
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 339–356

REGULARITY OF THE DISTANCE FUNCTION

TO SMOOTH HYPERSURFACES IN SOME

TWO-STEP CARNOT GROUPS

Nicola Arcozzi∗, Fausto Ferrari† and Francescopaolo Montefalcone‡

Università degli Studi di Bologna, Dipartimento di Matematica
Piazza di P.ta S.Donato, 5, 40126 Bologna, Italy; nicola.arcozzi@unibo.it

Università degli Studi di Bologna, Dipartimento di Matematica
Piazza di P.ta S.Donato, 5, 40126 Bologna, Italy; fausto.ferrari@unibo.it

Università di Padova, Dipartimento di Matematica Pura e Applicata
Via Trieste, 63, 35121 Padova, Italy; montefal@math.unipd.it

Abstract. We study geometric properties of the Carnot–Carathéodory signed distance δs to

a smooth hypersurface S in some 2-step Carnot groups. In particular, a sub-Riemannian version of

Gauss’ Lemma is proved.

1. Introduction and statement of the main results

In this paper we study some fine properties of the Carnot–Carathéodory, signed,
distance function to a hypersurface in some 2-step Carnot groups and their relation
to the hypersurface’s geometry. Given a 2-step Carnot group G, endowed with a
fixed sub-Riemannian structure, we denote by d the Carnot–Carathéodory distance
in G. If S is a fixed hypersurface in G, we denote by δ the function “distance from
S”, that is

δ(p) := inf {d(p, q) : q ∈ S} ∀ p ∈ G.

We always tacitly assume that S = ∂Ω is the boundary of a connected, open subset
of G, such that ∂Ω = ∂(G \ Ω). We also consider the signed distance

δs(p) :=

{
δ(p) if p /∈ Ω,

−δ(p) if p ∈ Ω.

In Section 2.1 we will recall basic notions on 2-step Carnot groups. However, in order
to state our main results, we anticipate here some definitions.

For brevity, we call special all the 2-step Carnot groups G having the following
smoothness property:
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(⋆) Let d(·, 0) : G −→ [0,+∞[ be the distance function to 0 ∈ G and let γ : [0, r[
→ G be a length-minimizing geodesic connecting 0 with p ∈ γ([0, r[). Then,
d(·, 0) is of class C

2 in a neighborhood of γ(t) for any t in ]0, r[.

Note that by the left translation invariance of the CC-distance, one may replace
0 ∈ G by any other point q ∈ G.

To the authors’ knowledge, it is not known whether all 2-step Carnot groups
have this property. We stress, however, that all 2-step Carnot groups that do not
contain abnormal geodesics (see, for instance, [2, 13, 21]) have to satisfy hypothesis
(⋆). More precisely, it follows from Theorem 10.15 in [2] (see also Proposition 10.11
and the results in Chapter 7.2) that if γ : [0, r[→ G is a length-minimizing geodesic
connecting 0 with p, then the (squared) CC-distance function d(·, 0) to 0 is of class C∞

in (a neighborhood of) γ(t) for any t in ]0, r[. Moreover, it is known that abnormal
geodesics do not exist at all for a subclass of 2-step Carnot groups called Métivier

groups (hence, in all H -type groups: in particular, this holds true in Heisenberg
groups Hn); see, for instance, [23]. We refer the reader to [1, 2, 15], for an exhaustive
introduction and some recent results on this problem.

Let S0 := S \ CS be the non-characteristic set of the C
2 hypersurface S. Recall

that a point p ∈ S is a characteristic point if the tangent space to S at p contains
the horizontal space at p. The set CS denotes the set of all characteristic points of
S. We also need to introduce the following technical property concerning some sets
U ⊂ G with respect to the hypersurface S. We say that the set U ⊂ G satisfies the
unique nearest point property with respect to the hypersurface S if for each p in U
exactly one point q in S exists such that d(p, q) = δ(p).

Our main theorem is a regularity result for δ.

Theorem 1.1. Let G be a special 2-step Carnot group. Let S = ∂Ω ⊂ G be
a hypersurface of class C

k, with k ≥ 2. Then, there exists an open subset U of G
having the unique nearest point property, with respect to the CC-distance δ to S,
such that U ∩ S = S0, where S0 denotes the non-characteristic set of S. In addition,
the signed distance function δs is of class C

k on U .

In the special case of H
1, Theorem 1.1 was proved in a slightly stronger form

by the first two authors in [3] and [4]. The main tools in proving Theorem 1.1
are a sub-Riemannian version of the classical Gauss’ Lemma (see [7]) and a metric
exponential map. In order to describe them, we have to be more precise about the
sub-Riemannian structure we are working with. The group G is a 2-step Carnot
group: a n-dimensional real Lie group, whose Lie algebra g (that is, the space of all
left invariant vector fields on G) admits a stratification g = H⊕V , where V := [H,H ]
and [H ,V ] = 0. The layers H and V are called horizontal and vertical, respectively.
For more details we refer to Section 2.1. Let 〈·, ·〉H be a fixed positive definite
quadratic form on H , and let {X1, . . . , Xh} be an orthonormal basis for H . It is well
known that there is a sub-Riemannian distance associated with 〈·, ·〉H , and that the
distance between two points is realized by the length of a geodesic. These notions are
further detailed in Sections 2.1 and 2.2 of this paper. Fix now a basis {Xh+1, . . . , Xn}
of V and consider the left-invariant Riemannian metric 〈·, ·〉 = 〈·, ·〉H + 〈·, ·〉V , which
makes {X1, . . . , Xn} into an orthonormal basis of g.

By means of the Riemannian metric 〈·, ·〉, we can identify vectors and covectors,
and we shall do so throughout the article, unless explicitly stated.

Let PH and PV denote the orthogonal projection operators onto H and V , re-
spectively. If ν denotes the Riemannian unit normal vector to S pointing outside Ω,
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then for every x ∈ S0 := {y ∈ S : |PH ν(y)| 6= 0} we set

̟(x) :=
PV ν(x)

|PH ν(x)| and N (x) :=
ν(x)

|PH ν(x)| = (ν
H
(x), ̟(x)).

When necessary, we shall add a superscript to indicate the dependence on a partic-
ular hypersurface S. In the case of the Heisenberg group H

1, the quantity ̟ was
introduced in [3] and [4] in connection with the distance to a smooth surface. In
general, this quantity plays a special role in the theory of hypersurfaces endowed
with the H -perimeter measure; see [18].

For any (x0, v0) ∈ TG, with x0 ∈ G, v0 ∈ Tx0G, such that v0 = v0H +v0V , |v0H | = 1,
there exists a unique unit speed normal geodesic x : [0, r[→ G (for some r > 0) such
that: (i) x(0) = x0; (ii) x′(0) = v0

H
; (iii) the vector of “vertical parameters” of x(t) at

t = 0 is v0
V

. More precisely, normal geodesics can be seen as (projection onto G of
the) solutions (x(t), v(t)) ∈ TG to the system of ODEs

(1)





x′ = vH ,

v′
H
= −CH (vV )vH ,

v′
V
= 0,

where CH (vV ) : H → H denotes a linear map which only depends on the structure
constants of the Lie algebra of G and (linearly) on the “vertical vector” vV = v0

V
.

