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Abstract. We introduce the space of dyadic bounded mean oscillation functions f defined

on [0, 1]n and study the behavior of the non increasing rearrangement of f , as an element of the

space BMO((0, 1]). We also study the analogous class of functions that satisfy the dyadic Gurov-

Reshetnyak condition and look upon their integrability properties.

1. Introduction

It is well known that the space of bounded mean oscillation plays a central role
in harmonic analysis and especially in the theory of maximal operators and weights.
It is defined by the following way. For an integrable function f : Q0 ≡ [0, 1]n → R
we define the mean oscillation of f on Q, where Q is a subcube of Q0,

(1.1) Ω(f,Q) =
1

|Q|

ˆ

Q

|f(x)− fQ| dx

where fQ = 1
|Q|

´

Q
f(y) dy, is the integral average of f on Q. We will say that f is of

bounded mean oscillation on Q0, if the following is satisfied

‖f‖⋆ ≡ sup {Ω(f,Q) : Q is a subcube of Q0} < +∞.

We will then write f ∈ BMO(Q0). We are interested about the behavior of the
nonincreasing rearrangement f ⋆, as an element of BMO((0, 1]), when f ∈ BMO(Q0).

We denote by f ⋆ the unique equimeasurable to |f |,1 with domain (0, 1], function
which also satisfies the following requirements: it is nonincreasing and left continuous.
A discussion about this definition can be seen in [4]. There is also an equivalent
definition of f ⋆, which is given by the following formula:

(1.2) f ⋆(t) = sup
E⊆[0,1]n

|E|=t

[

inf
x∈E

|f(x)|

]

, for t ∈ (0, 1].

This can be seen in [8].
There is also an analogous function, corresponding to f , denoted by fd which

is now equimeasurable to f , left continuous and nonincreasing. This function now
rearranges f , and not |f |, as f ⋆ does, so that it is real valued. Also an analogous
formula as (1.2) holds for fd, if we replace the term |f(x)| by f(x). For a discussion
on the topic of rearrangements of functions one can also see [2]. As it can be seen
now in [1] or [3] the following is true.
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1in the sense that |{f⋆ > λ}| = |{|f | > λ}|, for any λ > 0.
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Theorem A. Let f ∈ BMO([0, 1]n). Then f ⋆ ∈ BMO((0, 1]). Moreover there

exists a constant c depending only on the dimension of the space such that

(1.3) ‖f ⋆‖⋆ ≤ c‖f‖⋆.

For instance a choice for such a constant is c = 2n+5.

Until now it has not been found the best possible value of c in order that (1.3)
holds for any f ∈ BMO([0, 1]n), for dimensions n ≥ 2. As for the case n = 1 the
following is true as can be seen in [6].

Theorem B. Let f ∈ BMO([0, 1]). Then f ⋆, fd ∈ BMO((0, 1]) and the following

inequalities hold:

‖f ⋆‖⋆ ≤ ‖f‖⋆,(1.4)

‖fd‖⋆ ≤ ‖f‖⋆.(1.5)

Our aim in this paper is to find a better estimation for the constant c that appears
in (1.3). For this reason we work on the respective dyadic analogue problem. We
consider integrable functions defined on [0, 1]n such that the following holds

(1.6) ‖f‖⋆,D ≡ sup {Ω(f,Q) : Q ∈ D} < +∞.

Here by D we denote the tree of the dyadic subcubes of Q0 ≡ [0, 1]n, that is the
cubes that are produced if we bisect each side of Q0 and continue this process to any
resulting cube. Then if (1.6) holds for f , we will say that it belongs to the dyadic
BMO space, denoted by BMOD ([0, 1]n). Our first result is the following:

Theorem 1. Let f ∈ BMOD ([0, 1]n). Then fd ∈ BMO((0, 1]) and

(1.7) ‖fd‖⋆ ≤ 2n‖f‖⋆,D.

This of course gives us as a consequence that the constant c that appears in (1.3),
can be replaced effectively by 2n.

As in the usual case, Theorem 1 enables us to prove an inequality of the type of
John–Nirenberg (see for example [5]), which is described by the following:

Theorem 2. Let f ∈ BMOD ([0, 1]n). Then the following inequality is true

(1.8) |{x ∈ [0, 1]n : f(x)− fQ > λ}| ≤ B exp

(

−
bλ

‖f‖⋆,D

)

,

for any λ > 0, where b depends only on the dimension of the space, while B is

independent of n. For example (1.8) is satisfied for b = 1
2n−1e

and B = e.

