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Abstract. We show isomorphic and isometric characterizations of Hardy–Orlicz spaces on

multiply-connected domains whose boundary consists of finitely many disjoint analytic Jordan

curves. We also study composition operators on these spaces. In particular we obtain characteri-

zation of compact composition operators on Hardy–Orlicz spaces in terms of Carleson’s measures

defined in the paper.

1. Introduction

LetH(Ω) denote the space of all holomorphic functions on Ω, where Ω is a domain
on the Riemann sphere. For analytic map ϕ ∈ H(Ω), ϕ : Ω → Ω, the composition
operator is defined by

Cϕf := f ◦ ϕ, f ∈ H(Ω).

This map may act on various quasi-Banach spaces X of analytic functions on Ω.
Composition operators are fundamental objects of study in analysis that arise natu-
rally in many situations. For example a classical result due to Forelli (see [4]) states
that all surjective isometries of the Hardy space Hp(D), 1 < p < ∞, p 6= 2 are
weighted composition operators. The problem of relating operator theoretic proper-
ties (e.g., boundedness, compactness, weak compactness, order boundedness, spectral
properties) of composition operators Cϕ to function theoretic properties of generat-
ing function (symbol of Cϕ) has been a subject of great interest for quite some
time. One of the famous problem was to characterize compact composition opera-
tors on Hardy spaces Hp(D). In the eighties MacCluer (see [10] or [1]) proved that
Cϕ : H

p(D) → Hp(D) is compact if and only if the pullback measure µϕ defined by
the formula

µϕ(B) := m(ϕ∗−1(B)),

(where m is normalized Lebesgue measure on ∂D and ϕ∗ is radial limit of ϕ) is
vanishing Carleson measure, i.e., µϕ(W (a, h)) = o(h) as h → 0 for any Carleson
window W (a, h) := {z ∈ D : 1 − h < |z| < 1, | arg(az)| < h}, a ∈ ∂D. We note
that this problem was also solved by Shapiro [18, 19]. He described compact compo-
sition operators in terms of Nevanlinna counting function. It should be emphasized
that MacCluer’s result (together with the famous Carleson Lemma) contributes to
study another class of operators—inclusion operators jµ : H

p(D) → Lp(D, µ), where
µ is finite Borel measure. This idea is very useful and often used in contempo-
rary research—recently composition operators acting between Hardy-type spaces are
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studied thoroughly. The problems of characterizing compactness, weak compactness,
absolute p-summability and other properties are under consideration on various vari-
ants of Hardy spaces. We refer to [6, 7, 8, 9] where the authors have extended the
results of Shapiro and MacCluer to the case of composition operators on Hardy–Orlicz
spaces.

In this paper we investigate composition operators on Hardy–Orlicz spaces on
multiply-connected domains Ω whose boundary consists of finitely many disjoint
analytic Jordan curves. These spaces are generalizations of classical Hardy spaces
Hp(Ω) on multiply-connected domains Ω introduced by Rudin in [16]. Notice that
in spite of many similarities there are significant differences between theory of Hardy
spaces on unit disk and multiply connected domains (we refer to the paper of Sarason
[17] and book of Fisher [2], where Hp(Ω) spaces are studied). Our goal is to show
isomorphic and isometric characterizations of Hardy–Orlicz spaces on Ω as well as
to provide a complete description of compact composition operators Cϕ : H

Φ(Ω) →
HΦ(Ω) in terms of “Φ-Carleson measure on Ω”, where Φ is an Orlicz function.

2. Preliminaries

In this section we set out some prerequisites which occur in this paper. In partic-
ular we recall some basic facts about Hardy–Orlicz spaces and harmonic measures.

Hardy–Orlicz spaces on disc. Let Φ : [0,∞) → [0,∞) be an Orlicz function,
i.e., continuous and nondecreasing function such that limt→∞ Φ(t) = ∞ and Φ(t) = 0
if and only if t = 0. The Orlicz function Φ satisfies the ∇2-condition (Φ ∈ ∇2) if for
some constant β > 1 and for some t0 > 0, one has Φ(βt) > 2βΦ(t), for t > t0.

Given a measure space (Ω,Σ, µ) the Orlicz space LΦ(Ω) := LΦ(Ω,Σ, µ) is the
space of all (equivalence classes of) Σ-measurable functions f : Ω → C for which
there is a constant λ > 0 such that

ˆ

Ω

Φ(λ|f |) dµ <∞.

It is easy to check that if there exists C > 0, such that Φ(t/C) 6 Φ(t)/2 for all t > 0,
then LΦ(Ω) is a quasi-Banach lattice equipped with the quasi-norm

‖f‖Φ := inf

{
λ > 0;

ˆ

Ω

Φ
( |f |
λ

)
dµ 6 1

}
.

It is well known that ‖ · ‖Φ is a norm in the case when Φ is a convex function.
For Φ(t) = tp, p ∈ (0,∞], we have LΦ(Ω) = Lp(Ω) and the norms coincide. We refer
the reader to [14] for more complete information about Orlicz spaces.

Let D be the unit disc of the complex plane. Throughout the paper we identify
∂D with T = [0, 2π). In the same way Hardy spaces Hp(D) are defined out of the
Lebesgue spaces Lp(T), we define Hardy–Orlicz spaces HΦ := HΦ(D) from the Orlicz
spaces LΦ(T). For f ∈ H(D) and r ∈ (0, 1) denote by fr : T → C the function given
by fr(e

it) = f(reit). Following [11] HΦ consists of analytic functions f : D → C such
that

‖f‖HΦ := sup
06r<1

‖fr‖LΦ(T) <∞.(1)

The formula (1) defines a quasi-norm in HΦ and it is a norm when Φ is a convex
function. We note that for every f ∈ HΦ the radial limit

f ∗(t) := lim
r→1−

f(reit), t ∈ T,
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exists a.e. and ‖f‖HΦ = ‖f ∗‖LΦ(T). Recall that (see [8]) the inverse is also true:

for given f ∗ ∈ LΦ(T) such that its Fourier coefficients f̂ ∗(n) vanish for n < 0, the
analytic extension

f(z) = P [f ∗](z) :=
∞∑

n=0

f̂ ∗(n)zn, z ∈ D,

belongs to HΦ and ‖f‖HΦ = ‖f ∗‖LΦ(T).

We denote by HMΦ the subspace of finite elements of HΦ, i.e., the space of all
f ∈ H(D) such that for every λ > 0 we have

sup
06r<1

ˆ

T

Φ(λ|f(reit)|) dt <∞.

Harmonic measures. Let Ω be a domain on the Riemann sphere and let
u : Ω → R be a continuous function on Γ = ∂Ω. The Dirichlet problem is to find (if
there exists) a function ũ : Ω̄ → R which is continuous and satisfies two conditions:

1. ũ is harmonic on Ω,
2. ũ = u on Γ.

