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Abstract. We investigate properties of quasihyperbolic balls and geodesics in Euclidean and
Banach spaces. Our main result is that in uniformly smooth Banach spaces a quasihyperbolic ball
of a convex domain is C1-smooth. The question about the smoothness of quasihyperbolic balls is
old, originating back to the discussions of Gehring and Vuorinen in 1970’s. To our belief, the result
is new also in the Euclidean setting. We also address some other issues involving the smoothness
of quasihyperbolic balls. We introduce an interesting application of quasihyperbolic metrics to
equivalent renormings of Banach spaces. Several examples and illustrations are provided.

1. Introduction

The quasihyperbolic metric in Rn is a natural generalization of the hyperbolic
metric, introduced by Gehring [7, 8] and his students Palka and Osgood in 1970’s as
a tool for studying quasiconformal mappings. Since its introduction, this metric has
found numerous applications in the geometric function theory [10, 21]. Furthermore,
quasihyperbolic metric can be studied in more general settings than Rn, such as
Banach spaces and even in general metric spaces. It has particular significance in
the infinite dimensional settings, where many traditional tools, such as the conformal
modulus, cannot be used. This approach to geometric function theory was developed
by Väisälä in a series of papers. This theory is called “the free quasiworld” according
to Väisälä (see [19], and references therein). Introductory discussion and motivations
for the study of this topic are presented in detail in the survey article [13].

In this paper, we continue our investigation of the properties of this metric in
Euclidean and Banach spaces, see [11, 12, 16, 17]. We will settle a long-standing
problem of whether quasihyperbolic balls of a convex domain on a uniformly smooth
Banach space are smooth (see Remark 2.9). Our smoothness considerations yield as
a byproduct a new renorming technique of Banach spaces as well. In fact, it turns
out that the quasihyperbolic metric is differentiable in a large dense set of points if
the Banach space in question satisfies some modest regularity assumptions, e.g., it is
separable or has a separable dual, see Theorem 2.4. This approach is made possible
by the fact that the underlying Banach space geometry is conveyed to the geometric
properties of the quasihyperbolic metric. Thus we have access to the functional
analysis machinery in studying the properties of the quasihyperbolic metric. This
includes topics such as the convexity of balls and smoothness of geodesics, and an
approach to analyzing these matters was developed in our earlier papers [16, 17].
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The smoothness of quasihyperbolic balls has been investigated in [14] in the setting
of Hilbert spaces.

This paper is organized as follows. Shortly, in Section 1.1, we explain the jus-
tification for the quasihyperbolic metric. After that we provide the main references
and some more required definitions. In Section 2 we prove our main result involv-
ing the C1-smoothness of the quasihyperbolic metric. As mentioned above, we also
prove that under rather weak assumptions on the Banach space the metric is dif-
ferentiable in a dense large set of points. Also, some results related to smoothness
of the inner metrics are given in a purely metric setting. Then, in Section 3, we
discuss a promising and unexpected connection between geometric function theory
and functional analysis, namely using the quasihyperbolic metric to construct Ba-
nach space renormings. Finally, we give some counterexamples in Hilbertian and
Euclidian spaces.

1.1. Geometric motivation of the quasihyperbolic metric. Suppose that
X is a Banach space and Ω ⊂ X is a domain with non-empty boundary. Denote
by d(x, ∂Ω) the distance of the point x ∈ Ω from the boundary of Ω. Then the
quasihyperbolic (QH) metric on the domain Ω is defined by the formula

(1.1) kΩ(x, y) = inf
γ

ˆ
γ

‖dz‖
d(z, ∂Ω)

,

where the infimum is taken over all rectifiable curves γ in Ω connecting the points
x, y in Ω. If the infimum is attained for some rectifiable curve γ, this curve is called
a quasihyperbolic geodesic.

The formula (1.1) has several important special cases. For X = Rn, n ≥ 2 and
Ω = Hn = {x ∈ Rn : xn > 0}, i.e., the upper half-space, we obtain the well-known
hyperbolic metric ρ (see [1]), also known as the Poincaré metric. The hyperbolic
metric can also be developed in the unit disk B2 by using the formula

ρB2(x, y) = inf
γ

ˆ
γ

2|dz|
1− |z|2

, x, y ∈ B2,

where the infimum is taken over all regular curves γ connecting x and y. This metric
is conformally invariant in the following sense. Suppose that w = f(z) is a conformal
mapping of the unit disk onto itself. Then, by Pick’s lemma, we have the identity∣∣∣∣dwdz

∣∣∣∣ =
1− |w|2

1− |z|2
, or

|dw|
1− |w|2

=
|dz|

1− |z|2
.

