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Abstract. We establish the equidistribution of the sequence of the averaged pullbacks of a

Dirac measure at any value in C \ {0} under the derivatives of the iterations of a polynomials

f ∈ C[z] of degree more than one towards the f -equilibrium (or canonical) measure µf on P
1. We

also show that for every C2 test function on P
1, the convergence is exponentially fast up to a polar

subset of exceptional values in C. A parameter space analog of the latter quantitative result for the

monic and centered unicritical polynomials family is also established.

1. Introduction

Let f ∈ C[z] be a polynomial of degree d > 1. Let µf be the f -equilibrium (or
canonical) measure on P1, which coincides with the harmonic measure µK(f) on the
filled-in Julia set K(f) of f with respect to ∞. The exceptional set E(f) := {a ∈
P1 : #

⋃

n∈N f−n(a) < ∞} of f contains ∞ and #E(f) ≤ 2. Brolin [2, Theorem 16.1]
studied the value distribution of the sequence (fn : P1 → P1) of the iterations of f ,
and established

(1.1)

{

a ∈ P1 : lim
n→∞

(fn)∗δa
dn

= µf weakly on P1

}

= P1 \ E(f),

which is more precise than the classical inclusion ∂K(f) ⊂ ⋃

n∈N f−n(a) for every
a ∈ P1 \E(f). Here for every h ∈ C(z) of degree > 0 and every Radon measure ν on
P1, the pullback h∗ν of ν under h is a Radon measure on P1 so that for every a ∈ P1,
when ν = δa, h

∗δa =
∑

w∈h−1(a)(degw h)δa on P1. Pursuing the analogy between the

roles played by E(f) in (1.1) and by the set of Valiron exceptional values in P1 of
a transcendental meromorphic function on C, Sodin [20], Russakovskii–Sodin [19],
and Russakovskii–Shiffman [18] (see also [7], [15]) studied the value distribution of a
sequence of rational maps between projective spaces from the viewpoint of Nevanlinna

theory, in a quantitative way (cf. [22, Chapter V, §2]). Gauthier and Vigny [10, 1. in
Theorem A] studied the value distribution of the sequence ((fn)′ : P1 → P1) of the
derivatives of iterations of a polynomial f ∈ C[z] of degree > 1 (cf. [23]) possibly
with a polar subset of exceptional values in C \ {0}, in terms of dynamics of the
tangent map F (z, w) := (f(z), f ′(z)w) on the tangent bundle TC. The aim of this
article is to improve their result in two ways.

The first improvement of [10, 1. in Theorem A] is qualitative, but with no excep-
tional values.
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Theorem 1. Let f ∈ C[z] be of degree d > 1. Then for every a ∈ C \ {0},

lim
n→∞

((fn)′)∗δa
dn − 1

= µf

weakly on P1.

In Theorem 1, the values a = 0,∞ are excluded since it is clear that for every
n ∈ N, ((fn)′)∗δ∞/(dn − 1) = δ∞( 6= µf), and it immediately follows from (1.1)
and the chain rule that limn→∞((fn)′δ0)/(d

n − 1) = µf weakly on P1 if and only if
E(f) = {∞}. In Gauthier–Vigny [10, 2. and 3. in Theorem A], they also established
a result similar to Theorem 1 under the assumption that f has no Siegel disks (or the
assumption that f is hyperbolic). Our proof of Theorem 1 is independent of their
argument even in those cases.

The second improvement of [10, 1. in Theorem A] is quantitative, but with an at
most polar subset of exceptional values in C.

Theorem 2. Let f ∈ C[z] be of degree d > 1, and suppose that E(f) = {∞}.
Then for every η > supz∈C : superattracting periodic point of f lim supn→∞(degz(f

n))1/n, there

is a polar subset E = Ef,η in C such that for every a ∈ C \ E and every C2-test

function φ on P1,
ˆ

P1

φ d

(

((fn)′)∗δa
dn − 1

− µf

)

= o((η/d)n)

as n → ∞.

The proof of Theorem 2 is based on Russakovskii–Shiffman [18] mentioned above,
and on an improvement of it for the sequence of the iterations of a rational function of
degree > 1 by Drasin and the author [6] (see also [4] and [21] in higher dimensions).

