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Abstract. We introduce the quasisymmetric deformation space of a Fuchsian group Γ within

the group of symmetric self-homeomorphisms of the circle, and define this as the Teichmüller space

AT (Γ) of Γ-invariant symmetric structures. This is another generalization of the asymptotic Teich-

müller space, and we verify the basic properties of this space. In particular, we show that AT (Γ)

is infinite dimensional, and in fact non-separable if Γ admits a non-trivial deformation, even for a

cofinite Fuchsian group Γ.

1. Introduction

All Teichmüller spaces of hyperbolic Riemann surfaces are embedded in the uni-
versal Teichmüller space T . This means that for any Fuchsian group Γ that uni-
formizes a Riemann surface R, the Teichmüller space of R can be represented as
a closed subspace T (Γ) of T , which consists of the fixed points of Γ. We con-
sider a similar construction in the Teichmüller space AT of symmetric structures
on the circle S. This space was first introduced by Gardiner and Sullivan [7].
In the language of (G,X)-structures, T is regarded as the deformation space of
(Möb(S),S)-structures, whereas AT is the deformation space of (Sym,S)-structures.
Here, Möb(S) ∼= PSL(2,R) is the group of Möbius transformations of S, and Sym is
the larger group consisting of symmetric self-homeomorphisms of S. Deformations are
allowed within the category of the group QS of quasisymmetric self-homeomorphisms
of S.

The group Sym was introduced in [7], as the characteristic topological subgroup
of QS consisting of all elements g ∈ QS such that the adjoint map QS → QS defined
by conjugation by g is continuous at the identity. Subsequently, Earle, Gardiner, and
Lakic [3] studied the asymptotic Teichmüller space AT (R) for a Riemann surface R,
which is a generalization of AT . This was introduced by focusing on the property that
the quasiconformal extension to the unit disk D of a symmetric self-homeomorphism
of S is asymptotically conformal; that is, its complex dilatation vanishes at the
boundary S.

In this paper, although we rely on the arguments providing the foundation of
asymptotic Teichmüller spaces, we move in the different direction of investigating
the Teichmüller space AT (Γ) of Γ-invariant symmetric structures on S, which is the
closed subspace of AT consisting of the fixed points of a Fuchsian group Γ. The
major results demonstrated for AT (Γ) in this paper are summarized as follows.
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Theorem 1.1. For a Fuchsian group Γ, the Teichmüller space AT (Γ) of Γ-

invariant symmetric structures on S, endowed with the asymptotic Teichmüller dis-

tance, has a complex non-separable Banach manifold structure if T (Γ) is non-trivial.

Moreover, AT (Γ) is contractible.

Here, the properties other than the infinite dimensionality of AT (Γ) are stan-
dard for Teichmüller spaces, and are obtained by modifying existing arguments
in the literature. In particular, we utilize certain results that Earle, Markovic,
and Saric [5] demonstrated using the barycentric extension of quasisymmetric self-
homeomorphisms. On the other hand, the infinite dimensionality of AT (Γ) requires
the application of a novel technique. In fact, AT (Γ) is not separable even if Γ is
cofinite. The proof proceeds by refining the arguments given in our previous papers
[10, 11].

The importance of AT (Γ) arises when we consider the quasisymmetric deforma-
tion space of a Fuchsian group Γ in the group of certain automorphisms of S. By
definition, AT (Γ) itself is the deformation space of Γ in Sym. The key feature of
this space is that other deformation spaces of Γ can be embedded in AT (Γ). Besides
the fact that the Teichmüller space T (Γ) is embedded in AT (Γ) (this will be seen in
Proposition 5.1), we have shown in [14] that the deformation space of Γ in the group
of diffeomorphisms of S with Hölder continuous derivatives is embedded in AT (Γ).
Then, we can understand the rigidity of such a deformation through the coincidence
of these deformation spaces in the ambient space AT (Γ).

Fundamental results concerning quasiconformal maps and Teichmüller spaces can
be found in the standard monographs [1, 6, 8, 16].

2. A new asymptotic Teichmüller space

We denote the group of all quasiconformal self-homeomorphisms of D by QC(D).
For w ∈ QC(D), we set its complex dilatation as µw(z) = wz̄/wz. Every quasicon-
formal self-homeomorphism w of D extends to a self-homeomorphism f of S. We
define such an f to be quasisymmetric, and denote the group of all quasisymmet-
ric self-homeomorphisms of S by QS. This correspondence gives rise to a surjective
homomorphism q : QC(D) → QS. The topology on QS is defined by using the
quasisymmetric constant. See [7, Section 1].

The universal Teichmüller space is defined by T = Möb(S)\QS, with its elements
represented by the equivalence classes [f ] for f ∈ QS. Through the solution of the
Beltrami equation (the measurable Riemann mapping theorem, see [1]), the space of
Beltrami coefficients

Bel(D) = {µ ∈ L∞(D) | ‖µ‖∞ < 1}

is identified with QC(D) modulo post-composition of Möb(D). Then, the boundary
extension map q gives rise to a well-defined surjection

π : Bel(D) ∼= Möb(D)\QC(D) −→ T = Möb(S)\QS,

which is called the Teichmüller projection.
The topology on T is the quotient topology inherited from Bel(D) through π. We

note that this coincides with the quotient topology arising from QS. Alternatively,
this can be introduced as follows. The open unit ball Bel(D) of L∞(D) is endowed
with the hyperbolic distance:

dh(µ, ν) = log

(
1 +

∥∥∥∥
µ− ν

1− ν̄µ

∥∥∥∥
∞

)
− log

(
1−

∥∥∥∥
µ− ν

1− ν̄µ

∥∥∥∥
∞

)
(µ, ν ∈ Bel(D)).
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Then, the quotient pseudo-distance on T induced by π is in fact a distance, which is
called the Teichmüller distance dT . The topology on T induced by dT coincides with
the quotient topology arising from Bel(D).

The group QS acts on T canonically, as follows:

([f ], g) ∈ T ×QS 7→ g∗[f ] := [f ◦ g] ∈ T.

Clearly, the action is faithful and transitive. Moreover, this is isometric with respect
to dT . The isotropy subgroup of QS at the origin [id] ∈ T coincides with Möb(S).
The condition that g ∈ QS fixes [f ] ∈ T , that is, g∗[f ] = [f ], can be written as
[fgf−1] = [id], and this is equivalent to the condition that fgf−1 ∈ Möb(S).