(This definition can be easily deduced from the standard Hamiltonian formulation,
for which we refer the reader to [2, 13, 21, 25]).

We stress that in 2-step Carnot groups all geodesics are actually normal (though
not necessarily “strictly normal”); see [13]. We use the solutions to (1) to define a
sub-Riemannian exponential map

expSR (x0, v0)(t) := x(t),

with x(t) solution to (1).
Let S(x0, t) := {x ∈ G : d(x, x0) = t} be the CC-sphere of radius t > 0. In

general, it is not known if S(x0, t) is smooth, even at points x(t) ∈ S(x0, t) which are
joined with x0 by a unique length-minimizing geodesic. If the group G is special this
fact holds true by the Implicit Function Theorem. Let gradH and gradV denote the
orthogonal projections of the Riemannian gradient grad onto the subspaces H and
V of the Lie algebra g. The following result is the key tool to prove Theorem 1.1.

Theorem 1.2. (Gauss’ Lemma) Let G be a special 2-step Carnot group and
let γ : [0, r[→ G (r > 0) be any (unit speed) length-minimizing normal geodesic
with initial conditions x0 ∈ G, v0 ∈ Tx0G, such that v0 = v0

H
+ v0

V
, |v0

H
| = 1. Let

d(x) := d(x0, x) for any x ∈ G. Then, the following holds:

(i) γ′(t) = gradH d(γ(t)) ∀ t ∈ (0, r) “Horizontal Gauss’ Lemma”;
(ii) there exists a skew-symmetric (h×h)-matrix CH (̟S(x0,t)), which only depends

on the structure constants of the Lie algebra and (linearly) on the vector
̟S(x0,t), such that

d

dt
grad d(γ(t)) = −CH (̟S(x0,t)(γ(t))) gradH (γ(t)) ∀ t ∈]0, r[

“Vertical Gauss’ Lemma” .
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Here, the symbol ̟S(x0,t) denotes the normalized vertical projection of the Rie-
mannian unit normal to the CC-sphere S(x0, t); see Definition 2.2. We also re-
mark that, a posteriori, one has ̟S(x0,t)(x) = gradV d(x0, x) at any smooth point
x ∈ S(x0, t).

By the very definition of ̟S and ̟S(x0,t), if a CC-sphere S(x0, t) touches a regular
hypersurface S at a non-characteristic point x1, then we have that ̟S(x0,r)(x1) =
±̟S(x1), as the vector ̟S only depends on the Riemannian unit normal vector,
which is common to both hypersurfaces at the point x1.

This simple observation is crucial. Indeed, together with Gauss’ Lemma, it im-
plies that the Riemannian normal to S at a non-characteristic point x0 determines,
via calculation of ̟S, the (unique) length-minimizing normal geodesic γ(t), which
starts at γ(0) = x0 and passes through x1. On the other hand, if x1 ∈ S is non
characteristic, we prove that there exists a CC-sphere S(γ(t), t) that touches S at
x1 (that is, Tx1S = Tx1S(γ(t), t)). Observe also that ̟S depends on the particular
Riemannian extension 〈·, ·〉 of the sub-Riemannian metric 〈·, ·〉H , but the geodesic γ,
and its metric properties, do not.

Gauss’ Lemma allows us to define the following metric exponential map

expS : S0 ×R → G, expS(y, t) := expSR (y,N (y))(t).

Let now y0 ∈ S0 = S\CS be a non characteristic point and let us introduce a system of
Riemannian normal coordinates u ≡ (u1, . . . , un−1) around y0; see Section 3.2. Thus,
if y(u) ≡ y(u1, . . . , un−1) describes a neighborhood U0 ⊂ S0 of y0, we henceforth set

(2) Φ(u, t) ≡ Φ(u1, u2 . . . , un−1, t) := expS(y(u), t),

where Φ: Ũ0×]− ǫ, ǫ[−→ G and Ũ0 ⊂ R
n−1 denotes an open neighborhood of 0Rn−1 .

Note that Φ(0Rn−1 , 0) = expS(y0, 0) = y0. The function Φ has an intrinsic meaning
described in the following result, whose proof is given in Section 3.2.

Theorem 1.3. Let G be a 2-step Carnot group. Let S ⊂ G be a hypersurface
of class C

k, with k ≥ 2, and let y0 ∈ S0 and Φ be as above. Then

∣∣det
[
J(0

Rn−1 ,0)Φ
]∣∣ = |PH ν(y0)| =

1√
1 + |̟(y0)|2

6= 0.

We use Theorem 1.3 in the proof of Theorem 1.1, since the nondegeneracy of the
Jacobian allows us to locally invert the exponential map expS.

At this point, we would like to briefly recall some results of a similar flavour in
the Euclidean setting. If N ⊂ R

n is a C
k manifold with k ≥ 2, then one sees that,

near N , the distance function δN is C
k−1-smooth. A first result can be found in the

book by Gilbarg and Trudinger [12]. They proved the existence of a neighborhood
U of N such that the distance function δN is of class Ck on U \N . The problem was
also considered by Federer for hypersurfaces in the C1,1 class; see [8]. The complete
solution in the C

1 case, can be found in a paper by Krantz and Parks; see [14]. See
also Foote [9]. Previous results of this type, in a sub-Riemannian setting, were proved
by the first two authors for the first Heisenberg group H

1; see [3].
We conclude this introduction by remarking that in our paper we consider “sec-

ond order” differential objects, which can not be merely reduced to the horizontal
directions alone. Indeed, as it has been already pointed out in [3] and [4], while in
the Riemannian spaces the notion of metric normal to a smooth hypersurface S in a
point p is totally encoded in the normal vector to S at p (see [8]), in sub-Riemannian
spaces the intrinsic natural object that could be considered, the so called horizontal
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gradient, is not sufficient to characterize the metric normal. There exist in fact infin-
itely many different geodesics having the same horizontal initial speed vector leaving
a fixed point in a Carnot group, that never coincide except that in the initial point.
We covered this lack of information by using the vector ̟, which generalizes the
imaginary curvature of [3, 4].

Theorem 1.1 was used in [27, pp. 53–55], who cited a much earlier version of
this article. Given a compact hypersurface S without characteristic points in the
Heisenberg group H

n, Theorem 1.1 can be used to construct in the open set U of the
points having the unique nearest point property, a foliation {Sr : r ∈ D} (here D is a
suitable subset of [0,+∞[) such that E : ∪r∈D Sr is Ahlfors regular and has assigned
Hausdorff dimension α ∈ ]2n, 2n+ 2[. The leaf Sr is the hypersurface of the points p
in U such that δs(p) = r.

