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Abstract. We show that, if the local dimension of the image of the branch set of a discrete

and open mapping f : M → N between n-manifolds is less than (n − 2) at a point y of the image

of the branch set fBf , then the local monodromy of f at y is perfect. In particular, for generalized

branched covers between n-manifolds the dimension of fBf is exactly (n−2) at the points of abelian

local monodromy. As an application, we show that a generalized branched covering f : M → N of

local multiplicity at most three between n-manifolds is either a covering or fBf has local dimension

(n− 2).

1. Introduction

A continuous mapping f : X → Y between topological spaces is a (generalized)
branched cover if f is discrete and open, that is, pre-image f−1(y) of a point y ∈ Y
is a discrete set and f maps open sets to open sets. The name branched cover for
these maps stems from the Chernavskii–Väisälä theorem [5, 18]: the branch set of a
branched cover between (generalized) manifolds has codimension at least two. It is an
easy consequence of the Chernavskii–Väisälä theorem that branched covers between
(generalized) manifolds are, at least locally, completions of covering maps.

We follow here the typical naming convention in this context and say that a point
x ∈ X is a branch point of f if f is not a local homeomorphism at x. The branch set

of the mapping f , i.e. the set of branch points of f , is denoted Bf . Note that, in the
context of PL topology, Bf is called the singular set and its image fBf the branch
set.

Branch sets of branched covers between surfaces are well-understood. By the
classical Stoïlow theorem (see e.g. [19]), the branch set of a branched cover between
surfaces is a discrete set. In higher dimensions, branch sets of PL branched covers
between manifolds are subcomplexes of codimension at least two. More general
branched covers may, however, exhibit also wilder branching behavior. Heinonen
and Rickman constructed in [12] and [13] quasiregular, even BLD, branched covers
S3 → S3 which contain wild Cantor sets in their branch sets; see also [17]. In
fact, in dimensions n ≥ 3, branch sets of branched covers are not understood in a
similar precise fashion as in two dimensions. In particular a conjecture of Church and
Hemmingsen [7] is still open: The branch set of a branched cover between 3-manifolds
has topological dimension one.
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It is easy to observe that the conjecture of Church and Hemmingsen is equivalent
to the question whether there exists a branched cover between 3-manifolds for which
fBf is a wild Cantor set in a neighborhood of a point in fBf ; see also Church [6] and
Montesinos [16] for related questions. Note that, we have dimBf = dim f−1Bf =
dim fBf for branched covers f : M → N between manifolds by [7, Corollary 2.3].

In this article we consider the connection of the monodromy to the local dimension
of the branch set. This question is interesting already in the context of PL branched
covers as the following example shows.

Let f : S3 → H3 be a normal covering of the Poincaré homology sphere H3 and
F = Σ2f : Σ2S3 → Σ2H3 the double suspension of f . Then F is a normal branched
cover for which BF is a circle in S5 = Σ2S3 and FBF in Σ2H3 ∼= S5 is a wild knot; see
Edwards [9] and Cannon [4]. In particular, BF and FBF both have codimension 4.
The monodromy group GF of F is isomorphic to the fundamental group of H3 which
is a perfect group. Recall, that a group Γ is perfect if Γ/[Γ,Γ] is a trivial group. Our
main result shows that this is a general phenomenon: If the branch set of a branched
cover has codimension larger than two, then the local monodromy groups of the map
are perfect.

We define the local monodromy of a branched cover as follows. Let f : M → N be
a proper branched cover between n-manifolds. By a result of Berstein and Edmonds
[2] (see also [1]), there exists a space Xf and an action Gf y Xf of the monodromy
group Gf of f by homeomorphisms for which the diagram

(1) Xf

Gf

��

~~⑤⑤
⑤⑤
⑤⑤
⑤ f̄

  ❆
❆❆

❆❆
❆❆

M
f

// N

commutes, where the maps Xf → M and f̄ : Xf → N are normal branched covers.
We call Xf the monodromy space of f . Recall that, similarly as for covering maps, a
branched cover h : X → Y is normal if h is a quotient map of the action of the deck
group Deck(h) to X.