A quasiconformal self-homeomorphism w ∈ QC(D) is called asymptotically con-

formal if the complex dilatation µw vanishes at the boundary S; that is, µw(z) →
0 (|z| → 1). The closed subspace of Bel(D) consisting of all Beltrami coefficients
vanishing at the boundary is denoted by Bel0(D), and the subgroup of QC(D) con-
sisting of all asymptotically conformal automorphisms of D is denoted by AC(D).
On the other hand, a quasisymmetric self-homeomorphism f ∈ QS can be defined
to be symmetric if there is some w ∈ AC(D) such that q(w) = f . The group of all
symmetric self-homeomorphisms of S is denoted by Sym. Then, the restriction of
the boundary extension map q to AC(D) gives rise to a surjective homomorphism
q : AC(D) → Sym.

Gardiner and Sullivan [7] studied the asymptotic Teichmüller space defined by

AT = Sym \QS .

The elements of this space are represented by the equivalence classes [[f ]] for f ∈ QS.
In addition, the little universal Teichmüller space is defined by

T0 = Möb(S)\ Sym = π(Bel0(D)) ⊂ T.

There exists a canonical projection

α : T → AT

given by [f ] 7→ [[f ]]. The quotient topology of AT is induced from T by α. Further-
more, because T0 ⊂ T (Sym ⊂ QS) is closed which was shown in [7, Corollary 2.1],
and as QS acts isometrically with respect to dT and transitively on T , we see that
the quotient pseudo-distance on AT induced by α from dT is in fact a distance dAT .
We call this the asymptotic Teichmüller distance.

The group QS acts on AT by

([[f ]], g) ∈ AT ×QS 7→ g∗[[f ]] := [[f ◦ g]] ∈ AT.

This is well-defined, because the action of QS on T sends each fiber of the projection
α onto another fiber. This action is isometric with respect to dAT . The isotropy
subgroup of QS at the origin [[id]] ∈ AT coincides with Sym.

The deformation space of a Fuchsian group Γ in Möb(S) is given as the Teich-
müller space of Γ, which is defined by

T (Γ) = Möb(S)\{f ∈ QS | fΓf−1 ⊂ Möb(S)} ⊂ T.

This can be alternatively written as

T (Γ) = {[f ] ∈ T | γ∗[f ] = [f ] (∀γ ∈ Γ)},

and hence we see that T (Γ) is a closed subspace of T . The topology on T (Γ) is given
by the relative topology as a subspace of T . We can also consider the inner distance
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on T (Γ) induced from dT compatible with this topology, although in general this
distance differs from the ordinary Teichmüller distance on T (R) for R = D /Γ.

In a similar manner, we can introduce the following space, which is our main
object of study in this paper.

Definition. The deformation space of a Fuchsian group Γ ⊂ Möb(S) in Sym is
defined by

AT (Γ) = Sym\{f ∈ QS | fΓf−1 ⊂ Sym} = {[[f ]] ∈ AT | γ∗[[f ]] = [[f ]] (∀γ ∈ Γ)},

which is a closed subspace of AT . The topology on AT (Γ) is the relative topology
as a subspace of AT , and the inner distance dAT (Γ) induced from dAT can be given
as the asymptotic Teichmüller distance on AT (Γ).

We remark that AT (Γ) is different from the asymptotic Teichmüller space AT (R)
of the Riemann surface R = D /Γ. We call AT (Γ) the asymptotic Teichmüller space
for a Fuchsian group Γ, or in order to distinguish it from that of R, the Teichmüller

space of Γ-invariant symmetric structures on S.
Obviously, the inclusion relation of Fuchsian groups Γ1 ⊂ Γ2 implies that AT (Γ1)

⊃ AT (Γ2) and dAT (Γ1) ≤ dAT (Γ2). The same property is satisfied for the Teichmüller
space T (Γ) for a Fuchsian group Γ. Here, we can raise the following questions for
future study:

(1) Does AT (Γ1) = AT (Γ2) imply that Γ1 = Γ2?
(2) Does dAT (Γ1) = dAT (Γ2) on AT (Γ2) imply that Γ1 = Γ2, or that Γ2/Γ1 is small

in some sense? More generally, compare dAT (Γ2) with dAT (Γ1) restricted to
AT (Γ2).

Concerning these problems for the Teichmüller spaces T (Γ) and T (R), we refer the
reader to [9], [8, Section V.3.2], and McMullen [15].

3. Complex Banach manifold structure

In this section, we introduce a complex Banach manifold structure to the Teich-
müller space AT (Γ) of Γ-invariant symmetric structures on S for a Fuchsian group Γ.
This will be achieved by using the asymptotic Bers embedding. We first review the
construction of this mapping, and then modify the argument for our present case.

We consider the complex Banach space of hyperbolically bounded holomorphic

functions (quadratic differentials) on D
∗ = Ĉ−D:

B(D∗) = {ϕ ∈ Hol(D∗) | ‖ϕ‖∞ = sup
z∈D∗

ρ−2
D

∗(z)|ϕ(z)| <∞}.

Here, ρD∗ is the hyperbolic density on D
∗. The Bers projection Φ: Bel(D) → B(D∗)

with correspondence µ 7→ ϕ is defined by taking the Schwarzian derivative ϕ of a
conformal homeomorphism of D∗ that extends to a quasiconformal homeomorphism
of D, having the complex dilatation µ. Then, we have a well-defined injection β : T →
B(D∗), given by Φ ◦ π−1, which is called the Bers embedding. This can be shown
to be a homeomorphism onto a bounded domain in B(D∗), and hence provides a
complex Banach manifold structure for T .

The group Möb(D∗) of Möbius transformations of D∗ acts on the complex Banach
space B(D∗) linear isometrically, as

(ϕ, g) ∈ B(D∗)× Möb(D∗) 7→ g∗ϕ ∈ B(D∗); (g∗ϕ)(z) := ϕ(g(z))g′(z)2.

It is easy to see that under the Bers embedding β and the identification Möb(S) ∼=
Möb(D∗), the action of Möb(S) on T and the action of Möb(D∗) on B(D∗) are
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equivalent. More precisely, we have that β ◦g∗ = g∗◦β on T , for every g ∈ Möb(S) ∼=
Möb(D∗).

For a Fuchsian group Γ, regarded as a subgroup of Möb(D∗), let B(D∗,Γ) be the
closed subspace of B(D∗) consisting of all elements fixed by every γ ∈ Γ. Then, the
Bers embedding β : T → B(D∗) restricted to the closed subspace T (Γ) is a homeo-
morphism onto the bounded domain β(T ) ∩ B(D∗,Γ) in the complex Banach space
B(D∗,Γ). Verifying the inclusion β(T (Γ)) ⊂ β(T ) ∩ B(D∗,Γ) is easier, but demon-
strating the coincidence is more difficult. For example, see [5, Corollary 8.1] and
[8, Section V.4.4]. In particular, T (Γ) admits a complex Banach manifold structure
modeled on B(D∗,Γ).