After proving the above Theorems we devote our study to the class of functions
that satisfy the dyadic Gurov–Reshetnyak condition. More precisely we consider
functions f : Q0 ≡ [0, 1]n → R+ which are integrable and satisfy

(1.9) Ω(f,Q) ≤ εfQ,

for any Q ∈ D and some ε ∈ (0, 2), independent of the cude Q. We say then that f
satisfies the dyadic Gurov–Reshetnyak condition on [0, 1]n with constant ε and write
f ∈ GRD(Q0, ε) (note that for any f ∈ L1(Q0), (1.9) is satisfied for any cube Q, for
the constant ε = 2). The study of such class of functions is of much importance in
harmonic analysis and especially in the theory of weights. An extensive presentation
of the study of such a class in the non-dyadic case can be seen in [8].
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For the study of the class GRD(Q0, ε) we define for any f belonging to it, the
following function

(1.10) v(f ; σ) = sup

{

Ω(f,Q)

fQ
: Q ∈ D, with ℓ(Q) ≤ σ

}

,

for ant 0 ≤ σ ≤ ℓ(Q0), where by ℓ(Q) we denote the length of the side of the cube
Q. We will prove the following independent result.

Theorem 3. Let f ∈ L1(Q0) with non-negative values. Then for any t ∈ [0, 1]
the following inequality is true:

(1.11)
1

t

ˆ t

0

|f ⋆(u)− f ⋆⋆(t)| du ≤ 2nf ⋆⋆(t)v(f ; σt),

where σt = min
(

2t
1

n , 1
)

.

Here by f ⋆⋆(t) we denote the Hardy function of f ⋆ defined as

f ⋆⋆(t) =
1

t

ˆ t

0

f ⋆(u)du,

for t ∈ (0, 1]. Moreover we prove the following result by applying Theorem 3.

Theorem 4. Let f ∈ Q0 → R+, f ∈ L1(Q0). Then there exist constants ci for

i = 1, 2, 3, 4 depending only on n such that the following hold: c4 > 1 and

(1.12) f ⋆⋆(t) ≤ c1fQ0
exp

(

c2

ˆ 1

c3t
1
n

v(f ; σ)
dσ

σ

)

,

for every t ∈
(

0, 1
c4

]

.

The proof of Theorem 4 depends on Theorem 3, and can be effectively used for
the proof of the following:

Theorem 5. Let f ∈ GRD(Q0, ε) for some ε ∈
(

0, 1
2n−1

)

. Then for any t ∈ (0, 1],

we have that f ⋆⋆(t) ≤ p

p−1
fQ0

t−
1

p , where p > 1 is defined by the equation

(1.13)
pp

(p− 1)p−1
=

1

2n−1ε

An immediate consequence is the following.

Corollary 1. Let f ∈ GRD(Q0, ε) for some ε ∈
(

0, 1
2n−1

]

. Then f ∈ Lq(Q0) for

any q ∈ [1, p), where p is defined by (1.13).

In this way we increase the integrability properties of f , if this function belongs
to the space GRD(Q0, ε), with ε restricted in the above range.

The paper is organized as follows: In Section 2 we give some preliminaries (Lem-
mas) needed in subsequent Sections. In Section 3 we prove Theorems 1 and 2 and
in Section 4 we provide proofs of Theorems 3,4 and 5. We also mention that for the
proofs of Theorems 1–5, we are inspired from [8], where the non-dyadic case has been
studied. Here in this paper we study the dyadic one. At last we note that problems
related to dyadic weights have been studied extensively in the past (see for example
[10], [11] and [12]).
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2. Preliminaries

In this section we state some Lemmas needed in subsequent sections. These can
be found in [8]. The first one is the following.

Lemma 2.1. Let f ∈ L1(Q0). Then if we define Ω(f,Q) by (1.1), for a fixed

cube Q ⊆ Q0 we have the equalities

Ω(f,Q) =
2

|Q|

ˆ

{x∈Q:f(x)>fQ}

(f(x)− fQ) dx =
2

|Q|

ˆ

{x∈Q:f(x)<fQ}

(fQ − f(x)) dx.

We will also need the following.

Lemma 2.2. Let f : I1 ≡ [a1, b1] → R be monotone integrable on I1. Suppose we

are given I = [a, b] ⊆ I1 such that fI = fI1. Then the inequality Ω(f, I) ≤ Ω(f, I1),
is true.

Finally we will use:

Lemma 2.3. Let f be non-increasing, summable on (0, 1] and let also F (t) =
1
t

´ t

0
f(u)du, for t ∈ (0, 1]. Then for any constant γ > 1, the following inequality is

true:

F

(

t

γ

)

− F (t) ≤
γ

2

1

t

ˆ t

0

|f(u)− F (t)|du, t ∈ (0, 1].

