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Abstract. We establish the equidistribution of the sequence of the averaged pullbacks of a
Dirac measure at any value in C \ {0} under the derivatives of the iterations of a polynomials
f € C|[z] of degree more than one towards the f-equilibrium (or canonical) measure ;¢ on P!. We
also show that for every C? test function on P!, the convergence is exponentially fast up to a polar
subset of exceptional values in C. A parameter space analog of the latter quantitative result for the
monic and centered unicritical polynomials family is also established.

1. Introduction

Let f € Clz| be a polynomial of degree d > 1. Let pf be the f-equilibrium (or
canonical) measure on P*, which coincides with the harmonic measure px () on the
filled-in Julia set K(f) of f with respect to co. The exceptional set E(f) := {a €
Pl # U en [ (@) < 00} of f contains oo and #E(f) < 2. Brolin [2, Theorem 16.1]
studied the value distribution of the sequence (f™: P* — P1) of the iterations of f,
and established

(1.1) {a e P! ILm (fd)n a = /1y weakly on Pl} =P'\ E(f),
which is more precise than the classical inclusion 0K (f) C U, en f7"(a) for every
a € P\ E(f). Here for every h € C(z) of degree > 0 and every Radon measure v on
P!, the pullback h*v of v under h is a Radon measure on P! so that for every a € P*,
when v = 84, h¥0a = _,cp-1(a) (degy, 11)0q o1 P!. Pursuing the analogy between the
roles played by E(f) in (1.1) and by the set of Valiron exceptional values in P! of
a transcendental meromorphic function on C, Sodin [20], Russakovskii-Sodin [19],
and Russakovskii-Shiffman [18] (see also [7], [15]) studied the value distribution of a
sequence of rational maps between projective spaces from the viewpoint of Nevanlinna
theory, in a quantitative way (cf. [22, Chapter V, §2|). Gauthier and Vigny [10, 1. in
Theorem A] studied the value distribution of the sequence ((f)': P! — P1) of the
derivatives of iterations of a polynomial f € Cl[z] of degree > 1 (cf. [23]) possibly
with a polar subset of exceptional values in C \ {0}, in terms of dynamics of the
tangent map F(z,w) := (f(2), f'(2)w) on the tangent bundle 77C. The aim of this
article is to improve their result in two ways.

The first improvement of [10, 1. in Theorem A| is qualitative, but with no excep-
tional values.
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Theorem 1. Let f € C|[z] be of degree d > 1. Then for every a € C\ {0},
n\/\*
).

weakly on P!.

In Theorem 1, the values a = 0,00 are excluded since it is clear that for every
n € N, ((f"))0/(d" — 1) = 6(# pyf), and it immediately follows from (1.1)
and the chain rule that lim,_,((f")'d)/(d" — 1) = p; weakly on P! if and only if
E(f) = {oo}. In Gauthier—Vigny [10, 2. and 3. in Theorem A, they also established
a result similar to Theorem 1 under the assumption that f has no Siegel disks (or the
assumption that f is hyperbolic). Our proof of Theorem 1 is independent of their
argument even in those cases.

The second improvement of [10, 1. in Theorem A] is quantitative, but with an at
most polar subset of exceptional values in C.

Theorem 2. Let f € Clz]| be of degree d > 1, and suppose that E(f) = {co}.

Then for every n > SUPec: superattracting periodic point of f lim Supn—)oo(degz(fn))l/n7 there
is a polar subset E = Ey, in C such that for every a € C\ E and every C?-test

function ¢ on P*, /
[ oa (SRR — ) = otinsar)

as n — .

The proof of Theorem 2 is based on Russakovskii-Shiffman [18] mentioned above,
and on an improvement of it for the sequence of the iterations of a rational function of
degree > 1 by Drasin and the author [6] (see also [4] and [21] in higher dimensions).

