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Abstract. We prove that the Hausdorff measure of the escaping set and the Julia set of an

entire function f is infinite with respect to certain gauge functions, provided that f is outside of the

Eremenko–Lyubich class, and that the maximum modulus M(r, f) of f satisfies a certain regularity

condition.

1. Introduction

Let f be a transcendental entire function, and denote by

fn := f ◦ · · · ◦ f
︸ ︷︷ ︸

n

the n-th iterate of f , for n ∈ N. The Fatou set F (f) is the set of points in C

such that {fn} forms a normal family in the sense of Montel (or, equivalently, is
equicontinuous). The complement J(f) of F (f) is called the Julia set of f . Both sets
are completely invariant. For an introduction to the basic properties of these sets,
we refer to the survey [4] and the books [3, 18, 26].

A gauge function is a monotonically increasing function h : [0, ε) → [0,+∞)
which is continuous from the right and satisfies h(0) = 0.

Definition 1.1. Let A ⊂ R
n be a set, δ > 0 a constant, and let h be a gauge

function. Then we call

Hh(A) := lim inf
δ→0

{ ∞∑

j=1

h(diam(Aj)) : A ⊂
∞⋃

j=1

Aj and diam(Aj) < δ

}

the Hausdorff measure with respect to h, where

diam(Aj) = sup
x,y∈Aj

|x− y|

is the diameter of Aj .

The Hausdorff measure is an outer measure for measurable sets. In particular,
when hs(r) = rs (s > 0), then Hhs

(A) is the s-dimension Hausdorff measure of
A. If Hhs

(A) < ∞ and t > s, then Hht

(A) = 0; if Hhs

(A) > 0 and t < s, then
Hht

(A) = ∞. Moreover, there exists a constant s such that Hht

(A) = 0 for all t > s
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and Hht

(A) = ∞ for all t < s. The above s is called Hausdorff dimension of A, and
we denote s = dim(A).

In 1987, McMullen [17] proved that dim(J(Eλ)) = 2 for λ 6= 0, where Eλ =
λ exp(z). He also remarked that Hh(J(Eλ)) = ∞ when h(t) = t2 logm(1

t
) and m ∈ N.

In his proofs, he first showed that these results hold for the escaping set I(f) :=
{z ; fn(z) → ∞ as n→ ∞}, and then I(f) ⊂ J(f) for the functions Eλ.

There is a close relation between the Julia set and the escaping set I(f), which
is studied for a general transcendental entire function f by Eremenko. In [10], he
proved that

J(f) = ∂I(f).

Let sing(f−1) denote the set of singular values of f , which consists of critical and
finite asymptotic values. The Eremenko–Lyubich class

B := {f is transcendental entire function : sing(f−1) is bounded}

plays an important role in complex dynamics. In [11], Eremenko and Lyubich intro-
duced a logarithmic change of variable, which has become a standard tool for studying
entire functions in class B. Using this method, they showed that I(f) ⊂ J(f) for
f ∈ B. It is easy to check that Eλ ∈ B, thus I(Eλ) ⊂ J(Eλ).

There are many results on the Hausdorff dimension of entire functions, see [2,
5, 6, 21, 22, 24, 25]. In [2] and [22], Barański and Schubert independently proved
that dim(J(f)) = 2 if f ∈ B has finite order of growth. For more details, we refer to
surveys [14, 23].

Given λ0 ∈ (0, 1/e), the function Eλ0 has two fixed points αλ0 and βλ0 , where αλ0

is attracting and βλ0 > e is repelling. Recall that a classical result of Koenigs says
that there exists a function Φλ0 holomorphic in a neighborhood D(λ0) of βλ0 which
satisfies Φλ0(βλ0) = 0, Φ

′

λ0
(βλ0) = 1 and

(1.1) Φλ0 (Eλ0(z)) = βλ0Φλ0(z), z, Eλ0(z) ∈ U.

It is easy to see that Φλ0(x) ∈ R for x ∈ R. Recently, Peter [19, 20] studied the
Hausdorff measure on Julia set of exponential functions and entire functions in class
B by introducing such a Φ and proving the next result.