Remark 1.1. Under the assumption E(f) = {∞} in Theorem 2, we have
supz∈C : superattracting periodic point of f lim supn→∞(degz(f

n))1/n ∈ {1, 2, . . . , d − 1}, and
= 1 if and only if there is no superattracting cycles of f in C. Here we adopt the
convention sup∅ = 1. In the case that E(f) 6= {∞}, we point out the following better
estimate than that in Theorem 2

ˆ

P1

φ d

(

((fn)′)∗δa
dn − 1

− µf

)

= O(nd−n) as n → ∞

for every a ∈ C\{0} and every C2-test function φ on P1, with no exceptional values;
indeed, we can assume that f(z) = zd without loss of generality (see Remark 3.1), and
then fn(z) = zd

n
for every n ∈ N and µf is the normalized Lebesgue measure m∂D on

the unit circle ∂D = ∂K(f). For every a = reiθ (r > 0, θ ∈ R), every C1-test function

φ on P1, and every n ∈ N, we have
∣

∣

´

P1 φd(((f
n)′)∗δa −

∑dn−1
j=1 δei(θ+j·2π)/(dn−1))/(dn −

1)
∣

∣ ≤ ‖φ‖C1 ·
∣

∣e(log(rd
−n))/(dn−1) − 1

∣

∣ ≤ ‖φ‖C1 · Cnd−n for some C > 0 independent of
both φ and n, and if φ is C2, then by the midpoint method in numerically computing
definite integrals, we also have

∣

∣

´

P1 φ d
(
∑dn−1

j=1 δei(θ+j·2π)/(dn−1)/(dn − 1) − m∂D

)
∣

∣ ≤
‖φ‖C2 · C ′d−n for some C ′ > 0 independent of both φ and n.

Finally, let us focus on the (monic and centered) unicritical polynomials family

(1.2) f : C×P1 ∋ (λ, z) 7→ zd + λ =: fλ(z) ∈ P1

of degree d > 1. The parameter space analog of Theorem 1 for the sequence ((fn
λ )

′(λ))
in C[λ] of the derivative of fn

λ at its unique critical value z = λ in C is also obtained
by Gauthier–Vigny [10, Theorem 3.7]. We will also establish a parameter space
analog of Theorem 2.
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Theorem 3. Let f be the monic and centered unicritical polynomials family

of degree d > 1 defined as in (1.2). Then for every η > 1, there is a polar subset

E = Ef,η in C such that for every a ∈ C \ E and every C2-test function φ on P1,
ˆ

P1

φ(λ) d

(

((fn
λ )

′(λ))∗δa
dn − 1

− µCd

)

(λ) = O((η/d)n)

as n → ∞. Here Cd is the connectedness locus of the family f in the parameter space

C and µCd
is the harmonic measure on Cd with pole ∞.

The proof of Theorem 3 is based on Russakovskii–Shiffman [18] mentioned above,
and on a quantitative equidistribution of superattracting parameters by Gauthier–
Vigny [9].

In Section 2, we recall a background from complex dynamics. In Sections 3, 4,
and 5, we show Theorems 1, 2, and 3, respectively.

Notation 1.2. We adopt the convention N = Z>0. For every a ∈ C and every
r > 0, set D(a, r) := {z ∈ C : |z−a| < r}. Let δz be the Dirac measure on P1 at each

z ∈ P1. Let [z, w] be the chordal metric on P1 normalized as [·,∞] = 1/
√

1 + | · |2
on P1 (following the notation in Nevanlinna’s and Tsuji’s books [14, 22]). Let ω be
the Fubini–Study area element on P1 normalized as ω(P1) = 1. The Laplacian ddc

on P1 is normalized as ddc(− log[·,∞]) = ω − δ∞ on P1.

2. Background

2.1. Dynamics of rational functions. Let f ∈ C(z) be of degree d > 1.
Let C(f) be the critical set of f . The Julia and Fatou sets of f are defined by
J(f) := {z ∈ P1 : the family (fn : P1 → P1)n∈N is not normal at z} and F (f) :=
P1 \ J(f), respectively. A component of F (f) is called a Fatou component of f . A
Fatou component U of f is mapped by f properly onto a Fatou component of f . A
Fatou component U of f is said to be cyclic if there is n ∈ N such that fn(U) = U .
For more details on complex dynamics, see e.g. Milnor’s book [13].