We call the map f̄ : Xf → N , which is the orbit map of the action Gf y Xf ,
the normalization of f ; in particular, Deck(f̄) = Gf . Given y ∈ N , the stabilizer
subgroups of Gf of points in f̄−1(y) are conjugate to each other and we define the
local monodromy Gf (y) of f at y ∈ N to be the conjugacy class of these subgroups.

Our main theorem reads as follows.

Theorem 1. Let f : M → N be a proper branched cover between n-manifolds.
If the local dimension of fBf at y ∈ fBf is less than n − 2, then Gf (y) is a finite
perfect group.

As an immediate corollary of Theorem 1 and the Chernavskii–Väisälä theorem
on the dimension of the branch set, we obtain an elementary proof for the following
well-known result; for a proof using the Smith theory, see e.g. [3].

Corollary 2. Let f : M → N be a proper normal branched cover between n-
manifolds having abelian deck group. Then either f is a covering map or dimBf =
dim fBf = n− 2.
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As an application of Theorem 1, we also obtain a positive result in a special
case of the conjecture of Church and Hemmingsen for branched covers having local
multiplicity at most three. More precisely we have the following result.

Theorem 3. Let f : M → N be a proper branched cover between n-manifolds
so that the local multiplicity of f is at most three in Bf . Then either f is a covering
map or fBf has local dimension n− 2.

A remark on the relation of these results to the classical Smith theory is in order.
For normal branched covers f : M → N between (cohomology) manifolds, the branch
set Bf has decomposition into finitely many cohomology manifolds of codimension
at least 2 (see e.g. [3, Theorem V.2.2]). Since Bf is not a (cohomology) 0-manifold,
it is therefore easy to conclude that fBf has local dimension at least 1 at each point.
It is not known to us to which extent these methods are available in the context
of Theorem 1, since the monodromy space Xf of f is not a priori a cohomology
n-manifold.

We finish this introduction with a non-existence result for branched covers branch-
ing over an Antoine’s necklace. A branched cover f : X → Y is locally normal if each
point x ∈ X has a neighborhood U for which f |U : U → fU is a normal branched
cover.

Theorem 4. There are no locally normal branched covers S3 → S3 for which
the image of the branch set is an Antoine’s necklace.

This article is organized as follows. After discussing preliminaries in Section 2, we
prove in Section 3 a slightly more general version of Theorem 1 for branched covers
from Fox-completions of manifolds to manifolds. In Section 4 we give a proof of a
similar generalization for Theorem 3. Finally, in Section 5, we discuss applications
to Cantor sets and prove Theorem 4.

Acknowledgments. Authors thank Juan Souto and Jang-Mei Wu for discussions
and their comments on the manuscript.

2. Preliminaries

In this section, we recall a few basic facts on branched covers and introduce some
terminology which we use in the forthcoming sections. Note that we consider only
path-connected manifolds and manifold completions.

2.1. Coverings. Let f : X → Y be a covering map between path-connected
spaces and y0 ∈ Y . The monodromy µf : π1(Y, y0) → Symf−1(y0) of f is the homo-
morphism which associates a permutation of Symf−1(y0) to every homotopy class
[γ]. More precisely, let γ : [0, 1] → Y be a loop based at y0, x ∈ f−1(y0), and
γ̃x : [0, 1] → X the lift of γ from x in f . Then µf([γ])(x) = γ̃x(1). The monodromy

group Gf of f is the quotient π1(Y, y0)/ kerµf .
For normal coverings f : (X, x0) → (Y, y0) of pointed spaces, we have also the deck

homomorphism σf,x0
: π1(Y, y0) → Deck(f) of f which associates to each homotopy

class [γ] ∈ π1(Y, y0) a deck transformation using the lift of the representative γ from
x0, that is, given a loop γ : [0, 1] → Y at y0, we set σf,x0