Following the case of ordinary Teichmüller spaces, we introduce a complex struc-
ture to AT (Γ). Let B0(D

∗) be the closed subspace consisting of all elements ϕ ∈
B(D∗) that vanish at the boundary S, which means that lim|z|→1 ρ

−2
D

∗(z)|ϕ(z)| = 0.
Then, it was verified by Gardiner and Sullivan [7, Theorem 4.1] and Earle, Gardiner,
and Lakic [3, Corollary 2.10] that the Bers embedding β satisfies β(T0) ⊂ B0(D

∗),
and moreover β projects down to a well-defined map

β̂ : AT = Sym \QS → B0(D
∗)\B(D∗)

into the quotient Banach space B̂(D∗) = B0(D
∗)\B(D∗). We call this map the

asymptotic Bers embedding.

The equivalence class of ϕ ∈ B(D∗) is denoted by [ϕ]B ∈ B̂(D∗), and the pro-

jection PB : B(D∗) → B̂(D∗) is given by PB(ϕ) = [ϕ]B. Then, this satisfies the
condition that

PB ◦ β = β̂ ◦ α

on T , for the projection α : T → AT . Furthermore, β̂ is a homeomorphism onto a

bounded domain in B̂(D∗), and in particular, β̂ is injective (see [5, Theorem 1] and
[6, Section 16.8]). This fact can be explained by Lemma 4.2 given in Section 4 below.
From this, we can see that AT admits a complex Banach manifold structure modeled

on B̂(D∗).

The group Möb(D∗) acts on B̂(D∗) linear isometrically. This is because Möb(D∗)
acts on B(D∗), keeping B0(D

∗) invariant. Then, by the fact that β ◦ g∗ = g∗ ◦ β and

PB ◦ β = β̂ ◦ α on T , we see that

β̂ ◦ g∗ = g∗ ◦ β̂

on AT , for every g ∈ Möb(S) ∼= Möb(D∗).
For a Fuchsian group Γ ⊂ Möb(D∗), we consider its linear isometric action on

B̂(D∗). Let B̂(D∗,Γ) be the closed subspace of B̂(D∗) consisting of all elements fixed
by every γ ∈ Γ. In other words,

B̂(D∗,Γ) = {[ϕ]B ∈ B̂(D∗) | [γ∗ϕ]B = [ϕ]B (∀γ ∈ Γ)}.

Note that B̂(D∗,Γ) is different from the projection of B(D∗,Γ) by PB. In fact, the
former contains the latter as a proper subspace in many cases. This will be seen later
in Section 5.

The asymptotic Bers embedding β̂ : AT → B̂(D∗) restricted to the closed sub-

space AT (Γ) is a homeomorphism onto the image in β̂(AT ) ∩ B̂(D∗,Γ). In fact, we
will prove later that

β̂(AT (Γ)) = β̂(AT ) ∩ B̂(D∗,Γ).
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In this manner, we furnish AT (Γ) with a complex Banach manifold structure modeled

on B̂(D∗,Γ).
Now, we summarize the contents of this section as a theorem.

Theorem 3.1. The restriction of the asymptotic Bers embedding β̂ : AT →
B̂(D∗) to the Teichmüller space AT (Γ) of Γ-invariant symmetric structures on S is a

homeomorphism onto the bounded domain β̂(AT )∩ B̂(D∗,Γ). Hence, AT (Γ) admits

a complex Banach manifold structure modeled on B̂(D∗,Γ).

Proof. The only statement for which a proof is required is that β̂(AT (Γ)) =

β̂(AT ) ∩ B̂(D∗,Γ). This will be provided in Lemma 4.4. �

Remark. As in the case of AT , we can also consider the problem of whether or
not the Kobayashi distance given by the complex structure on AT (Γ) coincides with
the asymptotic Teichmüller distance dAT (Γ). See [4, Section 3.2].

4. Barycentric section and contractibility

In this section, we show that the Teichmüller space AT (Γ) of Γ-invariant symmet-
ric structures on S is contractible as a topological space. This is a common property of
Teichmüller spaces, and is usually verified by demonstrating the existence of a global
continuous section for the Teichmüller or the Bers projections. The barycentric sec-
tion induced by the barycentric extension of quasisymmetric self-homeomorphisms
of S is appropriate for this purpose. Then, the contractibility of the open unit ball
of relevant Beltrami coefficients provides the solution.

Douady and Earle [2] introduced the barycentric extension e : QS → QC(D), as
a section for the boundary extension map q : QC(D) → QS satisfying q ◦ e = id.
Moreover, e is conformally natural, in the sense that

(1) e(g1 ◦ f) = e(g1) ◦ e(f); (2) e(f ◦ g2) = e(f) ◦ e(g2)

for any g1, g2 ∈ Möb(S) and any f ∈ QS. Then, by (1) we can divide both sides
of e by Möb(S) ∼= Möb(D), obtaining a section s′ : T → Bel(D) for the Teichmül-
ler projection π : Bel(D) → T . By the composition of s′ with the inverse of the
Bers embedding β, we obtain s : β(T ) → Bel(D), satisfying Φ ◦ s = id for the Bers
projection Φ: Bel(D) → β(T ). We call this s the barycentric section, and it provides
a real analytic section for Φ.

Let L∞(D) be the complex Banach space of bounded measurable functions µ
on D, with supremum norm ‖µ‖∞. We call an element of L∞(D) a Beltrami dif-

ferential. Then, Bel(D) is the open unit ball on this space. Let L∞
0 (D) be the

closed subspace of L∞(D) consisting of all functions µ vanishing at the boundary S.
Then, Bel0(D) = Bel(D)∩L∞

0 (D). Moreover, we consider the quotient Banach space

L̂∞(D) = L∞
0 (D)\L∞(D) and its open unit ball B̂el(D), which is given by Bel(D)

modulo L∞
0 (D). We denote the equivalence class of µ ∈ L∞(D) by [µ]L ∈ L̂∞(D),

and the projection PL : L
∞(D) → L̂∞(D) is given by PL(µ) = [µ]L.

A basic property concerning the projections PL : Bel(D) → B̂el(D) and α : T →
AT is given as follows, which was shown in [3, Lemma 2.9] and [5, Corollary 2.1].

From this, we obtain the asymptotic Teichmüller projection π̂ : B̂el(D) → AT which
satisfies

π̂ ◦ PL = α ◦ π

on Bel(D).
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Proposition 4.1. For µ1, µ2 ∈ Bel(D), if PL(µ1) = PL(µ2), then α ◦ π(µ1) =
α ◦ π(µ2) in AT .