The f -equilibrium (or canonical) measure µf on P1 is the unique probability
Radon measure ν on P1 such that

(2.1) f ∗ν = d · ν on P1

and that ν({a}) = 0 for every a ∈ E(f); the exceptional set of f is E(f) := {a ∈
P1 : #

⋃

n∈N f−n(a) < ∞} = {a ∈ P1 : f−2(a) = {a}}. Then in fact supp µf = J(f),
and for every n ∈ N, µfn = µf on P1. For more details, see Brolin [2], Lyubich [12],
Freire–Lopes–Mañé [8].

2.2. Dynamics of polynomials. Let f ∈ C[z] be of degree d > 1. We note
that ∞ ∈ E(f), #(C(f) ∩C) ≤ d− 1, and C(f) ∩C = (supp ddc log |f ′|) ∩C.

The filled-in Julia set K(f) of f is defined by

K(f) := {z ∈ C : lim sup
n→∞

|fn(z)| < ∞},

whose complement in P1 coincides with the immediate superattractive basin

I∞(f) := {z ∈ P1 : lim
n→∞

fn(z) = ∞}

of the superattracting fixed point ∞ of f ; in particular, limn→∞ fn = ∞ locally
uniformly on I∞(f), and K(f) is a compact subset in C. We note that F (f) =
I∞(f) ∪ intK(f) and that J(f) = ∂K(f).
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By a standard telescope argument, there exists the locally uniform limit

gf := lim
n→∞

− log[fn(·),∞]

dn

on C. Setting gf(∞) := +∞, we have gf ◦ f = d · gf on P1, and for every n ∈ N, we
also have gfn = gf on P1. The restriction of gf to I∞(f) coincides with the Green
function on I∞(f) with pole ∞, and the measure

µK(f) := ddcgf + δ∞ on P1

coincides with the harmonic measure on K(f) with pole ∞. In particular, supp µK(f)

⊂ ∂K(f), and in fact µK(f) = µf on P1. The function z 7→ gf(z) − log |z| ex-
tends harmonically to an open neighborhood of ∞ in I∞(f) so the function z 7→
− log[z,∞]− gf(z) extends continuously to P1.

The following is substantially shown in Buff [3, the proof of Theorem 4].

Theorem 2.1. (Buff) Let f ∈ C[z] be of degree d > 1, and let z0 ∈ C. If

gf(z0) ≥ maxc∈C(f)∩C gf(c), then |f ′(z0)| ≤ d2 · e(d−1)gf (z0), and the equality never

holds if (C(f) ∩C) ∩ I∞(f) 6= ∅.
For more details on polynomial dynamics and potential theory, see Brolin [2,

Chapter III], and also Ransford’s book [17].

3. Proof of Theorem 1

Let f ∈ C[z] be of degree d > 1. For every a ∈ C and every n ∈ N, the
functions (log |(fn)′−a|)/(dn−1)−gf and (logmax{1, |(fn)′|})/(dn−1)−gf extend
continuously to P1. Set ad = ad(f) := limn→∞ f(z)/zd ∈ C \ {0}.

Remark 3.1. Since the question is affine invariant, we could assume |ad| = 1
without loss of generality, by replacing f with c−1 ◦ f ◦ c for such c ∈ C \ {0} that
cd−1 = a−1

d if necessary (for every c ∈ C \ {0}, z 7→ c · z is also denoted by c). In
this article, we would not normalize f as |ad| = 1 in order to make it explicit which
computations would be independent of such a normalization.

Lemma 3.2. On I∞(f) \⋃n∈N∪{0} f
−n(C(f) ∩C),

lim
n→∞

(

log |(fn)′|
dn − 1

− gf

)

= 0

locally uniformly.

Proof. For every n ∈ N and every z ∈ C, by a direct calculation, we have

log |(fn)′(z)|
dn − 1

− log
∣

∣dn ·a(dn−1)/(d−1)
d

∣

∣

dn − 1
=

1

dn − 1

ˆ

C

log |z − u|(ddc log |(fn)′|)(u)

=
1

dn − 1

ˆ

C

n−1
∑

j=0

(
ˆ

C

log |z − ·|d((f j)∗δw)

)

(ddc log |f ′|)(w)

=
1

dn − 1

ˆ

C

n−1
∑

j=0

(

log |f j(z)− w| − log |ad|(d
j−1)/(d−1)

)

(ddc log |f ′|)(w)

=
1

dn − 1

ˆ

C

n−1
∑

j=0

(log[f j(z), w]− log[f j(z),∞]− log[w,∞])(ddc log |f ′|)(w)

− log |ad|
1

d−1
− n

dn−1 .