The Dirichlet problem can be solved for many domains. For our considerations the
following result is sufficient (see [2, Corollary 1.4.5.]).

Proposition 2.1. If each component of ∂Ω is nontrivial, then the Dirichlet
problem is solvable in Ω.

In particular if Ω is a multiply-connected domain whose boundary consists of
finitely many disjoint analytic Jordan curves then the Dirichlet problem is solvable
for Ω. Recall that an analytic arc is the image ψ((−1, 1)) of the open interval (−1, 1)
under a map which is one-to-one and analytic on a neighborhood in C of (−1, 1) to
C and an analytic Jordan curve is a Jordan curve that is finite union of open analytic
arcs.

Let Ω be a domain on the sphere for which the Dirichlet problem is solvable (we
write Ω ∈ (SDP )) and let p ∈ Ω. If u ∈ C(∂Ω) then the map u 7→ ũ(p) is linear and
bounded by the Maximum Modulus Principle. The Riesz representation theorem
implies that there is a unique real measure ωp on Γ = ∂Ω such that

ũ(p) =

ˆ

Γ

u dωp.

This measure is called harmonic measure on Γ for p. Note that ωp is probability
measure which has no atoms.

Now we recall important properties of harmonic measures. First notice that ωp
depends of the point p ∈ Ω, but it can be shown that for p and q ∈ Ω, ωp and ωq
are boundedly mutually absolutely continuous. Further, if K is a compact subset of
Ω (we write K ⊂⊂ Ω), then there is a constant M such that ωq(E) 6 Mωp(E) for
all q ∈ K and for all measurable set E ⊂ Ω. Suppose now that Ω1 and Ω2 are two
domains and f is holomorphic function which maps Ω̄1 onto Ω̄2 homeomorphically.
If Ω1 ∈ (SDP ), then also Ω2 ∈ (SDP ). Let p1 ∈ Ω1 and p2 = f(p1). Denote by ω1

the harmonic measure on ∂Ω1 for p and define measure µ on ∂Ω2 as follows:

µ(E) = ω1(f
−1(E)), E ⊂ ∂Ω2.
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Then µ is harmonic measure on ∂Ω2 for p2. Let Ω1,Ω2 ∈ (SDP ), Ω1 ⊂ Ω2. Let
p ∈ Ω1 and let ω1 and ω2 be harmonic measure on ∂Ω1 and ∂Ω2 respectively, for p.
Then for each compact set E ⊂ ∂Ω1 ∩ ∂Ω2 we have ω1(E) 6 ω2(E).

For next properties we need the Green’s function of a domain. Assume that Ω
is a domain on the Riemann sphere and Ω ∈ (SDP ), p ∈ Ω. A function g(·, p) is a
Green’s function for Ω with a pole (or singularity) at p (p 6= ∞), if

z 7→ g(z; p) is harmonic on Ω \ {p},

g(z; p) + log |z − p| is harmonic in a neighbourhood of p,

lim
z→ζ

g(z; p) = 0 for all ζ ∈ ∂Ω.

Assume now that ∂Ω consist of m+1 disjoint analytic Jordan curves. Let p ∈ Ω and
let g(z; p) be Green’s function for Ω at p. Denote by h(z) = h(z; p) the harmonic
conjugate of g(z; p) (note that h is multivalued). Then we have that locally Q = g+ih
is analytic and its derivative is single-valued on Ω. The following results (see [2]) show
relationships between harmonic measure arc length and Green’s function.

Theorem 2.2. [2, Theorem 1.6.4.] Suppose Ω is bounded by a finite number of
disjoint analytic Jordan curves. Then for each z ∈ Ω we have

dωz = −
1

2π

∂

∂n
g(·, z) ds,

where g(·, p) is the Green’s function for Ω with pole at z, ∂
∂n

is the derivative in the
direction of outwards normal at ∂Ω and ds is arc length.

The function Pz(ζ) :=
dωz

ds
(ζ) = − 1

2π
∂
∂n
g(ζ, z), where ζ ∈ ∂Ω and z ∈ Ω is called

Poisson kernel for Ω. It satisfies inequalities

c1 6
dωz
ds

6 c2

for positive constants c1, c2. For convienience we assume that s is normalized
Lebesgue measure on ∂Ω.

Theorem 2.3. [2, Proposition 1.6.5.] dωp(ζ) =
i
2π
Q′(ζ) dζ.

3. Hardy–Orlicz spaces on planar domains

In this section we define Hardy–Orlicz spaces on planar domains and prove basic
properties of these spaces. We start from the study of certain properties of domains
and subharmonic functions.

Let Ω be a domain on the Riemann sphere. Recall that a regular exhaustion of
Ω is a sequence {Ωn}

∞
n=1 of subdomains of Ω which satisfy the following conditions:

(1) Ω̄n ⊂ Ωn+1 for n ∈ N,
(2)

⋃∞
n=1 = Ω,

(3) every component of ∂Ωn, is nontrivial for each n ∈ N.

It can be proved that each domain has a regular exhaustion (see [2, Proposition 1.5.3]).
Recall that upper semicontinuous function u : Ω → [−∞,∞) is called subharmonic
(we write u ∈ subh(Ω)), if for every compact subset K ⊂ Ω and every continuous
function h harmonic on interior of K with h > u on ∂K, we have h > u on K as
well. In this case h is called harmonic majorant of u. It can be proved that if u has
harmonic majorant, then it has the least harmonic majorant and it is unique. It is
well known that subharmonic functions satisfy Maximum Modulus Principle. Using
this fact and the Harnack Theorem we can obtain the following result.
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Theorem 3.1. Let Ω ∈ (SDP ) and u ∈ subh(Ω), p ∈ Ω. Then u has harmonic
majorant if and only if for each regular exhaustion {Ωn} of Ω there exist a constant
C such that

ˆ

∂Ωn

u dωp,n 6 C,

where ωp,n is harmonic measure on Ωn for p.

In fact infimum over those constants is equal to v(p), where v is the least harmonic
majorant of u.

Now we can define Hardy–Orlicz spaces on general domains. Let Φ : [0,∞) →
[0,∞) be convex Orlicz function. Suppose that Ω ∈ (SDP ), {Ωn} is regular exhaus-
tion of Ω and z0 ∈ Ω1. For g : Ω → C denote gn := g|∂Ωn. We define Hardy–Orlicz
space on Ω by the following condition:

HΦ(Ω) := {f ∈ H(Ω) : ‖f‖HΦ(Ω) <∞},

where

‖f‖HΦ(Ω) := lim
n→∞

‖fn‖Φ = lim
n→∞

inf

{
ε > 0:

ˆ

∂Ωn

Φ
( |fn|
ε

)
dωn,z0 6 1

}
.