The Bers projection Φ: Bel(D) → B(D∗) is a holomorphic split submersion onto
β(T ). For details concerning holomorphic split submersions, see [16, Section 1.6.5].
This satisfies Φ(Bel0(D)) ⊂ B0(D

∗), as in [7], and moreover it has been proved in [3,

Theorem 2.3] that Φ projects down to a holomorphic split submersion Φ̂ : B̂el(D) →

B̂(D∗) onto β̂(AT ), which we call the asymptotic Bers projection. This satisfies

Φ̂ ◦ PL = PB ◦ Φ

on Bel(D), and hence β̂ ◦ π̂ = Φ̂ on B̂el(D).
The next lemma was proved by Earle, Markovic, and Saric [5, Theorem 4]. As an

additional formulation of the essential part of this claim, we see that the barycentric
extension e satisfies asymptotically conformal naturality:

e(γ ◦ g) ◦ e(g)−1 ∈ AC(D)

for every g ∈ QS and every γ ∈ Sym.

Lemma 4.2. For µ1, µ2 ∈ Bel(D), the following conditions are equivalent:

(1) α ◦ π(µ1) = α ◦ π(µ2) in AT ;

(2) PB ◦ Φ(µ1) = PB ◦ Φ(µ2) in B̂(D∗);

(3) PL ◦ s ◦ Φ(µ1) = PL ◦ s ◦ Φ(µ2) in B̂el(D).

In virtue of this property, the barycentric section s descends to the asymptotic

barycentric section ŝ : β̂(AT ) → B̂el(D), which is a real analytic section for Φ̂, as in
[5, Theorem 5].

The group Möb(D) of Möbius transformations of D acts on the complex Banach
space L∞(D) linear isometrically, as

(µ, g) ∈ L∞(D)× Möb(D) 7→ g∗µ ∈ L∞(D); (g∗µ)(z) := µ(g(z))
g′(z)

g′(z)
.

This action keeps L∞
0 (D) invariant. Hence, it induces a linear isometric action of

Möb(D) on L̂∞(D), and we have that g∗ : L̂∞(D) → L̂∞(D) for each g ∈ Möb(D).
Let L∞(D,Γ) be the closed subspace of L∞(D) consisting of all elements that are

fixed by every element γ of a Fuchsian group Γ, and let L̂∞(D,Γ) be the closed

subspace of L̂∞(D) consisting of all elements fixed by every γ ∈ Γ. The open unit

balls on these spaces are denoted by Bel(D,Γ) and B̂el(D,Γ), respectively.
By the fact that π ◦ g∗ = g∗ ◦ π on Bel(D) for every g ∈ Möb(D) ∼= Möb(S),

the Teichmüller projection gives π : Bel(D,Γ) → T (Γ) for a Fuchsian group Γ. In
addition, because Φ ◦ g∗ = g∗ ◦ Φ on Bel(D) for every g ∈ Möb(D) ∼= Möb(D∗),
the Bers projection gives Φ: Bel(D,Γ) → B(D∗,Γ). Similarly, we can prove the
following.

Proposition 4.3. The asymptotic Teichmüller projection π̂ : B̂el(D) → AT sat-

isfies π̂(B̂el(D,Γ)) ⊂ AT (Γ), and the asymptotic Bers projection Φ̂ : B̂el(D) →

B̂(D∗) satisfies Φ̂(B̂el(D,Γ)) ⊂ B̂(D∗,Γ), for any Fuchsian group Γ.

Proof. Because π̂ ◦ PL = α ◦ π on Bel(D), we see from π ◦ g∗ = g∗ ◦ π that

π̂ ◦ g∗ = g∗ ◦ π̂
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on B̂el(D), for every g ∈ Möb(D) ∼= Möb(S). This yields the inclusion π̂(B̂el(D,Γ)) ⊂

AT (Γ). Similarly, because Φ̂ ◦ PL = PB ◦ Φ on Bel(D), we see from Φ ◦ g∗ = g∗ ◦ Φ
that

Φ̂ ◦ g∗ = g∗ ◦ Φ̂

for every g ∈ Möb(D) ∼= Möb(D∗). This yields the inclusion Φ̂(B̂el(D,Γ)) ⊂

B̂(D∗,Γ). �

From the first statement of the above proposition and β̂ ◦ π̂ = Φ̂, we see that the

image Φ̂(B̂el(D,Γ)) is contained in β̂(AT (Γ)). On the other hand, by considering

β̂ ◦ g∗ = g∗ ◦ β̂ on AT , we can show that β̂(AT (Γ)) is contained in β̂(AT )∩ B̂(D∗,Γ).
Several properties of the barycentric section arise from the conformal naturality of

the barycentric extension e. We see from conformal naturality (2) that the restriction
of the barycentric section s to β(T ) ∩ B(D∗,Γ) provides a real analytic section for
Φ: Bel(D,Γ) → β(T (Γ)). Similarly, by considering both the conformal naturality
and the asymptotic conformal naturality, we obtain the following lemma.

Lemma 4.4. The restriction of the asymptotic barycentric section ŝ to β̂(AT )∩

B̂(D∗,Γ) gives a real analytic section for Φ̂ : B̂el(D,Γ) → B̂(D∗,Γ). In particular,

β̂(AT (Γ)) coincides with β̂(AT ) ∩ B̂(D∗,Γ), and is the image of Φ̂.

Proof. Take any [ϕ]B ∈ β̂(AT ) ∩ B̂(D∗,Γ), where ϕ ∈ β(T ) satisfies γ∗ϕ − ϕ ∈
B0(D

∗) for every γ ∈ Γ. We consider ϕ + ψ (ψ ∈ B0(D
∗)) as an element in the

equivalence class [ϕ]B. Then, s(ϕ + ψ) − s(ϕ) ∈ L∞
0 (D) by Lemma 4.2. Here, we

have that

γ∗(s(ϕ))− s(ϕ) = s(γ∗ϕ)− s(ϕ) ∈ L∞
0 (D),

where the equality follows from conformal naturality (2) of the barycentric extension
e. Hence,

γ∗(s(ϕ+ ψ)) ≡ γ∗(s(ϕ)) ≡ s(ϕ) ≡ s(ϕ+ ψ) (mod L∞
0 (D))

for every γ ∈ Γ. This implies that ŝ([ϕ]B) ∈ B̂el(D,Γ).
Because ŝ is the restriction of the real analytic map to the subspace, it is also real

analytic. The restriction of the identity Φ̂◦ ŝ = id to β̂(AT )∩ B̂(D∗,Γ) demonstrates

that ŝ is the section for Φ̂ : B̂el(D,Γ) → Φ̂(B̂el(D,Γ)). In particular, both the
inclusions

Φ̂(B̂el(D,Γ)) ⊂ β̂(AT (Γ)) ⊂ β̂(AT ) ∩ B̂(D∗,Γ)

are equalities. �

From this lemma, we also see that AT (Γ) coincides with π̂(B̂el(D,Γ)). Now, we
are ready to prove the following claim mentioned at the beginning of this section.