Theorem A. Define λ0 ∈ (0, 1/e), βλ0,Φλ0 as above, let Kλ0 = log 2/ log βλ0 and
h(t) = t2g(t) be a gauge function. If

lim inf
t→0

log g(t)

log Φλ0(1/t)

> Kλ0 ,

then Hh(J(Eλ)) = ∞ for all λ ∈ C\{0}.

Theorem B. Let λ0 ∈ (0, 1/e). There exists K > 0 with the following property:
If f ∈ B and ρ(f) = ρ > 1/2, then Hh(J(f)) = ∞, where h(t) = t2(Φλ0(1/t))

κ and
κ > (log(ρ) +K)/ log βλ0 .

Remark 1.2. Peter [20] has obtained a necessary condition for a gauge function
h′ such that Hh′

(J(eλz)) = 0.

Bergweiler and Karpińska [5] considered entire functions f 6∈ B for which there
exist constant A,B,C, r0 > 1 such that

(1.2) A logM(r, f) ≤ logM(Cr, f) ≤ B logM(r, f) for all r > r0,

and proved the following result.



On the Hausdorff measure of the Julia set and the escaping set of entire functions 327

Theorem C. If f is an entire function satisfying (1.2), then dim(I(f)∩J(f)) =
2.

2. Main results

The first result is in the spirit of Theorem A, but for functions f satisfying (1.2).

Theorem 2.1. Let λ0 ∈ (0, 1/e) and βλ0 ,Φλ0 be as above. Let ∆ > 0 be a

constant and κ > log(1/∆)
log βλ0

. If h(t) = t2g(t) is a gauge function satisfying

lim inf
t→0

log g(t)

log Φλ0(1/t)
> κ,

then for every entire function f satisfying (1.2), we have Hh(I(f) ∩ J(f)) = ∞.

Corollary 2.2. Let f be an entire function satisfying (1.2), and let h(t) =
t2 logm 1

t
for m ∈ N. Then Hh(I(f) ∩ J(f)) = ∞.

As is mentioned in [5], the hypothesis (1.2) is satisfied if there exist constants
c1, c2, ρ > 0 such that

c1r
ρ ≤ logM(r, f) ≤ c2r

ρ,

for large r, and thus in particular if there exist c, ρ > 0 such that

logM(r, f) ∼ crρ,

as r → ∞. Hence there are many entire functions satisfying the condition (1.2). We
may prove this assertion by relying on the following theorem of Clunie [9]: Let φ(r)
be increasing and convex in log r with φ(r) 6= O(log r) (r → ∞). (This condition is
imposed to exclude certain trivial cases.) Then there is an entire function f(z) such
that

logM(r, f) ∼ φ(r) and T (r, f) ∼ φ(r),

as r → ∞.
Theorem 2.3 below is of crucial importance. We define the set T (f, α, β, δ, λ)

consisting of points z such that

α logM(|z|, f) ≤

∣
∣
∣
∣

zf ′(z)

f(z)

∣
∣
∣
∣
≤ β logM(|z|, f),(2.1)

|f(z)| ≥ exp(|z|δ),(2.2)

and

(2.3)

∣
∣
∣
∣

ζf ′(ζ)

f(ζ)

∣
∣
∣
∣
≤ β logM(|ζ |, f), for |ζ − z| ≤ λ

|z|

logM(|z|, f)
.

In this definition, the conditions (2.1) and (2.3) are the same as those appearing in
[5]. Condition (2.2) concerning the escaping rate of point z is different from the one
in [5]. Indeed, we consider a subset with much faster escaping rate.

For R > 0, let A(R) = {z ∈ C : R < |z| < 2R}. For measurable sets X, Y ⊂ C

the density of X in Y is defined by

dens(X, Y ) =
area(X ∩ Y )

area(Y )
.

Theorem 2.3. Let f be an entire function satisfying (1.2). Then there exist pos-
itive constants α, β, δ and η such that if λ ≥ 0, we have dens(T (f, α, β, δ, λ), A(R)) >
η for all sufficiently large R.
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3. Proof of Theorem 2.3

Throughout this article, denote by T (r, f), M(r, f) and L(r, f) the Nevanlinna
characteristic function, maximum modulus and minimum modulus of f , respectively.
By n(r, a) we denote the number of zeros of f − a in the disc {z : |z| < r}. For an
entire function f , the growth order ρ(f) and lower order λ(f) are respectively defined
as

ρ(f) = lim sup
r→∞

log T (r, f)

log r
and λ(f) = lim inf

r→∞

log T (r, f)

log r
.

