
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 473–486

THE DIMENSION OF PROJECTIONS OF
SELF-AFFINE SETS AND MEASURES

Kenneth Falconer and Tom Kempton

University of St Andrews, Mathematical Institute
North Haugh, St Andrews, Fife, KY16 9SS, Scotland; kjf@st-andrews.ac.uk

University of St Andrews, Mathematical Institute
North Haugh, St Andrews, Fife, KY16 9SS, Scotland; tmwk@st-andrews.ac.uk

Abstract. Let E be a plane self-affine set defined by affine transformations with linear parts
given by matrices with positive entries. We show that if µ is a Bernoulli measure on E with
dimH µ = dimL µ, where dimH and dimL denote Hausdorff and Lyapunov dimensions, then the
projection of µ in all but at most one direction has Hausdorff dimensionmin{dimH µ, 1}. We transfer
this result to sets and show that many self-affine sets have projections of dimension min{dimH E, 1}
in all but at most one direction.

1. Introduction

Marstrand’s projection theorem states that, given a set E ⊂ Rn, for almost every
m-dimensional linear subspace K of Rm

(1.1) dimH πKE = min{dimH E,m},
where πK denotes orthogonal projection onto K and dimH denotes Hausdorff dimen-
sion, see [6, 17, 18]. The analogous projection theorem for measures, generally proved
using potential theoretic methods, see [16], is that for a finite Borel measure µ on
Rn,
(1.2) dimH πKµ = min{dimH µ,m},
for almost all subspaces K, where the (lower) Hausdorff dimension of a probability
measure is given in terms of dimensions of sets by

dimH ν = inf{dimH U : ν(U) = 1}.
However, these projection theorems are no help in identifying the subspaces K, if
any, for which (1.1) or (1.2) fail. Recently there has been a great deal of interest in
finding the ‘exceptional directions’ for projections of fractals and fractal measures of
various types, especially those with a recursive structure or which are dynamically
generated, see the survey [7] and references therein. In particular, various classes of
measures and sets have been shown to have every projection satisfying (1.1). For
example, for self-similar sets satisfying the open set condition, (1.1) holds for all
subspaces K provided that the group generated by the orthonormal components of
the defining similarities is dense in the orthogonal group O(n), with similar results
for measures, see [8, 19, 13]. On the other hand, if the group is not dense then there
are always some exceptional directions, see [10].

It is natural to ask under what circumstances (1.1) holds for self-affine sets and
(1.2) for self-affine measures (by which we mean Bernoulli measures on self-affine
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sets) in all or virtually all directions. Dimensional analysis in the self-affine case is
more awkward than in the self-similar case, not least because the dimensions of the
sets or measures themselves are not continuous in the defining affine transformations.
Nevertheless, the dimensions of many specific self-affine sets and also of generic self-
affine sets in certain families are now known. In particular, the Hausdorff dimension
dimH E of a self-affine set E ‘often’ equals its affinity dimension dimAE, defined in
(2.2)–(2.3) below, see [5].

Much of the work to date on projections of self-affine sets concerns projections
of plane self-affine carpets, that is where the defining affine maps preserve both
horizontal and vertical axes; see [1, 11] for various examples. Perhaps not surprisingly,
for many carpets (1.1) fails only for projections in the horizontal and/or vertical
directions.

In this paper we consider projections of plane self-affine sets and measures where
the linear parts of the self-affine maps may be represented by matrices with all entries
positive, in other words where the linear parts map the positive quadrant strictly into
itself. We show that in many cases projections onto lines in all directions (in some
cases all but one direction) satisfy (1.1) or (1.2). Many self-affine sets and measures
fit into this context, both in the ‘generic setting’ (provided that the affine maps
are sufficiently contracting), see [4, 22], and for many specific cases including those
presented in [2, 9, 12].

To study projections of a set one normally examines the projections of a suitable
measure on the set. Thus, we first study projections of a Bernoulli measure µ sup-
ported by a self-affine set E. Then µ induces a measure µF , known as a Furstenberg
measure, on the space of line directions. Recent results on the dynamical structure
of self-affine sets [2, 9] imply that the projections of µ are exact dimensional in µF -
almost all directions. Together with lower bounds for the dimension of projections
from [13] involving r-scale entropies we conclude that the dimensions of projections
of measures are well-behaved in all but perhaps one direction. The results on pro-
jections of self-affine sets follow by supporting suitable Bernoulli measures on E.