This means that, for any regular curve γ in the unit disk, we haveˆ
f◦γ

|dw|
1− |w|2

=

ˆ
γ

|dz|
1− |z|2

.

Note that the denominators above are asymptotically equivalent to that in (1.1).
By using conformal invariance, the hyperbolic metric can be studied for other

simply connected domains in the plane, and in the case of the half-plane it coincides
with the metric defined by (1.1). But even in Rn, the hyperbolic metric cannot be
defined for domains other than half-spaces and balls for n ≥ 3. The method based
on conformal invariance does not apply to general Banach spaces.

In general, the quasihyperbolic metric is not conformally invariant, but it be-
haves well under conformal and even quasiconformal mappings. This fact is of par-
ticular importance in infinite dimensional spaces, where many convenient tools for
studying quasiconformal mappings, such as local compactness and measure, are not
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available. Besides quasiconformal mappings, the quasihyperbolic metric has recently
found novel and interesting applications in other fields of geometric analysis as well.

From basic analysis of the hyperbolic disk and conformal invariance, it imme-
diately follows that the hyperbolic geodesics originating from the point x ∈ Ω are
always orthogonal to the surfaces of hyperbolic balls centered at x (see Figure 1). It
is not obvious that a similar property holds for the quasihyperbolic metric. This very
useful connection between quasihyperbolic geodesics and balls will be established in
Theorem 2.10, and then exploited to obtain further results on quasihyperbolic balls.
We refer to the book of Vuorinen [21] for the basic properties of the quasihyperbolic
metric inRn, and the comprehensive survey article of Väisälä [19] for the basic results
in Banach spaces.

Figure 1. A geodesic radius in the hyperbolic disk.

1.2. Preliminaries. We refer to [1, 2, 3, 10, 21, 19] for background information.
Many of the arguments here are written concisely, using reasoning similar to that in
[16] and [17]. By a domain Ω ⊂ X of a Banach space we mean an open path-
connected subset with a non-empty boundary ∂Ω. We denote by B(x0, r) closed
balls (resp. by U(x0, r) open balls) with center x0 and radius r in a metric space
and by S(x0, r) = ∂B(x0, r) the corresponding spheres. The symmetric Hausdorff
distance between subsets of a metric space is denoted by dH .

We assume throughout that all Banach spaces considered have the Radon–Niko-
dym Property (RNP) which can be formulated as follows: Each Lipschitz path
γ : [0, 1] → X is a.e. differentiable and the path can be recovered by Bochner in-
tegrating its derivative,

γ(t) = γ(0) +

ˆ t

0

γ′(s) ds, t ∈ [0, 1],

see [4]. Recall that the uniform smoothness of a Banach spaces X is defined by the
following condition on ‖ · ‖ norm:

µ(X,‖·‖)(τ) = sup{(‖y + h‖+ ‖y − h‖)/2− 1, y, h ∈ X, ‖y‖ = 1, ‖h‖ = τ},

lim
τ→0+

µ(X,‖·‖)(τ)

τ
= 0.

We will frequently use the fact that in bounded subdomains D ⊂ Ω uniformly
separated from the boundary ∂Ω the quasihyperbolic metric is equivalent to the
metric induced by the norm, see also the proof of Theorem 2.7.

2. On smoothness of quasihyperbolic balls in infinite-dimensional setting

Let us consider a convex domain Ω in a Banach space. It follows from the
arguments provided by Väisälä and Martio in [15] that there exists a quasihyperbolic



442 Riku Klén, Antti Rasila and Jarno Talponen

geodesic between any two points in a convex domain of a locally weak-star compact
(e.g., reflexive) space.

Let us consider paths as elements in C([0, 1],X), the space of continuous func-
tions [0, 1] → X with the sup-norm, which is a Banach space. We will consider
rectifiable paths with finite quasihyperbolic length parametrized by their quasihy-
perbolic length, i.e., having constant speed.

We will study the following type (multi)map: Λ(x, y) 7→ {γ} which assigns to
each endpoints all the corresponding quasihyperbolic geodesics.

Proposition 2.1. In a reflexive, strictly convex Banach space with convex do-
main Ω the mapping Λ is well-defined and single-valued, Ω× Ω→ C([0, 1],X).

Proof. Indeed, under the assumption the geodesics exist and are unique, see
[16]. �

Lemma 2.2. The path length functional

`kγ =

ˆ
γ

‖γ′(t)‖
d(γ(t), ∂Ω)

dt

is convex.

Proof. Take the point-wise weighted average of two rectifiable paths γ0 and γ1,
γs(t) := (1− s)γ0(t) + sγ1(t), s ∈ [0, 1]. Then

`kγs ≤ (1− s)`kγ0 + s`kγ1.