(3.1)
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Then noting that gf ◦ f = d · gf on P1, for every n ∈ N and every z ∈ P1, we have

log |(fn)′(z)|
dn − 1

− gf(z) =
1

dn − 1

ˆ

C

(

n−1
∑

j=0

log[f j(z), w]

)

(ddc log |f ′|)(w)

+
d− 1

dn − 1

n−1
∑

j=0

(

− log[f j(z),∞]− gf(f
j(z))

)

+

(

−
ˆ

C

log[w,∞](ddc log |f ′|)(w) + log d+ log |ad|
)

n

dn − 1
,

(3.2)

which with supz∈P1 |− log[z,∞]− gf(z)| < ∞ completes the proof. �

Lemma 3.3. There is C = Cf > 0 such that for every n ∈ N and every z ∈ P1,

(3.3)
logmax{1, |(fn)′(z)|}

dn − 1
− gf(z) ≤

Cn

dn − 1
.

Proof. Set

C = Cf := (d− 1) · sup
z∈P1

|− log[z,∞]− gf(z)|

+ (d− 1) · sup
w∈C(f)∩C

|log[w,∞]|+ log d+ | log |ad|| ∈ R>0.
(3.4)

Then for every n ∈ N and every z ∈ C, from (3.2), we have |(fn)′(z)| ≤ eCn ·
e(d

n−1)gf (z), which with gf ≥ 0 on P1 completes the proof. �

We note that maxc∈
⋃

n∈N∪{0} f
−n(C(f)∩C) gf(c) = maxc∈C(f)∩C gf(c) < ∞ by gf◦f =

d · gf on P1.

Lemma 3.4. For every a ∈ C \ {0},

lim
n→∞

ˆ

P1

∣

∣

∣

∣

log |(fn)′ − a|
dn − 1

− gf

∣

∣

∣

∣

dω = 0.

Proof. Fix a ∈ C \ {0}. The sequence ((log |(fn)′ − a|)/(dn − 1)) of sub-
harmonic functions on C is locally uniformly bounded from above on C; indeed,
by the chain rule and lim infz→∞ |f ′(z)| = +∞, for every R > 0 so large that
{|z| = R} ⊂ I∞(f)\⋃n∈N∪{0} f

−n(C(f)∩C), we have lim infn→∞ inf |z|=R |(fn)′(z)| =
+∞, which with the maximum modulus principle yields sup|z|≤R |(fn)′(z) − a| ≤
sup|z|=R 2|(fn)′(z)| for every n ∈ N large enough. Then by Lemma 3.3, we have
lim supn→∞ sup|z|≤R(log |(fn)′ − a|)/(dn − 1) ≤ sup|z|=R gf(z) < ∞. By Lemma 3.2

and gf > 0 on I∞(f), for every compact subset C in I∞(f)\⋃n∈N∪{0} f
−n(C(f)∩C),

we also have 1/2 ≤ |((fn)′ − a)/(fn)′| ≤ 2 on C for every n ∈ N large enough, so in
particular

(3.5) lim
n→∞

(

log |(fn)′ − a|
dn − 1

− gf

)

= lim
n→∞

(

log |(fn)′|
dn − 1

− gf

)

= 0

locally uniformly on I∞(f) \⋃n∈N∪{0} f
−n(C(f) ∩C).

Let m2 be the Lebesgue measure on C. By a compactness principle for a locally
uniformly upper bounded sequence of subharmonic functions on a domain in Rm

which is not locally uniformly convergent to −∞ (see Azarin [1, Theorem 1.1.1],
Hörmander’s book [11, Theorem 4.1.9(a)]), we can choose a sequence (nj) in N

tending to +∞ as j → ∞ such that the L1
loc(C, m2)-limit φ := limj→∞(log |(fnj)′ −

a|)/(dnj − 1) exists and is subharmonic on C. Choosing a subsequence of (nj) if
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necessary, we have φ = limj→∞(log |(fnj)′ − a|)/(dnj − 1) Lebesgue a.e. on C. Then
by (3.5), we have φ ≡ gf Lebesgue a.e. on C \ (K(f) ∪ ⋃n∈N∪{0} f