3. fd as an element of BMO((0, 1])

From now on we suppose that f is defined on Q0 ≡ [0, 1]n, is real valued and
integrable. We proceed to the presentation of the proof of Theorem 1 following [6].

Proof of Theorem 1. Suppose that f ∈ BMOD ([0, 1]n). We shall prove that
fd ∈ BMO((0, 1]), and that

(3.1) ‖fd‖⋆ ≤ 2n‖f‖⋆,D.

For the proof of (3.1), we obviously need to prove the inequality

(3.2)
1

|J |

ˆ

J

|fd(u)− (fd)J | du ≤ 2n‖f‖⋆,D,

for any J interval of (0, 1]. Fix such a J . We set α = 1
|J |

´

J
fd = (fd)J .

i) We first consider the case where

(3.3) α ≥

ˆ

[0,1]n
f(x)dx

We consider now the family (Dj)j of those cubes I ∈ D maximal with respect to
the relation ⊆ under the condition 1

|I|

´

I
f > α. Certainly, because of (3.3) we have

that any such cube must be a strict subset of [0, 1]n. Additionally, because of the
maximality of every Dj and the tree structure of D we have that (Dj)j is a pairwise
disjoint subfamily of the tree D. Certainly for any such cube Dj we have that
1

|Dj |

´

Dj
f > α, so as a consequence 1

|E|

´

E
f > α, where E denotes the union of the

elements of the family (Dj)j , that is E =
⋃

j Dj . Now for any dyadic cube I 6= [0, 1]n

we denote as I⋆ the father of I in D, that is the dyadic cube for which if we bisect
it’s sides we produce 2n dyadic subcubes of I⋆, one of which is I. Now we consider
for any Dj the respective element of D, D⋆

j .
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We look at the family (D⋆
j )j . Certainly this is not necessarily pairwise disjoint.

We consider now a maximal subfamily of (D⋆
j )j , denoted as (D⋆

jk
)k, under the relation

of ⊆. This is pairwise disjoint and
⋃

k D
⋆
jk

=
⋃

j Dj. Moreover for any k, D⋆
jk

)

Djk. Additionally by the definition of E and the dyadic version of the Lebesque
differentiation theorem, we have that f(x) ≤ α, for almost every x ∈ [0, 1]n \ E,
because of the construction of the family (Dj)j. Moreover by the maximality of Djk

we must have that fD⋆
jk
≤ α, for any k. We now set E⋆ =

⋃

k D
⋆
jk

. Then E ( E⋆ and

certainly |E| ≥ |E⋆|
2n

, by construction.
We look now to the function fd : (0, 1] → R. Since α = (fd)J > f[0,1]n it is easy

to see (since fd is non-increasing) that there exists t ∈ (0, 1], such that J ⊆ [0, t] and
1
t

´ t

0
fd(u) du = α. That is (fd)[0,t] = (fd)J . We now take advantage of Lemma 2.2.

We obtain immediately that

(3.4) Ω(fd, J) =
1

|J |

ˆ

J

|fd(u)− (fd)J | du ≤ Ω(fd, [0, t]) =
1

t

ˆ t

0

|fd(u)− α| du.

Since now 1
|E|

´

E
f > α, we obviously have because fd is non-increasing, that

1

|E|

ˆ |E|

0

fd(u) du ≥
1

|E|

ˆ

E

f(x) dx > α =
1

t

ˆ t

0

fd(u) du,

and as a consequence the measure of E must satisfy |E| ≤ t. Thus by the comments
mentioned above, we see that |E⋆| ≤ 2n|E| ≤ 2nt.

By (3.4), it is enough to prove that

1

t

ˆ t

0

|fd(u)− α| du ≤ 2n‖f‖⋆,D,

for the case i) to be completed. For this purpose we proceed as follows: By using
Lemma 2.1 we have that

(3.5)

ˆ t

0

|fd(u)− α| du = 2

ˆ

{u∈(0,t]:fd(u)>α}

(fd(u)− α) du,

since α = (fd)(0,t].
The right side of (3.5) equals 2

´

{f>α}
(f(x)−α) dx, because of the equimeasura-

bility of f and fd and the fact that α = 1
t

´ t

0
fd(u) du ≥ fd(t). Thus, since f(x) ≤ α,

for almost every element of [0, 1]n \ E⋆, (3.5) and the remarks above give that
ˆ t

0

|fd(u)− α| du = 2

ˆ

{x∈E⋆≡∪kD
⋆
jk

: f(x)>α}

(f(x)− α) dx

= 2

ˆ

(∪kD
⋆
jk

)∩{f>α}

(f(x)− α) dx = 2
∑

k

ˆ

D⋆
jk

∩{f>α}

(f(x)− α) dx.