2. Preliminaries

In this section we introduce the self-affine sets that we consider along with per-
tinent notation. Let A1, · · · , Ak be a collection of 2× 2 matrices of Euclidean norm
less than 1 with strictly positive entries, and let d1, · · · , dk ∈ R2. Then the maps
Ti : R

2 → R2 (i = 1, · · · , k) given by

(2.1) Ti(x) = Ai(x) + di (x ∈ R2)

are affine contractions which form an iterated function system (IFS). By standard
IFS theory, see [6, 14] there exists a unique non-empty compact set E satisfying

E =
k⋃
i=1

Ti(E),

termed a self-affine set.
There is a natural coding on E and its usual iterated construction. Let Λ :=

{1, · · · , k}, let Σ∗ =
⋃∞
n=0 Λn be the space of finite words formed by elements of Λ,

and let Σ = ΛN be the corresponding space of infinite words. Associated with each
a1 · · · an ∈ Σ∗ is the cylinder

[a1 · · · an] = {a1 · · · anbn+1bn+2, · · · : bi ∈ Λ} ⊂ Σ;
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the cylinders form a basis of open and closed sets for the natural topology on Σ.
We abbreviate compositions of the Ti by Ta1···an := Ta1◦· · ·◦Tan for a1 · · · an ∈ Σ∗.

Let D ⊂ R2 be the unit disk so that

Da1···an := Ta1···an(D)

are the ellipses obtained as images of D under compositions of the Ti. By scaling
we may assume that Ti(D) ⊂ D for all i, in which case the self-affine set E may be
written as

E =
∞⋂
n=0

⋃
a1···an

Ta1···an(D).

Let PR1 = (R2 \ 0)/ ∼ be 1-dimensional real projective space where ∼ identifies
points on each line through the origin. We may parameterise PR1 by the angle
between lines and the horizontal axis, and these angles define a metric d on PR1

in the obvious way. Each matrix A−1
i induces a projective linear transformation

φi : PR1 → PR1 given by φi := A−1
i / ∼, that is, A−1

i maps straight lines at angle
θ to straight lines at angle φi(θ). Since the matrices Ai are strictly positive, each
φi restricted to the negative quadrant Q2 is a contraction so that the system of
contractions (φi)

k
i=1 is an iterated function system on Q2. Let F be the attractor of

this IFS, that is the non-empty compact subset of Q2 such that F =
⋃k
i=1 Ti(F ).

Now let µ be a Bernoulli probability measure on Σ; for notational convenience
we also write µ for the corresponding measure on E, that is its image under the
map (a1a2 · · · ) 7→

⋂∞
n=0 Ta1···an(D). The Furstenberg measure µF is defined to be the

stationary probability measure supported by K ⊂ RP1 associated to the maps φi
chosen according to the measure µ, see for example, [3]. Specifically,

µF (U) =
k∑
i=1

µ[i]µF (φ−1
i (U)),

for all Borel sets U . The Furstenberg measure is central to the proofs of our results.
Ideally we would like to be able to express the Hausdorff dimension of a self-

affine set E in terms of its defining IFS maps (2.1), as can be done for self-similar
sets subject to a separation condition. (For the definition and basic properties of
Hausdorff dimension, which we denote by dimH , see for example [6, 18].) A natural
candidate for dimH E is the affinity dimension defined in [4] in terms of the linear
parts of the IFS maps. Let α1(A) ≥ α2(A) ≥ 0 be the singular values of a linear
mapping or matrix A on R2, that is the lengths of the major and minor semiaxes of
the ellipse A(D) or equivalently the positive square roots of the eigenvalues of AAT .
For 0 ≤ s ≤ 2 we define the singular value function of A by

φs(A) =


αs1, 0 < s ≤ 1,

α1α
s−1
2 , 1 ≤ s ≤ 2,

(detA)s/2, 2 ≤ s.

The submultiplicativity of the singular value functions enables us to define the affinity
dimension of a set E ⊂ R2 defined by the IFS (2.1) by

(2.2) dimA(A1, · · · , Ak) ≡ dimAE =

s : lim
n→∞

( ∑
a1···an∈Λn

φs(Aa1···an)

)1/n

= 1


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or equivalently

(2.3) dimA(A1, · · · , Ak) ≡ dimAE = inf

{
s :

∞∑
n=1

∑
a1···an∈Λn

φs(Aa1···an) <∞

}
.

Note that the affinity dimension depends on the {Ai} that occur in the iterated
function system that defines E, rather than on E itself, but referring to dimAE
generally causes little problem. For every self-affine set E it is the case that dimH E ≤
dimAE, but equality holds in many cases, both generic and specific, see the survey
[5] and recent examples in [2, 9].

We will also refer to Lyapunov dimension, which reflects the geometry of the
self-affine set E relative to the measure µ. The Lyapunov exponents λ1(µ), λ2(µ) are
constants such that, for µ-almost every a1a2 · · · ∈ Σ,

(2.4) lim
n→∞

1

n
logαi(a1 · · · an) = λi (i = 1, 2).

The Lyapunov dimension of µ is given by

(2.5) dimL µ :=


hσ(µ)

−λ1(µ)
, hσ(µ) ≤ −λ1(µ),

1 +
hσ(µ) + λ1(µ)

−λ2(µ)
, hσ(µ) ≥ −λ1(µ),

where hσ(µ) is the Kolmogorov–Sinai entropy of the system (Σ, σ, µ) with σ the left
shift on Σ. Note that dimL µ depends only on the matrices {A1, · · · , Ak} and the
measure µ. It is always the case that dimH µ ≤ dimL µ, see [15].