For different perspectives on sub-Riemannian geometry we refer the reader to
[2, 6, 11, 21, 22, 26, 29].

2. Preliminary results

In this section we introduce notation and concepts used in the proofs of the main
theorems. Most of this material is known and it is presented here with a unified
notation for ease of the reader. The basic notions on the sub-Riemannian geometry
of Carnot groups, together with a basic vocabulary of hypersurfaces are introduced
in Section 2.1.

In Section 2.2 we first define the sub-Riemannian exponential map and, since we
are in the 2-step case, we then explicitly integrate the normal geodesic equations.
The results in Sections 2.1, 2.2 are necessary to prove Theorem 1.2 and they are then
used in the proofs of Theorems 1.1 and 1.3.

2.1. Basics on 2-step Carnot groups and hypersurfaces. Some references
concerning sub-Riemannian geometry and Carnot groups can be found, for instance,
in [10, 18, 17, 21, 22, 26, 19]. In particular we focus the case of 2-step Carnot groups.

Let (G, •) be a 2-step Carnot group (with respect to a group law •). In other
words, G is a n-dimensional, connected, simply connected, nilpotent and stratified
Lie group and the Lie algebra g ⊂ X(G) of all left-invariant vector fields on G

satisfies:

(3) g = H ⊕ V , where [H ,H ] = V and [H ,V ] = 0.

The layers H and V of the stratification of g are called horizontal and vertical,

respectively. We set h := dim(H ) and v := n − h = dim(V ). Let 0 denote the
identity of G. Recall that any point x ∈ G defines a smooth left-translation map
Lx : G −→ G by Lx(y) := x • y for any y ∈ G. A vector field X ∈ X(G) is
called left-invariant if Ly∗X(x) = X(y • x) for every x, y ∈ G, where Ly∗ denotes
the differential of the left-translation. The Lie algebra g of G is made isomorphic
to T0G by identifying each left-invariant vector field X with its value at 0, and the
isomorphism is given by Lx∗ : T0G −→ TxG. Hence, we have g ∼= R

n = R
h ⊕R

v,
where H ∼= R

h and V ∼= R
v.

Let us set IH := {1, . . . , h}, IV := {h+1, . . . , n}. We use Latin letters i, j, k, . . . ,
for indices belonging to IH and Greek letters α, β, γ, . . . , for indices belonging to IV .
Unless otherwise specified, we use capital Latin letters I, J,K, . . . , for indices from
1 to n.

Let gH = 〈·, ·〉H be a positive definite bilinear form on H : it defines a sub-

Riemannian metric on G. Let {X1, . . . , Xh} be a left-invariant orthonormal basis
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for H , with respect to gH . This basis can be completed to a global basis of left-
invariant vector fields of G, say {X1, . . . , Xn}, with Xh+1, . . . , Xn in V . We also
extend 〈·, ·〉H to a Riemannian metric g = 〈·, ·〉 on G, by requiring that {X1, . . . , Xn}
is an orthonormal basis for 〈·, ·〉. This might be done in many ways, but our results
are independent of the particular extension. We shall assume that XI(0) = eI where
eI := (0, . . . , 0, 1︸︷︷︸

I−th place

, 0, . . . , 0) is the I-th vector of the canonical basis of Rn ∼=

T0G for any I = 1, . . . , n. Equivalently, XI(x) = Lx∗eI for any I = 1, . . . , n.
The structure constants of the Lie algebra g associated with the global left-

invariant basis {X1, . . . , Xn} are defined by

CR
IJ := 〈[XI , XJ ], XR〉 ∀ I, J, R = 1, . . . , n;

see [28]. Note that they are skew-symmetric and satisfy Jacobi’s identity. In addition,
the stratification hypothesis implies that CR

IJ 6= 0 only if I, J ∈ IH and R ∈ IV .

Definition 2.1. Throughout this paper, we will use the following notation:

(i) Cα
H
:= [Cα

ij ]i,j∈IH ∈ Mh×h(R) ∀ α ∈ IV ;
(ii) CH (Z) :=

∑
α∈IV

zαC
α
H ∈ Mh×h,

where Z =
∑

α∈IV
zαXα ∈ V .

These matrices can be seen as linear operators acting on H . From now on we
shall fix exponential coordinates of the 1st kind on G (see [28]) so that every p ∈ G

is represented as an n-tuple x = (x1, . . . , xn) ∈ R
n, that is p = expg(

∑
I xIeI) ∈ G,

where expg : g → G denotes the Lie group exponential map. For the sake of simplicity
we shall set

(4) xH := (x1, . . . , xh) ∈ R
h, xV := (xh+1, . . . , xn) ∈ R

v.

Hence, we shall sometimes write p = expg(xH , xV ) (and p ≡ (xH , xV )).
Carnot groups are homogeneous groups; see [21]. For the 2−step case, this means

that there exists a 1-parameter group of automorphisms δt : G → G for any t > 0
defined as δtp := expg (txH , t2xV ) whenever p = expg(xH , xV ) ∈ G.

The Baker–Campbell–Hausdorff formula uniquely determines the group law • of
G from the structure of its Lie algebra g. In fact, one has

expg(X) • expg(Y ) = expg(X ⋆ Y ) ∀ X, Y ∈ g,

where ⋆ : g× g −→ g is the Baker–Campbell–Hausdorff product defined by

(5) X ⋆ Y = X + Y +
1

2
[X, Y ].

In exponential coordinates, formula (5) yields a polynomial group law. More pre-
cisely, if p = expg (

∑
I xIeI) and q = expg (

∑
I yIeI) ∈ G, then

p • q = expg




n∑

I=1

(xI + yI)eI −
1

2

∑

α∈IV

〈Cα
H xH , yH 〉 eα


 ,

where Cα
H

= [Cα
ij ]i,j∈IH . Note that the inverse of any p = expg(x1, . . . , xn) ∈ G

is given by p−1 = expg(−x1, . . . ,−xn) = −p and that 0 = expg(0, . . . , 0) ∈ G (in
particular, one has 0 = expg(0H , 0V )).
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The global left-invariant basis {X1, . . . , Xn} can explicitly be written out with
respect to the canonical basis {e1, . . . , en} of Rn as follows:

Xi(x) = Lx∗ei = ei −
1

2

∑

α∈IV

〈Cα
H
xH , ei〉 eα ∀ i ∈ IH

Xα(x) = Lx∗eα = eα ∀ α ∈ IV .

The Carnot–Carathéodory distance d (abbreviated as CC) associated with the sub-
Riemannian structure gH can now be defined, and it makes (G, d) into a complete
geodesic metric space; see [6, 21].

(i) An absolutely continuous curve γ : [0, r] → G is called horizontal if, for L1-a.e.
s ∈ [0, r], one has γ′(t) ∈ Hγ(t) = span

R
{X1(γ(t)), . . .Xh(γ(t))}.

(ii) By definition, the length of a horizontal curve γ is given by

lH (γ) :=

ˆ r

0

√∑

i∈IH

〈γ′(t), Xi(γ(t))〉2H dt.