This follows from the inequality

(2.3)
‖((1− s)γ0 + sγ1)′‖
d((1− s)γ0 + sγ1, ∂Ω)

≤ (1− s)‖γ′0‖
d(γ0, ∂Ω)

+
s‖γ′1‖

d(γ1, ∂Ω)
,

see [16, (4.6)]. �

Suppose next that X is an Asplund space. This is a weaker condition than reflex-
ivity and is dual to the RNP condition of a Banach space. The Asplund property has
the following equivalent formulation: Each continuous convex function f : X→ R is
Fréchet differentiable in a generic set, i.e., a dense Gδ subset.

Theorem 2.4. Suppose that X is an Asplund space and Ω ⊂ X is a convex
domain. Then the quasihyperbolic metric k(x, y) is Fréchet smooth in a generic
subset of Ω × Ω. If we fix one coordinate, kx0(y) := k(x0, y) is Fréchet smooth in a
generic subset of Ω.

Proof. In the case with a strictly convex reflexive space the function

k(x, y) = `kΛ(x, y)

is convex by the above Proposition 2.1 and Lemma 2.2. Indeed, if γ0 (resp. γ1) is a
geodesic connecting x0 to y0 (resp. x1 to y1), then

k((1− s)x0 + sx1, (1− s)y0 + sy1) ≤ `k(γs)

≤ (1− s)`k(γ0) + s`k(γ1) = (1− s)k(x0, y0) + sk(x1, y1).

It is easy to see that k is Lipschitz on domains uniformly separated from the boundary
∂Ω. Thus Asplund property applies.

In the non-strictly convex, non-reflexive case we still have the convexity of k.
The statement of the theorem can then be seen for example by approximation with
quasigeodesics in place of Λ(x, y).
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The latter part of the statement is seen in a similar fashion. �

Remark 2.5. The above statement also holds if Asplund condition is replaced
by separability and Fréchet differentiability by Gâteaux differentiability. Indeed, it
is known that separable Banach spaces are weak Asplund spaces (where the formu-
lation runs analogously where Gâteaux differentiability appears in place of Fréchet
differentiability).

Theorem 2.6. If Ω is convex and the norm of X is uniformly convex, then the
mapping (Λ)′ : Ω2 → L1(X), (x, y) 7→ γ′, is ‖ · ‖X⊕X-‖ · ‖L1(X)-continuous.

Sketch of proof. Let xn → x, yn → y in norm in Ω. Then the convergences
hold in the quasihyperbolic metric as well by the local bi-Lipschitz equivalence of the
metrics.

According to the above observations there are unique geodesics γn and γ be
geodesics connecting xn to yn and x to y, respectively. Assume further that these
are parameterized by constant quasihyperbolic path length growth. Analyze the
quasihyperbolic length of the averages 1

2
(γ + γn). It turns out by using the modulus

of convexity on (2.3) that ‖γ′ − γ′n‖ → 0 in measure as n → ∞. Indeed, otherwise
lim infn→∞ `k(

1
2
(γ + γn)) < `k(γ) stating that

lim inf
n→∞

k
(x+ xn

2
,
y + yn

2

)
< k(x, y),

which is impossible. Since these derivatives are essentially bounded according to the
parametrization of the paths, we obtainˆ 1

0

‖(γ − γn)′(t)‖ dt→ 0 as n→∞. �

Theorem 2.7. Let X be a uniformly smooth Banach space and let Ω ⊂ X be a
convex domain. Then the quasihyperbolic balls are smooth in the sense that k(x0, ·),
x0 ∈ Ω, is continuously Fréchet differentiable away from x0.

Proof. Let B be a quasihyperbolic ball as above. Observe that there is a radius
ε > 0 such that ‖ · ‖ and k0(·) := k(x0, ·) are bi-Lipschitz equivalent in

(∂B)ε = {x ∈ Ω: d(x, ∂B) < ε}.
This is due to the fact that on Bε the weight 1

d(x,∂Ω)
is bounded. This in turn is based

on the observation that ˆ T

0

dt

L(t)
=∞,

for any 1-Lipschitz mapping L with L(t)→ 0 as t↗ T . Here T represents the norm
length of a rectifiable path and L represents d(γ(t), ∂Ω).

Let us verify that k0 is indeed Fréchet differentiable away from the origin. To-
wards this, let γ : [0, `]→ Ω be a quasihyperbolic geodesic joining two points γ(0) =
x0, γ(`) ∈ B and parameterized by the norm path length. By thinking of B as a
closure of incremental sequence of quasihyperbolic balls it is easy to see that γ is
fully contained in B.