Remark 1.1. Under the assumption E(f) = {oc} in Theorem 2, we have
SUD;eC: superattracting periodic point of f lim Supn—)oo(degz(fn))l/n S {1> 2? cr d— 1}’ and
= 1 if and only if there is no superattracting cycles of f in C. Here we adopt the
convention supy = 1. In the case that E(f) # {oo}, we point out the following better
estimate than that in Theorem 2

/p»l(bd(% _“f) =0(nd™) asn— o0

for every a € C\ {0} and every C*-test function ¢ on P!, with no exceptional values;
indeed, we can assume that f(z) = z¢ without loss of generality (see Remark 3.1), and
then f(z) = 29" for every n € N and p; is the normalized Lebesgue measure msp on
the unit circle 9D = 0K (f). For every a = re (r > 0,60 € R), every C'-test function
¢ on P!, and every n € N, we have | [, ¢d(((f™)')*6, — Zj;l Seitotiam/an—))/(d" —
D] < [[¢lon - |etostrd™™ /@ =D — 1| < ||¢]|cr - Cnd ™" for some C' > 0 independent of
both ¢ and n, and if ¢ is C?, then by the midpoint method in numerically computing
definite integrals, we also have ‘fpl gbd(zc.lizl Ogito4j2my/an—n /(d* — 1) — maD)‘ <
|pllcz - C'd™™ for some C” > 0 independent of both ¢ and n.

j
Finally, let us focus on the (monic and centered) unicritical polynomials family
(1.2) fiCxP (N 2) = 2+ A= fr(z) € P!

of degree d > 1. The parameter space analog of Theorem 1 for the sequence ((f7)"(\))
in C[\] of the derivative of f}' at its unique critical value z = X in C is also obtained
by Gauthier—Vigny [10, Theorem 3.7]. We will also establish a parameter space
analog of Theorem 2.



Value distribution of the sequences of the derivatives of iterated polynomials 565

Theorem 3. Let f be the monic and centered unicritical polynomials family
of degree d > 1 defined as in (1.2). Then for every n > 1, there is a polar subset
E = E;, in C such that for every a € C\ E and every C*-test function ¢ on P*,

[ oya (WBEIS ) o) = o(agar

asn — oo. Here Cy is the connectedness locus of the family f in the parameter space
C and pc, is the harmonic measure on Cy with pole co.

The proof of Theorem 3 is based on Russakovskii-Shiffman [18] mentioned above,
and on a quantitative equidistribution of superattracting parameters by Gauthier—
Vigny [9].

In Section 2, we recall a background from complex dynamics. In Sections 3, 4,
and 5, we show Theorems 1, 2, and 3, respectively.

Notation 1.2. We adopt the convention N = Z-(. For every a € C and every
r > 0,set D(a,r) :={z € C: |z—a| < r}. Let 6, be the Dirac measure on P! at each
z € Pl Let [z,w] be the chordal metric on P! normalized as [-,00] = 1/4/1+ | - |2
on P! (following the notation in Nevanlinna’s and Tsuji’s books [14, 22]). Let w be
the Fubini-Study area element on P! normalized as w(P') = 1. The Laplacian dd®
on P! is normalized as dd“(— log[-, 00]) = w — d,, on P

2. Background

2.1. Dynamics of rational functions. Let f € C(z) be of degree d > 1.
Let C(f) be the critical set of f. The Julia and Fatou sets of f are defined by
J(f) := {# € P': the family (f": P' — P!),cn is not normal at z} and F(f) :=
P\ J(f), respectively. A component of F/(f) is called a Fatou component of f. A
Fatou component U of f is mapped by f properly onto a Fatou component of f. A
Fatou component U of f is said to be cyclic if there is n € N such that f*(U) = U.
For more details on complex dynamics, see e.g. Milnor’s book [13].