For more details, we refer the reader to the books [12, 13].

3.1. Some lemmas.

Lemma 3.1. [5, Theorem 1.2] Let f be an entire function satisfying (1.2). Then
there exist α0, β0 and η0 such that dens(T (f, α0, β0, 0, λ), A(R)) > η0 for all large
enough R.

Lemma 3.2. [12, Theorem 3.4] (Borel Theorem) The order of the Weierstrass
canonical product f(z) is equal to the order of n(r, 0), i.e.,

ρ(f) = lim sup
r→∞

log n(r, 0)

log r
.

Lemma 3.3. [12, Theorem 3.2] Let {αk}, k = 1, 2, . . . , be a sequence of complex
numbers satisfying 0 < |α1| ≤ |α2| ≤ . . . , such that

∞∑

k=1

1

|αk|p
<∞,

where p is a positive integer. Suppose that an entire function g(z) has a power series
representation of the form

g(z) = 1 + cpz
p + cp+1z

p+1 + · · ·

Then the product

f(z) =

∞∏

k=1

g
( z

αk

)

converges absolutely and uniformly on each bounded disc to an entire function.

Lemma 3.4. [16, Theorem 1] Given n points α1, α2, . . . , αn of the complex plane
(repetitions being allowed), and an arbitrary number H > 0, there exists a set of at
most n circles, whose radii hk satisfy the inequality

n∑

k=1

h2k ≤ 4H2

with the property that, if z is outside these circles, then
n∑

k=1

1

|z − αk|
≤ 2

n

H
.

Lemma 3.5. [15, p. 19] (Boutrox–Cartan lemma) Given any constant H > 0
and complex numbers α1, α2, . . . , αn, there is a series of circles in the complex plane,
with the sum of the radii equal to 2H , such that for each point z lying outside these
circles,

|z − α1||z − α2| · · · |z − αn| > (H/e)n.
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For an entire function f which satisfies the regularly growth condition (1.2), the
order is bounded from above and the lower order is bounded from below.

Lemma 3.6. [5, p. 533] Let f be an entire function satisfying (1.2). Then

0 <
logA

logC
≤ λ(f) ≤ ρ(f) ≤

logB

logC
<∞,

and there exists a constant K > 0 such that

n(2r, a) ≤ Kn(r, a).

3.2. The proof. Lemma 3.1 implies that the theorem holds in the special case
δ = λ = 0.

Replacing f with f − a, if necessary, we may assume that 0 is not a Valiron
deficiency of f . By the discussions in [5], we can find a constant C > 16 such that
n(C r, 0) > 2n(r, 0). Given θ ∈ (0, 1), we may thus choose a subsequence of {zj} of
zeros of f such that there are [θ n(Ckr0, 0)] zeros in the annuli Ak = {z : Ck+1r0 >
|z| ≥ Ckr0}, denoted by {zj(k)}, for r0 > 1 and all k ∈ N. Then

∑

j

1

|zj |
=

∞∑

k=1

∑

zj(k)∈Ak

1

|zj(k)|
≤

∞∑

k=1

θn(Ckr0, 0)

Ckr0
=

∞∑

k=1

θ(1 + θ)n(Ck−1r0, 0)

Ckr0

=
∞∑

k=1

θ(1 + θ)2n(Ck−2r0, 0)

Ckr0
=

∞∑

k=1

θ(1 + θ)kn(r0, 0)

Ckr0

=
θn(r0, 0)

r0

∞∑

k=1

(1 + θ)k

Ck
≤
θn(r0, 0)

r0

∞∑

k=1

(
1

8

)k

<∞.

Consequently, h(z) =
∏∞

k=1(1 −
z
zj
) is an entire function by Lemma 3.3. Recall that

r > r0. Hence there exists an integer k such that Ckr0 ≤ r < Ck+1r0. It follows from
Lemma 3.2 that

ρ(h) = lim sup
r→∞

log n(r, 0)

log r
≤ lim sup

k→∞

log n(Ck+1r0, 0)

log(Ckr0)

= lim sup
k→∞

log(1 + θ)k+1n(r0, 0)

log(Ckr0)
=

log(1 + θ)

logC
,

while

ρ(h) = lim sup
r→∞

log n(r, 0)

log r
≥ lim sup

k→∞

log n(Ckr0, 0)

log(Ck+1r0)

= lim sup
k→∞

log(1 + θ)kn(r0, 0)

log(Ck+1r0)
=

log(1 + θ)

logC
.