We wish to show that

(2.8)
1

‖h‖
(k(γ(0), γ(`) + h) + k(γ(0), γ(`)− h)− 2k(γ(0), γ(`)))→ 0

as ‖h‖ → 0 uniformly, not depending on the particular endpoints or length `. How-
ever, we will assume that ` is uniformly bounded away from zero.
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Fix h such that γ(`)± h ∈ Ω. Write t =
√
‖h‖. Define new paths γ+ and γ− as

follows: on the segment [0, `− t] they coincide with γ and

γ±(`− t+ s) = γ(`− t+ s)± s2 h

‖h‖
for 0 ≤ s ≤ t.

Note that this definition is not sensible if ` is allowed to have values smaller than t.
The asymptotics of (2.8) can be estimated by studying the sum of the lengths of γ±.
We are only required to study the behavior at parameter values on [`− t, `].

Note that we may write µ‖·‖(τ) = τε(τ) where ε(τ)↘ 0 as τ → 0. Write

d∗ = sup
y∈Bε

∣∣∣∣ ddt 1

t

∣∣∣
t=d(y,∂Ω)

∣∣∣∣ .
Recall that ‖γ′‖ = 1 a.e., by the parameterization. Note that

‖(γ±(`− t+ s)− γ(`− t+ s))′‖ =
∥∥∥± d

ds
s2 h

‖h‖

∥∥∥ = 2s.

Thus by using the definition of the modulus of smoothness we obtain that∑
±

‖γ′±(`− t+ s)‖ ≤ 2(1 + µ‖·‖(2s)).

Also note that
1

d(γ±(`− t+ s), ∂Ω)
≤ 1

d(γ(`− t+ s), ∂Ω)
+ s2d∗

by the mean value principle. We obtain that

k(γ(0), γ(`) + h) + k(γ(0), γ(`)− h)− 2k(γ(0), γ(`))

≤ `QH(γ+) + `QH(γ−)− 2`QH(γ) =

ˆ t

s=0

‖γ′+(`− t+ s)‖
d(γ+(`− t+ s), ∂Ω)

ds

+

ˆ t

s=0

‖γ′−(`− t+ s)‖
d(γ−(`− t+ s), ∂Ω)

ds− 2

ˆ t

0

ds

d(γ(`− t+ s), ∂Ω)

≤
ˆ t

s=0

2(1 + µ‖·‖(2s))

(
1

d(γ(`− t+ s), ∂Ω)
+ s2d∗

)
ds− 2

ˆ t

0

ds

d(γ(`− t+ s), ∂Ω)
.

We claim that the bottom value converges to 0 faster than t2 → 0. Since s2 ≤ t2 → 0
we are only required to investigate the term involving µ‖·‖.

Note that since y 7→ 1
d(y,∂Ω)

is Lipschitz on B (see the proof of Theorem 2.7),
there is small enough T (or ‖h‖) such that

1/d(γ(`− t+ s), ∂Ω) ≤ 2/d(γ(`), ∂Ω) for t ≤ T.

Let us estimate
1

t2

ˆ t

0

2µ‖·‖(2s)

(
1

d(γ(`− t+ s), ∂Ω)
+ s2d∗

)
ds

≤ 1

t2

ˆ t

0

4sε(2s)

(
2

d(γ(`), ∂Ω)
+ s2d∗

)
ds ≤ 1

t2

∣∣∣∣∣
t

s=0

ε(2t)

(
4s2

d(γ(`), ∂Ω)
+ s4d∗

)
= ε(2t)

(
4

d(γ(`), ∂Ω)
+ t2d∗

)
→ 0, t→ 0.
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In fact, we observe by going through the calculations that if p, r ∈ [1, 2), r ≤
(p+ 1)/2, r < 3/2 and µ‖·‖(τ) = τ pε(τ) where ε(τ)↘ 0 as τ → 0, then we have

1

‖h‖r
(k(x0, x+ h) + k(x0, x− h)− 2k(x0, x))→ 0

as ‖h‖ → 0 uniformly in any annulus whose distance to x0 and ∂Ω is strictly positive.
In particular, for p = r = 1 this states that uniform smoothness of the norm implies
Fréchet differentiability of the function k0(·) in open annuli (∂B)ε as above, since
the convergence is uniform in ‖h‖. In fact, since the convergence is uniform both
in x and ‖h‖ we have uniform Fréchet differentiability, see [3, pp. 242, 289]. This
means that taking the Fréchet derivative x 7→ (k0)′(x) is a uniformly continuous map
U → X∗ for any open convex U ⊂ Ω uniformly separated from the x0 and ∂Ω. �

Remark 2.9. The question of smoothness of quasihyperbolic balls has been
studied at least since 1979, when it was asked by Vuorinen from Gehring. In an
unpublished note [6], Gehring proposed that quasihyperbolic balls Bk(0, r), r > 0, in
the two-dimensional domain D = {z = (z1, z2) ∈ R2 : −1 < z2 < 1} are not smooth.
The above result shows that this is not a valid counterexample. See also [22].