(3.6)

We prove now that for any k, the following inequality holds

(3.7)

ˆ

D⋆
jk

∩{f>α}

(f(x)− α) dx ≤

ˆ

D⋆
jk

∩{f>fD⋆
jk

}

(

f(x)− fD⋆
jk

)

dx.

Indeed, (3.7) is equivalent to

(3.8) ℓk ≡

ˆ

D⋆
jk

∩{fD⋆
jk

<f≤α}

f(x) dx ≥ fD⋆
jk

∣

∣

∣
D⋆

jk
∩
{

f > fD⋆
jk

}
∣

∣

∣
− α

∣

∣D⋆
jk
∩ {f > α}

∣

∣ ,
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This is now easy to prove since

ℓk ≥ fD⋆
jk

∣

∣

∣
D⋆

jk
∩
{

fD⋆
jk

< f ≤ α
}
∣

∣

∣

= fD⋆
jk

∣

∣

∣
D⋆

jk
∩
{

f > fD⋆
jk

}
∣

∣

∣
− fD⋆

jk

∣

∣D⋆
jk
∩ {f > α}

∣

∣

≥ fD⋆
jk

∣

∣

∣
D⋆

jk
∩
{

f > fD⋆
jk

}
∣

∣

∣
− α

∣

∣D⋆
jk
∩ {f > α}

∣

∣

where the last inequality is true because of the fact that fD⋆
jk

≤ α, for every k. But

the last inequality is exactly (3.8), so by (3.6) and (3.7) we have that:

ˆ t

0

|fd(u)− α| du ≤ 2
∑

k

ˆ

D⋆
jk

∩{f>fD⋆
jk

}

(

f(x)− fD⋆
jk

)

dx

=
∑

k

ˆ

D⋆
jk

∣

∣

∣
f(x)− fD⋆

jk

∣

∣

∣
dx =

∑

k

∣

∣D⋆
jk

∣

∣Ω
(

f,D⋆
jk

)

≤

(

∑

k

∣

∣D⋆
jk

∣

∣

)

‖f‖⋆,D = |E⋆| ‖f‖⋆,D ≤ 2nt‖f‖⋆,D,

(3.9)

where the first equality in (3.9) holds due to Lemma 2.1. Thus we have proved that

1

t

ˆ t

0

|fd(u)− α| du ≤ 2n‖f‖⋆,D,

and the proof of case i) is complete.

We are now going to give a brief discussion for the second case, since this is
analogous to the first one.

ii) We assume that J is a subinterval of (0, 1] and that

(3.10) α =
1

|J |

ˆ

J

fd(u) du <

ˆ

[0,1]n
f(x) dx.

We prove that Ω(fd, J) ≤ 2n‖f‖⋆,D.

By (3.10), we choose t ∈ [0, 1) such that α = 1
t

´ 1

1−t
fd(u) du and J ⊆ [1 − t, 1].

We choose the maximal of (Dj)j , Dj ∈ D for every j such that 1
|Dj |

´

Dj
f ≤ α. This

is possible in view of (3.10), from which we also have that Dj 6= X and because of
their maximality, (Dj)j is pairwise disjoint. We pass as before to the pairwise disjoint
family (D⋆

jk
)k, for which we have E⋆ =

⋃

k D
⋆
jk

=
⋃

j D
⋆
j ⊇

⋃

Dj = E, |E⋆| ≤ 2n|E|

and such that f(x) ≥ α, for almost every x ∈ [0, 1]n \ E. As before we have

Ω(fd, J) =
1

|J |

ˆ

J

|fd(u)− (fd)J | du ≤
1

t

ˆ 1

1−t

|fd(u)− α| du

=
2

t

ˆ

{u∈[1−t,1] : fd(u)<α}

(α− fd(u)) du

=
2

t

ˆ

{x∈Q0≡[0,1]n : f(x)<α}

(α− f(x)) dx

=
2

t

ˆ

{x∈E⋆ : f(x)<α}

(α− f(x)) dx =
2

t

∑

k

ˆ

D⋆
jk

∩{f<α}

(α− f(x)) dx.

(3.11)
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By the fact that fD⋆
jk
≥ α and the same reasoning as before we conclude that for

any k:

(3.12)

ˆ

D⋆
jk

∩{f<α}

(α− f(x)) dx ≤

ˆ

D⋆
jk

∩{f<fD⋆
jk

}

(

fD⋆
jk
− f(x)

)

dx.