−n(C(f) ∩ C)),

and in turn on C\K(f) by the subharmonicity of φ and the harmonicity of gf there.
Let us show that φ = gf Lebesgue a.e. on the whole C, and then limn→∞(log |(fn)′−
a|)/(dn − 1) = gf in L1

loc(C, m2), which with the locally uniform convergence (3.5)
will complete the proof since maxc∈

⋃
n∈N∪{0} f

−n(C(f)∩C) gf(c) < ∞ and the Radon–

Nikodym derivative dω/dm2 is continuous so locally bounded on C.
By log(1/[w,∞]) − logmax{1, |w|}) ≤ log

√
2 on C and Lemma 3.3, for every

n ∈ N, we have

log |(fn)′ − a|
dn − 1

− gf =
log[(fn)′, a]

dn − 1
+

(

log(1/[(fn)′,∞])

dn − 1
− gf

)

+
log(1/[a,∞])

dn − 1

≤ Cf · n
dn − 1

+
log

√
2 + log(1/[a,∞])

dn − 1

on C, so φ ≤ gf Lebesgue a.e. on C and in turn on C by the subharmonicity of φ
and the continuity of gf on C. Hence φ − gf is ≤ 0 and is upper semicontinuous on
C.

Now suppose to the contrary that the open subset {z ∈ C : φ(z) < gf(z)} in C

is non-empty. Then by φ ≡ gf on C \ K(f), there is a bounded Fatou component
U of f containing a component W of {z ∈ C : φ(z) < gf(z)}. Since φ ≤ gf = 0 on
U ⊂ K(f), by the maximum principle for subharmonic functions, we in fact have
U = W .

Taking a subsequence of (nj) if necessary, we can assume that (fnj |U) is locally
uniformly convergent to a holomorphic function g on U as j → ∞ without loss of
generality. We claim that g′ ≡ a on U , so we can say g ∈ C[z]; indeed, fixing a
domain D ⋐ U = W , by a version of Hartogs’s lemma on subharmonic functions
(see Hörmander’s book [11, Theorem 4.1.9(b)]) and the upper semicontinuity of φ,
we have lim supn→∞ supD(log |(fnj)′ − a|)/(dnj − 1) ≤ supD φ < 0. Hence g′ =
(limj→∞ fnj )′ = limj→∞(fnj )′ ≡ a on D, so g′ ≡ a on U by the identity theorem for
holomorphic functions.

Hence, under the assumption that a 6= 0, the locally uniform limit g on U is non-
constant. So by Hurwitz’s theorem and the classification of cyclic Fatou components,
there is N ∈ N such that V := fnN (U) = g(U)(⊃ g(D)) is a Siegel disk of f and,
setting p := min{n ∈ N : fn(V ) = V }, that p|(nj − nN) for every j ≥ N . We can fix
a holomorphic injection h : V → C such that for some α ∈ R \Q, setting λ := e2iπα,
we have h ◦ f p = λ · h on V , so for every j ≥ N , h ◦ fnj = λ(nj−nN )/p · (h ◦ fnN ) on
U . Then taking a subsequence of (nj) if necessary, there also exists the limit

λ0 := lim
j→∞

λ(nj−nN )/p

in ∂D, so that h ◦ g = limj→∞ h ◦ fnj = λ0 · (h ◦ fnN ) on U . In particular,

(3.6) h ◦ fnj − h ◦ g = (λ(nj−nN )/p − λ0) · (h ◦ fnN )

on U . Set w0 := h−1(0) ∈ V , so that f p(w0) = w0, and fix z0 ∈ f−nN (w0) ∩ U , so
that fnj(z0) = w0 for every j ≥ N and g(z0) = limj→∞ fnj (z0) = w0.

We claim that

(3.7)
log |(fnj)′(z0)− a|

dnj − 1
=

log |λ(nj−nN )/p − λ0|
dnj − 1

+O(d−nj)
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as j → ∞; for, by the chain rule applied to both sides in (3.6) and h′(w0) 6= 0 (and
g′(z0) = a), we have

(3.6′) (fnj )′(z0)− a = (λ(nj−nN )/p − λ0) · (fnN )′(z0),

which also yields (fnN )′(z0) 6= 0 by (fnj)′(z0) = (fnj−nN )′(w0) · (fnN )′(z0) and the
assumption a 6= 0. We also claim that

(3.8) lim inf
j→∞

1

dnj
log |λ(nj−nN )/p − λ0| ≥ 0

(cf. [16, Proof of Theorem 3]); indeed, for every domain D ⋐ U\f−nN (w0), since h−1 is
Lipschitz continuous on h(