If the domain is symmetric and centered at the origin and the ball is centered as
well, then it is ‘uniformly smooth’ in the sense that it induces a uniformly smooth
norm by the Minkowski functional. This condition is considerably stronger than mere
C1-smoothness.

The following result can be viewed as a kind of metric orthogonality between
the quasihyperbolic spheres and the quasihyperbolic geodesics emanated from the
quasihyperbolic center of these spheres.

Theorem 2.10. Let Ω be a domain as above and x0, x ∈ Ω. Suppose that
γ : [0, 1] → Ω is a quasihyperbolic geodesic and r = k(x0, x), γ(0) = x0, γ(1) = x.
Then

lim
t→1−

d‖·‖(γ(t),Sk(x0, r))

‖γ(t)− γ(1)‖
= 1.

In the above limit one may also replace ‖x− y‖ by k(x, y).

The above statement holds similarly in a path-connected geodesic metric space
(X, d) with a continuous weight and such that `d(γ|[t,1])

d(γ(t),γ(1))
→ 1 as t → 1− for any

geodesic γ : [0, 1] → X. Surprisingly, the above orthogonality is mainly setting-free,
it only depends on the conformality of the inner metric.

Proof. We will prove the case with a general strictly positive continuous weight
function w in place of 1/d(x, ∂Ω) and a domain Ω of a Banach space. We first observe
that

lim sup
t→1−

d‖·‖(γ(t),Sw(x0, r))

‖γ(t)− γ(1)‖
≤ 1.

Thus it suffices to check that

lim inf
t→1−

d‖·‖(γ(t),Sw(x0, r))

‖γ(t)− γ(1)‖
≥ 1.

Let
wt = inf{w(x) : ‖x− γ(1)‖ ≤ 3‖γ(t)− γ(1)‖}

and
wt = sup{w(x) : ‖x− γ(1)‖ ≤ 3‖γ(t)− γ(1)‖}.
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Note that
lim
t→1−

wt = lim
t→1−

wt = w(γ(1)).

Choose t < 1 such that
ws
ws

>
1

2
, s ∈ (t, 1)

and there is r > 0 satisfying

γ(s) ∈ B‖·‖(γ(1), r) ⊂ B‖·‖(γ(1), 3r) ⊂ Ω, s ∈ (t, 1).

Assume that λ is a rectifiable path starting from γ(t) and ending in γ(1). First
suppose that λ is not included in the following set:

(2.11) D =
{
x ∈ Ω: ‖x− γ(1)‖ ≤ 3‖γ(t)− γ(1)‖

}
.

This means that

`w(λ) ≥ 3wt‖γ(t)−γ(1)‖ > 2wt‖γ(t)−γ(1)‖ > wt‖γ(t)−γ(1)‖ ≥ dw(γ(t),Sw(x0, r)).

It follows that `w(λ) > 3
2
`w(γ|[t,1]). Therefore in studying w-short paths λ between

γ(t) and the set Sw(x0, r) we may restrict to the case where the paths are included
in the above set D in (2.11).

Fix yt ∈ Sw(x0, r)∩D. Suppose without loss of generality that λ(t) is a w-geodesic
between γ(t) and yt. Indeed, if there does not exist a geodesic between the given
points then we may pass on to an approximating sequence of paths λn and the rest
of the argument does not change considerably.

Note that
`‖·‖(γ|[t,1])wt ≤ `‖·‖(λ

(t))wt.

Thus
wt
wt
≤

`‖·‖(λ
(t))

`‖·‖(γ|[t,1])

where the left hand side tends to 1 as t→ 1.
To estimate the right hand side we observe similarly as above that

‖γ(t)− γ(1))‖ ≤ `‖·‖(γ|[t,1]) ≤
wt
wt
‖γ(t)− γ(1))‖

and an analogous statement holds for λ(t) also. Thus we obtain

1 ≤ lim inf
t→1−

`‖·‖(λ
(t))

`‖·‖(γ|[t,1])
= lim inf

t→1−

‖γ(t)− yt‖
‖γ(t)− γ(1)‖

.

This yields the claim since the selections of the points yt were arbitrary. �

The following result says that a quasihyperbolic ball does not have cusps.