([γ]) to be the (unique) deck
transformation τ : X → X satisfying τ(x) = γ̃x0

(1). Note that, Gf
∼= Deck(f), but

typically, the deck transformation σf,x0
([γ]) is not an extension of the permutation

µf([γ]).
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2.2. Manifold completions and proper branched coverings. We say that
a locally connected (and locally compact) Hausdorff space X is a Fox-completion of

a manifold, if there exists a connected n-manifold Xo (possibly with boundary) and
an embedding ι : Xo →֒ X, so that ι(Xo) ⊂ X is dense and the set X \ι(Xo) does not
locally separate X. In particular, ι(Xo) = X. We refer to Fox [11] and Montesinos
[16] for further details.

This class of spaces rises naturally in the context of branched covers. Indeed,
if f : X → M is a branched cover from a locally compact and locally connected
Hausdorff space X to an n-manifold M so that Bf does not locally separate X.
Then X is a Fox-completion of a manifold, since Xo = X \Bf is an n-manifold.

Let f : X → M be a proper branched cover from a Fox-completion X of a
manifold to a manifold M . Then f is a completed cover, that is, f is the unique
extension of the covering f ′ = f |X′ : X ′ → M ′ with respect to M ′, where X ′ =
X \ f−1fBf and M ′ = M \ fBf are open dense subsets of X and M , respectively,
and the sets f−1fBf and fBf do not locally separate X and M , respectively. Indeed,
since f is proper, f is surjective and both fBf and f−1fBf are closed sets. For the
general theory of these completions, see e.g. Fox [11], Berstein–Edmonds [2], Edmonds
[8], or [1]. We call f ′ the regular part of f .

We recall two facts on proper branched covers. First, f : X → M is a proper nor-
mal branched cover if and only if its regular part f ′ : X ′ → M ′ is a proper normal cov-
ering; see Edmonds [8]. We also recall that the homomorphism Deck(f) → Deck(f ′),
g 7→ g|X′, is an isomorphism; see Montesinos [15].

We define the monodromy of f : X → M to be the monodromy of its regular part
f ′ : X ′ → M ′, that is,

µf := µf ′ : π1(M
′, y0) → Symf−1(y0)

for y0 ∈ M ′.

2.3. Monodromy triangle. The regular part f ′ : X ′ → M ′ of a branched
covering f : X → M has, by the classical covering space theory, a monodromy triangle

M̃ ′/ kerµf ′

p

yytt
tt
tt
tt
tt f̄ ′

%%❏
❏❏

❏❏
❏❏

❏❏
❏

X ′ f ′

// M ′

where the normal covering map f̄ ′ is the orbit map of the natural action of the
monodromy group Gf ′ = π1(M

′, y0)/ kerµf ′ on M̃ ′/ kerµf ′ by homeomorphisms. The
monodromy triangle (1) of f : X → M is obtained as an extension of the monodromy
triangle of its regular part f ′ : X ′ → M ′. We refer to Berstein–Edmonds [2], or [1],
for details.

Note that, given a normalization f̄ : Xf → M of a proper branched cover f : X →
M and a subgroup H ⊂ Gf of the monodromy group Gf of f , there exists a factor-
ization

Xf

q

��

f̄

""❊
❊❊

❊❊
❊❊

❊❊

Xf/H
f̄H

//❴❴❴ M

where q and f̄H are branched covers induced by the action H y Xf . Moreover, if H
is normal in Gf , then f̄H is a normal branched cover with Deck(f̄H) ∼= Deck(f̄)/H .
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2.4. Regular neighborhoods. For the localization arguments we recall the
existence of normal neighborhoods (Väisälä [18, Lemma 5.1]): Let f : X → M be
a branched cover from a Fox-completion X of a manifold to a manifold M . Then,
for each x ∈ X, there exists a neighborhood U ⊂ X of x for which f |U : U → fU
is a proper branched cover. Moreover, for each domain V compactly contained in
fU and each component W ⊂ f−1V ∩ U , the restriction f |W : W → V is a proper
branched cover.