Notice that by Theorem 3.1 we can also describe HΦ(Ω) in terms of harmonic ma-
jorant; it is a set of all holomorphic functions f , for which there exists λ > 0, such
that subharmonic function Φ(λ|f |) has harmonic majorant. Moreover

‖f‖HΦ(Ω) = inf{ε > 0: vf,ε(z0) 6 1},

where vf,ε is the least harmonic majorant of Φ
( |f |
ε

)
. It’s clear that HΦ(Ω) is a Banach

space. We denote by HMΦ(Ω) the subspace of finite elements of HΦ(Ω), i.e., closure
of H∞(Ω) in HΦ(Ω).

For further work we need additional assumption on domain Ω. Let Ω be a
bounded domain whose boundary consists of m+ 1 disjoint analytic Jordan curves,
i.e.

Γ := ∂Ω =

m⋃

k=0

Γk,

where Γk is analytic Jordan curve and Γk ∩ Γj = ∅ for k 6= j. Assume that Γ0 is
the boundary of the unbounded component of the complement of Ω. Denote by E0

bounded component of S2 \ Γ0 and for k ∈ {1, 2, . . . , m}, denote by Ek unbounded
component of S2 \ Γk, where S2 is the Riemann sphere. From now Ω will be always
a set of this type. We also define by HΦ

0 (Ek) the subspace of HΦ(Ek) which con-
sists those functions which vanish at ∞. The first result shows that HΦ(Ω) can be
represented as a certain direct sum:

Theorem 3.2. For each f ∈ HΦ(Ω) we have the following decomposition

f(z) = f0(z) + f1(z) + . . .+ fm(z), z ∈ Ω,(2)

where f0 ∈ HΦ(E0) and fk ∈ HΦ
0 (Ek) for each 1 6 k 6 m. Moreover, the map f 7→ f0

is a bounded linear projection of HΦ(Ω) onto HΦ(E0) and f 7→ fk is a bounded linear
projection of HΦ(Ω) onto HΦ

0 (Ek).
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Proof. Fix f ∈ HΦ(Ω), z ∈ Ω and let C0, . . . , Cm be a smooth Jordan curves so
close to Γ0, . . . ,Γm respectively, that z is exterior to C1, . . . , Cm and interior to C0.
Now for each 0 6 k 6 m

fk(z) :=
1

2πi

ˆ

Ck

f(ζ)

ζ − z
dζ.

It is clear that f = f0 + f1 + . . . + fm and f 7→ fk is a linear operator. Further
fk ∈ H(Ek) and it is independent of the choice of Ck, 0 6 k 6 m. We have also
fk(∞) = 0 for each 1 6 k 6 m. It’s easily seen that if f ∈ HΦ

0 (Ek) for some k then
fl = 0 for l 6= k. Hence f = fk. We need to show that fk ∈ HΦ(Ek). Note that
for all l 6= k the function fl is bounded (pointwise) on some neighborhood U of Γk.
From the formula (2) and the fact that HΦ(Ω) is a linear space we conclude that
f ∈ HΦ(U), and so this implies that f ∈ HΦ(Ek). �

Note that interpolation theorem for general variants of Hardy spaces on planar
domains (which are defined as a similar direct sums) has been recently proved in [13].

Recall that polynomials are dense in HMΦ. Denote by R(Ω) the set of rational
functions whose poles are off Ω̄. We formulate analogue of this result for HMΦ(Ω).

Proposition 3.3. R(Ω) is dense in HMΦ(Ω).

Proof. Fix k ∈ {0, . . . , m}. Since Ω ⊂ Ek then ωz,Ω(A) 6 ωz,Ek
(A) for every point

z ∈ Ω and every subset A ⊂ Γk. Thus the HΦ(Ek) norm is larger then HΦ(Ω). We
need to show that fk is a limit in HMΦ(Ek) of a sequence of functions holomorphic
in a neighborhood of Ēk. Let ηk be a Riemann mapping of D onto Ek. Since ∂D
is analytic, this mapping can be extended to holomorphic and one-to-one in some
neighborhood of D̄. The same is true for the inverse function η−1

k . Put gk := fk ◦ ηk,
then gk ∈ HMΦ and therefore, by Runge’s theorem, there is a function G analytic on
a neighborhood of D̄ and such that ‖G− gk‖HΦ < ε and it is equivalent to

‖G ◦ η−1
k − fk‖HΦ(Ek) < ε,

and G ◦ η−1
k is analytic in a neighborhood of Ēk. Applying again Runge’s theorem

we can approximate G ◦ η−1
k uniformly on Ēk by elements of R(Ω). �

Proposition 3.4. [2, Proposition 4.4.3.] If u ∈ L1(Γ, ds) and

0 =

ˆ

Γ

u(ζ)

ζ − z
dζ, z /∈ Γ

then u = 0 a.e. on Γ.

Now we formulate the main result of this section. Let us remark that ω := ωz
for a point z ∈ Ω.

Theorem 3.5. Every f ∈ HΦ(Ω) has boundary values f ∗ almost everywhere
(dω) on Γ and f ∗ ∈ LΦ(Γ, ω). Moreover

f(z) =
1

2πi

ˆ

Γ

f ∗(w)

w − z
dw, z ∈ Ω,(3)

0 =

ˆ

Γ

f ∗(w)

w − z
dw, z /∈ Ω̄,(4)

f(z) =

ˆ

Γ

f ∗(ζ) dωz(ζ), z ∈ Ω.(5)
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Finally, the mapping f 7→ f ∗ is an isomorphism of HΦ(Ω) onto closed subspace of
LΦ(Γ, ω) and it is an isometry of HMΦ(Ω) onto closed subspace of LΦ(Γ, ω).

Proof. By Theorem 3.2 it is enough to show that fk has boundary values a.e. ds
on Γ and that this boundary-value functions lies in LΦ(Γ, ω). Fix k ∈ {0, . . . , m}.
For l 6= k the function fk is analytic on Γl. So (3), (4) and (5) hold immediately.
Let ηk be the Riemann mapping of D onto Ek. Note that ηk extends to be analytic
and conformal on a neighborhood of Ω̄ since Γk is analytic (the same is true for
η−1
k : Ek → D). Further gk = fk ◦ ηk ∈ HΦ so g∗k exists a.e. on T and g∗k ∈ LΦ(T).

Then fk = gk ◦ η
−1
k has boundary values a.e. ds on Γk and f ∗

k = g∗k ◦ η
−1
k a.e. so that

f ∗
k ∈ LΦ(Γk, ds) and hence f ∗

k ∈ LΦ(Γ, ω). Now if z ∈ Ω then

fk(z) = gk(η
−1
k (z)) =

1

2πi

ˆ

|ξ|=1

g∗k(ξ)

ξ − η−1
k (z)

dξ.