Theorem 4.5. The Teichmüller space AT (Γ) of Γ-invariant symmetric struc-

tures on S is contractible.

Proof. The Teichmüller space AT (Γ) can be identified with β̂(AT (Γ)) ⊂ B̂(D∗,Γ),

under the asymptotic Bers embedding β̂. Because there exists a continuous section

ŝ : β̂(AT (Γ)) → B̂el(D,Γ) by Lemma 4.4, and because the open unit ball B̂el(D,Γ)

of L̂∞(D,Γ) is contractible, it follows that β̂(AT (Γ)) is too. Hence, AT (Γ) is con-
tractible. �
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The Bers projection Φ: Bel(D,Γ) → β(T (Γ)) ⊂ B(D∗,Γ) is a holomorphic split
submersion (see [16, Section 3.4]). As we have mentioned, the asymptotic Bers pro-

jection Φ̂ : B̂el(D) → β̂(AT ) ⊂ B̂(D∗) is also a holomorphic split submersion. On the
other hand, we do not know whether the restriction of the asymptotic Bers projec-

tion Φ̂ to B̂el(D,Γ) defines a holomorphic submersion Φ̂ : B̂el(D,Γ) → β̂(AT (Γ)) ⊂

B̂(D∗,Γ) or not. We can only make the following observation.

(1) Because Φ̂ : B̂el(D) → β̂(AT ) is a holomorphic split submersion, we obtain a
decomposition of the tangent space

L̂∞(D) = Ker(d[µ]LΦ̂)⊕W[µ]L

at every point [µ]L ∈ B̂el(D,Γ), where W[µ]L is some closed subspace of L̂∞(D).

Then, the tangent space of B̂el(D,Γ) can be represented by

L̂∞(D,Γ) = Ker(d[µ]LΦ̂|L̂∞(D,Γ))⊕ (W[µ]L ∩ L̂∞(D,Γ)).

Note thatW[µ]L∩L̂
∞(D,Γ) is a closed subspace. Hence, if we know that the derivative

d[µ]LΦ̂|L̂∞(D,Γ) at any point is surjective, then we can conclude that the restriction of

Φ̂ to B̂el(D,Γ) is a holomorphic split submersion, by applying the implicit function
theorem ([16, p.89]).

(2) We consider the derivative of Φ̂ at any point ŝ([ϕ]B) in the image of the

real-analytic section ŝ : β̂(AT (Γ)) → B̂el(D,Γ). As in the proof of Earle, Markovic,

and Saric [5, Proposition 7], a complex linear map on B̂(D∗,Γ) defined by

[ψ]B 7→
1

2
{d[ϕ]B ŝ([ψ]B)− i · d[ϕ]B ŝ(i[ψ]B)}

is a right inverse of dŝ([ϕ]B)Φ̂.

5. Infinite dimensionality (non-separable)

In this section, we show that the Teichmüller space AT (Γ) of Γ-invariant sym-
metric structures on S for a Fuchsian group Γ is of infinite dimension (in fact, it is
not separable) unless T (Γ) is trivial. This is true even if T (Γ) is of finite dimension,
and moreover the complement of αT (Γ) := α(T (Γ)) in AT (Γ) is not separable if Γ
is infinite in addition.

To compare αT (Γ) with AT (Γ), we first verify that αT (Γ) is a complex submani-
fold of AT (Γ), and can be identified with T (Γ).

Proposition 5.1. Let Γ be an infinite Fuchsian group. Then, the projection

α : T → AT restricted to T (Γ) is a biholomorphic embedding, and the image αT (Γ)
is a complex submanifold of AT (Γ).

Proof. Because PB ◦ β = β̂ ◦ α on T , we can consider these problems in the Bers
embeddings. The injection of α on T (Γ) follows from the injection of PB : B(D∗) →

B̂(D∗) on B(D∗,Γ). The latter fact was essentially proved in [13, Theorem 4.2]. A
similar statement is also shown in [14, Theorem 2.1]. For the convenience of the
reader, we present the proof here.

We have only to show that B(D∗,Γ)∩B0(D
∗) = {0}, because of the linearity of

PB. Take any ϕ in this intersection that satisfies γ∗ϕ = ϕ for every γ ∈ Γ, where
(γ∗ϕ)(z) = ϕ(γ(z))γ′(z)2. Then,

ρ−2
D

∗(z)|ϕ(z)| = ρ−2
D

∗(z)|(γ∗ϕ)(z)| = ρ−2
D

∗(γ(z))|ϕ(γ(z))|.
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Because ϕ ∈ B0(D
∗), and the infinite Fuchsian group Γ contains a sequence {γn}n∈N

such that |γn(z)| → 1 (n→ ∞) for all z ∈ D
∗, we have that ϕ(z) ≡ 0.

We consider the projection PB of B(D∗,Γ) onto the closed subspace PB(B(D∗,Γ))

of B̂(D∗). Since this is injective as we have seen above, PB : B(D∗,Γ) → PB(B(D∗,Γ))
is an isomorphism between the Banach spaces.

The image of αT (Γ) ⊂ AT under the asymptotic Bers embedding β̂ is given by

β̂(αT (Γ)) = PB ◦ β(T (Γ)).

Here, β(T (Γ)) = β(T ) ∩ B(D∗,Γ), and PB is an isomorphism of B(D∗,Γ) onto the

closed subspace PB(B(D∗,Γ)) of B̂(D∗,Γ). Hence, β̂(αT (Γ)) is a domain in the

closed complex submanifold β̂(AT ) ∩ PB(B(D∗,Γ)) of β̂(AT (Γ)). Thus, we see that
αT (Γ) is a complex submanifold of AT (Γ) and α : T (Γ) → AT (Γ) is a biholomorphic
embedding. �

Remark. In the proof above, it remains a problem whether or not β̂(αT (Γ))

coincides with β̂(AT ) ∩ PB(B(D∗,Γ)).

We expect that the injectivity of α on T (Γ), shown in Proposition 5.1, is also
valid for a finite Fuchsian group Γ. However, we do not pursue this question here.
Instead, we prove the following claim regarding a finite Fuchsian group, which stands
in contrast to the infinite Fuchsian case.