(iii) If p, q ∈ G then, the CC-distance between p and q is given by

d(p, q) := inf{lH (γ) : γ is a horizontal curve connecting p with q}.
We shall denote by B(p, r) the open metric ball of center p ∈ G and radius r > 0.
Furthermore, we shall set S(p, r) := ∂B(p, r).

By definition, any absolutely continuous horizontal curve connecting p with q, and
realizing the minimum d(p, q) is called a length-minimizing geodesic. The existence of
horizontal curves connecting each pair of points is ensured by Chow’s Theorem; see
[21]. Further details about sub-Riemannian geodesics can be found in Section 2.2.

Let x ∈ G. Throughout this paper, the maps

PH : TxG −→ Hx, PV : TxG −→ Vx

will denote the orthogonal projection operators onto the vector subspaces Hx and Vx

of TxG, respectively. For any function f of class C
1, we set

gradH f := X1(f)X1 + · · ·+Xh(f)Xh ≡ (X1f, . . . , Xhf),

gradV f := Xh+1(f)Xh+1 + · · ·+Xn(f)Xn ≡ (Xh+1f, . . . , Xnf).

Together, these vectors form a decomposition of the Riemannian gradient, that
is, grad f = gradH f + gradV f (or equivalently, gradH f(x) = PH (grad f(x)) and
gradV f(x) = PV (grad f(x)) for any x ∈ G).

We now recall some basic facts about hypersurfaces. This material can be found,
for instance, in [18]. Let S ⊂ G be a smooth hypersurface, that is an (n − 1)-
dimensional smooth submanifold of G. We will always assume that S = ∂Ω is con-
nected and it is the boundary of an open subset Ω of G. In particular, S is orientable.
For non orientable manifolds our results maintain an obvious local character.

Definition 2.2. Let S ⊂ G be a hypersurface of class C
k with k ≥ 2. Let

CS := {x ∈ S : Hx ⊂ TxS} be the characteristic set of S and let ν be its Riemannian
unit outward normal vector. The unit H -normal vector along S0 := S \ CS is the

normalized projection of ν onto H , that is ν
H
:= PH ν

|PH ν|
. We shall set:

(i) N := ν
|PH ν| = (ν

H
, ̟), where ̟ := PV ν

|PH ν| ;

(ii) ̟α := να
|PH ν| ∀ α ∈ IV ;

(iii) CH (̟) :=
∑

α∈IV
̟αC

α
H .
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Whenever we need to stress the dependence of these vectors on S, we shall simply
write νS , νS

H
, ̟S , N S . Here we just remark that the C

2 regularity assumption on S
ensures that the Riemannian measure of the characteristic set CS vanishes. Precise
estimates of the size of CS can be found in [5].

Finally, let

(6) δ : G −→ R
+ ∪ {0}

denote the CC-distance function from S, that is δ(x) := infy∈S d(x, y). For the sake of
simplicity, we can always think of S as the zero set of a (smooth) function f : G → R

with nonvanishing gradient on S, that is S = {f = 0} = ∂Ω (where Ω = {f < 0}).
Fix x0 ∈ S0 and let B(x0, r) be a CC-ball such that B(x0, r) ∩ S = B(x0, r) ∩ S0.

Without loss of generality, we assume that ν
H
(x) = gradH f(x)

|gradH f(x)|
at any smooth point

x ∈ B(x0, r) ∩ S = B(x0, r) ∩ {f = 0}. In this way, we can now localize the upper
portion of B(x0, r) with respect to S, by setting B(x0, r)

+ := B(x0, r) \Ω. Hence, we
can define the signed distance function to S as

δs(x) :=

{
δ(x) if x ∈ B(x0, r)

+,

−δ(x) if x ∈ B(x0, r) \B(x0, r)
+.

We would like to stress that if S = S(x0, r) = {x ∈ G : d(x, x0) = r}, then
at any smooth point of S the eikonal equation (that is, | gradH d| = 1 Ln-a.e.; see
[20]) implies that ν

S(x0,r)

H = gradH d and that ̟S(x0,r) = gradV d, where d denotes the
CC-distance function to x0, that is G ∋ x 7→ d(x, x0). In particular, note that any
smooth point of the CC-sphere S(x0, r) is necessarily non characteristic.

2.2. Sub-Riemannian exponential map and integration of the normal

geodesic equations. The main references for this section are [2, 24, 25, 29]. Starting
from the system (1) for normal geodesics, by the standard ODEs theory we obtain
existence, uniqueness, regularity and smooth dependence on the initial data for small
times. Fix x0 ∈ G. We shall denote by

(7) expSR (x0, v0)(·) : [0,+∞[−→ G, expSR (x0, v0)(t) ∀ t > 0,

the unique normal geodesic starting from x0 with initial condition v(0) = v0 for some
fixed vector v0 = vH (0) + vV (0) ∈ Hx0 ⊕ Vx0 .

In order to define a sub-Riemannian equivalent to the exponential map we state
the following straightforward result whose proof we skip.

Lemma 2.3. (Homogeneity) The identity expSR (x0, av0)(t) = expSR (x0, v0)(at)
holds for any x0 ∈ G, v0 ∈ Tx0G, t ≥ 0, a > 0.

Definition 2.4. (Sub-Riemannian exponential map) We shall set

expSR (x0, ·) : Tx0G −→ G, expSR (x0, v0) = expSR (x0, v0)(1).

The map expSR (x0, ·) is the sub-Riemannian exponential map at x0 ∈ G.

The map expSR (x0, ·) plays in sub-Riemannian geometry a role similar to that of
the ordinary exponential map in Riemannian geometry. But there are many differ-
ences and its structure is much more complicated. An important difference is that
expSR (x0, ·) is not a diffeomorphism on any neighborhood of the origin in Hx0 ⊕Vx0 ,
as it is clear from the Heisenberg group, the simplest non-trivial example of Carnot
group; see [21, 29].

Since we will need a description of the sub-Riemannian exponential map, we now
perform an explicit integration of the ODEs system for normal geodesics. To begin
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with, let x : [0, r[⊂ R −→ G be a normal geodesic (for some r > 0). From the
system (1), we see that vV (t) ∈ V is independent of t ∈ [0, r[. Later on we shall set
vV ≡ vV (t) = vV (0). By the standard ODEs theory, we have that vH (t) ∈ H is given
by

vH (t) = e−CH (vV )tvH (0) ∀ t ∈ [0, r[.

We also remark that the equation x′ = vH is equivalent to the following scalar
equations:

(8)

{
x′
i = vi ∀ i ∈ IH ,

x′
α = −1

2
〈Cα

H xH , vH 〉, ∀ α ∈ IV .

Now, let us set

xH (t) := (x1(t), . . . , xh(t)) ∈ R
h ∼= H , xV (t) := (xh+1(t), . . . , xn(t)) ∈ R

v ∼= V ;

see (4) in Section 2.1. Thus, we get

(9) xH (t) = xH (0) +

ˆ t

0

e−CH (vV )sv0
H
ds.