To obtain our dimension estimates, we will use r-scale entropies, given by

Hr(ν) := −
ˆ

[−1,1]

log ν(Br(x)) dν(x),

where ν is a probability measure on [−1, 1] and r > 0. A measure ν is termed exact
dimensional of dimension β if

(2.6) lim
r→0

log ν(Br(x))

log r
= β

for ν-almost all x. In particular, if ν is exact dimensional, then

(2.7) dimH ν = β = lim
r→0

Hr(ν)

− log r
.

3. Statement of results

We define B ⊂ PR1 by B = PR1 \ {θ0} if all matrices Ai have a common
maximal eigenvector in some direction θ0, and by B = PR1 otherwise. The set
PR1 \B consists of at most one angle and represents the set of possible exceptional
directions for our projection theorems.

It was proved in [2, Proposition 3.3] that there exists a constant β(µ) such that for
µF -almost every θ the projected measure πθ(µ) is exact dimensional with dimension
β(µ). This allows us to state our main theorem.

Theorem 3.1. Let µ be a Bernoulli measure on a planar self-affine set defined
by an IFS (2.1) with strictly positive matrices Ai. Then for all θ ∈ B

dimH πθ(µ) ≥ β(µ).

This yields the following corollaries.
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Corollary 3.2. Let µ be a Bernoulli measure on a planar self-affine set associated
to strictly positive matrices Ai. Suppose dimH µ = dimL µ. Then for all θ ∈ B,

dimH πθ(µ) = min{dimH µ, 1}.
Proof. If we can show that

(3.1) dimH µ = dimL µ =⇒ β(µ) = min{dimH µ, 1}.

the conclusion follows directly from Theorem 3.1. Under the additional assumption
that the self-affine set satisfies the strong separation condition, (3.1) along with the
converse implication was established in [9]. However, the strong separation condi-
tion is not required for the implication (3.1). This is because the left hand side of
inequality (4.2) of [9, Lemma 4.2] holds even without strong separation. �

Theorem 3.1 can be applied to the projection of self-affine sets. The next corollary
shows that if the set supports Bernoulli measures with dimensions approximating the
affinity dimension there is no dimension drop for projections of E except possibly in
one direction.

Corollary 3.3. Let E be a planar self-affine set defined by an IFS (2.1) with
strictly positive matrices Ai. If there exists a sequence (µn) of Bernoulli measures
supported on E with dimH µn → dimAE then, for all θ ∈ B,

(3.2) dimH πθ(E) = min{dimH E, 1}.
Proof. Let µn,F denote the Furstenberg measure associated to µn, and let βn

denote the value of dimH πθ(µn) that occurs for µn,F -almost every θ by [2, Proposi-
tion 3.3]. Then Theorem 3.1 implies that for all θ ∈ B,

dimH πθ(E) ≥ lim
n→∞

βn = min{dimAE, 1},

this last equality holding because dimH µn → dimAE and using [2, Theorem 2.7].
Since for all θ

min{dimAE, 1} ≥ min{dimH E, 1} ≥ dimH πθ(E),

(3.2) follows. �

It would be nice to replace the condition in Corollary 3.3 on the existence of the
sequence of Bernoulli measures by the requirement that dimAE = dimH E. However
the relationship between the statements ‘dimAE = dimH E’, ‘E supports an ergodic
measure µ with dimH µ = dimAE’ and ‘there exists a sequence (µn) of Bernoulli
measures supported on E with dimµn → dimAE’ is not clear. All three statements
hold for almost all sets of translation vectors (d1 · · · dk) whenever each Ai has ||Ai|| <
1
2
, but the relationship between the statements is difficult to understand.

Note that our results require the matrices Ai to have positive entries, so that
the matrices all map the first quadrant into its interior. This assumption is used in
various ways and shortens some of the proofs, but it is crucial in Bárány’s proof [2,
Proposition 3.3] that projections of self-affine measures are exact dimensional, which
in turn is used in the proof of Theorem 4.6 on averages of r-scale entropies.

3.1. Examples. There are many families of measures on self-affine sets for
which dimH µ = dimL µ and hence for which our main theorem holds. In particular,
this includes classes of examples presented in Hueter and Lalley [12], Bárány [2] and
Falconer and Kempton [9]. The corollary below shows that this situation also arises
for almost all sets of translations in the affine maps in the IFS that defines E.
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Corollary 3.4. Let {Ti}ki=1 be an affine IFS (2.1) where the matrices Ai are
strictly positive with ‖Ai‖ < 1

2
for all i. For each translation vector d = (d1, · · · , dk) ∈

R2k let Ed be the self-affine attractor thus defined. Then for almost all d ∈ R2k (in
the sense of 2k-dimensional Lebesgue measure)

dimH πθ(Ed) = min{dimH Ed, 1} = min{dimAEd, 1}

for all θ ∈ B simultaneously (where as before B is either PR1 or is PR1 with one
angle omitted).