Putting ξ = η−1
k (ζ) we have

fk(z) =
1

2πi

ˆ

Γk

f ∗
k (ζ)

η−1
k (ζ)− η−1

k (z)
(η−1
k (ζ))′ dζ.

Now we notice that

(η−1
k (ζ))′

η−1
k (ζ)− η−1

k (z)
=

1

ζ − z
+ S(z),

where S is analytic in a neighborhood of Ω̄, since the function in the left-hand side
of the equality has a simple pole at z with residue equal to 1. So we have

ˆ

Γk

S(ζ)f ∗
k (ζ) = 0.

If k 6= l then
´

Γl

fk(ζ)
ζ−z

dζ = 0 and so (3) and (4) hold.To prove (5) recall that dωz(ζ) =
i
2π
Q′
z(ζ)dζ , where Qz(ζ) = g(ζ ; z) + ih(ζ ; z). Then Q′

z(ζ) =
1
z−ζ

+ R(ζ), where R is

holomorphic on Ω̄, hence
´

Γ
f ∗
kR(ζ) dζ = 0. Consequently

ˆ

Γ

f ∗(ζ) dωz(ζ) = −
i

2π

ˆ

Γ

f ∗(ζ)

ζ − z
dζ +

i

2π

ˆ

Γ

f ∗(ζ)R(ζ) dζ = f(z).

To show that f 7→ f ∗ is isomorphism from HΦ(Ω) into LΦ(Γ, ω) it is enough to use
Theorem 3.2 and the facts that fk 7→ f ∗

k is isomorphism from HΦ(Ek) into LΦ(Γk, ω)
and for l 6= k the function fk is analytic on Γl. Now we show that f 7→ f ∗ is isometry
from HMΦ(Ω) into LΦ(Γ, ω). Let q ∈ R(Ω) and let u be the harmonic function on Ω
given by

u(z) =

ˆ

Γ

Φ
( |q(ζ)|

‖q‖HΦ(Ω)

)
dωz, z ∈ Ω.(6)

Then Φ
(

|q(z)|
‖q‖

HΦ(Ω)

)
6 u(z), and if v is any harmonic majorant of Φ

(
|q(z)|

‖q‖
HΦ(Ω)

)
, then

u(x) = Φ
( |q(x)|

‖q‖HΦ(Ω)

)
6 lim inf{v(z) : z → x}.

It implies that the harmonic function v−u is non-negative at Γ and hence for all z ∈ Ω.

Thus, the function u given by (6) is the least harmonic majorant of Φ
(

|q|
‖q‖

HΦ(Ω)

)
and

we conclude that ‖q‖HΦ(Ω) = ‖q‖LΦ(Γ,ω) for q ∈ R(Ω). Now take f ∈ HMΦ(Ω). By
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Proposition 3.3 there exist {qn} in R(Ω) such that qn → f in HΦ(Ω). Then qn → f
uniformly on compact subsets of Ω and it’s clear that

‖qn − qm‖HΦ(Ω) = ‖qn − qm‖LΦ(Γ).

Hence {qn} is a Cauchy sequence in LΦ(Γ). So if qn → g in LΦ(Γ, ω), then

f(z) =

ˆ

Γ

g(ζ) dωz(ζ), z ∈ Ω,

since all the harmonic measures are boundedly mutually absolutely continuous. More-
over we have

f(z) =
1

2πi

ˆ

Γ

g(ζ)

ζ − z
dζ, z ∈ Ω,

and

0 =

ˆ

Γ

g(ζ)

ζ − z
dζ =

ˆ

Γ

f ∗(ζ)

ζ − z
dζ, z /∈ Ω̄.

Now by Proposition 3.4 we have g = f ∗ a.e. dω. Finally ‖qn − f ∗‖LΦ(Γ,ω) → 0 and

‖f ∗‖LΦ(Γ,ω) = lim ‖qn‖LΦ(Γ,ω) = lim ‖qn‖HΦ(Ω) = lim ‖f‖HΦ(Ω). �

Notice that in the case when Φ ∈ ∆2, i.e., Φ(2x) 6 KΦ(x) for some constants
K, x0 and x > x0, then HΦ(Ω) = HMΦ(Ω). So from Theorem 3.2 it follows the
analogous result proved by Rudin in [16, Theorem 3.2.] for Hardy space Hp(Ω),
1 6 p <∞, since every power function Φ(t) = tp satisfies ∆2 condition.

Recall that a Banach space X of holomorphic functions on an open subset Ω of
the complex plane has the Fatou property if X is continuously embedded inH(Ω), the
space of holomorphic functions on Ω, equipped with its natural topology of compact
convergence, and if it has the following property: for every bounded sequence {fn}
in X which converges uniformly on compact subsets of Ω to a function f , one has
f ∈ X. Note that HΦ(Ω) has the Fatou property.

We have seen that HΦ(Ω) is isomorphic to HΦ(E0) ⊕ HΦ
0 (E1) ⊕ · · · ⊕ HΦ

0 (Em).
Since conformal maps are isometries in the class of Hardy–Orlicz spaces we may
assume that E0 = D, Ei = ai + riD for i = 1, . . . , m, where ri ∈ (0, 1), ai ∈ D,
ai 6= aj if i 6= j and the circles ∂D, ai + ri∂D are pairwise disjoint and Ei ∩ Ej = ∅.
Spaces of those type (on such Ω, which is called circular domain) are isomorphic to
a general (described before) so from now Ω denotes this special case. Let us note
that conformal maps (from Ei onto unit disc and inverse) which we used before for
this particular Ω are of the form:

ηi(z) =

{
ri
z
+ ai dla z ∈ D \ {0},

∞ dla z = 0,

η−1
i (z) =

{
ri

z−ai
dla z ∈ Ei \ {∞},

0 dla z = ∞.

for 1 6 i 6 m and we put η0 = idD. It was proved in [8] that the norm of the
evaluation functional δz : H

Φ(D) 7→ C at z ∈ D satisfies condition ‖δz‖ ≈ Φ−1( 1
1−|z|

).