Theorem 2.12. For a proper subdomain Ω of X, radius r > 0 and y ∈ ∂Bk(x, r),
let γ be a quasihyperbolic geodesic joining x and y. For z ∈ γ we have

B‖·‖

(
z,
|z − y|
1 + u

)
⊂ Bk(x, r),

where u = |z − y|/d(z, ∂Ω).

The proof follows verbatim the proof of Theorem 2.8 in [11] and is reproduced
here for the sake of convenience.

Proof. By the choice of z we have

r = k(x, y) = k(x, z) + k(z, y)
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and by the triangle inequality for w ∈ Bk

(
z, k(z, y)

)
we have

k(x,w) ≤ k(x, z) + k(z, w) < r.

Now
Bk

(
z, k(z, y)

)
⊂ Bk(x, r).

Next we will apply some known estimates involving the quasihyperbolic metric.
These have been proven in the Euclidean setting, see [21], but since the proofs do
not depend on the particular choice of the norm, we may use them in Ω as well.

We have
B‖·‖

(
z,
(
1− e−kG(z,y)

)
d(z, ∂Ω)

)
⊂ Bk

(
z, k(z, y)

)
,

and thus
B‖·‖

(
z,
(
1− e−k(z,y)

)
d(z, ∂Ω)

)
⊂ Bk(x, r).

It holds that k(z, y) ≥ log(1 + |z − y|/d(z, ∂Ω)), and therefore(
1− e−k(z,y)

)
d(z, ∂Ω) ≥

(
1− d(z, ∂Ω)

d(z, ∂Ω) + |z − y|

)
d(z, ∂Ω) =

|z − y|
1 + u

for u = |z − y|/d(z, ∂Ω). Now

B‖·‖

(
z,
|z − y|
1 + u

)
⊂ B‖·‖

(
z,
(
1− e−k(z,y)

)
d(z, ∂Ω)

)
,

and the claim follows. �

3. Quasihyperbolic metric as a renorming technique

Proposition 3.1. Let Ω ⊂ X be domain which is a convex, bounded and
symmetric (invariant under multiplication by −1). Then any quasihyperbolic ball
B = Bk(0, r), r > 0, defines an equivalent norm in X by the Minkowski functional

M(x) := inf{λ > 0: x ∈ λB}.
Proof. It is easy to see that under the assumptions each centered open quasihy-

perbolic ball B is a norm-open, bounded and symmetric subset. Moreover, it follows
from the considerations in [16] that B is convex. It is well-known that in such a case
the Minkowski functional M(x) defines an equivalent norm in X. �

The smoothness properties of this equivalent norm encode essentially all the rele-
vant smoothness information involving the quasihyperbolic ball. Thus, one may also
apply the well-matured Banach space theory to approach the problem of smooth-
ness of the balls. Note that the above norm is different for different radii of the
quasihyperbolic ball.

One of the problems in the theory of renormings of Banach spaces (see [2]) is the
approximation of the norm of the space by other norms uniformly on bounded sets
such that the approximating norm satisfy some nice properties. This task, of course,
is sensible only if the space admits an equivalent norm with the given properties
in the first place. In most cases the non-separability of the Banach space somewhat
complicates the constructions of the nice equivalent norms and in some cases it is not
clear how the constructions extend from the separable to the non-separable setting
(see, e.g., [9]).

Above we showed how to induce a norm by a Minkowski functional using a
centered quasihyperbolic balls on a convex, bounded and symmetric domain. Thus
the domain Ω is essentially an open unit ball given by an equivalent norm ||| · |||,
i.e., Ω = U|||·|||. However, it is easy to see that if we let the quasihyperbolic radius



448 Riku Klén, Antti Rasila and Jarno Talponen

tend to infinity, then the corresponding quasihyperbolic sphere ∂Bk(0, r) converges
to the sphere S|||·||| in the sense of symmetric Hausdorff distance (taken with respect
to any of the equivalent metrics), see the proof of Theorem 2.7. This means that the
norms ‖x‖(r) := MBk(0,r)(x) induced by the quasihyperbolic balls approximate ||| · |||
uniformly on bounded sets.

This approach has two convenient features. First, as we have seen here, the
approximation part comes for free, only thing that is left to do is to analyze the
quasihyperbolic balls regarding the favorable property. Secondly, the analysis of the
quasihyperbolic balls is usually not sensitive to whether or not the space is separable.
Also, the way the quasihyperbolic inner metric is defined appears to have a mildly
smoothening effect on the resulting norms, per se.

Theorem 3.2. Suppose that (X, ‖·‖) is a uniformly smooth Banach space. Then
each equivalent norm can be approximated uniformly on bounded sets by uniformly
smooth norms induced by the quasihyperbolic balls, similarly as in Proposition 3.1.
Moreover, if the modulus of smoothness of the norm ‖ · ‖ has power type 1 < p ≤ 2,
then the approximating norms have all the power types <(p+ 1)/2.