The f-equilibrium (or canonical) measure uy on P! is the unique probability
Radon measure v on P! such that

(2.1) ffvr=d-v onP!

and that v({a}) = 0 for every a € E(f); the exceptional set of f is E(f) := {a €
Pl #Uyen [ (@) < oo} ={a € P': f7%(a) = {a}}. Then in fact supp s = J(f),
and for every n € N, psm = iy on P, For more details, see Brolin |2], Lyubich [12],
Freire-Lopes-Mané [8].

2.2. Dynamics of polynomials. Let f € C[z] be of degree d > 1. We note
that co € E(f), #(C(f)NC) <d—1, and C(f) N C = (suppdd®log|f'|) N C.

The filled-in Julia set K(f) of f is defined by

K(f):={z € C: limsup|f"(z)| < oo},

n—o0

whose complement in P! coincides with the immediate superattractive basin
Io(f) = {z € P': lim f*(z) = oo}
n—oo

of the superattracting fixed point co of f; in particular, lim, ,. f* = oo locally
uniformly on I.(f), and K(f) is a compact subset in C. We note that F(f) =
Io(f)Uint K(f) and that J(f) = 0K (f).
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By a standard telescope argument, there exists the locally uniform limit

I Y IMOR

n—00 dr

on C. Setting gs(00) := +o0, we have gyo f =d-g; on P!, and for every n € N, we
also have g = gy on P'. The restriction of g; to I(f) coincides with the Green
function on I, (f) with pole oo, and the measure

P (p) = ddgy + s oOn P!

coincides with the harmonic measure on K(f) with pole co. In particular, supp px y)
C OK(f), and in fact pg(py = py on P'. The function z — gs(z) — log|z| ex-
tends harmonically to an open neighborhood of oo in I.(f) so the function z +—
—log[z, 00] — g4(2) extends continuously to P

The following is substantially shown in Buff [3, the proof of Theorem 4].

Theorem 2.1. (Buff) Let f € C[z] be of degree d > 1, and let 2z, € C. If
g7(20) > maxeeo(pnc gr(c), then |f/(z0)| < d? - el@197(=0) " and the equality never
holds if (C(f)NC) N I(f) # 0.

For more details on polynomial dynamics and potential theory, see Brolin |2,
Chapter III], and also Ransford’s book [17].

3. Proof of Theorem 1

Let f € CJz] be of degree d > 1. For every a € C and every n € N, the
functions (log |(f") —al)/(d" —1) — g5 and (logmax{1, |(f™)'|})/(d" —1) — g; extend
continuously to P. Set ag = aq(f) := lim,_, f(2)/2% € C\ {0}.

Remark 3.1. Since the question is affine invariant, we could assume |aq4| = 1
without loss of generality, by replacing f with ¢™' o f o ¢ for such ¢ € C\ {0} that
¢4t = a3 if necessary (for every ¢ € C\ {0}, 2z ~ ¢ z is also denoted by ¢). In
this article, we would not normalize f as |a4| = 1 in order to make it explicit which
computations would be independent of such a normalization.

Lemma 3.2. On Io(f) \ Upenuioy fT(C(f) N C),

_(log|(f™)]
JL”&;( -1 9)=0

Proof. For every n € N and every z € C, by a direct calculation, we have

locally uniformly.

WA Tog|dn @ —D/@D
sl el e L ol o (7)) o)
= g L ([ el datryan ) aatoel )
=0
(3.1) 1

n—1
— 1 [ (1oB117(2) — wl = log aal 2141 (dd log] ()
=1 Jo =

ot [ 08l (2) ) — ol (2). o] — ol el 0 og ) )

- log\aﬂdﬁifﬁ.
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Then noting that g;o f =d - gy on P!, for every n € N and every z € P!, we have

@%%Q%ﬂ—gﬂa=df;LA<Z;baﬂ@xw)M&mmfnw>

62 LS gl (2), 0] - gy (F())

j=0
+ (—/ log[w, 0o](dd®log | f])(w) +logd+log|ad\) %7
C _
which with sup,p: |—log[z, 00] — gf(2)| < oo completes the proof. O