2.5. Topological dimension and cohomology. In what follows, we call the
covering dimension of a space simply as dimension. Recall that a space X has covering

dimension at most n (denoted dimX ≤ n) if each covering of X has a refinement
of local multiplicity at most n + 1. Further, X has dimension n (dimX = n) if
dimX ≤ n and X does not have covering dimension at most n−1. See e.g. Engelking
[10] for comparisons with other definitions.

A closed set E ⊂ X has local dimension at most n at x ∈ E if there exists a
neighborhood U ⊂ X of x so that dim(U ∩E) ≤ n. Similarly, E has local dimension

at least n if for all neighborhoods U ⊂ X of x for which dim(U ∩ E) ≥ n.
In the proof of Theorem 6 we use the fact that the Alexander–Spanier (or equiv-

alently Čech-cohomology) groups Hk(X ;Z) are trivial for k > n if dimX ≤ n; see
e.g. [10, pp. 94–95]. Note that a Fox-completion of a manifold is a Cantor manifold
in the sense of [10, Definition 1.9.5].

3. Proof of Theorem 1

In this section we prove the following version of Theorem 1.

Theorem 5. Let X be a Fox-completetion of an n-manifold, M an n-manifold,
f : X → M a proper branched cover and y ∈ fBf . If the local dimension of fBf at
y ∈ fBf is less than n− 2, then Gf (y) is a finite perfect group.

We begin with the abelian case of the theorem.

Theorem 6. Let X be a Fox-completion of an n-manifold, M an n-manifold,
and f : X → M a proper branched cover for which Bf 6= ∅. The local dimension of
fBf is (n− 2) at points of abelian local monodromy.

By Chernavskii–Väisälä theorem, the local dimension of fBf is at most n − 2.
Thus we may assume in this section that n ≥ 3 and show that the dimension of fBf

is at least n− 2 at points of abelian local monodromy.

Remark 7. There are simple examples of branched covers having points where
the local monodromy is abelian and not cyclic. For example, let f : R3 → R

3 be
the composition f = f1 ◦ f2, where f1 : R

3 → R
3 is a 2-to-1 winding map around

the x-axis and f2 : R
3 → R

3 is a 2-to-1 winding map around the y-axis. Then f is
a proper 4-to-1 normal branched cover for which the local monodromy at the origin
is the abelian, but non-cyclic group, Z2 × Z2. At every other point of fBf the local
monodromy group is the cyclic group Z2.

Proof of Theorem 6. Suppose there exists y ∈ fBf for which the local dimension
of fBf at y is less than n−2. Let f̄ : Xf → M be a normalization of f and x ∈ f̄−1(y).
We show first that there exists a neighborhood U ⊂ X of x, having closure E = U ,
so that f̄E is an n-cell in M , and f̄ |E : E → f̄E is a proper branched cover and
dim(f̄ |EBf̄ |E) < n− 2.
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Let W be a neighborhood of y in M contained in an n-cell and for which dim(W ∩
fBf) < n− 2. Then, by [18, Lemma 5.1], we may fix a neighborhood V ⊂ X of x so
that fV ⊂ W and f |V : V → fV is a proper map. Let D ⊂ int(fV \ f(∂V )) be an
open n-cell so that D is an n-cell. Then f |U : U → D, where U is the x-component
of f−1D, is a proper branched cover.