Proof. The right-hand equality follows since dimH Ed = min{dimAEd, 2} for
almost all d, see [4, 22]. For the left-hand equality we will show that for all ε > 0
we can find a Bernoulli measure µ on Σ that induces measures µd on the Ed with
dimH µd > dimH Ed − ε for almost all d, so that the conclusion will follow from
Corollary 3.3.

As the Ai have strictly positive entries, there is a cone K strictly inside the
upper-right quadrant that is mapped into itself by all finite compositions of the Ai.
This implies, see [21, Lemma 3.1], that there is a number c ≥ 1 that depends only
on K such that for all finite words a = a1 · · · aj, b = b1 · · · bj′ ∈ Σ∗,

‖AaAb‖ ≤ ‖Aa‖‖Ab‖ ≤ c ‖AaAb‖.

Since φs(A) = ‖A‖s (0 ≤ s ≤ 1) and φs(A) = ‖A‖2−s(detA)s−1 (1 ≤ s ≤ 2), it
follows that

(3.3) φs(AaAb) ≤ φs(Aa)φ
s(Ab) ≤ c φs(AaAb).

for all s ≥ 0.
Write dA := dimA(A1, · · · , Ak) ≡ dimAEd for the affinity dimension. We may

assume that 0 < dA ≤ 2 (if dA > 2 then Ed has positive plane Lebesgue measure
for almost all d and the result is clear). Let 0 < t < dA (t not an integer). Using a
simple estimate of the rate of decrease of φs(Aa) with s, see [4], we may choose an
N ∈ N sufficiently large to ensure that for some 0 < λ < 1

(3.4) c
φdA(Aa)

φt(Aa)
< λ for all a = a1 · · · aN ∈ ΛN .

From the definition of dA (2.2) and submultiplicative properties,

inf
n∈N

∑
|a|=n

φdA(Aa)

1/n

= 1,

so we may choose s ≥ dA such that

(3.5)
∑
a∈ΛN

φs(Aa) =

∑
a∈ΛN

φs(Aa)

1/N

= 1

using the continuity of these sums in s.
Let Σ∗N =

⋃∞
j=0 ΛjN . We define a Bernoulli measure µ on Σ by specifying µ on

cylinders defined by words in Σ∗N :

µ([a1 · · · an]) = φs(Aa1)φ
s(Aa2) · · ·φ

s(Aan) (n ∈ N, ai ∈ ΛN).
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By (3.5) µ defines a Borel probability measure on Σ = (ΛN)N. Using (3.3) and (3.4)

(3.6)
µ([a1· · · an])

φt(Aa1···an)
≤

φs(Aa1) · · ·φ
s(Aan)

c1−nφt(Aa1) · · ·φt(Aan)
≤
cn−1φdA(Aa1) · · ·φ

dA(Aan)

φt(Aa1) · · ·φt(Aan)
≤ c−1λn.

We now proceed as in the proof of [4, Theorem 5.3]. We represent points of Ed

in the usual way by xd(a) =
⋂∞
i=0 Ta|i(D) for a ∈ Σ. We write µd for the push-down

of µ onto Ed, given by µd(F ) = µ{a : xd(a) ∈ F}. We write a ∧ b for the common
initial word of a, b ∈ Σ. As in [4, Theorem 5.3] we may bound the energy integral of
µd integrated over some disc B ⊂ R2k byˆ

d∈B

ˆ
x∈Ed

ˆ
y∈Ed

dµd(x) dµd(y) dd

|x− y|t
=

ˆ
d∈B

ˆ
a∈Σ

ˆ
b∈Σ

dµ(a) dµ(b) dd

|xd(a)− xd(b)|t

≤ c1

ˆ
a∈Σ

ˆ
b∈Σ

φt(Aa∧b)
−1 dµ(a) dµ(b) ≤ c1

∑
p∈Σ∗

φt(Ap)
−1µ([p])2

≤ c1c2c3

∑
q∈Σ∗N

φt(Aq)
−1µ([q])2.

For the last inequality we have regarded each word p ∈ Σ∗ as p = qq1 · · · qj with
q ∈ Σ∗N and 0 ≤ j ≤ N − 1, and used that φt(Ap)−1µ([p])2 ≤ c2φ

t(Aq)
−1µ([q])2

for some c2 independent of p, since the summands increase by a bounded factor on
adding each single letter to a word q. The constant c3 =

∑N−1
i=0 ki is the number

of words p ∈ Σ∗ for which the summands are estimated by the summand of each
q ∈ Σ∗N . Writing c4 = c1c2c3 and using (3.6),

ˆ
d∈B

ˆ
x∈Ed

ˆ
y∈Ed

dµd(x) dµd(y) dd

|x− y|t
≤ c4

∞∑
j=0

∑
q∈ΛjN

φt(Aq)
−1µ([q])µ([q])

≤ c4c
−1

∞∑
j=0

λj
∑
q∈ΛjN

µ([q]) = c4c
−1

∞∑
j=0

λj < ∞.