Moreover, since xα(t) = xα(0)− 1
2

´ t

0
〈Cα

H
xH (s), x′

H
(s)〉 ds, we have

(10) xV (t) =
∑

α∈IV

(
xα(0)−

1

2

ˆ t

0

〈Cα
H xH (s), x

′
H (s)〉 ds

)
eα.

The equations (9) and (10) together describe the sub-Riemannian exponential
map in the 2-step Carnot group case. More precisely, after fixing a base point x0 =
expg(x

0
H
, x0

V
) ∈ G, we have

expSR (x0, v0)(t) := expg(xH (t), xV (t)) ∀ t ∈ [0, r[

and hence expSR (x0, v0) = expg(xH (1), xV (1)); see Definition 2.4. As already said in
Section 2.1, we are identifying the group G with its Lie algebra, so that any curve in
G might be seen as a curve in g. More precisely, one has

expSR (x0, v0)(t) ≡ (xH (t), xV (t)) =

((
x0

H
+

ˆ t

0

e−CH (vV )sv0
H
ds

)

︸ ︷︷ ︸
=xH (t)

,

(
x0

V − 1

2

∑

α∈IV

(
ˆ t

0

〈Cα
H xH (s), x

′
H (s)〉 ds

)
eα

))
.

(11)

Remark 2.5. For unit speed normal geodesics the map expSR (x0, ·)(·) can be
defined by using the hypercylinder UH × V , where UH := {X ∈ H : |X| = 1}
denotes the set of all unit horizontal vectors, which is isomorphic to the unit Eu-
clidean sphere S

h−1 ⊂ R
h, that is, UH ∼= S

h−1. In other words, we can assume that
expSR (x0, ·)(·) : UH ×V ×R −→ G.

3. Geometric lemmas

3.1. Proof of Theorem 1.2. Let S(x0, t) = {x ∈ G : d(x, x0) = t} be the CC-
sphere, with x0 ∈ G and t > 0. As already said, at any smooth point of S(x0, t) the
eikonal equation implies that ν

H
≡ ν

S(x0,t)

H = gradH d and that ̟ ≡ ̟S(x0,t) = gradV d,
where d(x) := d(x0, x) represents the CC-distance function to x0; see Definition 2.2.
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We preliminarily observe that Theorem 1.2 can be restated as follows: assuming
that ν

H
≡ ν

S(x0,t)

H and ̟ ≡ ̟S(x0,t) at any smooth point of S(x0, t), then (i) is
equivalent to the vector equation:

d

dt
x(t) = νH (x(t));

moreover, (ii) is equivalent to the following two vector equations:

d

dt
νH (x(t)) = −CH (̟(x(t)))νH (x(t)),

d

dt
̟(x(t)) = 0;

see Definitions 2.2 and 2.1.

Let us prove this statement for the 2-step case: we note, however, that the same
argument can easily be extended to k-step Carnot groups in general.

Proof of Theorem 1.2. Let G be a 2-step Carnot group. The calculation below is
mainly based on the eikonal equation, first proven in [20]. Concerning the case of the
Heisenberg group see also [19]. We start by the system (1), which is satisfied by unit
speed normal geodesics. Let us fix the initial conditions: x(0) = x0, v(0) = v0, where
v0 = v0

H
+ v0

V
, |v0

H
| = 1, and set d(x) := d(x, x0). In particular, we have d(x(t)) = t

for every t ∈ [0, r[ (with r > 0 small enough). By differentiating this identity, we
obtain

1 =
d

dt
d(x(t)) = 〈grad d(x(t)), x′(t)〉 = 〈gradH d(x(t)), x′(t)〉.

Since x′ = vH and |vH | = |v0H | = 1, the eikonal equation implies that

x′(t) = gradH d(x(t))

for every (sufficiently small) t > 0, that is (i) in Theorem 1.2. This can be written
in coordinates as follows:

(12) x′
i(t) = Xid(x(t)) ∀ i ∈ IH .

Let now I ∈ {1, . . . , n} and let us differentiate the function XId along the unit
speed normal geodesic x(t) defined by the previous assumptions. For the sake of
simplicity, in the following computations we shall drop the dependence on the variable
t. Thus, we have

d

dt
XId(x) = 〈grad (XId)(x), x

′〉 = 〈gradH (XId)(x), x
′〉

= 〈gradH (XId)(x), gradH (d)(x)〉 =
∑

i∈IH

Xid(x)Xi(XId)(x).

Note that XiXI = XIXi+[Xi, XI ] = XIXi+
∑

β∈Iord(I)+1
Cβ

iIXβ (in fact, by definition,

one has CR
IJ = 〈[XI , XJ ], XR〉 and [XI , XJ ] =

∑
R CR

IJXR; see Section 2.1. Recall also
that, in the 2-step case, we have CR

IJ 6= 0 only if I, J ∈ IH and R ∈ IV . Below, we
shall put

ord(I) :=

{
1 if I ∈ IH ,

2 if I ∈ IV .
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and set the default value ord(I) = 3 if XI ∈ [H, V ] = 0. We have

d

dt
XId(x) =

∑

i∈IH


Xid(x)XI(Xid)(x) +

∑

β≥ord(I)+1

Xid(x)C
β
iIXβd(x)




=
1

2
XI(| gradH (d)(x)|2) +

∑

i∈IH

∑

β≥ord(I)+1

Xid(x)C
β
iIXβd(x).

The first term in the sum is zero because | gradH d(x)| = 1, by the eikonal equation.
Using the skew-symmetry of the structure constants, yields

(13)
d

dt
XId(x) = −

∑

i∈IH

∑

β≥ord(I)+1

Xid(x)C
β
IiXβd(x).

Now if I ∈ IH , then β ∈ IV and (13) becomes

(14)
d

dt
XId(x) = −

∑

i∈IH

(
∑

β∈IV

Cβ
IiXβd(x)

)
Xid(x).

Therefore using (14) and Definition 2.1 yields

(15)
d

dt
gradH d(x) = −CH (̟) gradH d(x).

On the other hand if I ∈ IV , then d
dt
XId(x) = 0 and we get that

(16)
d

dt
gradV d(x) = 0.

Equations (15) and (16) prove (ii) in Theorem 1.2. �

3.2. Jacobian of the exponential map in 2-step groups. We refer the
reader to Sections 2.1 and 2.2 for details on the notation used here. Let Ω ⊂ G be
a connected open set and let S = ∂Ω be a smooth hypersurface in a special1 2-step
Carnot group G. For any point x belonging to the non characteristic set S0 = S \CS

of S, the notion of unit H -normal vector ν
H
(x) to S at x was defined in Section 2.1.