⋃

n∈N(f
p)n(fnN (D)))∪g(D)) ⋐ h(V ) and supD |h◦fnN | >

0, from (3.6), we observe that

(*)
1

dnj
sup
D

log |fnj − g| ≤ 1

dnj
log |λ(nj−nN )/p − λ0|+O(d−nj)

as j → ∞. On the other hand, for every domain D̃ intersecting ∂U in C, fixing
z̃ ∈ D̃ ∩ I∞(f) 6= ∅, we observe that

(**) lim inf
j→∞

1

dnj
sup
D̃

log |fnj − g| ≥ gf(z̃) > 0.

Now fix z1 ∈ U and z′ ∈ ∂U such that D(z1, |z′ − z1|) ⊂ U \ f−nN (w0). Then for
every ǫ ∈ (0, |z′ − z1|), using Cauchy’s estimate applied to fnj − g ∈ C[z] around z1,
we have

|fnj − g| ≤
dnj
∑

k=0

sup∂D(z1,|z′−z1|−ǫ) |fnj − g|
(|z′ − z1| − ǫ)k

| · −z1|k

≤
(

sup
D(z1,|z′−z1|−ǫ)

|fnj − g|
)

·
dnj
∑

k=0

( |z′ − z1|+ ǫ

|z′ − z1| − ǫ

)k

on D(z′, ǫ), so since z′ ∈ D(z′, ǫ) ∩ ∂U and D(z1, |z′ − z1| − ǫ) ⋐ U \ f−nN (w0), by
(**) and (*), we have

0 <

(

lim inf
j→∞

1

dnj
log sup

D(z′,ǫ)

|fnj − g|

≤ lim inf
j→∞

1

dnj
log sup

D(z1,|z′−z1|−ǫ)

|fnj − g|+ log
|z′ − z1|+ ǫ

|z′ − z1| − ǫ

≤
)

lim inf
j→∞

1

dnj
log |λ(nj−nN )/p − λ0|+ log

|z′ − z1|+ ǫ

|z′ − z1| − ǫ
.

This yields (3.8) as ǫ → 0.
Once (3.7) and (3.8) are at our disposal, using a version of Hartogs’s lemma on

subharmonic functions again, we have

φ(z0) ≥ lim sup
j→∞

log |(fnj)′(z0)− a|
dnj − 1

≥ lim inf
j→∞

log |λ(nj−nN )/p − λ0|
dnj − 1

≥ 0,

which contradicts φ < gf = 0 on U = W . �
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For every a ∈ C \ {0} and every C2-test function φ on P1, by Lemma 3.4, we
have

∣

∣

∣

∣

ˆ

P1

φ d

(

((fn)′)∗δa
dn − 1

− µf

)
∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

P1

φ ddc

(

log |(fn)′(·)− a|
dn − 1

− gf

)
∣

∣

∣

∣

≤
(

sup
P1

∣

∣

∣

∣

ddcφ

dω

∣

∣

∣

∣

)

·
ˆ

P1

∣

∣

∣

∣

log |(fn)′(z)− a|
dn − 1

− gf

∣

∣

∣

∣

dω(z) → 0 as n → ∞,

where the Radon–Nikodym derivative (ddcφ)/dω on P1 is bounded on P1. �

4. Proof of Theorem 2

Let f ∈ C[z] be of degree d > 1, and suppose that E(f) = {∞}. Then

sup
z∈C : superattracting periodic point of f

lim sup
n→∞

(degz(f
n))1/n

= sup
c∈C(f)∩C : periodic under f

lim sup
n→∞

(degc(f
n))1/n ∈ {1, 2, . . . , d− 1}

(recall the convention sup∅ = 1). Set ad := ad(f) = limn→∞ f(z)/zd ∈ C\{0}. For ev-
ery n ∈ N, the functions (log(1/[(fn)′,∞])/(dn−1)−gf and (logmax{1, |(fn)′|})/(dn−
1)− gf extend continuously to P1.

Lemma 4.1. For every η > supc∈C(f)∩C : periodic under f lim supn→∞(degc(f
n))1/n,

ˆ

P1

∣

∣

∣

∣

log(1/[(fn)′,∞])

dn − 1
− gf

∣

∣

∣

∣

dω = o((η/d)n)

as n → ∞.