We conclude that for almost all d,
´
x∈Ed

´
y∈Ed
|x− y|−t dµd(x) dµd(y) <∞ implying

that for µd-almost all x ∈ Ed there is a constant c0 such that µd(B(x, r)) ≤ c0r
t for

all r > 0, so dimµd ≥ t. This is the case for all t < dA, as required. �

4. Proof of the main theorem

In this section we prove Theorem 3.1. There are two intermediate results which
have relatively technical proofs whose main ideas are already well-understood in other
work. Since these proofs are quite long and somewhat tangential to the thrust of our
argument, we defer them to the appendix.

We first recall a proposition from [9] on the dynamics of projections of self-affine
sets. Let πθ : D → [−1, 1] denote orthogonal projection in direction θ onto the
diameter of D at angle perpendicular to θ, where we identify this diameter (of length
2) with the line [−1, 1].

Proposition 4.1. For each i ∈ {1, · · · , k}, θ ∈ PR1 there is a well defined linear
contraction fi,θ : [−1, 1]→ [−1, 1] given by

fi,θ = πθ ◦ Ti ◦ π−1
φi(θ)

such that πθ(Ti(A)) = fi,θ(πφi(θ)(A)) for all Borel sets A ⊂ D.
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This identity represents πθ(E) as a union of scaled-down copies of projections of
E in other directions.

We let Σ∗ denote the space of all finite words made by concatenating the letters
{1, · · · , k}. We think of Σ∗ as a tree, letting words a1 · · · an+1 be children of the
parent node a1 · · · an. Given a direction θ in which we want to project E, we define
a length function | · |θ on the tree Σ∗ by declaring the length of the path from the
root to the node a1 · · · an to be

|a1 · · · an|θ = − log2

(
|πθ(Da1···an)|

2

)
.

Since |πθ(D)| = 2, the division by 2 inside the log is necessary to ensure that the
length of the empty word is zero.

Lemma 4.2. The length function | · |θ satisfies
|a1 · · · an+1|θ − |a1 · · · an|θ = |an+1|φan···a1 (θ).

Proof. Identically,

log2

(
|πθ(Da1···an+1)|

2

)
= log2

(
|πθ(Da1···an)|

2

)
+ log2

(
|πθ(Da1···an+1)|
|πθ(Da1···an)|

)
.

Applying the linear map T−1
a1···an to Da1···an and using Proposition 4.1,

log2

(
|πθ(Da1···an+1)|
|πθ(Da1···an)|

)
= log2

( |πφan···a1 (θ)(Dan+1)|/2
|πφan···a1 (θ)(D)|/2

)
= log2

( |πφan···a1 (θ)(Dan+1)|
2

)
since |πθ(D)|, the length of the projection of the unit disk, is equal to 2 for all θ. �

Let N ∈ N be fixed. For each a ∈ Σ, θ ∈ PR1 and j ∈ N we define nj =
nj(a,N, θ) to be the natural number satisfying

(4.1) |a1 · · · anj−1|θ < Nj ≤ |a1 · · · anj |θ.
We define the infinite tree ΣN = ΣN(θ) ⊂ (Σ∗)N to be the tree with nodes at level
j labeled by words a1 · · · anj , and edges between level j − 1 nodes and level j nodes
labelled by anj−1+1 · · · anj .

A word a ∈ Σ can also be regarded as an element of ΣN in which the first symbol
is a1 · · · an1 , the second is an1+1 · · · an2 etc. When the distinction between Σ and
ΣN is important we specify which space a is in. The measure µ on Σ may also be
regarded as a measure on ΣN , which we also denote by µ.

We consider the metric dN on the tree ΣN given by

dN(a, b) = 2−max{j:a1···anj=b1···bnj }.

This metric depends on θ through the definition of the sequences anj , bnj . For all
sequences a, b ∈ Σ, and the corresponding sequences in ΣN ,

|πθ(a)− πθ(b)| ≤ |πθ(Da∧b)| ≤ dN(a, b)

for all N . In particular the map πθ : (ΣN , dN) 7→ [−1, 1] is Lipschitz.
Let µ[a1···an] := µ|[a1···an]/µ[a1 · · · an]. We state a variant of results of Hochman

and Shmerkin [13] that we will apply to the projections.

Theorem 4.3. If

(4.2) lim
N→∞

lim inf
n→∞

1

N log 2

1

n

n∑
i=1

H2−(i+1)N

(
πθ(µ[a1···ani ])

)
≥ C

for µ-almost every a ∈ ΣN , then dimH πθ(µ) ≥ C.
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This statement is essentially contained in Theorems 4.4 and 5.4 of [13]. However,
a little work is required to translate those theorems to our setting and the proof is
given in the appendix.

The rest of the proof of Theorem 3.1 depends on studying the limits in (4.2). Let

λmax := max{|ai|θ : i ∈ {1, · · · , k}, θ ∈ PR1}.
Lemma 4.4. For all a ∈ Σ, all i, N ∈ N and all θ ∈ PR1,

(4.3) H2−(i+1)N (πθ(µ[a1···ani ])) ≥ H2λmax2−N (πφani ···a1 (θ)(µ)).