Unfortunately, there are infinitely many geodesics starting at x and having initial
velocity ν

H
(x): only one γ among them has the property that δ(γ(t)) = |t|, at least

for small |t|. We will see during the proof of Theorem 1.1 that there exists only one
geodesic γ with this property. We shall call this distinguished γ the metric normal

to S at x. Such notion was first investigated in [3], when G = H
1 denotes the 1st

Heisenberg group.
Note that the (non-unit) normal vector N is defined at non characteristic points

only. We also remark that the choice of the sign of N at a point, hence on the whole
of S, corresponds to an orientation for S or, which is the same, to the choice of one
of the two components Ω of G \ S such that S = ∂Ω; see Section 2.1.

Remark 3.1. Theorem 1.2 solves the problem of selecting, for any point x1

in S(x0, r) where the sphere is smooth, the unique unique speed normal geodesic
γ(t) having initial velocity equal to the unit H -normal vector at that point, that is
γ′(0) = ν

H
(x1), and connecting x1 to the center x0 of S(x0, r). Actually, Theorem 1.2

implies that the desired curve must be given by

γ(t) = expSR (x1,−N (x1))(t), t ∈ [0, r],

1We stress that, in the proof of Theorem 1.3, we do not need this hypothesis.



350 Nicola Arcozzi, Fausto Ferrari and Francescopaolo Montefalcone

which, in particular, satisfies γ(0) = x1 and γ(r) = x0.

The previous choice of the sign for N is due to the conventional choice Ω =
G \ B(x0, r) and reflects the fact that geodesics start on the sphere’s boundary and
move towards the center as time increases.

As a consequence, Theorem 1.2 admits the following corollary:

Corollary 3.2. Let S = {f = 0} be the boundary of the set Ω = {f < 0},
where f : G → R is a C

2 function with nonvanishing gradient. Let B(y, r) denote
the CC-ball with center y ∈ G and radius r > 0 and assume that B(y, r) ⊂ {f > 0}
and ∂B(y, r) ∩ S = {x}, where x ∈ S0 = S \ CS is non characteristic. Then there
exists the metric normal γN to S at x and one has γ(t) ∈ γN for every t ∈ [0, r],
where

γ(t) := expSR (x,N (x)) (t), t ∈ [0, r].

Notice that γN is a set, while γ is a geodesic. We also remind the reader that
N = ν

|PH ν| = (ν
H
, ̟), where ν is the Riemannian unit normal to S.

Let S be of class C
k with k ≥ 2 and define the map

(17) expS : S0 ×R −→ G, expS(y, t) := expSR (y, N (y))(t),

where S0 = S \ CS and expSR is the map defined by (7); see Section 2.2.
The proof of Theorem 1.1 is based on the sub-Riemannian Gauss’ Lemma (see

Theorem 1.2) and on Theorem 1.3 which will enable us to invert locally the map
Φ, obtained from expS by using, in a neighborhood of a point y0 ∈ S0, a system of
Riemannian normal coordinates. More precisely, let (τ1, . . . , τn−1) be an orthonormal
basis of Ty0S; for 1 ≤ j ≤ n − 1 define a real-valued function uj on a neighborhood
of y0 by setting

uj

(
(expR )y0

(
n−1∑

i=1

tiτi

))
= tj ,

where expR denotes the ordinary Riemannian exponential map. Then, by definition,
u ≡ (u1, . . . , un−1) is a system of normal coordinates corresponding to the orthonor-
mal basis (τ1, . . . , τn−1); for further details, see [7].

Thus, if y(u) ≡ y(u1, . . . , un−1) describes a neighborhood U0 ⊂ S0 = S \ CS of a
non characteristic point y0 ∈ S0, we henceforth set

(18) Φ(u, t) ≡ Φ(u1, u2 . . . , un−1, t) := expS(y(u), t),

where Φ: Ũ0×] − ǫ, ǫ[→ G and Ũ0 denotes an open neighborhood of 0Rn−1 in R
n−1.

Note that Φ(0Rn−1 , 0) = expS(y0, 0) = y0. Let now ∂
∂u1

, . . . , ∂
∂un−1

be the coordinate

vector fields associated with our normal coordinate system (u1, . . . , un−1). Then
V(y) := ± ∂y

∂u1
∧ . . .∧ ∂y

∂un−1
turns out to be a (possibly non-unit) Riemannian normal

vector to S in the neighborhood U0 of y0 ∈ S0. By construction, one has |V(y0)| = 1.
The Riemannian unit normal ν to S (in this neighborhood of y0) is given, up to the

sign, by ν = V
|V| , while the horizontal unit normal ν

H
can be written out as ν

H
= PH V

|PH V| .

Let J(0
Rn−1 ,0)Φ denote the Jacobian matrix at (0Rn−1 , 0) ∈ Ũ0×]− ǫ, ǫ[.

Proof of Theorem 1.3. Recall that for any base point x0 ∈ G the map

expSR (x0, ·)(·) : UH × V ×R −→ G
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is explicitly given by

expSR (x0, v0)(t) ≡ (xH (t), xV (t))

=



(
x0

H
+

ˆ t

0

e−CH (vV )sv0
H
ds

)
,


x0

V
− 1

2

∑

α∈IV

(
ˆ t

0

〈Cα
H
xH (s), x′

H
(s)〉 ds

)
eα




 ;

see formula (11) in Section 2.2. Later on we shall set Φ = expg((ΦH ,ΦV )). Thus,
assuming x0 = y(u), v0H = ν

H
(y(u)), v0V = vV = ̟(y(u)), yields

ΦH (u, t) = yH (u) +

ˆ t

0

e−CH (̟(y(u)))sν
H
(y(u)) ds

=


. . . , yi(u) +

〈(
ˆ t

0

e−CH (̟(y(u)))sν
H
(y(u)) ds

)
, ei

〉

︸ ︷︷ ︸
i−th place

, . . .


 ,

which can be seen as a vector in R
h ⊕ 0Rv . Furthermore, we get that

ΦV (u, t) = yV − 1

2

∑

α∈IV

(
ˆ t

0

〈Cα
H
ΦH (u, s),Φ′

H
(u, s)〉 ds

)
eα

(where Φ′
H
(u, s) = d

ds
ΦH (u, s)). Therefore, we have

Φ(u, t)

≡ y(u) +

ˆ t

0

e−CH (̟(y(u))sν
H
(y(u)) ds− 1

2

∑

α∈IV

(
ˆ t

0

〈Cα
H
ΦH (u, s),Φ′

H
(u, s)〉 ds

)
eα

︸ ︷︷ ︸
=:A(y(u),t)

.