Proof. For every n ∈ N, from (3.2), we have
ˆ

P1

∣

∣

∣

∣

log |(fn)′(z)|
dn − 1

− gf(z)

∣

∣

∣

∣

dω(z)

≤ 1

dn − 1

ˆ

C

(

n−1
∑

j=0

ˆ

P1

log
1

[f j(z), w]
dω(z)

)

(ddc log |f ′|)(w) + Cf · n
dn − 1

,

(4.1)

where Cf > 0 is defined in (3.4). By [6, Theorem 2], for every η > supc∈C(f)∩C : periodic

under f lim supn→∞(degc(f
n))1/n and every w ∈ C(= P1 \E(f) under the assumption

E(f) = {∞}), we have
ˆ

P1

log
1

[fn(z), w]
dω(z) = o(ηn)

as n → ∞, which with Lemma 3.3 and 0 ≤ log(1/[w,∞])− logmax{1, |w|} ≤ log
√
2

on C completes the proof. �

Lemma 4.2. For every η > 1, the Valiron exceptional set

EV (((f
n)′), (ηn)) :=

{

a ∈ P1 : lim sup
n→∞

1

ηn

ˆ

P1

log
1

[(fn)′(z), a]
dω(z) > 0

}

of the sequence ((fn)′) of the derivatives of the iterations of f with respect to the

sequence (ηn) in R>0 is a polar subset in P1.
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Proof. This is an application of Russakovskii–Shiffman [18, Proposition 6.2] to
the sequence ((fn)′) in C[z] since

∑

n∈N 1/ηn < ∞ for every η > 1. �

For every η > supc∈C(f)∩C : periodic under f lim supn→∞(degc(f
n))1/n, every a ∈ C \

EV (((f
n)′), (ηn)), and every C2-test function φ on P1, by Lemmas 4.1 and 4.2, we

have
∣

∣

∣

∣

ˆ

P1

φ d

(

((fn)′)∗δa
dn − 1

− µf

)
∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

P1

φ ddc

(

log[(fn)′, a]

dn − 1
+

log(1/[(fn)′,∞])

dn − 1
− gf

)
∣

∣

∣

∣

≤
(

sup
P1

∣

∣

∣

∣

ddcφ

dω

∣

∣

∣

∣

)(

1

dn − 1

ˆ

P1

log
1

[(fn)′(z), a]
dω(z)

+

ˆ

P1

∣

∣

∣

∣

log(1/[(fn)′(z),∞])

dn − 1
− gf

∣

∣

∣

∣

dω(z)

)

= o((η/d)n) as n → ∞,

where the Radon–Nikodym derivative (ddcφ)/dω on P1 is bounded on P1. �

5. Proof of Theorem 3

Let f : C × P1 ∋ (λ, z) 7→ zd + λ =: fλ(z) ∈ P1 be the monic and centered
unicritical polynomials family of degree d > 1. For every n ∈ N, fn

λ (λ), (f
n
λ )

′(λ) ∈
C[λ] are of degree dn, dn − 1, respectively.

5.1. Background on the family f . Recall the definitions in Subsection 2.2.
The following constructions are due to Douady–Hubbard [5] and Sibony.

For every λ ∈ C, f ′
λ(z) = d · zd−1, so C(fλ) ∩ C = {0} and fλ(0) = λ. The

connectedness locus Cd := {λ ∈ C : λ ∈ K(fλ)} of the family f is a compact subset
in C, and H∞ = Hd,∞ := P1 \Cd is a simply connected domain containing ∞ in P1.
Moreover, the locally uniform limit

gH∞(λ) := gfλ(λ) = d · gfλ(0) = lim
n→∞

− log[fn
λ (λ),∞]

dn

exists on C. Setting gH∞(∞) := +∞, the restriction of gH∞ to H∞ coincides with
the Green function on H∞ with pole ∞, and the measure

µCd
:= ddcgH∞ + δ∞ on P1

coincides with the harmonic measure on Cd with pole ∞. In particular, z 7→ gH∞(z)−
log |z| extends harmonically to an open neighborhood of ∞ in H∞, and supp µCd

⊂
∂Cd (in fact, the equality holds).

5.2. Proof of Theorem 3. For every n ∈ N, λ 7→ (log |(fn
λ )

′(λ)|)/(dn − 1) −
gH∞(λ) and λ 7→ (logmax{1, |(fn

λ )
′(λ)|})/(dn−1)−gH∞(λ) on C extend continuously

to P1.