Thus by (3.11) and (3.12) we obtain:

Ω(fd, J) ≤
2

t

∑

k

ˆ

D⋆
jk

∩{f<fD⋆
jk

}

(

fD⋆
jk
− f(x)

)

dx

=
1

t

∑

k

|D⋆
jk
|Ω
(

f,D⋆
jk

)

≤
|E⋆|

t
‖f‖⋆,D ≤

2n|E|

t
‖f‖⋆,D.

(3.13)

As before we can prove that |E| ≤ t, so then (3.13) gives the desired result. Thus we
proved that for any J ⊆ [0, 1] we have Ω(fd, J) ≤ 2n‖f‖⋆,D, or that ‖fd‖⋆ ≤ 2n‖f‖⋆,D
and our proof is now complete. �

We are now able to prove the following

Theorem 3.1. Let f : Q0 ≡ [0, 1]n → R be such that
´

Q0
f = 0 and that

f ∈ BMOD ([0, 1]n). Then

fd(t) ≤
‖f‖⋆,D

b
ln

[

B

t

]

,

for some constants b, B > 0 depending only in the dimension n.

Proof. We define F (t) = 1
t

´ t

0
fd(u) du. Then by Lemma 2.3, F

(

t
α

)

− F (t) ≤
α
2
1
t

´ t

0
|fd(u)− F (t)| du, for any t ∈ (0, 1] and α > 1. Thus

(3.14) F

(

t

α

)

− F (t) ≤
α

2
Ω (fd, [0, t]) ≤

α

2
‖fd‖⋆ ≤ 2n−1α‖f‖⋆,D,

by using Theorem 1. By (3.14) now we have for any α > 1 the inequalities

(3.15) F

(

1

αi

)

− F

(

1

αi−1

)

≤ 2n−1α‖f‖⋆,D,

for any i = 1, 2, . . . , k, k + 1 and any fixed k ∈ N. Summing inequalities (3.15) we
obtain as a consequence that

F

(

1

αk+1

)

− F (1) ≤ (k + 1)2n−1α‖f‖⋆,D =⇒ (since

ˆ

Q0

f = 0)

F

(

1

αk+1

)

≤
(

(k + 1)2n−1α
)

‖f‖⋆,D.

(3.16)

Fix now t ∈ (0, 1] and α > 1. Then for a unique k ∈ N we have that

1

αk+1
< t ≤

1

αk
=⇒ k ≤

1

ln(α)
ln

(

1

t

)

(3.16)
=⇒

fd(t) ≤
1

t

ˆ t

0

fd(u) du = F (t) ≤ F

(

1

αk+1

)

≤
(

(k + 1)2n−1α
)

‖f‖⋆,D

≤

([

1

ln(α)
ln

(

1

t

)

+ 1

]

2n−1α

)

‖f‖⋆,D.

(3.17)
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Now the function h defined for any α > 1, by h(α) = α
ln(α)

attains its minimum value

at α = e. Thus for this value of α, we obtain by (3.17) that

fd(t) ≤

[

ln

(

1

t

)

2n−1e + 2n−1e

]

‖f‖⋆,D =
‖f‖⋆,D

b

[

ln

(

B

t

)]

, for any t ∈ (0, 1]

where b = 1
2n−1e

, B = e. �

We now proceed to the

Proof of Theorem 2. For any f ∈ BMOD ([0, 1]n) we prove that

(3.18) |{x ∈ Q0 : (f(x)− fQ0
) > λ}| ≤ B exp

(

−
bλ

‖f‖⋆,D

)

,

for every λ > 0 and the above values of b, B.
We fix a λ > 0 and suppose without loss of generality that fQ0

= 0. We set
Aλ = {x ∈ Q0 : f(x) > λ}. In order to prove (3.18), we just need to prove that

|Aλ| ≤ B exp
(

− bλ
‖f‖⋆,D

)

, for this value of λ > 0. We have |Aλ| = |{f > λ}| = |{fd >

λ}| ≤
∣

∣

∣

{

t ∈ (0, 1] :
‖f‖⋆,D

b
ln
(

B
t

)

> λ
}
∣

∣

∣
, since by Theorem 3.1 fd(t) ≤

‖f‖⋆,D
b

ln
(

B
t

)

,

for every t ∈ (0, 1]. Thus we have that

|Aλ| ≤

∣

∣

∣

∣

{

t ∈ (0, 1] : t < exp

(

−
bλ

‖f‖⋆,D

)}∣

∣

∣

∣

≤ B exp

(

−
bλ

‖f‖⋆,D

)

. �

Remark 3.1. By considering the results of this section it is worth mentioning
the following. Suppose that f : [0, 1]n → R+ be such that ‖f‖⋆,D < +∞. Be-
cause f is non-negative we must have that fd = |f |d = f ⋆, on (0, 1]. Thus we
have that for any such f we must have that ‖f ⋆‖⋆ ≤ 2n‖f‖⋆,D and the inequality

|{x ∈ Q0 : |f(x)− fQ0
| > λ}| ≤ B exp

(

− bλ
‖f‖⋆,D

)

, for every λ > 0 and the above

mentioned values of b and B.