We construct now a double of f̄ |E : E → f̄E as follows. Let Z be the quotient
space obtained by gluing two copies of E together along the boundary. More precisely,
let Z = (E × {1, 2}) /∼, where ∼ is the minimal equivalence relation satisfying
(x, 1) ∼ (x, 2) for x ∈ ∂E. Let qE : E × {1, 2} → Z be the quotient map (x, i) 7→
[(x, i)]. The non-manifold points of Z are contained in the set qE((Bf̄ ∩E)× {1, 2})
and Z is a Fox-completion of an n-manifold.

Let also S =
(
(f̄E × {1}) ∪ (f̄E × {2})

)
/∼ be an n-sphere obtained by gluing

the n-cells f̄E × {i} together along the boundary ∂f̄E similarly as above. Let
q : f̄E × {1, 2} → S be the associated quotient map.

Let g : Z → S be the unique map for which the diagram

E × {1, 2}

qU

��

f̄ |E×id
// f̄E × {1, 2}

q

��

Z
g

// S

commutes. Then g is an open and discrete map. Indeed, discreteness of g follows
immediately. For the openness of g, it suffices to observe that, given a neighborhood
V of a point in qE(∂E×{1}), there exists open sets V1 and V2 in E so that qE((V1×
{1}) ∪ (V2 × {2})) = V . Then

gV = q((f̄V1 × {1}) ∪ (f̄V2 × {2}))

is an open set in S. Thus g is a branched cover. Similarly we observe that g is, in
fact, a normal branched cover having an abelian deck group Deck(g) ∼= Deck(f̄ |E)
and gBg ⊂ q(f̄ |EBf̄ |E × {1, 2}).

Since dim(gBg) < n− 2 and n ≥ 3, we have, by the Alexander duality (see e.g.
[14, Theorem 6.6]), that

H1(S
n \ gBg) ∼= Hn−2(gBg;Z) = 0.

Thus π1(S
n \ gBg, z0) is a perfect group for every z0 ∈ Sn \ gBg.

Let

g′ := g|Z \ g−1(gBg) : Z \ g−1(gBg) → Sn \ gBg

be a restriction of g and let ϕg′,y0 : π1(S
n \ gBg, z0) → Deck(g′) be the deck-homo-

morphism for points z0 ∈ Sn \ gBg and y0 ∈ g′−1{z0}. Then Deck(g′) ∼= Deck(g) is
abelian. Thus Deck(g′) is an abelian image of a perfect group, and hence trivial.
We conclude that then Deck(g) is also trivial and the normal branched cover g is a
homeomorphism. Hence also f̄ |E is a homeomorphism and Gf (y) is trivial. This is a
contradiction, since y ∈ fBf ∩ U . Hence the local dimension of fBf at each of its
points is at least n− 2. �
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Proof of Theorem 5. Suppose the local dimension of fBf at y ∈ fBf is less
than n− 2. Let Gf be the monodromy group of f and let

Xf

Gf

��

q

~~⑥⑥
⑥⑥
⑥⑥
⑥ f̄

  ❇
❇❇

❇❇
❇❇

X
f

// M

be the monodromy triangle of f , where f̄ is the normalization of f . We need to show
that Gf (z) = [Gf (z),Gf (z)] for a point z ∈ f̄−1(y).

Let V0 be such a neighborhood of y that the dimension of V0 ∩ fBf is less than
n − 2 and let z ∈ f̄−1(y). By Väisälä’s lemma [18, Lemma 5.1], we may fix a
neighborhood W of z for which f̄W ⊂ V0 is simply connected, f̄−1(f̄(z)) = {z}, and
that the restriction f̄ |W : W → f̄W is a proper branched cover. We denote U = qW
and V = f̄W . Then g := f |U : U → V is a proper branched cover and we have the
diagram

W
q|W

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ f̄ |W

  ❆
❆❆

❆❆
❆❆

❆

U
g

// V

where q|W and f̄ |W are normal branched coverings and Gf̄ (z) ∼= Deck(f̄ |W ).