Lemma 5.1. For every n ∈ N and every λ ∈ C,

(3.3′)
logmax{1, |(fn

λ )
′(λ)|}

dn − 1
− gH∞(λ) ≤ n log(d2)

dn − 1
.

Proof. For every n ∈ N and every λ ∈ C, by gfn
λ
= gfλ on P1 and gfλ ◦fλ = d ·gfλ

on P1, we have gfn
λ
(λ) = gfλ(λ) = d · gfλ(0) ≥ gfλ(0) = maxc∈C(fλ)∩C gfλ(c) =

maxc∈C(fn
λ )∩C gfn

λ
(c), so by Theorem 2.1, we have |(fn

λ )
′(λ)| ≤ (dn)2e

(dn−1)gfn
λ
(λ)

=

(dn)2e(d
n−1)gfλ (λ) = (dn)2e(d

n−1)gH∞(λ). This with gH∞(λ) ≥ 0 completes the proof. �
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Lemma 5.2.
ˆ

P1

∣

∣

∣

∣

log(1/[(fn
λ )

′(λ),∞])

dn − 1
− gH∞(λ)

∣

∣

∣

∣

dω(λ) = O(n2d−n)

as n → ∞.

Proof. For every n ∈ N, by the third equality in (3.1) for fλ evaluated at z = λ,
we have

log |(fn
λ )

′(λ)|
dn − 1

− n log d

dn − 1
=

d− 1

dn − 1

n−1
∑

j=0

log |f j
λ(λ)| =

d− 1

dn − 1

n−1
∑

j=0

log |f j+1
λ (0)|,

so that
ˆ

P1

∣

∣

∣

∣

log |(fn
λ )

′(λ)|
dn − 1

− gH∞(λ)

∣

∣

∣

∣

dω(λ)

≤ d− 1

dn − 1

n−1
∑

j=0

ˆ

P1

∣

∣log |f j+1
λ (0)| − dj · gH∞(λ)

∣

∣ dω(λ) +
n log d

dn − 1
(4.1′)

= O(n2d−n) as n → ∞
since by Gauthier–Vigny [9, §4.3, Proof of Theorem A], we have

ˆ

P1

∣

∣log |fn+1
λ (0)| − dn · gH∞(λ)

∣

∣dω(λ) = O(n)

as n → ∞. This with Lemma 5.1 and 0 ≤ log(1/[w,∞])− logmax{1, |w|} ≤ log
√
2

on C completes the proof. �

Lemma 5.3. For every η > 1, the Valiron exceptional set

EV (((f
n
λ )

′(λ)), (ηn)) :=

{

a ∈ P1 : lim sup
n→∞

1

ηn

ˆ

P1

log
1

[(fn
λ )

′(λ), a]
dω(λ) > 0

}

of the sequence ((fn
λ )

′(λ)) in C[λ] with respect to the sequence (ηn) in R>0 is a polar

subset in P1.

Proof. This is an application of Russakovskii–Shiffman [18, Proposition 6.2] to
the sequence ((fn

λ )
′(λ)) in C[λ] since

∑

n∈N 1/ηn < ∞ for every η > 1. �

For every η > 1, every a ∈ C \ EV (((f
n
λ )

′(λ)), (ηn)), and every C2-test function
φ on P1, by Lemmas 5.2 and 5.3, we have

∣

∣

∣

∣

ˆ

P1

φ(λ) d

(

((fn
λ )

′(λ))∗δa
dn − 1

− µCd

)

(λ)

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

P1

φ(λ) ddc

(

log[(fn
λ )

′(λ), a]

dn − 1
+

log(1/[(fn
λ )

′(λ),∞])

dn − 1
− gH∞(λ)

)
∣

∣

∣

∣

≤
(

sup
P1

∣

∣

∣

∣

ddcφ

dω

∣

∣

∣

∣

)(

1

dn − 1

ˆ

P1

log
1

[(fn
λ )

′(λ), a]
dω(λ)

+

ˆ

P1

∣

∣

∣

∣

log(1/[(fn
λ )(λ),∞])

dn − 1
− gH∞(λ)

∣

∣

∣

∣

dω(λ)

)

= o((η/d)n) as n → ∞,

where the Radon–Nikodym derivative (ddcφ)/dω on P1 is bounded on P1. �
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