Using this fact, Theorem 3.2 and conformal maps it is easy to prove, that for z ∈ Ω,
the norm of δz : H

Φ(Ω) 7→ C satisfies ‖δz‖ 6 CΦ−1( 1
dist(z,Γ)

), where the constant C

depends only on Ω and z.
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At the end of this section we introduce useful family of functions. Recall that
(see [8]) for a ∈ ∂D and r ∈ (0, 1)

ua,r(z) =
( 1− r

1− ārz

)2

,

is holomorphic function on D with ‖ua,r‖H1 6 1 − r, ‖ua,r‖H∞ = 1 and ‖ua,r‖HΦ ≈
1

Φ−1( 1
1−r

)
. For 1 6 i 6 m and a and r as above we define

uia,r(z) = (ua,r ◦ η
−1
i )(z) =

( 1− r

1− ārri
z−ai

)2

, z ∈ Ω,

and u0a,r = ua,r|Ω. Note that for each 0 6 i 6 m function uia,r extends to holo-
morphic function on Ei. It is also clear that we have analogous norm estimation:
‖uia,r‖H1(Ei) 6 1 − r, ‖uia,r‖H∞(Ei) = 1, ‖uia,r‖HΦ(Ei) ≈ 1

Φ−1( 1
1−r

)
, and ‖uia,r‖H1(Ω) 6

C(1− r), ‖uia,r‖H∞(Ω) ≈ 1, ‖uia,r‖HΦ(Ω) ≈
1

Φ−1( 1
1−r

)
, for some constant C.

4. Composition operators on Hardy–Orlicz spaces of planar domains

In this section we study properties of composition operators Cϕ : H
Φ(Ω) →

HΦ(Ω) and canonical inclusion maps jµ : H
Φ(Ω) →֒ LΦ(Ω, µ), where µ is a Borel

measure µ on Ω. Recall that if ϕ is analytic map ϕ : Ω → Ω (in this case we write
ϕ ∈ Υ := ΥΩ), then for f ∈ H(Ω) we define Cϕ as follow:

(Cϕf)(z) := (f ◦ ϕ)(z), z ∈ Ω.

First let’s see that Cϕ defines (bounded) operator. Linearity is clear. To show
that Cϕ : H

Φ(Ω) → HΦ(Ω) is bounded take f ∈ HΦ(Ω) with ‖f‖HΦ(Ω) = λ, where

λ = inf{ε > 0: vf,ε(z0) 6 1} and vf,ε being the least harmonic majorant of Φ
(

|f |
ε

)
.

We have

Φ
( |f ◦ ϕ|

ε

)
6 vf,ε ◦ ϕ,

and vf,ε◦ϕ is harmonic function. Further Φ
(

|f(ϕ(z0))|
ε

)
6 vf,ε(ϕ(z0)). Put w0 = ϕ(z0),

then from Harnack’s inequality there exists constant c > 0 such that vf,ε(w0) 6

cvf,ε(z0), now taking C = max(c, 1) it is clear that ‖Cϕf‖HΦ(Ω) 6 C‖f‖HΦ(Ω).
In what follows we investigate compactness of composition operators on Hardy–

Orlicz spaces of planar domains. We will use the following result (see [8, Proposi-
tion 3.8]).

Proposition 4.1. Let X, Y be two Banach spaces of analytic functions on an
open set Ω ⊂ C, X having the Fatou property. Let ϕ ∈ Υ be such that Cϕ ∈ Y
whenever f ∈ X. Then Cϕ : X → Y is compact if and only if for every bounded
sequence {fn} in X which converges to 0 uniformly on compact subsets of Ω, one
has ‖Cϕfn‖Y → 0.

We can apply Proposition 4.1 in the case whenX = Y = HΦ(Ω) getting necessary
condition for compactness of Cϕ.

Proposition 4.2. If Cϕ : H
Φ(Ω) → HΦ(Ω) is compact operator, then for each

0 6 i 6 m we have

lim
s→1−

sup
p∈∂D

Φ−1
( 1

1− s

)
‖Cϕu

i
p,s‖HΦ(Ω) = 0.(7)
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Proof. Let {pn} be any sequence in ∂D, and {sn} ⊂ (0, 1), with sn → 1. By
the fact that ‖uip,s‖HΦ ≈ 1

Φ−1( 1
1−s

)
, for every s ∈ (0, 1) we conclude that the sequence

{f in} defined by

f in(z) = Φ−1
( 1

1− sn

)
uipn,sn(z), z ∈ Ω,

is bounded in HΦ(Ω) for all 0 6 i 6 m. Moreover Φ−1 is concave and Φ−1(0) = 0, so
there exists a constant C > 0 such that Φ−1(x) 6 Cx for x > 1. But it implies that
for 1 6 i 6 m

|f in(z)| 6
C

1− sn

∣∣∣ (1− sn)
2

(1− pnsnri
z−ai

)2

∣∣∣,

and

|f 0
n(z)| 6

C

1− sn

∣∣∣ (1− sn)
2

(1− |z|)2

∣∣∣,

We conclude that for 0 6 i 6 m

f in → 0,

on compact subsets of Ω and by Proposition 4.1 we have that ‖Cϕfn‖HΦ(Ω) → 0.
Therefore (7) clearly holds. �

Carleson measures. Let ϕ ∈ Υ. Since ϕ is bounded by Theorem 3.5, the
boundary function ϕ∗ exists and it is in LΦ(Γ, ω) or (what is equivalent) ϕ∗ ∈
LΦ(Γ, ds). For given ϕ ∈ Υ and any Borel subset of Ω̄ we define pullback measure as
follows:

µϕ(B) := s((ϕ∗)−1(B)).

Further we have

‖Cϕf‖HΦ(Ω) ≈ ‖(f ◦ ϕ)∗‖LΦ(Γ,ω) = inf

{
ε > 0:

ˆ

Γ

Φ
( |f ◦ ϕ∗|

ε

)
dω 6 1

}

≈ inf

{
ε > 0:

ˆ

Γ

Φ
( |f ◦ ϕ∗|

ε

)
ds 6 1

}

= inf

{
ε > 0:

ˆ

Ω̄

Φ
( |f |
ε

)
dµϕ 6 1

}

= ‖f‖LΦ(Ω̄,µϕ).

It shows that some properties of a composition operator Cϕ : H
Φ(Ω) → HΦ(Ω) can

be expressed in terms of an inclusion operator jµϕ : H
Φ(Ω) →֒ LΦ(Ω̄, µϕ). We will

consider inclusion operator in general (not only for a pullback measures).

Lemma 4.3. Suppose that jµ : H
Φ(Ω) →֒ LΦ(Ω̄, µϕ) is a compact operator.

Then µ(Γ) = 0.