Lemma 3.3. There is C = C; > 0 such that for every n € N and every z € P!,

log max{1, |(f")'(2)|} Cn
. — < —
(33 U o) <
Proof. Set
C=Cp:=(d-1)- sup1 |—log[z, 00] — gf(2)|

(34) zeP

+(d—1)- sup |loglw,o0]|+logd+ |logla4|| € Ro.
weC(f)NC

Then for every n € N and every z € C, from (3.2), we have |(f")'(z)] < ™.
el =D9:() " which with g > 0 on P! completes the proof. O

We note that MaXee, cnuop /" (C(HNC) gf(C) = MaXceC(f)NC gf(C) < oo by gfof =
d- gy on Pl

Lemma 3.4. For every a € C\ {0},

i [ 1810 o
n—oo /pi dr —1

Proof. Fix a € C\ {0}. The sequence ((log|(f™)" — a|)/(d™ — 1)) of sub-
harmonic functions on C is locally uniformly bounded from above on C; indeed,
by the chain rule and liminf, .. |f'(2)| = +o0, for every R > 0 so large that
{l2] = R} C Lo (/) \Unenugoy ST (C(f)NC), we have lim inf,, oo inf. 1 [(f")'(2)] =
+00, which with the maximum modulus principle yields sup, i< [(f")'(2) — a| <
sup|,=r 2|(f")'(2)| for every n € N large enough. Then by Lemma 3.3, we have
lim sup,,_, o, sup,<g(log|[(f")" — a[)/(d" — 1) < sup|,_pgs(2) < co. By Lemma 3.2
and gy > 0 on I (f), for every compact subset C'in Ioo(f) \ U, enuioy /" (C(f)NC),
we also have 1/2 < [((f") —a)/(f™)'| <2 on C for every n € N large enough, so in
particular

55 oy (SEITY ) (ST

locally uniformly on Ioo(f) \ U,enugoy /" (C(f) N C).

Let ms be the Lebesgue measure on C. By a compactness principle for a locally
uniformly upper bounded sequence of subharmonic functions on a domain in R™
which is not locally uniformly convergent to —oo (see Azarin [1, Theorem 1.1.1],
Hoérmander’s book [11, Theorem 4.1.9(a)]), we can choose a sequence (n;) in N
tending to +00 as j — oo such that the L{ (C,may)-limit ¢ := lim;_,.(log|(f™) —
al)/(d" — 1) exists and is subharmonic on C. Choosing a subsequence of (n;) if

— gf| dw = 0.



568 Yisuke Okuyama

necessary, we have ¢ = lim;_,(log |(f™)" — a|)/(d"™ — 1) Lebesgue a.e. on C. Then
by (3.5), we have ¢ = g Lebesgue a.e. on C\ (K(f) U U, enuqoy f(C(f) N C)),
and in turn on C\ K(f) by the subharmonicity of ¢ and the harmonicity of g there.
Let us show that ¢ = g; Lebesgue a.e. on the whole C, and then lim,,_, - (log|(f")" —
al)/(d* = 1) = gy in L} .(C,my), which with the locally uniform convergence (3.5)
will complete the proof since MaXcelJ, ooy £ (C(FHNC) gs(c) < oo and the Radon-

Nikodym derivative dw/dmsg is continuous so locally bounded on C.
By log(1/[w, o0]) — logmax{1, |w|}) < log+v/2 on C and Lemma 3.3, for every
n € N, we have

log |(f")" — a g = log[(f*)', a] <10g(1/[(f")’, <)) _gf) . log(1/la, o0])

dn — 1 T a1 dn — 1 dn — 1
< Cy-n +log\/§+log(1/[a,oo])
—dr -1 dr—1

on C, so ¢ < gy Lebesgue a.e. on C and in turn on C by the subharmonicity of ¢
and the continuity of gy on C. Hence ¢ — gy is < 0 and is upper semicontinuous on
C.