Proof. Note that
πθ(µ[a1···ani ]) = S(πφani ···a1 (θ)(µ)),

where S is the map on measures on [−1, 1] induced by a linear map on [−1, 1] which
contracts by a factor 2−|a1···an|θ . An entropy Hλ(τ) is unchanged by rescaling the
measure τ provided that we rescale the parameter λ by the same amount. From the
definitions of λmax and nk,

|a1 · · · ani |θ ∈ [iN, iN + λmax].

Then

H2−(i+1)N (πθ(µ[a1···ani ])) = H 2−(i+1)N

2
−|a1···ani |θ

(πφani ···a1 (θ)(µ)) = Hρ.2−N (πφani ···a1 (θ)(µ))

where the ‘error’ ρ is given by

ρ =
2iN

2−|a1···ani |θ
∈ [1, 2λmax ].

Since the entropy Hλ(µ) is monotone decreasing in λ, we obtain (4.3). �

We need to pass from equidistribution results with respect to the sequence
(φan···a1(θ))

∞
n=1 to corresponding results for the subsequence (φani ···a1(θ))

∞
i=1.

Proposition 4.5. There exists a measure νF on PR1 which is equivalent to
µF and such that for all θ ∈ B, N ∈ N and µ-almost all a ∈ Σ, the sequence
(φani ···a1(θ))

∞
i=1 equidistributes with respect to νF , i.e., for all intervals A ⊂ PR1 we

have
lim
I→∞

1

I

∣∣∣{i ∈ {1, · · · , I} : φani ···a1(θ) ∈ A
}∣∣∣ = νF (A).

The proof of this proposition is relatively long but involves only standard ergodic
theory so is postponed to the appendix.

We now study the sums in (4.2).

Theorem 4.6. For all θ ∈ B and µ-almost every a ∈ Σ,

(4.4) lim
N→∞

lim inf
n→∞

1

N log 2

1

n

n∑
i=1

H2−(i+1)N (πθ(µ[a1···ani ])) ≥ β(µ).

Proof. By Lemma 4.4, for θ ∈ B and µ almost every a ∈ Σ,

lim inf
n→∞

1

N log 2

1

n

n∑
i=1

H2−(i+1)N (πθ(µ[a1···ani ]))

≥ lim inf
n→∞

1

N log 2

1

n

n∑
i=1

H2−(N−λmax)(πφani ···a1 (θ)(µ))

≥ 1

N log 2

ˆ
PR1

H2−(N−λmax)(πα(µ)) dνF (α).

(4.5)
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where the second inequality holds because the function

α 7→ H2−N (πα(µ))

is lower semi-continuous in α and the sequence (φani ···a1(θ))
∞
i=1 equidistributes with

respect to νF by Proposition 4.5.
For µF almost every α the measure πα(µ) is exact dimensional with dimension

β(µ), and since µF and νF are equivalent the same is true for νF almost all α. By
(2.7)

(4.6) lim
N→∞

1

(N − λmax) log 2
H2−(N−λmax)(πα(µ)) = β(µ)

for νF almost every α.
Noting that limN→∞

N
N−λmax = 1, we may integrate (4.6) over α to get

ˆ
PR1

lim
N→∞

1

N log 2
H2−(N−λmax)(πα(µ))dνF (α) = β(µ).

Since this integrand is bounded, we may interchange the limit and integral by the
dominated convergence theorem. Combining this with inequality (4.5) gives (4.4).

�

Putting together Theorems 4.3 and 4.6 we conclude that, for all θ ∈ B,

dimH πθ(µ) ≥ lim
N→∞

lim
n→∞

1

N log 2

1

n

n∑
i=1

H2−(i+1)N (πθ(µ[a1···ani ])) ≥ β(µ)

which completes the proof of Theorem 3.1.

5. Appendix: Technical proofs

5.1. Proof of Theorem 4.3. We use the terms ‘tree morphism’ and ‘faithful
map’ as defined in [13]: essentially a tree morphism is a map from one sequence
space to another which preserves the metric and the structure of cylinder sets, and a
faithful map is a map (in our case from a sequence space to [−1, 1]) which does not
distort dimension too much. The interested reader can find technical definitions of
these terms, along with many lemmas of Hochman and Shmerkin which we use but
do not write out in full, in [13].

Proof. First we define a space YN and split the projection πθ : ΣN → [−1, 1] into
a tree-morphism gN : ΣN → YN which is easier to deal with than πθ itself, and a
faithful map hN : YN → [−1, 1].

Let YN := {−2N+1, · · · 2N+1−1}N be equipped with metric dN . Associate to each
i ∈ {−2N+1, · · · , 2N+1 − 1} an interval Ii of length 2−N with left endpoint at i

2N+1 .
This gives an overlapping covering of [−1, 1], with each point x ∈ [0, 1] contained in
either two or three intervals Ii, see Figure 1.