Sketch of proof. Let Bn = Bk(0, n). By the proof of Theorem 2.7 we know that
k is continuously Fréchet differentiable on domains (∂Bn)ε with suitable ε > 0.

Now, since ∂Bn is the level set of a continuously Fréchet differentiable function,
a standard argument employing the Implicit Function Theorem gives that the norm
||| · |||n:= MBn(·) is also continuously Fréchet differentiable, see [2, pp. 163–168]. In
fact, in estimating from above the modulus of smoothness of the MBn(·) norms, we
may restrict by geometric considerations to a version of the modulus as follows:

µn(τ) = sup

{
|||y + h|||n + |||y − h|||n

2
− 1:

|||y + h|||n, |||y − h|||n ≥ |||y|||n = 1, ‖h‖ = τ

}
.

By the triangle inequality we obtain that

|||y ± h|||n − 1 ≤ |||y ± h|||1 − |||y|||1 ≤ Cd‖·‖(y ± h, ∂Bn), y ∈ ∂Bn

where C is the isomorphism constant involving the equivalent norms ‖ · ‖ and ||| · |||1.
Suppose that |||y ± h|||n ≥ 1. Then

k0(y ± h) ≥ k0(y) + d‖·‖(y ± h, ∂Bn) inf{1/d(x, ∂Ω): x ∈ ∂Bn}

by the definition of the k metric. Thus, for large n the above infimum becomes larger
than C, so that for large enough n we have

sup

{
|||y + h|||n + |||y − h|||n

2
− 1: |||y + h|||n, |||y − h|||n ≥ |||y|||n = 1, ‖h‖ = τ

}
≤ sup

{
k0(y + h) + k0(y − h)

2
− k0(y) : k0(y + h), k0(y − h) ≥ k0(y), ‖h‖ = τ

}
holds. The latter quantity is controlled in the proof of Theorem 2.7. �

Remark 3.3. The proof of the following remark is based on Banach space ul-
trapowers and is omitted here. Suppose that X is a uniformly convex Banach space,
Ω ⊂ X is a symmetric convex domain and B = Bk(0, r) for some r > 0. Then the
equivalent norm ||| · ||| = MB(·) on X is uniformly convex.
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Moreover, any equivalent norm on X can be approximated uniformly on bounded
sets by uniformly convex norms arising from such quasihyperbolic balls B.

Proposition 3.4. Suppose that X is a strictly convex Banach space with the
RNP. Then each equivalent norm can be approximated uniformly on bounded sets
by strictly convex norms induced by the quasihyperbolic balls, similarly as above.

Proof. The argument is based on the fact that quasihyperbolic balls in a convex
domain of a strictly convex Banach space with the RNP are strictly convex as well,
see [16]. Note that it is not essential here whether Ω is strictly convex or not. �

We do not know if quasihyperbolic balls in symmetric convex domains of reflexive
LUR Banach spaces and centered at the origin induce LUR norms via the Minkowski
functional.

4. Final remarks: Non-geodesic domains

There exists examples of domains in Hilbert spaces, which are not geodesic with
respect to the quasihyperbolic metric. For more details see [18, Example 2.9] and
[19, Remark 3.5]. However, in these examples the complement of the domain is
uncountable. We give an example of a domain that is not geodesic with respect to
the quasihyperbolic metric and the complement of the domain is countable.

Example 4.1. Let

G = `2 \
(
{0} ∪

{
±
√

2

(
1− 1

i

)
ei

}∞
i=2

)
.

There does not exists a quasihyperbolic geodesic from −e1 to e1 in G.

Proof. In G′ = `2 \ {0} the geodesics −e1 y e1 are half circles with center at 0.
Since G′ ⊂ G we have

kG(−e1, e1) ≥ kG′(−e1, e1) = π.

Let γ be a curve joining −e1 to e1. If γ is not a half circle, then

kG(γ) ≥ kG′(γ) > π.

If γ is a half circle, then for some n we have min{d(en, γ), d(−en, γ)} < 1 implying
kG(−γ) > π.

Let us consider γn to be a half circle with center at origin, end points −e1 and
e1 such that for each x = (x1, x2, . . . ) ∈ γn we have

x1 ∈ [−1, 1], 0 = x2 = · · · = xn−1 = xn+2 = · · · , xn = xn+1

for some n ≥ 2. By construction of G we have `k(γn) > `k(γn+1) > π and limn→∞
`k(γn) = π. Thus, there does not exist a quasihyperbolic geodesic. �

5. On uniqueness of geodesics in finite-dimensional domains

Finally, we take this opportunity to address some related finite-dimensional ques-
tions involving the quasihyperbolic metric that arouse during our research.

