

θK(r(z′i, z
′
j, a

′, b′))
≥ 1

θK(H)
=

1

HK2
,

from which the claim follows.

Set
r2 = min{ρ2(x′i, x′j) : i ∈ {1, 3}, j ∈ {2, 4}}.
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Then we can reach the following lower bound for ρ2(z
′
i, z

′
j) in terms of r2 by applying

Claim 5.3.

Claim 5.4. For any i 6= j ∈ {1, . . . , m},

ρ2(z
′
i, z

′
j) ≥

t1
2HK4

r2,

where t1 = t ∧ 1.

Suppose on the contrary that there are two points zk and zl with k 6= l ∈
{1, . . . , m} such that

ρ2(z
′
k, z

′
l) <

t1
2HK4

r2.

Without loss of generality, we may assume k < l. Since

t =
ρ2(x

′
1, x

′
3) ∧ ρ2(x′2, x′4)

ρ2(x′1, x
′
2) ∧ ρ2(x′3, x′4)

≤ ρ2(x
′
1, x

′
3) ∧ ρ2(x′2, x′4)
r2

,

we have for i 6= j ∈ {1, 2, 3, 4},
(5.5) ρ2(x

′
i, x

′
j) ≥ t1r2,

where t1 = 1 ∧ t. Then it is easy to see that B(x′i,
t1r2
2K2 ) and B(x′j,

t1r2
2K2 ) are disjoint

balls for all i 6= j ∈ {1, 2, 3, 4}.
Now, we assert that if z′k ∈ B(x′i,

t1r2
2K2 ), then z′l /∈ ∪j∈{1,2,3,4}\{i}B(x′j ,

t1r2
2K2 ).

Suppose on the contrary that z′l ∈ B(x′j,
t1r2
2K2 ) for some j ∈ {1, 2, 3, 4}\{i}. Then

it follows from the contrary assumption that

ρ2(x
′
i, x

′
j) ≤ K2(ρ2(x

′
i, z

′
k) ∨ ρ2(z′k, z′l) ∨ ρ2(z′l, x′j)) <

1

2
t1r2,

which contradicts with (5.5).
Easily, it follows from the assertion above that there exist at least two points

a0 ∈ {x1, x3} and b0 ∈ {x2, x4} such that z′k and z′l are out of the union of the two
balls B(a′0,

t1r2
2K2 ) and B(b′0,

t1r2
2K2 ), and so

ρ2(a
′
0, z

′
k) ∧ ρ2(z′l, b′0) ≥

t1r2
2K2

.

Again, it follows from the contrary assumption that

〈z′k, a′0, z′l, b′0〉 =
ρ2(z

′
k, z

′
l) ∧ ρ2(a′0, b′0)

ρ2(a′0, z
′
k) ∧ ρ2(z′l, b′0)

<
1

HK2
,

which contradicts with Claim 5.3, and thus the claim is proved.

Without loss of generality, we assume that

r2 = ρ2(a
′
1, b

′
1),

where a′1 ∈ {x′1, x′3} and b′1 ∈ {x′2, x′4}.
To prove the existence of the constant in this case, further, we need an upper

bound for m. We shall apply Lemma 2.6 to reach this goal. For this, we still need a
relation between a′1 and z′i for each i as follows.

Claim 5.5. There is at most one element in {z′i}mi=1 which is out of the closed
ball B(a′1, HK

3r2).
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Suppose on the contrary that there are at least two elements in {z′i}mi=1 which are
out of the closed ball B(a′1, HK

3r2). Without loss of generality, we may assume z′1
and z′2 ∈ Z2 \B(a′1, HK

3r2).
Since

ρ2(z
′
2, b

′
1) ∨ ρ2(a′1, b′1) ≥

1

K
ρ2(z

′
2, a

′
1) > HK2r2,

we have

ρ2(z
′
2, b

′
1) > HK2r2,

and so

〈z′1, a′1, z′2, b′1〉 =
ρ2(z

′
1, z

′
2) ∧ ρ2(a′1, b′1)

ρ2(z′1, a
′
1) ∧ ρ2(z′2, b′1)

<
1

HK2
,

which contradicts with Claim 5.3, and thus the proof of Claim 5.5 is complete.

Now, we are ready to get an upper bound for m by exploiting Lemma 2.6. First,
Lemmas 2.7 and 2.9 guarantee that (Z2, ρ2) is κ-HTB, where κ = κ(K,C), and then
it follows from Lemma 2.6, Claims 5.4 and 5.5 that

m ≤ κ

(
2H2K7

t1

)
+ 1.

It is the right time for us to find the needed constant in this case. We infer from
(5.4) that

1

Ks
<

(
K4

τ

)m+1

≤
(
K4

τ

)κ
(

2H2K7

t1

)
+2

,

and since by (5.1), t1 = 1 ∧ t ≥ 1
HK2 , we obtain

s ≥ 1

K

(
K4

τ

)−κ
(
2H3K9

)
−2

.

Now, we can take

(5.6) H ′′
1 = K

(
K4

τ

)κ(2H3K9)+2

,

as required.

Now, we are in a position to obtain the needed constant H1. Let

H1 = max{H ′
1, H

′′
1}.

Then we conclude from (5.2) and (5.6) that this H1 is our needed, and so the theorem
is proved. �

6. Applications

The aim of this section is to give two applications of the main results in Section 5.
Let HypZ denote the hyperbolic approximation of a quasi-metric space (Z, ρ)

(see [19, Section 3] for the precise statement of the definition). Then we have

Theorem 6.1. Every weakly quasimöbius map between two uniformly perfect
and homogeneous spaces is the boundary map of a quasiisometric map between their
corresponding hyperbolic approximation spaces.
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Proof. First, by Theorem 5.1, we know that every weakly quasimöbius map
between two uniformly perfect and homogeneous spaces is quasimöbius. Then it
follows from [19, Corollary 4] that there is a quasiisometric map F : HypZ1 → HypZ2

with ∂∞F = f , where ∂∞F denotes the restriction F to the boundary of HypZ1.
Hence the proof is complete. �

We remark that by Theorem 5.2, the assumption “(Z1, ρ1) being homogeneous”
in Theorem 6.1 is reluctant. To state Theorem 6.1 in this way is just for simplicity.

In [11], Gehring and Martio established the following result (see [11] for the
related definitions).

Theorem F. [11, Theorem 3.1] Suppose D is an M-QED doamin and D′ is a
b-locally connected domain in R

n
, and suppose f is a K-quasiconformal map of D

onto D′. Then

(1) f has an extension to D.
(2) for distinct points x1, x2, x3, x4 in D,

r(x1, x2, x3, x4) ≤ c implies r(x′1, x
′
2, x

′
3, x

′
4) ≤ c′,

where c′ is a constant depending only on b, c, n, K and M.

As the second application of Theorem 5.1 or Theorem 5.2, we have

Theorem 6.2. Under the assumptions of Theorem F, the extension of f in D
is θ-quasimöbius with θ depending only on b, n, K and M .

Proof. Since every domain in R
n

is homogeneous and uniformly perfect, we
can easily know from Theorem F together with Theorem 5.1 or Theorem 5.2 that
Theorem 6.2 is true. �
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