4. The dyadic Gurov–Reshetnyak condition

We again consider functions f : Q0 ≡ [0, 1]n → R+ such that f ∈ L1(Q0) and for
which the following condition is satisfied

Ω(f,Q) ≡
1

|Q|

ˆ

Q

|f(x)− fQ| dx ≤ εfQ, ∀Q ∈ D,

for some ε ∈ (0, 2), independent of the cube Q. As we noted in Section 1 we say then
that f ∈ GRD(Q0, ε). Define the function v(f ; ·) by (1.10). We provide now the

Proof of Theorem 3:. We define σt = min
(

2t
1

n , 1
)

, for every t ∈ (0, 1] and

Bt = v(f ; σt). We shall prove that for every t ∈ (0, 1], we have that

1

t

ˆ t

0

|f ⋆(u)− f ⋆⋆(t)| du ≤ 2nBtf
⋆⋆(t).

For this proof we work as in Theorem 1. Fix t ∈ (0, 1] and set α = f ⋆⋆(t). Then
α > fQ0

=
´

[0,1]n
f(x) dx = f ⋆⋆(1), since f ⋆ is non-increasing. We define the following

maximal operator

Mdϕ(x) = sup

{

1

|Q|

ˆ

Q

|ϕ(y)| dy : x ∈ Q ∈ D

}
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for every ϕ ∈ L1(Q0), where D is as usual the class of all dyadic subcubes of Q0.
This is called the dyadic maximal operator with respect to the tree D.

We consider the set E = {Mdf > α}. It is easy to see that E can be written as
E =

⋃

j Dj, where (Dj)j is a pairwise disjoint family of cubes in D, maximal under

the condition 1
|Dj |

´

Dj
f > α, with respect to the relation ⊆. Since α > fQ0

=
´

[0,1]n
f

for any such cube we have that Dj 6= [0, 1]n. Let also D⋆
j be the father of Dj in D,

for every j. By the maximality of Dj we have that 1
|D⋆

j |

´

D⋆
j
f ≤ α, or that fD⋆

j
≤ α.

We set now E⋆ =
⋃

j D
⋆
j . Then E⋆ can be written as E⋆ =

⋃

k D
⋆
jk

, where the

family
(

D⋆
jk

)

k
is a maximal subfamily of (Dj)j under the relation ⊆. Because of

its maximality, this must be disjoint. Of course by the dyadic form of the Lebesque
differentiation theorem we have that for almost every x /∈ E, x ∈ [0, 1]n, the following
is satisfied:

(4.1) f(x) ≤ Mdf(x) ≤ α = f ⋆⋆(t).

We consider now the following quantity: Lt ≡
´ t

0
|f ⋆(u) − f ⋆⋆(t)| du, which in

view of lemma 2.1 can be written as

(4.2) Lt = 2

ˆ

{u∈(0,t]:f⋆(u)≥α}

(f ⋆(u)− α) du.

By (4.2) we have that

(4.3) Lt = 2

ˆ

{x∈[0,1]n:f(x)>α}

(f(x)− α) dx,

because of the equimeasurability of f and f ⋆ and the fact that α = f ⋆⋆(t) =
1
t

´ t

0
f ⋆(u) du ≥

´ 1

0
f ⋆.

Then since E ⊆ E⋆, and because of (4.1), we have because of (4.3) that

Lt = 2

ˆ

E⋆∩{x∈Q0 : f(x)>α}

(f(x)− α) dx = 2

ˆ

(∪D⋆
jk

)∩{f>α}

(f(x)− α) dx

=
∑

k

ˆ

D⋆
jk

∩{f>α}

(f(x)− α) dx.

(4.4)

Is is now easy to show, is done in Section 3, that the following inequality is true

(4.5)

ˆ

D⋆
jk

∩{f>α}

(f(x)− α) dx ≤

ˆ

D⋆
jk

∩
{

f>fD⋆
jk

}

(

f(x)− fD⋆
jk

)

dx, for any k.