Now, let us set Φ(u, t) := expg (y(u) +A(y(u), t)). Below, for simplicity, we shall
often drop the dependence on the variables. By using the explicit expression of Φ
together with the Fundamental Theorem of Calculus, we easily get

∂ΦH

∂t
(u, t) = e−CH (̟(y(u)))tν

H
(y(u)),

∂ΦV

∂t
(u, t) =

1

2

∑

α∈IV

〈Cα
H
Φ′

H
(u, t),ΦH (u, t)〉 eα,

where we have applied the skew-symmetry property of the structure constants ma-
trices Cα

H
’s (α ∈ IV ). From the previous calculations we obtain

(
∂Φ

∂t

∣∣∣∣
t=0

)Tr

≡
∑

i∈IH

νi
H
(y(u))ei +

1

2

∑

α∈IV

〈Cα
H νH (y(u)), yH (u)〉eα = ν

H
(y(u)),

where we have used that

ν
H
(y) =

∑

i∈IH

νi
H
(y)Xi(y) =

∑

i∈IH

νi
H
(y)

(
ei −

1

2

∑

α∈IV

〈Cα
H y, ei〉eα

)

︸ ︷︷ ︸
=Xi(y)

.

Differentiating Φ with respect to the local coordinates (u1, . . . , un−1) yields

∂Φ

∂ui

≡ ∂y

∂ui

+
∂A
∂ui

∀ i = 1, . . . , n− 1.
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Setting A = (AH ,AV ), it turns out that

∂AH

∂ui

=

ˆ t

0

([
Jy

(
e−CH (̟(y))sν

H
(y)
)] ∂y

∂ui

)
ds ∈ R

h ⊕ 0Rv ,

∂AV

∂ui

= −1

2

∑

α∈IV

(
ˆ t

0

〈
grady (〈Cα

H
ΦH (u, s),Φ′

H
(u, s)〉) , ∂y

∂ui

〉
ds

)
eα ∈ 0Rh ⊕R

v

for any i = 1, . . . , n− 1. Therefore, choosing t = 0, one gets

J(u,t)Φ(u, t)

∣∣∣∣
(u,0)

= col

[
∂y

∂u1
, . . . ,

∂y

∂un−1
,
∂Φ

∂t

∣∣∣∣
t=0

]
= col

[
∂y

∂u1
, . . . ,

∂y

∂un−1
, ν

H
(y)

]
,

because ∂AH

∂ui

∣∣
t=0

= 0Rn and ∂AV

∂ui

∣∣
t=0

= 0Rn. Notice that this result it is not a conse-
quence of a chain rule, but it follows from the integral representation of A.

We may now compute the Jacobian determinant of J(u,0)Φ. By standard Linear
Algebra arguments we have

∣∣det
[
J(u,0)Φ

]∣∣ =
∣∣∣∣det

(
col

[
∂y

∂u1
, . . . ,

∂y

∂un−1
, ν

H
(y)

])∣∣∣∣

=

∣∣∣∣
〈(

∂y

∂u1
∧ . . . ∧ ∂y

∂un−1

)
, ν

H
(y)

〉∣∣∣∣

=

∣∣∣∣
∂y

∂u1

∧ . . . ∧ ∂y

∂un−1

∣∣∣∣ |〈ν(y), νH (y)〉|

=

∣∣∣∣
∂y

∂u1
∧ . . . ∧ ∂y

∂un−1

∣∣∣∣ |PH ν(y)| = |PH V(y)|.

Finally, observe that at y0 we have V(y0) = ν(y0). This in turn implies that∣∣det
[
J(0

Rn−1 ,0)Φ
]∣∣ = |PH ν(y0)| = 1√

1+|̟(y0)|2
, as wished. �

As usual, let us set S0 = S \ CS and observe that S0 is an open subset of S, in
the relative topology. Moreover, since we are assuming that S is of class C

k with
k ≥ 2, one has dimRiem−Hau CS ≤ (n − 2); see [5]. Now let U0 ⋐ S0 be an open set
compactly contained in S0. For the sake of simplicity, we identify U0 with an open

neighborhood Ũ0 of 0Rn−1 in R
n−1 by means of a normal coordinate patch; hence, we

identify the map Φ with the exponential expS, exactly as in (18). By Theorem 1.3

we know that the Jacobian of the mapping Φ: Ũ0×] − ǫ, ǫ[−→ G is non-zero along

Ũ0 × {0}. Thus, the Inverse Mapping Theorem easily implies the following:

Corollary 3.3. (Invertibility at S0) There exists ǫ0 ∈]0, ǫ[ such that

expS : U0×]− ǫ0, ǫ0[−→ expS(U0×]− ǫ0, ǫ0[)

is a diffeomorphism of class C
k−1.

Notation 3.4. (Projection mapping) Corollary 3.3 enables us to define the fol-
lowing mapping:

Ψ := exp−1
S : expS(U0×]− ǫ0, ǫ0[) −→ U0×]− ǫ0, ǫ0[︸ ︷︷ ︸

=:W0

.

By construction, Ψ is of class Ck−1. In the sequel, we shall denote by ΨS the projec-
tion of the map Ψ onto its 1st factor, that is Ψ(x) = (ΨS(x), t(x)).
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let p0 be a point of S0 = S \ CS and consider the
exponential map expS : S0 ×R → G defined by (17). Then, by Corollary 3.3, there
is an open subset U0 of S0 := S \CS containing p0, such that expS : U0×]− ǫ, ǫ[→ G

is a C
k−1 diffeomorphism for some ǫ > 0. Let now W0 := expS (U0×]− ǫ, ǫ[) and let

Ψ = (ΨS, t) be the inverse of expS. We need the following:

Lemma 4.1. There exist an open set U00 ⊂ U0 and ǫ0 in ]0, ǫ[ such that p0
belongs to U00 and, if q belongs to W00 = expS(U00×]− ǫ0, ǫ0[), then it turns out that
t(q) = δs(q) is the signed distance from q to S, which is realized by ±δ(q,ΨS(q)).

In rough terms, one can shrink W0 (in a controlled way) to a smaller set W00 in
which t(y) = δs(y), whenever y ∈ W00.

Proof of Lemma 4.1. Without loss of generality, we consider points q on the
“positive” side of S, where δ(q) = δs(q) (and obviously, we can assume that W0 =
expS(U0×]0, ǫ[). We begin by showing that if p 6= ΨS(q) lies in U0, then d(q, p) >
δ(q) := inf{d(q, r) : r ∈ S}. We argue by contradiction. Suppose d(q, p) = δ(q) ≤
d(q,ΨS(q)). Now we would like to apply Gauss’ Lemma to the CC-sphere S(q, d(q, p))
at the point p, but we do not know a priori that the CC-sphere is smooth at p.

Let γ be a length-minimizing geodesic from q to p and let q′ be a point on γ,
with q′ 6= q and q′ 6= p. Consider the CC-sphere S(q′, d(q′, p)).

By the triangle inequality, S(q′, d(q′, p)) is contained inside the closure of the ball
B(q, δ(q)) and it touches S(q, δ(q)) at p. Now, the arc of the geodesic γ from q′ to p,
can be extended beyond p to a length-minimizing geodesic γ̃ from q′ to p′, where p′ is
not a point of γ. Our assumption on the group G implies that the CC-distance from
q′, that is d(q′, ·) (or G ∋ r 7→ d(q′, r)), is of class C2 on an open neighborhood of γ̃.
Differentiating with respect to the variable t both sides of the identity t = d(q′, γ(t)),
we get grad d(γ(t)) 6= 0. We can then apply the Implicit Function Theorem to the
function d(q′, ·) and obtain that S(q′, d(q′, p)) is smooth at p.