Proposition 5.2. If Γ is a finite Fuchsian group, then AT (Γ) = αT (Γ).

Proof. Denote Γ by {γ1, γ2, . . . , γm}, where m is the order of Γ. Take an arbitrary
point α ◦ π(µ) of AT (Γ) for µ ∈ Bel(D). The condition that α ◦ π(µ) ∈ AT (Γ) is
equivalent to α ◦ π(γ∗i µ) = α ◦ π(µ) for every i = 1, . . . , m, because γ∗i ◦ α ◦ π(µ) =
α ◦ π(γ∗i µ). Then, this is further equivalent to the condition that PL ◦ s ◦ Φ(γ∗i µ) =
PL◦s◦Φ(µ), by Lemma 4.2. The conformal naturality (2) of the barycentric extension
e implies that

s ◦ Φ(γ∗i µ) = s(γ∗iΦ(µ)) = γ∗i ◦ s ◦ Φ(µ).

Then, we define a Beltrami coefficient

ν :=
1

m

m∑

i=1

s ◦ Φ(γ∗i µ) =
1

m

m∑

i=1

γ∗i ◦ s ◦ Φ(µ).

Moreover, ν is Γ-invariant by construction. That is, ν ∈ Bel(D,Γ).
For the proof, we will show that α ◦ π(ν) = α ◦ π(s ◦ Φ(µ)). Then, by the facts

that α◦π(ν) ∈ αT (Γ) and π(s◦Φ(µ)) = π(µ), we can conclude that AT (Γ) = αT (Γ).
By Proposition 4.1, we only have to show that PL(ν) = PL(s◦Φ(µ)). In other words,
ν−s◦Φ(µ) ∈ L∞

0 (D). Because s◦Φ(γ∗i µ)−s◦Φ(µ) ∈ L∞
0 (D) for every i = 1, . . . , m,

which follows from the condition obtained in the first paragraph, the equality

ν − s ◦ Φ(µ) =
1

m

m∑

i=1

(s ◦ Φ(γ∗i µ)− s ◦ Φ(µ))

yields the desired conclusion. �

Next, we state the main theorem of this section. The remainder of this section
is dedicated to the proof of this theorem.

Theorem 5.3. Assume that an infinite Fuchsian group Γ is non-rigid. That is,

T (Γ) 6= {[id]}. Then, AT (Γ) contains the submanifold αT (Γ) as a proper subset,

and is of infinite dimension. More precisely, AT (Γ)− αT (Γ) is not separable.



The Teichmüller space of group invariant symmetric structures on the circle 545

Remark. It is easier to see that AT (Γ) itself is not separable when dimT (Γ) =
∞, including the case that Γ is finite. This is because T (Γ) is not separable in this
case, but the fibers of the projection α : T → AT are always separable.

Proof of Theorem 5.3. Consider the tangent space of AT (Γ) at the base point
[[id]]. We will choose uncountably many tangent vectors on this tangent space, out-
side of the tangent subspace of αT (Γ). The tangent vectors of AT are represented
by the images of the derivative of the projection α ◦ π : Bel(D) → AT at 0, defined
on L∞(D). Moreover, we denote the space of infinitesimally asymptotically trivial

Beltrami differentials by

N̂ := Ker d0(α ◦ π) ⊂ L∞(D).

Correspondingly, the tangent vectors of T are represented by the images of the de-
rivative of the Teichmüller projection π : Bel(D) → T at 0, defined on L∞(D),
and the space of infinitesimally trivial Beltrami differentials is denoted by N :=
Ker d0π ⊂ L∞(D). Note that by using the global coordinates β : T → B(D∗) and

β̂ : AT → B̂(D∗), we actually assume that the derivatives d0π and d0(α◦π) are iden-
tified with the derivatives d0Φ and d0(PB ◦ Φ) of the Bers projections, respectively.

The following characterization of N̂ and related facts can be found in the argu-
ments of Earle, Gardiner, and Lakic [3].

Proposition 5.4. (1) A Beltrami differential µ ∈ L∞(D) belongs to N if and

only if
ˆ

D

µ(z)φ(z) dx dy = 0

for every integrable holomorphic function φ in

A1(D) = {φ ∈ Hol(D) | ‖φ‖1 =

ˆ

D

|φ(z)| dx dy <∞};

(2) µ ∈ L∞(D) belongs to N̂ if and only if

lim
n→∞

ˆ

D

µ(z)φn(z) dx dy = 0

for every degenerating sequence {φn}n∈N ⊂ A1(D), which means that {φn} converges

to 0 locally uniformly on D, and ‖φn‖1 ≤ 1 for all n;

(3) N̂ = N + L∞
0 (D).

Proof. (1) This result is well-known as Teichmüller’s lemma. See [1, Sec-
tion VI.D], [6, Section 6.5], [8, Section 5.7.4], and [16, Section 3.7.1], among other
textbooks on Teichmüller spaces. (2) The tangent space Z = N\L∞(D) of T is
isomorphic to the space H of harmonic Beltrami differentials:

H = {ρ−2
D
(z)φ(z) ∈ L∞(D) | φ ∈ B(D)},

where B(D) is the space of hyperbolically bounded holomorphic functions on D. It
was proved in [3, Theorem 1.3] that a harmonic Beltrami differential µ ∈ H belongs
to L∞

0 (D) if and only if
´

D
µ(z)φn(z) dx dy → 0 (n → ∞) for every degenerating

sequence {φn}n∈N ⊂ A1(D). Because the tangent subspace Z0 = N\L∞
0 (D) of Z

corresponds to the trivial tangent vector of AT via d0α, we obtain statement (2). (3)

As we have seen in the proof of (2), for µ ∈ H the conditions µ ∈ N̂ and µ ∈ L∞
0 (D)

are equivalent. Because L∞(D) = N ⊕H , we obtain statement (3). �
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Take a small disk W ⊂ D centered at 0 such that γ(W ) ∩ W = ∅ for all γ ∈
Γ − {id}, and set Wγ = γ(W ). Because T (Γ) 6= {[id]}, we can find µ1 ∈ L∞(D,Γ)
supported on

⊔
γ∈ΓWγ such that µ1 /∈ N . Indeed, the non-rigidity of T (Γ) 6= {[id]}

is equivalent to a property that there exists a non-trivial holomorphic quadratic
differential ψ on D /Γ such that

ˆ

D /Γ

|ψ(z)| dx dy <∞; sup
z∈D /Γ

ρ−2
D
(z)|ψ(z)| <∞.