Proof. First note that lemma is true when Ω = D (see [8, Lemma 4.8]). To have
general case consider operators Ti : H

Φ → HΦ(Ω), defined as follow

Tif = f ◦ η−1
i |Ω,

where 0 6 i 6 m. It is clear that Ti is a bounded operator for each 0 6 i 6 m.
Since {en} given by en(z) := zn is weakly null in HMΦ then {Tien} is weakly null in
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HMΦ(Ω) for 0 6 i 6 m. By compactness of jµ we have that
ˆ

Ω̄

Φ
( rni
|z − ai|n

)
dµ < ε,

where 1 6 i 6 m, and
ˆ

Ω̄

Φ(|zn|) dµ < ε

for every ε ∈ (0, 1) and sufficiently large n. Hence Φ(1)µ(Γi) < ε for each 0 6 i 6 m
and it implies that µ(Γ) = 0. �

Let {Ωn} be (arbitrary) regular exhaustion of Ω and let µ be Borel measure on
Ω̄. We define operator In : H

Φ(Ω) → LΦ(Ω̄, µ) as follow

In(f) := fχΩ̄\Ωn
.

Theorem 4.4. Let µ be a finite measure on Ω̄, and Φ an Orlicz function. The
following assertions are equivalent:

(1) The inclusion operator jµ : H
Φ(Ω) → LΦ(Ω̄, µ) is well defined and compact.

(2) For every bounded sequence {fn} in HΦ(Ω) converging to 0 uniformly on
compact sets, we have ‖fn‖LΦ(Ω̄,µ) → 0.

(3) HΦ(Ω) is included in LΦ(Ω̄) and

lim
n→∞

‖In‖HΦ(Ω)→LΦ(Ω̄,µ) = 0.

for any regular exhaustion {Ωn} of Ω.

Proof. To show that (2) implies (1) is a standard and it can be found in [15]. We
show that (1) implies (2). From lemma we know that µ(∂Ω) = 0; take {fn} ⊂ BHΦ(Ω)

with fn → 0 uniformly on compact subsets of Ω. In particular fn(z) → 0 for all z ∈ Ω.
Since µ(∂Ω) = 0 we have that fn → 0 µ-a.e. on Ω̄. Suppose that ‖fn‖LΦ(Ω̄,µ) → 0
is not true. From the compactness of inclusion operator we have that there exists
a subsequence {fnk

} such that fnk
→ g 6= 0 in LΦ(Ω̄). But fnk

→ g µ-a.e. and this
gives a contradiction.

Suppose now that (3) holds. We have that

‖jµ‖ = lim
n→∞

‖jµ − In‖

Notice that jµ − In is inclusion operator of HΦ(Ω) into LΦ(Ω̄, ν) for a finite measure
ν supported by Ω̄n. Applying equivalence of (1) and (2) to Inν := jµ − In we get
that Inν is compact for every n ∈ N and also jµ is compact operator as the limit of
compact operators.

Assume that (2) holds. Notice that the sequence {‖In‖} is decreasing so if (3)
were not true, there would exist a constant ε0 > 0, a sequence {fn} in the unit ball
of HΦ(Ω) and regular exhaustion {Ωn} of Ω such that ‖Infn‖LΦ(Ω̄,µ) > ε0, for n ∈ N.
The sequence {fn} is uniformly bounded on compact subets of Ω. By Theorem 3.2
we can decompose each fn as follow:

fn(z) = f0,n(z) + f1,n(z) + · · ·+ fm,n(z), z ∈ Ω,

with fi,n ∈ HΦ
0 (Ei). For each 1 6 i 6 n define by gi,n(z) :=

(
ri

z−ai

)n
fi,n(z) and

g0,n(z) := znf0,n(z). It is clear that gi,n is bounded in HΦ
0 (Ei) for 0 6 i 6 m and

gi,n → 0 uniformly on compact subets of Ei, so gn = g0,n + · · ·+ gm,n is bounded in
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HΦ(Ω) and gn → 0 uniformly on compact subets of Ω. By (2) we should have that
if ‖gn‖LΦ(Ω̄,µ) → 0. But if dist(Γi, z) 6

1
n
, or in other words z ∈ Ani , where

Ani =
{
z ∈ Ei : z = ai + ri(1 + ε)eiθ, 0 6 ε 6 1

n
, θ ∈ [0, 2π]

}
,

An0 = D \
(
1−

1

n

)
D,

then

|gi,n(z)| =
∣∣∣ ri
z − ai

∣∣∣
n

|fi,n(z)| >
(
1 + 1

n

)−n

|fi,n(z)| >
1
4
|fi,n(z)|

for 1 6 i 6 m and in a similar manner we obtain |g0,n(z)| >
1
4
|f0,n(z)| for z ∈ An0 .

Now if we renumber {Ωn} to have Ω \ Ωn ⊂ An =
⋃m
i=0A

n
i and in the same way we

renumber {fn}, then

4‖gn‖LΦ(Ω̄,µ) > ‖Infn‖LΦ(Ω̄,µ) > ε0 > 0,

for n big enough and this is a contradiction to the fact ‖gn‖LΦ(Ω̄,µ) → 0. �

Carleson window on Γi ⊂ Γ = ∂Ω of center ξ ∈ Γi and radius
0 < h < mini 6=j dist(Γi,Γj) is the set

W0(ξ, h) = {z ∈ Ω: 1− h < |z|, | arg(ξz)| < h}, i = 0

Wi(ξ, h) = {z ∈ Ω: |z − ai| <
ri

1− h
, | arg(ξz)| < h}, 1 6 i 6 m.

It is trivial that z ∈ W0(ξ, h) if and only if ηi(z) ∈ Wi(ηi(ξ), h) when i > 1. Note
also that area of Carleson window satisfies estimation A(Wi(ξ, h)) ≈ 2r2i h

2, and the
constant 2r2i is optimal.

Let µ be a finite measure on Ω̄, 0 < h < mini 6=j dist(Γi,Γj), A > 0, and Φ an
Orlicz function, we denote:

• ρµ(h) := max06i6m supξ∈Γi
µ(W (ξ, h)),

• Kµ(h) := sup0<t6h
ρµ(t)

t
,

• γA(h) :=
1

Φ
(
AΦ−1

(
1
h

)) .

Following [8] we define the following conditions:

(R0) limh→0+
ρµ(h)

γA(h)
= 0 for every A > 0.

(K0) limh→0+
Kµ(h)h

γA(h)
= 0 for every A > 0.

(C0) Inclusion operator jµ : H
Φ(Ω) →֒ LΦ(Ω̄, µ) is compact.

Our purpose is to show that we have the following implications

(K0) =⇒ (C0) =⇒ (R0).

We will use the following proposition (see [15, Lemma 3.3.])

Proposition 4.5. Condition (R0) is equivalent to:

lim
h→0+

Φ−1
(
1
h

)

Φ−1
(

1
ρµ(h)

) = 0.

We note that in [8] (or [15]) it was proved that (C0) implies (R0) in the case of
Ω = D. Based on our Theorem 4.4 we prove below a more general result.