Then

(3.1) ρ(h) =
log(1 + θ)

logC
<

log 2

log 16
< 1.

If θ is sufficiently small, then Lemma 3.6 implies ρ(h) < logA
logC

≤ λ(f). Hence, the

definitions of ρ(h) and λ(h) yield

T (r, h) = o(T (r, f)),

as r → ∞ without an exceptional set.
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Let

g(z) =
f(z)

h(z)
.

Using the formula (6.6) in [12, p. 29] and the Nevanlinna first fundamental theorem,
we have T (r, g) ≤ T (r, f) + T (r, h) = O(T (r, f)). Moreover, from the standard
inequalities T (r, f) ≤ log+M(r, f) ≤ 3T (2r, f), we can deduce that

logM(r, g) = O(logM(2r, f)), as r → ∞.

So g satisfies the assumption of Lemma 3.1 with the constants A and B being chosen
suitably. That is,

dens(T (g, α∗, β∗, 0, 0), A(R)) ≥ η

for sufficiently large R and for 0 < α∗ < α0, β
∗ > β0.

Now zg′(z)
g(z)

= zf ′(z)
f(z)

− zh′(z)
h(z)

, so that

(3.2)

∣
∣
∣
∣

zg′(z)

g(z)

∣
∣
∣
∣
−

∣
∣
∣
∣

zh′(z)

h(z)

∣
∣
∣
∣
≤

∣
∣
∣
∣

zf ′(z)

f(z)

∣
∣
∣
∣
≤

∣
∣
∣
∣

zg′(z)

g(z)

∣
∣
∣
∣
+

∣
∣
∣
∣

zh′(z)

h(z)

∣
∣
∣
∣
.

Since h(0) = 1, it follows from the formula (1.3’) in [12, p. 88] that
∣
∣
∣
∣

h′(z)

h(z)

∣
∣
∣
∣
≤

4sT (s, h)

(s− |z|)2
+

∑

|zj |<s

2

|z − zj |

for s > |z|. Considering s = 2|z|, we get, for every z ∈ A(R) and ε > 0,

4sT (s, h)

(s− |z|)2
≤

8T (2|z|, h)

|z|
= O

(
rρ(h)−1+ε

)
,

where r = |z|. Applying Lemma 3.4 to
∑

|zj |<s
2

|z−zj | with H =
√
3ǫR
2

, where ǫ is a

small constant, we deduce that

∑

|zj |<s

2

|z − zj |
≤

2n(2r, 0)

H
= O

(
T (2r, h)

r

)

= O
(
rρ(h)−1+ε

)
,

for all z outside set E1 which is a union of finite discs and satisfies area(E1) =
ǫ areaA(R). So,

(3.3)

∣
∣
∣
∣

zh′(z)

h(z)

∣
∣
∣
∣
= O

(
|z|ρ(h)+ε

)
= o(T (r, f)) = o(logM(r, f)),

for all z ∈ T (g, α∗, β∗, 0, 0) \ E1. Thus, there are constants α∗∗, β∗∗ such that

α∗∗ logM(|z|, f) ≤

∣
∣
∣
∣

zf ′(z)

f(z)

∣
∣
∣
∣
≤ β∗∗ logM(|z|, f)

for all z ∈ T (g, α∗, β∗, 0, 0)\E1. Therefore,

(3.4) T (g, α∗, β∗, 0, 0)\E1 ⊂ T (f, α∗∗, β∗∗, 0, 0).

For any R and z ∈ A(R), we have

h(z) =
∏

|zj |≤R
4

(

1−
z

zj

)

·
∏

R
4
<|zj |≤4R

(

1−
z

zj

)

·
∏

|zj |>4R

(

1−
z

zj

)

= h1(z)h2(z)h3(z).

(3.5)
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We now estimate log |hi(z)|, i = 1, 2, 3, starting with

(3.6) log |h1(z)| ≥
∑

|zj |≤R
4

log

(∣
∣
∣
∣

z

zj

∣
∣
∣
∣
− 1

)

≥ log(3)n

(
R

4
, 0

)

.