We restrict the harmonic Beltrami differential ρ−2
D
(z)ψ(z) ∈ L∞(D,Γ) to

⊔
γ∈ΓWγ ,

to obtain µ1 ∈ L∞(D,Γ). By the surjectivity of the Poincaré series operator (see [6,

Section 3.2]), there exists an integrable holomorphic function ψ̃ ∈ A1(D) such that∑
γ∈Γ(γ

∗ψ̃)(z) = ψ(z). Hence,
ˆ

D

µ1(z)ψ̃(z) dx dy =

ˆ

D /Γ

µ1(z)ψ(z) dx dy =

ˆ

W

ρ−2
D
(z)|ψ(z)|2 dx dy > 0,

which implies that µ1 /∈ N , by Proposition 5.4 (1).
Next, we will break the Γ-invariance of µ1 by introducing weights for µ1 on⊔

γ∈ΓWγ. For a function ξ : Γ → [0, 1] on Γ, we define a Beltrami differential in

L∞(D) by

µξ(z) =
∑

γ∈Γ

1Wγ
(z)ξ(γ)µ1(z).

For any infinite subset A ⊂ N, the weight function ξ = ξA is introduced by consid-
ering a function θA : [0,+∞) → [0, 1] that is defined as follows.

For each n ∈ N, set the interval [n(n− 1), n(n+1)) by In. If n ∈ A, then θA is a
tent map on In, which takes a value of 0 at the end points n(n− 1) and n(n+1) and
of 1 at the mid point n2. If n /∈ A, then θA is identically equal to zero on In. This
function θA is differentiable, except possibly at the points in {n(n− 1), n2}n∈N, and
satisfies θ′A(x) → 0 as x→ ∞. The weight function ξA on Γ for A ⊂ N is given by

ξA(γ) = θA(ℓγ), ℓγ = d(γ(0), 0)

for γ ∈ Γ, where d(γ(0), 0) is the hyperbolic distance between γ(0) and 0 in D.
Note that the set {ℓγ}γ∈Γ is distributed in [0,∞) without unbounded gaps, in

the sense that there exists some constant L > 0 depending on Γ such that every
interval of length L in [0,∞) contains ℓγ for some γ ∈ Γ. To see this, it is sufficient
to consider {ℓgn}n∈Z for any element g ∈ Γ of infinite order. If g is hyperbolic
with translation length t > 0, and the distance to its axis from 0 is δ ≥ 0, then
|n|t ≤ ℓgn ≤ |n|t + 2δ. Hence, we can choose L = t + 2δ. If g is parabolic, then
−a + 2 log |n| ≤ ℓgn ≤ 2 log |n|+ a (n 6= 0) for some constant a > 0 that depends on
d(g(0), 0). In this case, we can choose L = 2a+ 2.

Lemma 5.5. The Beltrami differential µξ ∈ L∞(D) with the weight function

ξ = ξA for any infinite subset A ⊂ N satisfies the following properties:

(1) (γ∗µξ)(z)− µξ(z) → 0 pointwise as |z| → 1, for every γ ∈ Γ;

(2) There exist subsequences {gk}k∈N and {g′k}k∈N in Γ such that (g∗kµξ)(z) →
µ1(z) and (g′∗kµξ)(z) → 0 pointwise as k → ∞.

Proof. (1) Consider the action of Γ on the functions ξ on Γ, defined by

(γ∗ξ)(g) = ξ(γg) (∀γ, g ∈ Γ).
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Then, it is easy to see that (γ∗µξ) − µξ = µγ∗ξ−ξ. Here, for each fixed γ ∈ Γ,
(γ∗ξ− ξ)(g) → 0 as ℓg → ∞. Indeed, because ℓ satisfies |ℓγg − ℓg| ≤ ℓγ, the condition
that limx→∞ θ′(x) = 0 implies this property. Note that ℓg → ∞ as z ∈ Wg approaches
S. Hence, we see that (γ∗µξ)(z)− µξ(z) tends to zero as |z| → 1.

(2) We choose a subsequence {gk} ⊂ Γ such that θ(ℓgk) → 1 as k → ∞. This
is possible because every interval of a certain length L > 0 in [0,∞) contains ℓg for
some g ∈ Γ, as we have seen above. Because |ℓgkγ − ℓgk | ≤ ℓγ, we also have that
θ(gkγ) → 1 as k → ∞ for each fixed γ ∈ Γ. This implies that g∗kξ(γ) → 1, and hence
(g∗kµξ)(z) → µ1(z) pointwise as k → ∞. Note that g∗kµξ = µg∗

k
ξ. Similarly, if we

choose a subsequence {g′k} ⊂ Γ such that θ(ℓg′
k
) → 0 as k → ∞, then we obtain the

second assertion. �

Property (1) of the above lemma implies that γ∗µξ − µξ ∈ N̂ for every γ ∈ Γ.
This is equivalent to saying that d0(α ◦ π)(µξ) lies on the tangent space of AT (Γ).
On the other hand, property (2) implies that µξ is not equivalent to any Γ-invariant

vector ν ∈ L∞(D,Γ) modulo N̂ . Equivalently, d0(α ◦ π)(µξ) does not lie on the
tangent space of αT (Γ). In the next proposition, we will verify these consequences
from Lemma 5.5. This constitutes a refinement of our previous arguments in [10, 11].

Proposition 5.6. The Beltrami differential µξ satisfies the following properties:

(1) d0(α ◦ π)(µξ) is Γ-invariant as a tangent vector of AT ; (2) d0(α ◦ π)(µξ) does not

lie on the tangent space of αT (Γ). Hence, d0(α◦π)(µξ) is a tangent vector of AT (Γ),
but not of αT (Γ).

Proof. (1) Lemma 5.5 (1) implies that γ∗µξ − µξ ∈ L∞
0 (D) for every γ ∈ Γ.

Hence,

γ∗(d0(α ◦ π)(µξ)) = d0(α ◦ π)(γ∗µξ) = d0(α ◦ π)(µξ),

by Proposition 5.4 (3), which implies Γ-invariance.
(2) Suppose on the contrary that we can write µξ = ν + λ, where ν ∈ L∞(D,Γ)

and λ ∈ N̂ . Let {gk}k∈N ⊂ Γ be the sequence chosen in Lemma 5.5 (2). Take any
φ ∈ A1(D) with ‖φ‖1 = 1, and set φk = (gk)∗φ := (g−1

k )∗φ for every k ∈ N. Then,
{φk}k∈N is a degenerating sequence, which can be seen from the fact that Γ is discrete
and considering the inclusion A1(D) ⊂ B0(D), where B0(D) is defined similarly to
B0(D

∗). This inclusion is well-known. We refer the reader to [14, Proposition 5.3]
for a simpler proof.