Let h = f̄ |W : W → V , and denote N = [Deck(h),Deck(h)]. We factor the
normal branched cover h as

W
h

""❉
❉❉

❉❉
❉❉

❉❉

p

��

W/N
hN

//❴❴❴ V

where p : W → W/N is the quotient map x 7→ Nx. Since N ⊂ Deck(h) is normal,
hN : W/N → V is a normal branched covering and Deck(hN) ∼= Deck(h)/N . Hence
Deck(hN) is abelian. Since (hN)BhN

⊂ fBf and the dimension of V ∩fBf is less than
n−2, we have by Theorem 6 that hN is a covering map. Since V is simply-connected,
hN is a homeomorphism. Thus Deck(f̄ |W ) = N . �

4. Proof of Theorem 3

We prove now a version of Theorem 3 for branched covers having a Fox-completion
of a manifold as a domain. The statement reads as follows.

Theorem 8. Let f : X → M be a proper branched cover from a Fox-completion
X of an n-manifold to an n-manifold M so that the local multiplicity of f is at most
3 in Bf . Then either f is a covering or fBf has local dimension n− 2.

Proof. Suppose that f is not a covering map. We show that the local dimension
of fBf is n− 2 at each point of fBf . By the Chernavskii–Väisälä theorem, the local
dimension of fBf is at most n − 2 at each point y ∈ fBf . Thus it suffices to show
that the local dimension of fBf at f(x) is at least n− 2.

Suppose first that there exists x ∈ Bf for which the local multiplicity of f at x
is 2. Then Gf(f(x)) ∼= Z2 and, by Theorem 6, the local dimension of fBf is n− 2.
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Suppose now that the local multiplicity of f at x ∈ Bf is 3. Let Gf be the
monodromy group of f and let

Xf

Gf

��

q

~~⑥⑥
⑥⑥
⑥⑥
⑥ f̄

  ❇
❇❇

❇❇
❇❇

X
f

// M

be the monodromy triangle of f , where f̄ is the normalization of f .
Let U0 be a neighborhood of x so that f |U0

: U0 → M has multiplicity at most 3.
Let now z ∈ q−1(x). As in the proof of Theorem 1 we fix, using Väisälä’s lemma [18,
Lemma 5.1], a neighborhood W of z so that f̄ |W : W → f̄W is a proper branched
cover, f̄ |W−1(f̄(z)) = {z}, and qW ⊂ U0. We denote (again) U = qW and V = f̄W .
Then g = f |U : U → V is a proper branched cover with multiplicity 3 and we have
the diagram

W
q|W

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ f̄ |W

  ❆
❆❆

❆❆
❆❆

❆

U
g

// V

where q|W and f̄ |W are normal branched coverings.
From the monodromy triangle of g, we obtain the diagram

Ug

GgyyGp %%

p

��⑦⑦
⑦⑦
⑦⑦
⑦ ḡ

��❅
❅❅

❅❅
❅❅

U
g

// V

where ḡ is the normalization of g, Gg is the monodromy group of g, and Gp ⊂ Gg is
the monodromy group of p.

Further, by minimality of the monodromy factorization [1, Section 2.2], there
exists a branched covering r : W → Ug and a commutative diagram

W

r

��
q|W

��

f̄ |W

��

Ug

p

��⑦⑦
⑦⑦
⑦⑦
⑦ ḡ

��❅
❅❅

❅❅
❅❅

U
g

// V

Since g has multiplicity 3, the monodromy group Gg is isomorphic to a subgroup
of the symmetric group S3. Since Gg acts transitively on ḡ−1(y0), we have |Gg| ≥ 3.
Thus either |Gg| = 3 or |Gg| = 6, i.e. Gg

∼= Z3 or Gg
∼= S3.

Suppose Gg
∼= Z3. Then the local monodromy of ḡ at f(x) is abelian and, by

Theorem 6, ḡBḡ has dimension n− 2 at f(x). Since ḡBḡ ⊂ fBf , we have that fBf

has local dimension at f(x) at least n− 2.
Suppose now that Gg

∼= S3. We show that x ∈ pBp and that the local monodromy
of p at x is abelian. Then, by Theorem 6, pBp has local dimension at least n− 2 at
x.