Now suppose to the contrary that the open subset {z € C: ¢(2) < g¢(2)} in C
is non-empty. Then by ¢ = gy on C\ K(f), there is a bounded Fatou component
U of f containing a component W of {z € C: ¢(z) < gs(2)}. Since ¢ < gy =0 on
U C K(f), by the maximum principle for subharmonic functions, we in fact have
U=Ww.

Taking a subsequence of (n;) if necessary, we can assume that (f"/|U) is locally
uniformly convergent to a holomorphic function g on U as j — oo without loss of
generality. We claim that ¢ = a on U, so we can say g € C[z|; indeed, fixing a
domain D € U = W, by a version of Hartogs’s lemma on subharmonic functions
(see Hormander’s book [11, Theorem 4.1.9(b)]) and the upper semicontinuity of ¢,
we have limsup,,_, . supp(log|(f™) — a|)/(d¥ — 1) < supy¢ < 0. Hence ¢’ =
(im; oo f) = lim; ,o(f™) = a on D, so ¢ = a on U by the identity theorem for
holomorphic functions.

Hence, under the assumption that a # 0, the locally uniform limit g on U is non-
constant. So by Hurwitz’s theorem and the classification of cyclic Fatou components,

there is N € N such that V := f"~(U) = ¢g(U)(D g(D)) is a Siegel disk of f and,
setting p := min{n € N: f*(V) =V}, that p|(n; — ny) for every j > N. We can fix
a holomorphic injection h: V — C such that for some a € R\ Q, setting \ := %™
we have ho f? = X-h on V, so for every j > N, ho fi = \~)/P. (b o f™~) on
U. Then taking a subsequence of (n;) if necessary, there also exists the limit

Ao := lim A(a—na)/p
j—o0

in 0D, so that ho g =lim; ,ocho f™ = Xy (ho f™) on U. In particular,
(3.6) ho ffi —hog=A/P _\)). (ho f™v)

on U. Set wy := h™*(0) € V, so that fP(wg) = wp, and fix 29 € f~™ (wg) N U, so
that f™(z9) = wo for every j > N and g(z0) = lim;_, f™ (20) = wo.
We claim that
log |(f"9) (20) —a| _ log |Am=m)/p — )]

(3.7) g = p T +0(d™™)
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as j — oo; for, by the chain rule applied to both sides in (3.6) and h'(wy) # 0 (and
g'(z0) = a), we have

(3.6") (") (20) —a = (A2 — 6g) - () (20),
which also yields (f"¥)'(z0) # 0 by (f")"(z0) = (f"7")"(wo) - (f™¥)'(20) and the

assumption a # 0. We also claim that

1
(3.8) lim inf — log [\ ="8)/P — )| >0

j—=oo  dM
(cf. |16, Proof of Theorem 3|); indeed, for every domain D € U\ f ="~ (wy), since h ™!
Lipschitz continuous on h({J, o (f*)"(f™(D)))Ug(D)) € h(V') and supp \hof"N\ >
0, from (3.6), we observe that

1 |
(*) g Swplog 1™ —gl < o 10g AP — Xo| 4+ O(d™™)

as j — oo. On the other hand, for every domain D intersecting U in C, fixing
zZ€ DN I(f)# 0, we observe that

1
(**) lim inf — suplog|f™ — g| > g;(%) > 0.
j—o0 dmi D

Now fix z; € U and 2’ € 9U such that D(z1,|2" — z1]) C U\ f~"(wp). Then for
every € € (0, ]2 — z1]), using Cauchy’s estimate applied to f" — g € C[z] around z,
we have

s upé)D (21, |z —z1]—¢€) |f g| k
J— < [—
f g‘ § Z1| _€>k ‘ Z1|

<< fng ) dz<‘z_21|+€)k
= sSup
D (21,21 |—€) A\ [ =z e

on D(2,€), so since 2’ € D(2',¢) N OU and D(z1,|2' — 21| —€) € U\ f~"~(wyp), by
(**) and (*), we have