Theorem 4.6. Condition (C0) implies (R0).
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Proof. Using Theorem 4.4, in the same way that Proposition 4.1 was used to
prove Proposition 4.2, we deduce that for each 0 6 i 6 m we have

lim
r→1−

sup
p∈∂D

Φ−1

(
1

1− r

)
||uip,r||LΦ(Ω̄,µ) = 0.(8)

It is easy to check that |u0p,r(z)| >
1
9
, when z ∈ W0(p, h), and r = 1− h, thus

1

Φ
(

1
µ(W0(p,h))

) 6 9||u0p,r||LΦ(Ω̄,µ).

We obtain analogous inequality

1

Φ
(

1
µ(Wi(ηi(p),h))

) 6 9||uip,r||LΦ(Ω̄,µ),

if i > 1 using the fact that z ∈ W0(p, h) if and only if ηi(z) ∈ Wi(ηi(p), h). Further
taking for each i > 0 the supremum over ξi = ηi(p) (in fact we take (m + 1)-times
supremum over p ∈ ∂D and use the fact that ηi is bijection) and then maximum over
i = 0, . . . , m we obtain from (8) that

lim
h→0+

Φ−1
(
1
h

)

Φ−1
(

1
ρµ(h)

) = 0. �

For ξ ∈ Γ, and α > 1 consider the following family of sets

Gα
ξ := {z ∈ Ω: |z − ξ| < α dist(z,Γ)}.

Put Gξ := G3
ξ. The maximal (non-tangential) function Mf will be defined by:

Mf (ξ) := sup{|f(z)| : z ∈ Gξ}.

Using the fact that the maximal (non-tangential) function Mf is weak type (1, 1)
and strong type (∞,∞) (see [5, p. 47–49]) we can extend (using the same methods)
important result which was proved in [8, Proposition 3.5].

Proposition 4.7. Assume that the Orlicz function Φ ∈ ∇2. Then every lin-
ear, or sublinear, operator which is of weak-type (1, 1) and (strong) type (∞,∞)
is bounded from LΦ into itself. In particular, for every f ∈ LΦ(Γ), the maximal
non-tangential function Mf ∈ LΦ(Γ).

Theorem 4.8. Let µ be finite borel measure on Ω, f : Ω → C continuous func-
tion. Then for each t > 0 and for each 0 < h < 1

4
mini 6=j dist(Γi,Γj) we have

µ({z ∈ Ω: dist(z,Γ) 6 h, |f(z)| > t}) 6 C ′Kµ(h)s({ξ ∈ Γ: Mf (ξ) > t}).(9)

It was proved in [8] that for D̄ the inequality holds with C ′ = 1. Using exactly
the same methods it is easy to obtain (9) for a circular domain.

Recall that the norm of evaluation functional at point z ∈ Ω on HΦ(Ω) is not

larger than CΦ−1
(

1
dist(z,Γ)

)
for a constant C. Put c0 = max(1, C) (to have c0 > 1)

and denote by c1 = max(1, C ′), where C ′ is the constant from Theorem 4.8.

Lemma 4.9. Let µ be a finite Borel measure on Ω̄. Suppose that Φ ∈ ∇2 and
there exists A > 0 and 0 < hA <

1
4
mini 6=j dist(Γi,Γj) such that for every h ∈ (0, hA)

we have

Kµ(h) 6
1
h
γA(h),
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then for every f ∈ BHΦ(Ω) and for every Borel subset E ⊂ Ω̄ we have
ˆ

E

Φ

(
A

2c0
|f |

)
dµ 6 µ(E)Φ(xA) +

c1
c0

ˆ

Γ

Φ(Mf ) ds,

where xA = A
2
Φ−1

(
1
hA

)
.

Proof. For every w > 0, the inequality |f(z)| > w implies that

w < c0Φ
−1
( 1

dist(z,Γ)

)
,

hence dist(z,Γ) < 1
Φ(w/c0)

. It follows by Theorem 4.8 that

µ({z ∈ Ω: |f(z)| > w}) 6 c1Kµ

( 1

Φ(s/c0)

)
s({ξ ∈ Γ: Mf(ξ) > w}),

if Φ(w/c0) >
1
4
mini 6=j dist(Γi,Γj). Further
ˆ

E

Φ
( A

2c0
|f |

)
dµ =

ˆ ∞

0

Φ′(t)µ
(
{|f | > 2c0t/A} ∩ E

)
dt.

By assumption for Φ(w/c0) > 1/hA we have:

Kµ

(
1

Φ(w/c0)

)
6

Φ(w/c0)

Φ(Aw/c0)
.

Then we have

µ

({
z ∈ Ω|f(z)| >

2c0t

A

})
6 c1

Φ(2t/A)

Φ(2t)
s

({
ξ ∈ Γ: Mf (ξ) >

2c0t

A

})
.

and
ˆ

E

Φ
( A

2c0
|f |

)
dµ =

ˆ xA

0

Φ′(t)µ(E)dt+

ˆ ∞

xA

Φ′(t)s

({
Mf(ξ) >

2c0t

A

})
dt

6 Φ(xA)µ(E) + c1

ˆ ∞

xA

Φ(2t/A)

Φ(2t)
Φ′(t)s

({
Mf (ξ) >

2c0t

A

})
dt.

Note that one has Φ(t) 6 tΦ′(t) 6 Φ(2t), for any Orlicz function Φ. Using these
inequalities we obtain

ˆ ∞

xA

Φ(2t/A)

Φ(2t)
Φ′(t) s

({
Mf (ξ) >

2c0t

A

})
dt

6

ˆ ∞

0

Φ(2t/A)

t
s

({
Mf (ξ) >

2c0t

A

})
dt

6
2

A

ˆ ∞

0

Φ′(2t/A)s

({
Mf (ξ) >

2c0t

A

})
dt

6
2

A

ˆ ∞

0

Φ′(x)s

({
Mf > c0x

})
dx

=

ˆ

Γ

Φ
( 1

c0
Mf

)
ds 6

1

c0

ˆ

Γ

Φ
(
Mf

)
ds

which implies desired inequality. �

Theorem 4.10. If Φ ∈ ∇2, then condition (K0) implies (C0).
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Proof. Take ε > 0. Denote by C the norm of maximal operator Mf . Set
A = 4Cc0c1

ε
, where c0 and c1 are constants from the previous Lemma. Condition (K0)

implies existence of 0 < hA <
1
4
mini 6=j dist(Γi,Γj) such that

Kµ(h) 6
1

2h
γA(h),

when h 6 hA. If f ∈ BHΦ(Ω) then for each n ∈ N by Lemma 4.9 we have:
ˆ

Ω̄\Ωn

Φ
( |f |
ε

)
dµ =

ˆ

Ω̄\Ωn

Φ
( A|f |

4Cc0c1

)
dµ 6

1

2

ˆ

Ω̄\Ωn

Φ
( A|f |

2Cc0c1

)
dµ

6
1

2

(
µ(Ω̄ \ Ωn)Φ(xA) +

c1
c0

ˆ

Γ

Φ
(Mf

Cc1

)
ds
)