Now (4.4), in view of (4.5) becomes:

Lt ≤
∑

k

2

ˆ

{

x∈D⋆
jk

: f(x)>fD⋆
jk

}

(

f(x)− fD⋆
jk

)

dx

=
∑

k

ˆ

D⋆
jk

∣

∣

∣
f(x)− fD⋆

jk

∣

∣

∣
dx =

∑

∣

∣D⋆
jk

∣

∣Ω
(

f,D⋆
jk

)

,

where the first equality holds in view of Lemma 2.1. Now by the definition of E and
α we immediately have that

1

|E|

ˆ |E|

0

f ⋆(u) du ≥
1

|E|

ˆ

E

f(x) dx > α =
1

t

ˆ t

0

f ⋆(u) du =⇒ |E| ≤ t,
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since f ⋆ is non-increasing. Thus by the construction of E⋆ we have that

|E⋆| =
∑

k

|D⋆
jk
| ≤

∑

k

2n
∣

∣D⋆
jk
∩ E

∣

∣ = 2n|E| ≤ 2nt.

Additionally, for any k we have that |D⋆
jk
| ≤ |E⋆| ≤ 2nt, thus ℓ(D⋆

jk
) ≤ 2t

1

n , for
every k. Thus we immediately have by the definition of the function v(f ; ·), that

Ω(f,D⋆
jk
) ≤ v(f ; σt)fD⋆

jk
≤ v(f ; σt)α = v(f ; σt)f

⋆⋆(t), where σt = min
{

2t
1

n , 1
}

, for

any t ∈ (0, 1]. So as a consequence from (4.5) and the above comments, we obtain

Lt ≤ |E⋆|v(f ; σt)f
⋆⋆(t) ≤ 2ntf ⋆⋆(t)Bt =⇒ 1

t

´ t

0
|f ⋆(u) − f ⋆⋆(t)| du ≤ 2nBtf

⋆⋆(t).
Thus the proof of our Theorem is complete. �

We proceed now to the

Proof of Theorem 4. We suppose that we are given f : Q0 ≡ [0, 1]n → R+ such
that f ∈ L1(Q0). By Lemma 2.3 we have that

(4.6) f ⋆⋆

(

t

γ

)

− f ⋆(t) ≤
γ

2

1

t

ˆ t

0

|f ⋆(u)− f ⋆⋆(t)| du,

for t ∈ (0, 1] and any γ > 1. If t ∈ (0, 1], because of Theorem 3 and (4.6) we have
that

(4.7) f ⋆⋆

(

t

γ

)

− f ⋆⋆(t) ≤ 2n−1γBtf
⋆⋆(t) =⇒ f ⋆⋆

(

t

γ

)

≤
(

1 + 2n−1γBt

)

f ⋆⋆(t),

We consider now those t for which t ∈
(

0, 1
2nγ

]

. The choice of γ will be made later.

We set s =

[

ln( 1

2nt)
ln(γ)

]

∈ N⋆. Then we have that γs ≤ 1
2nt

< γs+1 =⇒ γst > 1
2nγ

.

As a consequence we produce

(4.8) f ⋆⋆(γst) ≤ f ⋆⋆

(

1

2nγ

)

= 2nγ

ˆ 1

2nγ

0

f ⋆ ≤ 2nγ

ˆ 1

0

f ⋆ = 2nγfQ0
.

Now in view of (4.7) we must have that

f ⋆⋆

(

t

γ

)

≤
(

1 + 2n−1γBt

)

f ⋆⋆(t) ≤
(

1 + 2n−1γBt

) (

1 + 2n−1γBγt

)

f ⋆(2t)

≤ . . . ≤

s
∏

i=0

(

1 + 2n−1γBγit

)

f ⋆⋆(γst),

(4.9)

where s is as above. As a consequence (4.8) and (4.9) give

(4.10) f ⋆⋆

(

t

γ

)

≤ 2nγfQ0
exp

(

2n−1γ
s
∑

i=0

Bγit

)

,

in view of the inequality 1 + x ≤ ex, which holds for every x > 0. By the choice of s
we have that (γit)2n ≤ 1, for every i ∈ {0, 1, 2, . . . , s}. Thus by the definition of the
function t 7−→ Bt we have

(4.11) Bγit = v
(

f ; 2(γit)
1

n

)

, for every i = 0, 1, 2, . . . , s.

Thus

(4.12) ℓk,n =

ˆ 2(γk+1t)
1
n

2(γkt)
1
n

v(f ; σ)
dσ

σ
≥ v
(

f ; 2(γkt)
1

n

){

ln
[

2(γk+1t)
1

n

]

−ln
[

2(γkt)
1

n

]}

,
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for every k ∈ {0, 1, 2, . . . , s}, in view of the fact that the function σ 7−→ v(f ; σ) is
non-decreasing. We immediately get from (4.12) that

(4.13)

ˆ 2(γk+1t)
1
n

2(γkt)
1
n

v(f ; σ)
dσ

σ
≥ v

(

f ; 2(γkt)
1

n

)

ln
(

γ
1

n

)

,

From (4.10), (4.11) and (4.13) we see that

(4.14) f ⋆⋆

(

t

γ

)

≤ 2nγfQ0
exp

[

2n−1γ

s−1
∑

k=0

n

ln(γ)

ˆ 2(γk+1t)
1
n

2(γkt)
1
n

v(f ; σ)
dσ

σ
+ 2n−1γBγst

]

.