0< (hmmfd— log sup |f™ —g|

J—0 D(z’,e)
1 na |2/ 21‘ +€
< lim inf — log sup |f™ — g| +log ———
g=oo d™ T (s 22| —e) |2/ — 21| —€

|2/ — 21| + €
|2/ — 2| —€

1
) lim mf o log [\ =m)/P o] + log
5
This yields (3.8) as € — 0.
Once (3.7) and (3.8) are at our disposal, using a version of Hartogs’s lemma on
subharmonic functions again, we have

") (20) = (ni—nn)/p _
¢(20) > limsup log [(f™)(20) — al > lim inf log | A" Mol

> 0,

which contradicts ¢ < gy =0on U = W. 0
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For every a € C\ {0} and every C*-test function ¢ on P!, by Lemma 3.4, we

have
((f"))"0a _ o (log|(f")'(-) — al
P1¢d< -1 )= ), 0 dn— 1 91
dd<¢ log |(f")'(2) — al
< . —
_<s;11p W ) /Pl T gr|dw(z) =0 asn — oo,
where the Radon-Nikodym derivative (dd°¢)/dw on P! is bounded on P O

4. Proof of Theorem 2
Let f € C[z] be of degree d > 1, and suppose that E(f) = {oo}. Then

sup lim sup(deg, (f*))"/"
z€C: superattracting periodic point of f n—o0
= sup lim sup(deg,(f™)"/" € {1,2,...,d — 1}

ceC(f)NC: periodic under f n—00

(recall the convention supy = 1). Set ag := aq(f) = lim, o f(2)/2% € C\{0}. For ev-
ery n € N, the functions (log(1/[(f")’, 00])/(d"—1)—gy and (logmax{1, |(f")'|})/(d"—
1) — g; extend continuously to P

Lemma 4.1. For every n > SUPceC(f)NC: periodic under f lim Supn—)oo(degc(fn»l/n;

/ log(1/[(f™)', o))

ar—1
Proof. For every n € N, from (3.2), we have

/ log |(/")'(2)]

dr—1
<o) (Z | et <z>) (A log ) () + 2",

where Cy > 0 is defined in (3.4). By [6, Theorem 2], for every 7 > sup.cc (s

— 95| dw = o((n/d)")

as n — .

—95(2)| dw(2)

(4.1)

NC: periodic
under 7 limsup,,_, . (deg.(f™))/" and every w € C(= P!\ E(f) under the assumption
E(f) = {o0}), we have

1 n
/P 108 s () = o)

as n — 0o, which with Lemma 3.3 and 0 < log(1/[w, 0o]) —log max{1, |w|} < log /2
on C completes the proof. O

Lemma 4.2. For every np > 1, the Valiron exceptional set
1 1
B, ) = {a e P s = [ g e > 0
n—oo 11" [(f")'(2), d]

of the sequence ((f™)') of the derivatives of the iterations of f with respect to the
sequence (n") in R is a polar subset in P?.
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Proof. This is an application of Russakovskii-Shiffman [18, Proposition 6.2] to
the sequence ((f")") in C[z] since ), . 1/n" < oo for every n > 1. O

For every n > SuchC(f)ﬂC: periodic under f lim Supn—)oo(degc(fn))l/na every a € C \

Ev(((f™)),(n™)), and every C?-test function ¢ on P!, by Lemmas 4.1 and 4.2, we

T8 ottt
dd¢

: (s&p dw ) (dnl— 1 /Pl 1ogde(Z)
. / log(1/[(f")'(2), o<]) dw(z))

a1 —
= o((n/d)") asn — oo,

where the Radon-Nikodym derivative (dd°¢)/dw on P! is bounded on P*. O

5. Proof of Theorem 3

Let f: Cx P!> (\2) — 22+ X = fo(z) € P! be the monic and centered
unicritical polynomials family of degree d > 1. For every n € N, fI(A), (f1)'(\) €
C[)\] are of degree d™, d™ — 1, respectively.