Using the Boutrox–Cartan lemma to h2(z), we get

|h2(z)| =
∏

R
4
<|zj|≤4R

∣
∣
∣
∣
1−

z

zj

∣
∣
∣
∣
≥

1

(4R)m

(
H

e

)m

=

(
H

4eR

)m

except for a set E2 which is a union of disks with sum of radii less than 2H , where
m = n(4R, 0)− n

(
R
4
, 0
)
. For a constant c < 8e, put 2H = cR. Thus

|h2(z)| ≥

(
H

4eR

)m

≥
( c

8e

)m

.

For the above R there must exist an integer k satisfying rk ≤ R
4
< rk+1, where

rk = Ckr0. Recall that C > 16. Then rk+2 = Crk+1 > 4R and

m = n(4R, 0)− n

(
R

4
, 0

)

≤ n(rk+2, 0)− n(rk, 0)

=
(
n(rk+2, 0)− n(rk+1, 0)

)
+
(
n(rk+1, 0)− n(rk, 0)

)

≤ θn(rk+1, 0) + θn(rk, 0) ≤ θ(θ + 2)n(rk, 0) ≤ θ(θ + 2)n

(
R

4
, 0

)

.

From the above argument, we can get

(3.7) log |h2(z)| ≥ − log

(
8e

c

)

m ≥ −ε′n

(
R

4
, 0

)

,

where ε′ = log
(
8e
c

)
θ(2 + θ) > 0. Using the inequality log(1 − x) ≥ −x, x ≤ 1

2
, we

obtain

log |h3(z)| ≥
∑

|zj |≥4R

(

1−
2R

|zj |

)

≥ −2
∑

|zj |≥4R

R

|zj |
.

Noting that there exists a constant k0 such that rk0 ≤ 4R < rk0+1, we deduce

∑

|zj |≥4R

R

|zj|
≤

∞∑

k=k0

∑

zj∈Ak

R

|zj|
≤

∞∑

k=k0

(
n(rk+1, 0)− n(rk, 0)

)R

rk

≤

∞∑

k=k0

Rθ(1 + θ)k−k0

Ck−k0rk0
n(rk0, 0)

<
C

4

∞∑

k=k0

(
1 + θ

C

)k−k0

θ n(4R, 0) ≤
2CK4θ

7
n

(
R

4
, 0

)

,

(3.8)

where K is the constant as in Lemma 3.6. Therefore,

(3.9) log |h3(z)| > −ε′′n(
R

4
, 0),

where ε′′ = 4CK4

7
θ.

If θ is sufficiently small, then

log 3−

(

log

(
8e

c

)

(2 + θ) +
4CK4

7

)

θ = γ ≥
1

2
.
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It follows from (3.5), (3.6), (3.7) and (3.9) that log |h(z)| ≥ γn(R
4
, 0) for all z ∈ A(R)

outside E2. Furthermore, (3.1) implies that

(3.10) log |h(z)| ≥ γ|z|δ ≥
1

2
|z|δ,

where δ < log(1+θ)
logC

= ρ(h).

From above argument, for any z ∈ T (g, α∗, β∗, 0, 0)\E2, we have

|f(z)| = |g(z)h(z)| ≥ exp
(1

2
|z|δ

)

.

So T (g, α∗, β∗, 0, 0)\E ⊂ T (f, α∗, β∗, δ, 0), where E = E1∪E2. This is the special case
of Theorem 2.3. For the general λ, we can use the same argument as Theorem 1.2 in
[5]. Thus we finish the proof of Theorem 2.3.

Remark 3.7. There are many lower estimates known for the modulus of entire
functions of order < 1, and, in particular, for functions of order < 1/2 in the book
[8]. For our use, a more precise estimate is required for the function h.

4. Proof of main theorems

4.1. Preparation. First, we recall the Koebe distortion theorem.

Lemma 4.1. (Koebe Distortion Theorem) Let z0 ∈ C, r > 0, and let f be a
univalent function in D(z0, r). If z ∈ D(z0, r), then

(4.1) r2|f ′(z0)|
r − |z − z0|

(r + |z − z0|)3
≤ |f ′(z)| ≤ r2|f ′(z0)|

r + |z − z0|

(r − |z − z0|)3
,

and

(4.2) r2|f ′(z0)|
|z − z0|

(r + |z − z0|)2
≤ |f(z)− f(z0)| ≤ r2|f ′(z0)|

|z − z0|

(r − |z − z0|)2
.