Figure 1. The intervals Ii, where M = 2N+1.
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Let Si : [−1, 1] → [−1, 1] be the linear contraction mapping [−1, 1] onto Ii, and
let hN : YN → [−1, 1] be given by

hN(a) = lim
n→∞

Sa1 ◦ · · · ◦ San(0) (a ∈ Σ).

The map hN is 3-faithful in the sense of [13] since for each point x in each interval
hN [a1 · · · an] there are at most three values of an+1 ∈ {0, · · · , 2N+1 − 1} for which
x ∈ hN [a1 · · · an+1]. By [13, Proposition 5.2] there exists a constant C2, independent
of N , such that for every measure ν on YN

(5.1) dimH ν −
C2

N log 2
≤ dimH hN(ν).

With the standard binary coding of [−1, 1] it is not the case that for any interval
A ⊂ [−1, 1] with |A| < 2−(j+1) one has that A is contained in some binary interval
of depth j. However, with the overlapping coding given by the intervals Ii and the
map hN , it holds that for any A with |A| < 2−N(j+1) there is a choice of a1 · · · aj such
that A ⊂ hN [a1 · · · aj]. Furthermore, these codings can be iterated in the sense that
if B ⊂ A has |B| < 2−N(j+2) then B is contained in the interval hN [a1 · · · ajbj+1] for
some choice of bj+1.

We now define a map gN : ΣN → YN which maps depth-n cylinders in ΣN to
depth-n cylinders in YN . The map gN is defined iteratively. Given a depth-2 cylinder
[a1 · · · an2 ] ⊂ ΣN , there exists at least one depth-1 cylinder [b1] ⊂ YN such that
πθ(Da1···an2 ) ⊂ hN([b1]), since |πθ(Da1···an2 )| < 2−N . We choose such a cylinder [b1].

Now assume we have already chosen a depth-(j − 1) cylinder [b1 · · · bj−1] corre-
sponding to word a1 · · · anj . Then we may choose for each depth-(j + 1) cylinder
[a1 · · · anj+1

] ⊂ [a1 · · · anj ] a letter bj such that

πθ(Da1···anj+1
) ⊂ hN([b1 · · · bj]).

This process defines a tree morphism gN : ΣN → YN such that πθ : ΣN → [−1, 1] can
be written πθ = hN ◦ gN . Since hN is faithful and πθ = hN ◦ gN ,∣∣H2−(i+1)N

(
πθ(µ[a1···ani ])

)
−H2−(i+1)N

(
gN(µ[a1···ani ])

)∣∣
is bounded above by some constant which is independent of N . In particular, in-
equality (4.2) holds if and only if

lim
N→∞

lim inf
n→∞

1

N log 2

1

n

n∑
i=1

H2−(i+1)N (gN(µ[a1···ani ])) ≥ C.

But since gN is a tree morphism, [13, Theorem 4.4] gives

lim
N→∞

dimH gN(µ) ≥ C,

so setting ν = gN(µ) in (5.1),

dimH πθ(µ) ≥ C. �

5.2. Proof of Proposition 4.5. Proposition 4.5 involves transferring an
equidistribution result for sequences (φan···a1(θ))

∞
n=1 to a different equidistribution

result for the subsequences (φani ···a1(θ))
∞
i=1. To do this we first need to encode the

subsequences dynamically, which can be done by building a suspension flow based
around the maps φi. In order to pick out the correct terms ni we introduce a notion
of time for our flow based on the numbers |a1|θ. This is a standard approach in
ergodic theory when one is interested in looking at a system with a different notion
of time than is given by just counting iterations of a map.
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Secondly, we need to ask whether the time-N map associated to this suspension
flow is ergodic. There are classical results in ergodic theory which deal with this
question, see for example [20]. We verify that our time-N map is indeed ergodic,
allowing us to conclude our equidistribution result. The fact that we need Proposi-
tion 4.5 to hold for all θ ∈ Q2, and not just almost all θ, also requires us to prove
some extra continuity results on the roof function of our flow.

We begin by defining a map T : Σ×PR1 → Σ×PR1 by

T (a, θ) = (σ(a), φa1(θ)).

We can map the two-sided full shift Σ± onto Σ×PR1 by mapping two-sided sequence
a± to (a1a2a3 · · · , limn→∞ φa0···a−n(0)). Then T is a factor of the right shift σ−1 under
this factor map, and the two-sided extension µ of µ is mapped to µ×µF . Since factors
of mixing dynamical systems are mixing, the system (Σ×PR1, µ×µF , T ) is mixing,
see [23] for a proof of this and other basic statements in ergodic theory.

The map T helps us understand the sequence (φani ···a1(θ))
∞
i=1, but we need to

know about the sequence ni = ni(a, θ,N). For this we build a suspension flow over
T by introducing a notion of time. Consider the space

W := {(a, θ, t) ∈ Σ×PR1 ×R : 0 ≤ t ≤ |a1|θ}
where the points (a, θ, |a1|θ) and (σ(a), φa1(θ), 0) are identified. Define a suspension
semiflow ψ on W by letting

ψs(a, θ, t) = (a, θ, t+ s)

for 0 ≤ t+s ≤ |a1|θ, and extending this to a well-defined semiflow for all s > 0, using
the identification (a, θ, |a1|θ) = (σ(a), φa1(θ), 0). This flow preserves the measure
(µ × µF × L)|W , where L is Lebesgue measure. Since suspension semiflows over
ergodic maps are ergodic, ψs is ergodic.