5.1. Background on the family f. Recall the definitions in Subsection 2.2.
The following constructions are due to Douady—Hubbard [5] and Sibony.

For every A € C, fi(z) = d- 2%, so C(f) N C = {0} and f,(0) = X\. The
connectedness locus Cy := {A € C: A € K(f,)} of the family f is a compact subset
in C,and Hy, = Hyo := P!\ O, is a simply connected domain containing oo in P?.
Moreover, the locally uniform limit

YH (A) = gfx()‘> =d- ng(O) = lim _ IOg[f;‘L()\)’ OO]

n—00 dr

exists on C. Setting gy (00) := 400, the restriction of gy, to Hy coincides with
the Green function on H,, with pole oo, and the measure

te, = ddgp., + s on P!

coincides with the harmonic measure on C,; with pole co. In particular, z — gg__(2)—
log |z| extends harmonically to an open neighborhood of oo in H.,, and supp pe, C
0Cy (in fact, the equality holds).

5.2. Proof of Theorem 3. For every n € N, A — (log |(f¥)'(N)])/(d* —1) —
g, (A) and A — (logmax{1, |(f7) (N)|})/(d*—1)—gu. (N) on C extend continuously
to PL.

Lemma 5.1. For every n € N and every A € C,
ny/ 2
logmaxcgi{({x) M g (V) < nisgidl).

Proof. For every n € N and every A € C, by gsr = gy, on P! and gp 0 fy=d-gy,
on P!, we have gs(A) = gr,(A) = d - gr,(0) > g5,(0) = maxcec(s)nc gn(c) =
maXcec(smne sy (), so by Theorem 2.1, we have |(f3)'(A)| < (d")ze(dn_l)gfil(’\) -
(d™)2e @ =D95 ) = (dm)2e(@" =91 (V) This with gz (\) > 0 completes the proof. [

(3.3)
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Lemma 5.2.

Jo

Proof. For every n € N, by the third equality in (3.1) for f) evaluated at z = A,
we have

log(1/1(f3)"(N), o))
dr—1

— g (M) |dw(N) = O(n?d™™)

as n — Q.

logc\lgfg)l(k)\ Zlogd Zlog| £
so that
log | (/7Y (A
[ % — g O] deo(Y)
n—1 1 d
(4.1') < dn_ Z/ [log | £17(0) gHm(A)\dw(AHZnOi

=0(n*d™) asn— oo

since by Gauthier—Vigny [9, §4.3, Proof of Theorem A], we have
[ og 5710 =" g )] dw(3) = O(n)

as n — 0o. This with Lemma 5.1 and 0 < log(1/[w, oo]) — logmax{1, |w|} < log /2
on C completes the proof. O

Lemma 5.3. For every n > 1, the Valiron exceptional set
1 1
Ev(((f1)'(N), (n" ::{aEP1 lim sup — / log ——————— dw(\ >O}
V((( )\)( )) ( )) oo n L [(ff)l()\%a] ( )

of the sequence ((f')'(\)) in C[A] with respect to the sequence (n") in R is a polar
subset in P

Proof. This is an application of Russakovskii-Shiffman [18, Proposition 6.2] to
the sequence ((fy)'(A)) in C[A] since } . 1/7™ < oo for every n > 1. O

For every n > 1, every a € C\ Ev(((f%)' (M), (n™)), and every C*-test function
¢ on P!, by Lemmas 5.2 and 5.3, we have

[ o a( A% e Yo

ar —1
oy ddc<log[(§)_,(i\)’ o, o1/ o)) _ QHM) ‘
dd<e 1 1
< (S“p & ) (dn 5 )L TRIOE S

log(1/[(/3) (), <))

“
P! dr—1

= o((n/d)") asn — oo,

— g (N)

dw(A))

where the Radon-Nikodym derivative (dd°¢)/dw on P! is bounded on P*. O
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