In the upper half-plane the quasihyperbolic geodesics agree with the hyperbolic
geodesics and are thus unique. However, if a plane domain is not simply connected
the quasihyperbolic geodesics need not be unique. The following results shows that
for any n ≥ 3 there exists a domain and at least two geodesics with exactly n common
points.
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Lemma 5.1. For each n = 2, 3, . . . there exists a domain G ( R2, points x, y ∈
G and quasihyperbolic geodesics γ1 : xy y and γ2 : xy y such that #(γ1 ∩ γ2) = n.

Proof. In the case of n = 2 we can choose G = R2 \ {0}, x = −e1 and y = e1.
Now there exists exactly two geodesics joining x and y, which are half circles, and
we choose them to be γ1 and γ2. We obtain #(γ1∩ γ2) = 2 and the assertion follows.

We assume that n ≥ 3. Let us first construct the domain G. We define rectan-
gular Rn = {z = (z1, z2) ∈ R2 : z1 ∈ (−1, (n− 2)

√
3 + 1), z2 ∈ (−1, 1)} and point set

Pn = {0,
√

3, . . . , (n− 2)
√

3}. Next we define the set

Ln =
{
z ∈ R2 : z2 ≤ −1

2
, z2 ≥ 1

2
, z1 ∈

{√
3

2
,
√

3 +
√

3
2
, . . . , (n− 3)

√
3 +

√
3

2

}}
.

We define
Gn = Rn \ (Pn ∪ Ln) .

Figure 2. The domain G5 = R5 \ (P5 ∪ L5).

We choose x = −1
2
e1 and y = ((n − 2)

√
3 + 1

2
)e1. Finally, we find the geodesics

γ1 and γ2. Let γ1 be the geodesic, which consists of circular arcs and is contained in
the closed upper half-plane {z = (z1, z2) ∈ R2 : z1 ≥ 0, z2 ∈ Rn}, see Figure 3. Then

γ1 ∩ {z = (z1, z2) : z1 = 0} =

{
0,
√

3
2
e1,

3
√

3
2
e1, . . . ,

(2n−5)
√

3
2

e1,

(
(n− 2)

√
3 +

1

2

)
e1

}
.

Figure 3. Geodesic γ1 in the proof of Lemma 5.1.

Let γ2 be the reflection of γ1 across the x1-axis. Now

γ1 ∩ γ2 =

{
0,
√

3
2
e1,

3
√

3
2
e1, . . . ,

(2n−5)
√

3
2

e1,

(
(n− 2)

√
3 +

1

2

)
e1

}
implying #(γ1 ∩ γ2) = n and the assertion follows. �

Remark 5.2. Note that Lemma 5.1 is true for all geodesics γ1 and γ2 joining
the points x and y. There are 2n−1 of such geodesics.

Next we give an example of a strictly starlike domain, which contains arbitrarily
short quasihyperbolic geodesics, which cannot be uniquely prolonged.

Example 5.3. Let us consider the polygon P ⊂ R2 with vertices at (−4, 1),
(−1, 1), (−1, 4), (4, 4), (4,−4), (−1,−4), (−1,−1) and (−4,−1). Let first x =
(−2, 0), y = (−1, 0), z1 = (0, 1) and z2 = (0,−1). Now the quasihyperbolic geodesic
x y y is the Euclidean line segment [x, y] and geodesics x y z1 and x y z2 pass
through point y and contain the geodesic x y y. Thus the geodesic x y y cannot
be uniquely prolonged.
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Figure 4. Polygon P and geodesics in Example 5.3.

Let then x = (−t − 1, 0) for some t ∈ (0, 1). By simple computation we notice
that kP (x, y) = t and similarly as above the geodesic x y y cannot be uniquely
prolonged.

Proposition 5.4. There exists a star-like domain Ω ⊂ Rn, n ≥ 3, such that not
all the quasihyperbolic geodesics are unique. Moreover, this domain can be chosen
in such a way that the function x 7→ 1/d(x, ∂Ω) does not have any local maxima.

Proof. Consider the following domain

Ω =

(xi) ∈ Rn : 0 <

√∑
i<n

|xi|2 < 1, xn ≥
1

2

 ∪ {(xi) ∈ B(1/2, 1) : xn < 1/2} .

Now the geodesics from x = x1/2+xn to y = −x1/2+xn are not unique. Clearly, the
function x 7→ 1/d(x, ∂Ω) does not have any local maxima, and its global maximum
is 1/2. �
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