For our use, we also need the following consequence of Lemma 4.1.

Lemma 4.2. Let Ω be a domain, and let Q ⊂ Ω be compact. Then there exists a
constant C ′ > 0 such that if f is univalent in Ω and z, ξ ∈ Q, then |f ′(ξ)| ≤ C ′|f ′(z)|.

Lemma 4.3 below plays an important role in proving that Hausdorff measure is
∞. Before stating it, consider, for l ∈ N, a collection Al of compact, disjoint and
connected subsets of C with positive Lebesgue measure. Let Al be the union of all
elements of Al. We say that {Al} is a series nesting intersection sets if it satisfies
the following properties:

(a) Every element of Al+1 is contained in a unique element of Al.
(b) Every element of Al contains at least one element of Al+1.
(c) For any F ∈ Al, there exist two sequences of positive numbers {∆l} and

{dl} (dl → 0) such that

dens(Al+1, F ) ≥ ∆l; diamF ≤ dl.

The intersection A =
⋂∞

l=1Al is a non-empty and compact set.

Lemma 4.3. [20, Lemma 3.3] Let {Al}, A, {dl}, {∆l} be as above. Let ε > 0 and
ϕ : (0, ε) → R≥0 be a decreasing continuous function such that t2ϕ(t) is increasing.
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Further, suppose that lim
t→0

t2ϕ(t) = 0 and

(4.3) lim
l→∞

ϕ(dl)

l∏

j=1

∆j = ∞.

Define h : [0, ε) −→ R by setting

h(t) =

{

t2ϕ(t), t > 0,

0, t = 0.

Then h(t) is a continuous gauge function, and Hh(A) = ∞.

Let L be a constant such that logM(2r, f) ≤ L logM(r, f) and let t(R) =
λR

L logM(R,f)
. Bergweiler and Karpińska [5] applied the Ahlfors three islands theorem

to domains

Dv = {z ∈ C : |ℜz| < 1, |ℑz − 8πv| < 3π}, v = 1, 2, 3,

and showed that

Lemma 4.4. [5, Lemma 5.1] Let a ∈ T (f, α, β, δ, λ)∩A(R) and v ∈ {1, 2, 3}. If
R is sufficiently large, then D(a, t(R)) contains a subdomain U such that log f maps
U bijectively onto one of the domains

Ωv(a) = log f(a) +Dv

= {z ∈ C : |ℜz − log f(a)| < 1, |ℑz − log f(a)− 8πv| < 3π}.

Moreover, there exist τ, q such that if V is the subset of U which is mapped onto

Qv(a) = {z ∈ C : 0 ≤ (ℜz − log f(a)) < log 2, |ℑz − log f(a)− 8πv| ≤ 2π},

then

(4.4) area(V ) ≥ τ t(R)2

and

(4.5)

∣
∣
∣
∣

f ′(z)

f(z)

∣
∣
∣
∣
≥

q

t(R)
for z ∈ V.

The following lemma concerns with the number of discs D(a, t(R)) in the annulus
A(R) = {z ∈ C : R < |z| < 2R}.

Lemma 4.5. [5, Lemma 5.2] Let η be as in Theorem 2.3. For sufficiently large
R there exists m(R) ∈ N satisfying

m(R) ≥
ηR2

2t2(R)

such that there are m(R) points aj ∈ T (f, α, β, δ, λ) ∩ A(R), j = 1, 2, · · · , m(R),
satisfying D(aj , t(R)) ⊂ A(R) for all j and D(aj , t(R)) are pairwise disjoint.

Lemma 4.6. [27, Corollary 5] Let f be a transcendental meromorphic function
with at most finitely many poles, and let d > 1 be a constant. If for all sufficiently
large R > 0, we have

logM(2R, f) > d logM(R, f),

then J(f) has an unbounded component, and all components of F (f) are simply
connected.
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4.2. Proof of Theorem 2.1. The idea of construction of sets Al and part of
the proof is from that of Theorem 2.1 in [5]. For completeness, we repeat it here.