Theorem 1.2 can now be applied to the CC-sphere S(q′, d(q′, p)). The geodesic γ
is determined by the values at p of νS(q′ ,d(q′,p))

H and ̟S(q′,d(q′,p)) (where we have made
explicit the dependence of the vectors ν

H
and ̟ on the hypersurface). In turn,

the values of these parameters only depend on the tangent space TpS(q
′, d(q′, p)) to

S(q′, d(q′, p)) at p.
On the other hand, note that TpS(q

′, d(q′, p)) = TpS, because S(q′, d(q′, p)) is on
one side of S, and it is smooth. Since the map expS at p only depends on TpS, we
have that q = expS(p, d(p, q)).

Recall that exp−1
S (q) = (ΨS(q), t(q)). Then we have

expS(p, d(p, q)) = q = expS(ΨS(q), d(q, t(q)),

which contradicts the fact that expS is diffeomorphic, hence injective, on U0×]−ǫ, ǫ[.
The rest of the argument is purely metric, and it involves no notion of differential
geometry.

It might still be possible that there is some p in S0 \ U0 such that

d(q, p) = δ(q) < d(q,ΨS(q)).

In such a case, the CC-ball B(q, d(q,ΨS(q))) having center q and radius d(q,ΨS(q))
contains p in its interior and so its boundary S(q, d(q,ΨS(q))) touches U0 at ΨS(q)
only, by the previous case. Let now q1 be a point on the geodesic γ, which joins q and
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ΨS(q), and consider the metric ball B(q1, d(q1,ΨS(q1))). By the triangle inequality,

B(q1, d(q1,ΨS(q1))) ⊂ B(q, d(q,ΨS(q)))

and the two balls touch at ΨS(q1) = ΨS(q).
Next, we show that, if the number ǫ′ = d(q1,ΨS(q1)) is small enough, then we have

that B(q1, d(q1,ΨS(q1))) is contained in W0; hence, it follows that d(q1,ΨS(q1)) = ǫ′ =
δ(q1). To this aim, let

δ := inf{d(ΨS(q1), r) : r ∈ ∂W0 \ U0} > 0

and let ǫ′ < δ/2. Furthermore, let z be a point in G \W0, z 6= ΨS(q1). Consider a
geodesic σ which minimizes the distance between z and q1.

Two cases might occur:

(A) σ intersects U0 at a point p2. Then,

d(z, q1) ≥ d(p2, q1) ≥ d(p2, q)− d(q1, q)

> d(ΨS(q1), q)− d(q, q1)

the strict inequality having been proved before,

= d(ΨS(q1), q1)

because q, q1,ΨS(q) = ΨS(q) belong to

the same length-minimizing geodesic σ

= ǫ′,

so that z /∈ B(q1, ǫ
′).

(B) σ intersects ∂W0 \ U0 at a point p3. Then,

d(z, q1) ≥ d(p3, q1) ≥ d(p3,ΨS(q1))− d(ΨS(q1), q1) ≥ δ − ǫ′ > ǫ′,

hence z /∈ B(q1, ǫ
′).

In particular, as a consequence of the previous argument, we have shown that if
w ∈ B(q1, ǫ

′), then any geodesic joining w and q1 does not cross ∂W0, hence that
B(q1, ǫ

′) ⊂ W0.
To finish the lemma, we have to make the choice of ǫ′ quantitative. Let U00 be

an open set containing p0, and compactly contained in U0, such that

η := inf{d(z, w) : z ∈ U00, w ∈ ∂W0 \ U0} > 0,

and let ǫ0 := η/2. For points q in U00×] − ǫ0, ǫ0[ note that our previous argument
works and this achieves the proof of Lemma 4.1. �

Roughly speaking, Theorem 1.1 follows from the usual Inverse Function Theorem,
applied to the inverse of expS. More precisely, Corollary 3.3 and Lemma 4.1 together
imply that every open set U0 compactly contained in S0, has an open neighborhood
U := expS(U0×] − ǫ0, ǫ0[) ⊂ G satisfying the unique nearest point property (with
respect to the CC-distance d), that is, for every x ∈ U there exists a unique point
y ∈ U0 ⊂ S0 such that δ(x) = d(x, y). By using the previous notation, one has
Ψ(x) = (y, t), where y = ΨS(x) and t(x) = δs(x) = ±d(x, y).

Thus, let X ∈ X(G) be a smooth vector field on G. Set y := ΨS(x), where ΨS(x)
denotes the projection along U0 ⊂ S0 of x ∈ U := Φ(U0×] − ǫ0, ǫ0[). With no loss of
generality, we can assume that x ∈ B(x0, r)

+ ∪ (U0 ∩B(x0, r)), where x0 ∈ U0 and r



Regularity of the distance function to smooth hypersurfaces in some two-step Carnot groups 355

is sufficiently small. We have

〈grad δs(x), X〉 = 〈grad δ(x), X〉
= 〈gradx d(x,ΨS(x)), X〉

=

〈
(gradx d(x, y))

∣∣∣
y=ΨS(x)

, X

〉

+

〈
[JxΨS(x)]X,

(
grady d(x, y)

) ∣∣∣
y=ΨS(x)

〉
.

(19)

Let νS(x,t) be the Riemannian unit outward normal to the CC-sphere S(x, t) at any
smooth point y ∈ S(x, t). Below we shall set

Nx,t(y) :=
νS(x,t)(y)

|PH (νS(x,t)(y))| .

By our Gauss’ Lemma (see Theorem 1.2), we immediately get that

gradx d(x, y) = Ny,t(x), grady d(x, y) = Nx,t(y).

Applying Gauss’ Lemma and recalling the explicit form of normal geodesics in 2-step
Carnot groups yields

Ny,t(x) =
(
e−CH (̟(y))tν

H
(y), ̟(y)

)
.

Notice that Ny,t is of class C
k−1 as well as N = (ν

H
, ̟). Furthermore, Nx,t(y) =

±N (y), where the sign only depends on the given orientation of S. By the previous
discussion and (19) we get that

〈grad δ(x), X〉 =
〈
NΨS(x),t(x), X

〉
+ 〈[JxΨS(x)]X,Nx,t(ΨS(x))〉 .

Since [JxΨS(x)]X ∈ TΨS(x)S, by using the fact that Nx,t(ΨS(x)) is normal to S at
ΨS(x) one gets 〈[

JxΨS(x)
]
X,Nx,t(ΨS(x))

〉
= 0.

Thus, we have 〈grad δ(x), X〉 =
〈
NΨS(x),t(x), X

〉
and, by the arbitrariness of X ∈

X(G), it follows that grad δ is of class C
k−1 on U \ U0. Hence δ is of class C

k on
B(x0, r)

+ ∪ (U0 ∩ B(x0, r)) and hence on U , as desired. �
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