Since ḡ has multiplicity 6 and g has multiplicity 3, the branched cover p has
multiplicity 2. Thus Gp

∼= Z2. Moreover, Gp(x) ∼= Z2 and, in particular, the local
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monodromy of p at x ∈ pBp is abelian. Indeed, since q−1(x) ∩ W = {z}, we have
that p−1(x) = {r(z)}. Thus Gp fixes r(z).

Since pBp has has local dimension at least n− 2 at x, we have, by the Church–
Hemmingsen theorem [7, Corollary 2.3], that f(pBp) has local dimension at least
n− 2 at f(x). Since f(pBp) ⊂ fBf , the proof is complete. �

5. Application to toroidal Cantor sets

We finish an application of Theorem 6 to branched covers branching over toroidal
Cantors sets. A Cantor set C in a 3-manifold M is toroidal if every (finite) covering
{Ui}i≥1 of C has a (finite) refinement {Tj}j≥1 consisting of mutually disjoint domains
Tj for which ∂Tj is a 2-torus, i.e. ∂Tj ≈ S1 × S1, and C ∩ ∂Tj = ∅ for each j ≥ 1.

We begin with a proposition; in what follows, we define the boundary ∂X of a

Fox-completion X of a manifold to be the boundary ∂Xo of the regular part Xo of
X.

Proposition 9. Let X be a compact Fox-completion of a 3-manifold having
connected boundary ∂X, T a compact 3-manifold with boundary ∂T ≈ S1 × S1,
and f : X → T a normal branched covering. If f |∂X : ∂X → ∂T is a covering, then
dim fBf = 1.

Proof. Clearly the restriction f |∂X : ∂X → ∂T is a normal covering. The homo-
morphism Deck(f) 7→ Deck(f |∂X), g 7→ g|∂X, is well-defined and injective. Indeed,
since f is open, f−1(∂T ) = ∂X and g|∂X : ∂X → ∂X is well-defined and belongs to
the deck group of f |∂X .

To show that the restriction g 7→ g|∂X is injective, let g and h be deck trans-
formations of f satisfying g|∂X = h|∂X . By uniqueness of deck transformations of
covering maps, we obtain g|X\f−1fBf

= h|X\f−1fBf
. Thus g = h by the density of

X \ f−1fBf in X.
Since ∂X is connected and f |∂X : ∂X → ∂T is a covering, we conclude that ∂X is

a 2-torus and f |∂X is a normal covering. In particular, Deck(f |∂X) is abelian. Thus
Deck(f) is abelian and the claim follows from Theorem 6. �

As a consequence we obtain that branched covers do not branch over toroidal
Cantor sets. We formulate this as follows. Theorem 4 for Antoine’s necklaces is a
particular case of this corollary.

Corollary 10. Let M and N be 3-manifolds and f : M → N a locally normal
branched cover so that fBf is contained in a toroidal Cantor set. Then f is a covering
map.

Proof. Let y ∈ fBf , x ∈ f−1(y), and T ⊂ N a neighborhood of y so that ∂T
is a 2-torus in N \ fBf , f−1(N \ T ) is connected, the x-component Hx of f−1T is
contained in an interior of an n-cell C in M and f |Hx

: Hx → T is a normal branched
covering. Note that, e.g. by the Alexander duality, each boundary component of ∂Hx

separates C into exactly two connected components. Since M \ Hx ⊃ f−1(N \ T )
is connected, we conclude that the boundary ∂Hx is connected. On the other hand,
since f |∂Hx

: ∂Hx → ∂T is a covering, we have that ∂Hx is a 2-torus. Thus the
mapping f |Hx

: Hx → T satisfies the conditions of Proposition 9. �
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