Because ν is Γ-invariant, we have that
ˆ

D

(g∗kµξ)(z)φ(z) dx dy =

ˆ

D

µξ(z)φk(z) dx dy =

ˆ

D

ν(z)φ(z) dx dy+

ˆ

D

λ(z)φk(z) dx dy.

Because (g∗kµξ)(z) → µ1(z) as k → ∞ by Lemma 5.5 (2), the left side of the above
equality converges to

´

D
µ1(z)φ(z) dx dy, by the dominated convergence theorem.

On the other hand,
´

D
λ(z)φk(z) dx dy converges to 0 by Proposition 5.4 (2), because

λ ∈ N̂ , and {φk} is a degenerating sequence. Hence,
ˆ

D

µ1(z)φ(z) dx dy =

ˆ

D

ν(z)φ(z) dx dy

for every φ ∈ A1(D) with ‖φ‖1 = 1, which implies that µ1 − ν ∈ N ⊂ N̂ . From this

and the fact that µξ = ν + λ, we have that µ1 − µξ = λ′, for some other λ′ ∈ N̂ .
Next, we set φ′

k = (g′k)∗φ for every k ∈ N, and consider another degenerating
sequence {φ′

k}k∈N. Similarly to the above paragraph, and by the fact that µ1 is
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Γ-invariant, we have that
ˆ

D

(µ1(z)−(g′k
∗
µξ)(z))φ(z) dx dy =

ˆ

D

(µ1(z)−µξ(z))φ
′
k(z) dx dy =

ˆ

D

λ′(z)φ′
k(z) dx dy.

Because (g′k
∗µξ)(z) → 0 as k → ∞ by Lemma 5.5 (2), the left side of the above

equality converges to
´

D
µ1(z)φ(z) dx dy and the right side to 0 as k → ∞. Hence,

´

D
µ1(z)φ(z) dx dy = 0 for every such φ ∈ A1(D), which implies that µ1 ∈ N by

Proposition 5.4 (1). However, this contradicts the manner of choosing µ1. �

Next, we construct uncountably many such Beltrami differentials µξ ∈ L∞(D) for
ξ = ξA independently, by choosing a suitable uncountable family of infinite subsets
A ⊂ N. More precisely, for an uncountable index set J , the family {Aj}j∈J of infinite
subsets Aj is required to satisfy the condition that the symmetric difference Aj ⊖Aj′

is also infinite for any distinct j, j′ ∈ J . The existence of such a family is easily seen.
For Aj and Aj′ (j 6= j′) as above, set ξj = ξAj

and ξj′ = ξAj′
, and consider µξj

and µξj′
. Take some φ ∈ A1(D), with ‖φ‖1 = 1, such that

´

D
µ1(z)φ(z)dxdy 6= 0.

Because Aj ⊖Aj′ is infinite, we may assume that Aj −Aj′ is also infinite, and denote
the positive integers in this set by {nk}k∈N. For each k ∈ N, choose gk ∈ Γ such
that |ℓgk − n2

k| ≤ L/2, where L > 0 is the constant defined just prior to Lemma 5.5
by the distribution of the orbit Γ(0). Then, we set φk = (gk)∗φ, and construct a
degenerating sequence {φk}k∈N.

Proposition 5.7. Under the circumstances given above,

lim
k→∞

ˆ

D

(µξj(z)− µξj′
(z))φk(z) dx dy =

ˆ

D

µ1(z)φ(z) dx dy 6= 0

for any distinct j, j′ ∈ J .

Proof. As before, we have that
ˆ

D

(µξj(z)−µξj′
(z))φk(z) dx dy =

ˆ

D

g∗kµξj−ξj′
(z)φ(z) dx dy =

ˆ

D

µg∗
k
(ξj−ξj′ )

(z)φ(z) dx dy.

Here, g∗k(ξj − ξj′) converges to the constant function 1 as k → ∞, and hence
µg∗

k
(ξj−ξj′ )

(z) converges to µ1(z) pointwise. Taking the limit using the dominated
convergence theorem yields the stated assertion. �

As a generalization of Proposition 5.4 (2), Earle, Gardiner, and Lakic [3, Sec-
tion 3.1] proved that the norm of the tangent vectors on AT can be defined by

sup
{φk}

lim sup
k→∞

∣∣∣∣
ˆ

D

µ(z)φk(z) dx dy

∣∣∣∣ ,

where the supremum is taken over all degenerate sequences {φk}k∈N ⊂ A1(D). Then,
Proposition 5.7 verified above shows that the uncountable family of tangent vectors
{d0(α ◦ π)(µξj)}j∈J is a discrete set on the tangent space of AT (Γ), which is not in
the tangent space of αT (Γ). This implies the non-separability of AT (Γ) − αT (Γ).
Hence, the proof of Theorem 5.3 is completed. �

Remark. When a Fuchsian group Γ is rigid, we make no claims regarding AT (Γ)
in Theorem 5.3. We have also investigated a certain strategy for demonstrating the
non-triviality of AT (Γ) in this case, in our former work [12]. However, we did not
reach the conclusion there. Therefore, it may be meaningful to consider the problem
of whether or not AT (Γ) = {[[id]]} when T (Γ) = {[id]}. If T (Γ) = {[id]} implies
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AT (Γ) = {[[id]]}, then this rigidity is not only holds for the deformation of Γ in
Möb(S), but also for the deformation in Sym.

6. Group invariant symmetric structures on a Riemann surface

In this supplementary section, we denote our Teichmüller space AT (Γ) for a
Fuchsian group Γ by AT (D, Γ). Furthermore, we denote the asymptotic Teichmüller
space AT (R) of a hyperbolic Riemann surface R by AT (R, 1). The definition of the
latter space can be found in [3, 4, 5, 6]. Then, we can unify these two generalizations
of AT = AT (D, 1) by using the notation AT (R,G), where R is a hyperbolic Riemann
surface and G is a subgroup of the group Aut(R) of conformal automorphisms of R.
We call AT (R,G) the G-invariant asymptotic Teichmüller space of R. Note that
AT (R) consists of a single point whenever R is cofinite. In this case, Aut(R) is a
finite group and AT (R,G) is trivial.

Theorem 6.1. For a hyperbolic Riemann surface R and an infinite subgroup

G ⊂ Aut(R), the G-invariant asymptotic Teichmüller space AT (R,G) of R, endowed

with the asymptotic Teichmüller distance, admits a complex non-separable Banach

manifold structure if T (R/G) is non-trivial. Moreover, AT (R,G) is contractible.

The proof can be obtained in almost the same manner as in the case of R = D.
Note that the results concerning the asymptotic Teichmüller space AT that we used
in the previous arguments are also valid for the asymptotic Teichmüller space AT (R)
of R.
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