Choose R0 large enough, and let

A0 = {A(R0)}.

By Lemma 4.4, there are domainsD(a(R0), t(R0))(⊂ A(R0)), U(a(R0)) and V (a(R0))
with V (a(R0)) ⊂ U(a(R0)) ⊂ D(a(R0), t(R0)) such that log f maps U(a(R0)) onto
the rectangles Ωv(a(R0)) and V (a(R0)) onto Qv(a(R0)). Since f = exp(log f), we
obtain that f(U(a(R0))) and f(V (a(R0))) are the annuli {z : |f(a(R0))|/e < |z| <
e|f(a(R0))|} and A(|f(a(R0))|), respectively.

By Lemma 4.5, we note that there are at least m(R0) ≥
ηR2

0

2t2(R0)
many disjoint

discs, say {D(aj1(R0), t(R0))}
m(R0)
j=1 , that are contained in A(R0). Consequently, there

are m(R0) disjoint V (aj1(R0)) having the above properties. Now, we can construct
the sets

A1 = {V (aj1(R0)) : 1 ≤ j ≤ m(R0)}.

For some j, put R1,Vj1
= R1,V (aj1 (R0)) = |f(aj1(R0))|. Since R0 is large enough,

it follows from (2.2) that R1,Vj1
> R0. Let D(a(R1,Vj1

), t(R1,Vj1
)) be a disc con-

tained in A(R1,Vj1
). Using Lemma 4.4 again, there are domains V (a(R1,Vj1

)) and
U(a(R1,Vj1

)) such that V (R1,Vj1
) ∈ U(a(R1,Vj1

)) ∈ D(a(R1,Vj1
), t(R1,Vj1

)). Therefore,
V (a(R1,Vj1

)) and U(a(R1,Vj1
)) are mapped by log f bijectively onto Qv(a(R1,Vj1

)) and

Ωv(a(R1,Vj1
)) respectively. Then log f 2 is a bijective mapping from a subset of Vj1(R0)

onto Qv(a(R1,Vj1
)).

We define

A2 =
⋃

Vj1
∈A1

{ψVj1
(Qv(aj2(R1,Vj1

))) : 1 ≤ j2 ≤ m(R1,Vj1
)},

where ψVj1
is the inverse function of log f 2 restricted on Vj1 and m(R1,Vj1

) is the
number of domain V (a(R1,Vj1

)) in A(R1,Vj1
).

Inductively, Al consists of all sets F which satisfy f l(F ) = A(Rl,F ), where
Rl,F > R0. If G is an element of Al−1 which contains F , then for some j ∈
{1, 2, · · · , m(Rl−1,G)}, we have

(4.6) f l−1(F ) = Vj(Rl−1,G) ⊂ D(aj(Rl−1,G), t(Rl−1,G) ⊂ A(Rl−1,G) = f l−1(G).

Now we will construct Al+1. By Lemma 4.4, there exists a domain

U(aj(Rl−1,G)) ⊂ D(aj(Rl−1,G), t(Rl−1,G)),

which is mapped by log f bijectively onto Ωv(aj(Rl−1,G)) and its subset Vj(Rl−1,F )
is mapped onto Qv(aj(Rl−1,G)). Thus log f l is a bijective mapping from F onto
Qv(aj(Rl−1,G)). Denote the inverse function by ψ. We collect all domains Wk,F ⊂
Qv(aj(Rl−1,G)) which are mapped by the exponential function onto V (ak(Rl,F )) ⊂
A(Rl,F ) bijectively. Then

Al+1 =
⋃

F∈Al

{ψF (Wk,F )}.

Thus we have finished the construction of the sets Al. To calculate the Hausdorff
measure, both invariants ∆k and dk mentioned above are needed.
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Using (4.4) and Lemma 4.5, we deduce

area





m(Rl,F )
⋃

k=1

Wk,F



 = m(Rl,F )

ˆ

Vk(Rl,F )

1

|z|2
dx dy ≥

ητ

8
.