6
1

2

(
µ(Ω̄ \ Ωn)Φ(xA) +

1

c0

)
,

for any regular exhaustion {Ωn} of Ω. Since c0 > 1 and µ(Γ) = 0 we have 1
2
(µ(Ω̄ \

Ωn)Φ(xA) +
1
c0
) 6 1 for a sufficiently large n. This implies by Theorem 4.4 that jµ is

compact, i.e., (C0) holds. �

We are able to show that in the case of µ = µϕ that conditions (C0), (R0) and
(K0) are equivalent. To prove that we need the following result:

Theorem 4.11. There exists a constant k > 0 such that for every ϕ ∈ Υ, each
0 6 i 6 m and ξi ∈ Γi we have

µϕ(Wi(ξi, εh)) 6 kεµϕ(Wi(ξi, h)),(10)

where ε ∈ (0, 1) and h is small enough.

Proof. First notice that Theorem is true when Ω = D, ϕ ∈ ΥD (see [8], in this
case h < 1− |ϕ(0)|). To prove it in general case fix 0 6 i 6 m. Let U i

1, . . . , U
i
ni

⊂ Ω
be finite family of domains which satisfies conditions:

(i) for every 1 6 j 6 ni the set U i
j is simply connected,

(ii) for every 1 6 j 6 ni the boundary ∂U i
j of U i

j is formed by analytic Jordan
curve,

(iii) Γi ⊂
⋃ni

j=1 ∂U
i
j and every arc contained in Γi ∩ ∂U

i
j is free analytic boundary

arc for every 1 6 j 6 ni,
(iv) for every 0 6 l 6 m and l 6= i we have Γl ∩

⋃ni

j=1 ∂U
i
j = ∅.

Let τi,j : U
i
j 7→ D be conformal map from U i

j onto disc D, then τi,j extends for each

1 6 j 6 ni to diffeomorphism τi,j : Ū
i
j 7→ D̄. The same is true for the inverse map τ−1

i,j .

Note that there exist finite constants Ci,j, ci,j > 0 such that ci,j 6 |(τ−1
i,j )

′(z)| 6 Ci,j.
It implies that for every z1, z2 ∈ ∂D there exist finite constants C ′

i,j, c
′
i,j > 0 such

that

c′i,j|z1 − z2| 6 |τ−1
i,j (z1)− τ−1

i,j (z2)| 6 C ′
i,j|z1 − z2|.(11)

Put C = max06i6mmax16j6ni
C ′
i,j and c = min06i6mmin16j6ni

c′i,j . Fix ξ ∈ Γk ⊂ ∂Ω

and let h be as small that the preimage ϕ∗−1(Wk(ξ, h)) of Carleson window Wk(ξ, h)
is contained in a certain arc of ∂U i

j for 0 6 i 6 m and 1 6 j 6 ni.
For 0 6 k 6 m define function ψi,j,k : D 7→ D as follow:

ψi,j,k(z) = (η−1
k ◦ ϕ ◦ τ−1

i,j )(z), z ∈ D.
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Since ψi,j,k ∈ ΥD then the measure µψi,j,k
satisfies (10). Thus for sufficiently small

h > 0 we have

µψi,j,k

(
W0(η

−1(ξ), h)
)
= s

(
{z ∈ ∂D : ψ∗

i,j,k(z) ∈ W0(η
−1(ξ), h)}

)

= s
(
{z ∈ ∂D : ϕ∗ ◦ τ−1

i,j (z) ∈ Wk(ξ, h)}
)
.

Using (11) with universal constants C, c we easily see that the last amount is com-
parable to

s
(
{z ∈ Γi : ϕ

∗(z) ∈ Wk(ξ, h)}
)
= µϕ

(
Wk(ξ, h)

)
,

for every 0 6 k 6 m and every ξ ∈ Γk and sufficiently small h > 0. Thus for
sufficiently small Carleson windows we have

µψi,j,k
(W0(η

−1(ξ), h)) ≈ µϕ(Wk(ξ, h))

for every 0 6 k 6 m. Then for 0 6 k 6 m we have

µϕ(Wk(ξ, εh)) 6 K1µψi,j,k

(
W0(η

−1
k (ξ), εh)

)

6 CK1εµψi,j,k

(
W0(η

−1
k (ξ), h)

)
6 CK1K2εµϕ

(
Wk(ξ, h)

)
. �

Using this Theorem we obtain characterization of compact composition operators.

Theorem 4.12. Let ϕ ∈ Υ and let Φ ∈ ∇2 be the Orlicz function. Composition
operator Cϕ : H

Φ(Ω) → HΦ(Ω) is compact if and only if for every A > 0

lim
h→0+

ρϕ(h)

γA(h)
= 0,(12)

where ρϕ := ρµϕ . Equivalently Cϕ is compact if and only if

lim
h→0+

Φ−1
(
1
h

)

Φ−1
(

1
ρϕ(h)

) = 0.(13)

Proof. Equivalence of (12) and (13) was proved in 4.5. For h small enough and
0 < t < h using (10) with ε = t

h
we obtain

µϕ(Wi(ξi, t)) 6 k t
h
µϕ(Wi(ξi, h))

for each ξi ∈ Γ, i = 0, . . . , m. Taking supremum over ξ ∈ Γ we get ρϕ(t) 6 k t
h
ρϕ(h).

Hence for µ = µϕ

Kµ(h) = sup
0<t6h

ρµ(t)

t
≈
ρµ(h)

h
,

so from Theorem 4.6 and Theorem 4.10 conditions (R0), (K0) and (C0) are equivalent.
�

Now we prove that condition (7) in Proposition 4.2 is also sufficient to the com-
pactness of composition operator.

Corollary 4.13. Let ϕ ∈ Υ and let Φ ∈ ∇2 be the Orlicz function. Composition
operator Cϕ : H

Φ(Ω) → HΦ(Ω) is a compact operator if and only if for each 0 6 i 6 m
we have

lim
s→1−

sup
p∈∂D

Φ−1
( 1

1− s

)
‖Cϕu

i
p,s‖HΦ(Ω) = 0.(14)
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Proof. We prove in Proposition 4.2 that condition (14) is necessary to compact-
ness of Cϕ. In Theorem 4.6 we showed that (13) follows from

lim
r→1−

sup
p∈∂D

Φ−1

(
1

1− r

)
||uip,r||LΦ(Ω̄,µ) = 0,

but this condition is equivalent to (14) for µ = µϕ. By Theorem 4.12 we obtain the
thesis. �
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