From (4.14) we have as a consequence that

(4.15) f ⋆⋆

(

t

γ

)

≤ 2nγfQ0
exp

[

2n−1n
γ

ln(γ)

ˆ 1

2t
1
n

v(f ; σ)
dσ

σ
+ 2n−1γv

(

f ;
1

2n

)]

,

and this holds for every t ∈
(

0, 1
2nγ

]

and any γ > 1. We choose now in (4.15) γ = e,

so that the function γ 7−→ γ

ln(γ)
, is minimized on (1,+∞). Then (4.15) implies

(4.16) f ⋆⋆

(

t

e

)

≤ 2nefQ0
exp

[

2n−1en

ˆ 1

2t
1
n

v(f ; σ)
dσ

σ

]

exp

[

2n−1ev

(

f ;
1

2n

)]

,

for every t ∈
(

0, 1
2ne

]

. Certainly v
(

f ; 1
2n

)

≤ 2. Thus (4.16) gives

(4.17) f ⋆⋆

(

t

e

)

≤ C1fQ0
exp

(

C2

ˆ 1

C′

3
t
1
n

v(f ; σ)
dσ

σ

)

,

for every t ∈
(

0, 1
2nγe

]

, for certain constants C1, C2, C
′
3. By setting y = t

e
in (4.17),

we conclude that for every y ∈
(

0, 1
2ne2

]

the following inequality holds:

(4.18) f ⋆⋆(y) ≤ c1fQ0
exp

(

c2

ˆ 1

c3y
1
n

v(f ; σ)
dσ

σ

)

,

where

c1 = 2ne exp[2ne] = 2n exp[2ne + 1], c2 = 2n−1en, and c3 = C ′
3e

1

n .

So by setting c4 =
1

2ne2
, we derive the proof of our Theorem. �

We are now ready to give the

Proof of Theorem 5. We are given a function f ∈ GRD(Q0, ε) for some ε : 0 <
ε < 1

2n−1 , and suppose that t ∈ (0, 1] is fixed. By using Theorem 3 we obtain:

(4.19)
1

t

ˆ t

0

|f ⋆(u)− f ⋆⋆(t)| du ≤ 2nεf ⋆⋆(t).

Then by Lemma 2.3 we have in view of (4.13) that

f ⋆⋆

(

t

γ

)

≤
(

2n−1γε+ 1
)

f ⋆⋆(t), for any γ > 1.

Let now p0 be the unique p > 1 such that pp

(p−1)p−1 = 1
2n−1ε

. We set γ =
(

p0
p0−1

)p0

=⇒

γ
1

p0 = p0
p0−1

. Then
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(

2n−1γε+ 1
)p0

=

(

2n−1ε

(

p0
p0 − 1

)p0

+ 1

)p0

=

(

2n−1ε
1

p0 − 1

1

2n−1ε
+ 1

)p0

=

(

1 +
1

p0 − 1

)p0

=

(

p0
p0 − 1

)p0

= γ

implies (2n−1γε+ 1) = γ
1

p0 , for the γ > 1 given above. Thus

(4.20) f ⋆⋆

(

t

γ

)

≤ γ
1

p0 f ⋆⋆(t), ∀t ∈ (0, 1].

Let now j ∈ N be such that

(4.21) γ−j < t ≤ γ−j+1.

Then by (4.20) we inductively see that f ⋆⋆(γ−k) ≤ γ
k
p0 f ⋆⋆(1), for any k ∈ N, so by

using (4.21) for our t we conclude that

(4.22) f ⋆⋆(t) ≤ f ⋆⋆(γ−j) ≤ γ
j
p0 f ⋆⋆(1).

By (4.21) now γ
j
p0 ≤

(

γ

t

)
1

p0 . Thus from this last inequality and (4.22) we have that

f ⋆⋆(t) ≤
γ

1

p0

t
1

p0

f ⋆⋆(1) =

(

p0
p0 − 1

)

fQ0
t
− 1

p0 ,

and this holds for any t ∈ (0, 1]. The proof of Theorem 5 is now complete. �

At last we mention that the proof of Corollary 1, is immediate by the statement
of Theorem 5.
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