We now prove some uniform continuity lemmas involving θ, θ′ ∈ Q2, which also
give non-uniform continuity for θ, θ′ ∈ B, since all θ ∈ B are eventually mapped into
Q2 by compositions of the φi. We first show that small variations of θ have little
effect on the time taken to flow through the base a given number of times.

Lemma 5.1. There exists a constant C such that for all θ, θ′ ∈ Q2, n ∈ N and
a ∈ Σ, ∣∣|a1 · · · an|θ − |a1 · · · an|θ′

∣∣ < C|θ − θ′|.
Proof. For each i ∈ {1, · · · , k}, the map θ 7→ |ai|θ is differentiable with derivative

bounded above by 2, since sin and cos have derivatives bounded by 1. Furthermore,
there exists a constant 0 < ρ < 1 such that the maps φi restricted to Q2 are strict
contractions with derivative bounded above by ρ. Then∣∣|a1 · · · an|θ − |a1 · · · an|θ′

∣∣ ≤ n∑
i=1

∣∣|ai|φan−1···a1 (θ) − |ai|φan−1···a1 (θ′)

∣∣
≤
(
2 max

i,θ′′
|ai|θ′′

) n∑
i=1

∣∣φan−1···a1(θ)− φan−1···a1(θ
′)
∣∣

≤
(
2 max

i,θ′′
|ai|θ′′

)
|θ − θ′|

(
n∑
i=1

ρi−1

)
< C|θ − θ′|

for all θ, θ′ ∈ Q2. �
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Lemma 5.2. Suppose that the orbit under ψ of point (a, θ, t) equidistributes
with respect to the measure (µ × µF × L)|W . Then the same is true of (a, θ′, t′) for
all θ′ ∈ Q2 and t′ ∈ [0, |a1|θ′ ].

Proof. The distance |T n(a, θ) − T n(a, θ′)| → 0 as n → ∞ since the maps φi are
strict contractions on Q2. All we need to check is that there is not too much time
distortion when we replace the transformation T with the flow ψ. But this has been
dealt with by the previous lemma. �

Given a flow ψs on W , the time-N map is the map ψN on W regarded as a
discrete time dynamical system.

Lemma 5.3. The time-N map ψN : W → W preserves the measure (µ × µF ×
L)|W and (W,ψN , (µ× µF × L)|W ) is ergodic.

Proof. First we deal with the case when there exists an irrational number c > 0
such that every periodic orbit of the suspension flow has period equal to an integer
multiple of c. Then it was argued in [20, Proposition 5], using the Livschitz Theorem,
that the roof function of our flow is cohomologous to a function which always takes
values equal to an integer multiple of c. We add this coboundary, which has no
effect on the dynamics of the flow or the time N map, and assume now that our roof
function always takes value equal to an integer multiple of c. Now using the fact that
the base map T of our suspension flow is mixing, coupled with the fact that the map
x 7→ x+N (mod c) is ergodic, it follows that the map ψN is ergodic.

In the case that there is a rational number c > 0 such that every periodic orbit
has period equal to an integer multiple of c, we replace log2 with log3 in the definition
of our distance function |.|θ which makes the roof function. Then the correspond-
ing constant for our new suspension flow is irrational, and we apply the previous
argument in this setting.

Finally we deal with the case that there exists no c > 0 such that every periodic
orbit of the suspension flow has period equal to an integer multiple of c. In [20,
Proposition 5] it is shown that this ensures that the flow is weak mixing. But if the
suspension flow ψ is weak mixing then the corresponding time-N map ψN is ergodic
as required. �

Finally we complete the proof of Proposition 4.5. Let π2 : W → PR1 be given by
π2(a, θ, t) = θ, and let the measure νF on PR1 be νF =

(
(µ×µF ×L)|W

)
◦π−1

2 . This
measure is equivalent to µF . If ψN(a, θ, 0) equidistributes with respect to (µ×µF×L)
then the sequence

(
φani ···a1(θ)

)∞
i=1

equidistributes with respect to νF . This is because,
from the definition of the sequence ani ,

φani−1···a1(θ) = π2

(
ψiN(a, θ, 0)

)
.

Then it is enough to prove that for all θ ∈ B, for µ-almost all a, the sequence(
ψiN(a, θ, 0)

)∞
i=0

equidistributes with respect to νF . We have already argued that
this holds for (µ×µF )-almost all pairs (a, θ), so the extension to all θ follows readily
from Lemma 5.2 and the fact that for all θ ∈ B, for µ-almost every a, the orbit(
φan···a1(θ)

)
gets arbitrarily close to some µF -typical point of PR1.
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