Then (see [5, p. 549] for more details)

(4.7) dens(Al+1, F ) = dens





m(Rl,F )
⋃

k=1

ψF (Wk(Rl,F ), ψF (Qv(aj(Rl,G)))





≥
1

(C ′)2
dens





m(Rl,F )
⋃

k=1

Wk(Rl,F ), Qv(aj(Rl,G))



 ≥
ητ

32(C ′)2π log 2
= ∆,

where C ′ is the constant as in Lemma 4.2.
For calculating dk, it will be more convenient to choose any sequence of nested

sets {Fk}
∞
k=0 which satisfies Fk ∈ Ak and Fk+1 ⊂ Fk for every k. Without loss of

generality, let Fl−1 = G and Fl = F , where F,G are as above. In what follows, we use
the abbreviated notation Rk = Rk,Fk

, aj = aj(Rl−1,G) and Vj(Rl−1) = V (aj(Rl−1,G)).
Recall the formula (4.6). Let φ be the branch of the inverse of f l−1 which

maps f l−1(F ) to F . Then φ is a univalent map in the domain D(aj, t(Rl−1)) and
maps its subset Vj(Rl−1) onto F . Furthermore, φ can extend to a univalent map
in D(aj , 2t(Rl−1)) by Lemma 4.4. Koebe’s distortion theorem implies that if z ∈
D(aj, t(Rl−1)), then |φ′(z)| ≤ 12|φ′(aj)|. So

diam(F ) ≤ 12|φ′(aj)| diam(f l−1(F )) ≤ 24|φ′(aj)|t(Rl−1).

It follows from (4.5) that

|f ′(fk(z))| ≥ q
|fk+1(z)|

t(Rk)
≥ q

Rk+1

t(Rk)
= τ1

Rk+1

Rk

logM(Rk, f),

where τ1 = qL
λ

. Since |φ′(aj)| =
1

|(f l−1)′(φ(aj ))| and (f l−1)′(z) =
∏l−2

k=0 f
′(fk(z)), we

conclude that

|φ′(aj)| ≤
R0

Rl−1

l−2∏

k=0

1

τ1 logM(Rk, f)
,

and thus

diam(F ) ≤ 24|φ′(aj)|t(Rl−1)

≤ 24
R0 t(Rl−1)

Rl−1

l−2∏

k=0

1

τ1 logM(Rk, f)
=

l−1∏

k=0

τ2
τ1 logM(Rk, f)

,

where τ2 is a constant. From the condition (2.2), we have

Rk ≥ exp(Rδ
k−1) = Ek(R0),

where Ek(R0) is the k-th iteration of exp(zδ) in point R0.
For λ0 ∈ (0, 1/e), we denote Ek

λ0
(z) by the k-th iteration of exponential λ0 exp(z).

Fix r0, then for every λ0 ∈ C and l ∈ N, there exists r1 such that El(r1) ≥ El
λ0
(r0).
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Thus for l ≥ 2 and sufficiently large R0, we have

diam(Fl) ≤
l−1∏

k=0

τ2
τ1 logM(Rk, f)

≤
l−1∏

k=0

1

logRk

≤
1

logEl−1(R0)
≤

1

logEl−1
λ0

(r0)
≤

1

El−1
λ0

(r′0)
= dl,

(4.8)

where r′0 < r0. Since we can take r′0, r0 ∈ U , where U be as in (1.1). It follows from
(1.1), (4.7) and (4.8) that

Φ

(
1

dl

)κ l∏

j=1

∆j = Φ(El−2
λ0

(r′0))
κ∆l = (βl−2

λ0
Φ(r′0))

κ∆l = (βκ
λ0
∆)l−2Φ(r′0)

κ∆2,

which tends to ∞ as l tends to ∞ when βκ
λ0
∆ > 1. Thus Lemma 4.3 implies that for

κ > log(1/∆)
log βλ0

Hh(A) = ∞, where h(t) = t2Φ

(
1

t

)κ

.

Moreover, from Lemma 4.6 we get A =
⋂∞

l=1Al ⊂ J(f). Hence A ⊂ I(f) ∩ J(f)
since A ⊂ I(f) by (2.2). Thus

Hh(I(f) ∩ J(f)) = ∞.

This completes the proof of Theorem 2.1.

4.3. Proof of Corollary 2.2. Obviously, logm( 1
dl
)
∏l

j=1∆j tends to infinity as
l → ∞. Using Lemma 4.3 to it, we can complete the proof of Corollary 2.2.
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