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Abstract. Let A and B be Borel subsets of the Euclidean n-space with dimA + dimB > n

and let 0 < u < dimA + dimB − n where dim denotes Hausdorff dimension. Let E be the set

of those orthogonal transformations g ∈ O(n) for which dimA ∩ (g(B) + z) ≤ u for almost all

z ∈ R
n. If dimA+dimB > n+1, then dimE ≤ n(n− 1)/2+1−u, and if dimA ≤ (n− 1)/2, then

dimE ≤ n(n−1)/2−u. If A is a Salem set and 0 < u < dimA+dimB−n and dimA+dimB > 2n−1,

then dimA ∩ (B + z) > u for z in a set of positive Lebesgue measure. If dimA+ dimB ≤ 2n− 1,

the set of exceptional g ∈ O(n) has dimension at most n(n− 1)/2− u.

1. Introduction

We let O(n) denote the orthogonal group of the Euclidean n-space R
n and θn

its Haar probability measure. We metrize O(n) with the usual operator norm. Let
also Ln stand for the Lebesgue measure on R

n and let dim stand for the Hausdorff
dimension and Hs for s-dimensional Hausdorff measure. We shall prove the following
theorem:

Theorem 1.1. Let s and t be positive numbers with s + t > n + 1. Let A and
B be Borel subsets of Rn with Hs(A) > 0 and Ht(B) > 0. Then there is E ⊂ O(n)
such that

dimE ≤ 2n− s− t+ (n− 1)(n− 2)/2 = n(n− 1)/2− (s+ t− (n + 1))

and for g ∈ O(n) \ E,

(1.1) Ln({z ∈ R
n : dimA ∩ (g(B) + z) ≥ s + t− n}) > 0.

The version stated in the abstract concerning the case dimA + dimB > n + 1
is slightly weaker than Theorem 1.1. Notice that the above upper bound for the
dimension of E is at least (n − 1)(n − 2)/2 which is the dimension of O(n − 1). In
Section 5 we show that it is needed in the estimates. The assumption s + t > n + 1
only comes from the fact that the statement is trivial if s+ t ≤ n+1: then the above
upper for dimE is at least n(n− 1)/2 = dimO(n) and we could take E = O(n).

This is an exceptional set estimate related to the following result of [M2]: (1.1)
holds for θn almost all g ∈ O(n) if one of the sets has dimension bigger than (n+1)/2,
see also [M4, Chapter 13] and [M5, Chapter 7]. This of course is satisfied when
s+ t > n + 1, as in the theorem. It is expected that this generic result with respect
to θn should hold whenever dimA + dimB > n. Under this condition it was proved
(without exceptional set estimates) in [K] and [M1] provided the orthogonal group is
replaced by a larger transformation group, for example by similarity maps as in [M1],
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or, more generally by Kahane in [K], by any closed subgroup of the general linear
group acting transitively outside the origin. For the orthogonal group no dimensional
restrictions are needed provided one of the sets satisfies some extra condition, for
example if it is rectifiable, see [M1], or a Salem set, see [M3].

It is easy to see, cf. the remark at the end of [M2], that in Theorem 1.1 the
positivity of the Hausdorff measures cannot be relaxed to dimA = s and dimB = t.

If one of the sets supports a measure with sufficiently fast average decay over
spheres for the Fourier transform, we can improve the estimate of Theorem 1.1.
Then the results even hold without any rotations provided the dimensions are big
enough. This is given in Theorem 4.1. It yields immediately the following result
in case one of the sets is a Salem set. By definition, A is a Salem set if for every
0 < s < dimA there is µ ∈ M(A) such that |µ̂(x)|2 . |x|−s. A discussion on Salem
sets can be found, for example, in [M5, Section 3.6].

Theorem 1.2. Let A and B be Borel subsets of Rn and suppose that A is a
Salem set. Suppose that 0 < u < dimA+ dimB − n.

(a) If dimA+ dimB > 2n− 1, then

(1.2) Ln({z ∈ R
n : dimA ∩ (B + z) ≥ u}) > 0.

(b) If dimA+ dimB ≤ 2n− 1, then there is E ⊂ O(n) with

dimE ≤ n(n− 1)/2− u

such that for g ∈ O(n) \ E,

(1.3) Ln({z ∈ R
n : dimA ∩ (g(B) + z) ≥ u}) > 0.

Another consequence of Theorem 4.1 is the following improvement of Theorem 1.1
in the case where one of the sets has small dimension:

Theorem 1.3. Let A and B be Borel subsets of Rn and suppose that dimA ≤
(n− 1)/2. If 0 < u < dimA+ dimB − n, then there is E ⊂ O(n) with

dimE ≤ n(n− 1)/2− u

such that for g ∈ O(n) \ E,

(1.4) Ln({z ∈ R
n : dimA ∩ (g(B) + z) ≥ u}) > 0.

The method used to prove Theorem 1.1 can easily be modified to other subgroups
of the general linear group GL(n) in place of the orthogonal group. For example, let
S(n) be the group of similarities, the compositions of orthogonal maps and dilations.
Then dimS(n) = n(n − 1)/2 + 1 and for any x, z ∈ R

n \ {0}, the dimension of
{g ∈ S(n) : g(z) = x} is the same as the dimension ofO(n−1), that is, (n−1)(n−2)/2.
With small changes in the proof of Theorem 1.1 this leads to

Theorem 1.4. Let s and t be numbers with 0 < s, t < n and s + t > n. Let A
and B be Borel subsets of Rn such that Hs(A) > 0 and Ht(B) > 0. Then there is
E ⊂ S(n) with

dimE ≤ 2n− s− t + (n− 1)(n− 2)/2

and for g ∈ S(n) \ E,

(1.5) Ln({z ∈ R
n : dimA ∩ (g(B) + z) ≥ s + t− n}) > 0.

I would like thank the referees for useful comments.
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2. Peliminaries

The proof of Theorem 1.1 is based on the relationship of the Hausdorff dimension
to the energies of measures and their relations to the Fourier transform. For A ⊂ R

n

(or A ⊂ O(n)) we denote by M(A) the set of non-zero Radon measures µ on R
n

with compact support sptµ ⊂ A. The Fourier transform of µ is defined by

µ̂(x) =

ˆ

e−2πix·y dµy, x ∈ R
n.

For 0 < s < n the s-energy of µ is

(2.1) Is(µ) =

¨

|x− y|−s dµx dµy = c(n, s)

ˆ

|µ̂(x)|2|x|s−n dx.

The second equality is a consequence of Parseval’s formula and the fact that the
distributional Fourier transform of the Riesz kernel ks, ks(x) = |x|−s, is a constant
multiple of kn−s, see, for example, [M4, Lemma 12.12] or [M5, Theorem 3.10]. These
books contain most of the background material needed in this paper.

We then have for any Borel set A ⊂ R
n with dimA > 0, cf. [M4, Theorem 8.9],

(2.2) dimA = sup{s : ∃µ ∈ M(A) such that Is(µ) <∞}.

Let ν ∈ M(Rn) and let ψε be an approximate identity: ψε(x) = ε−nψ(x/ε) where
ψ is a non-negative C∞-function with support in the unit ball and with integral 1.
Let νε = ψε ∗ ν. Then the νε converge weakly to ν when ε → 0. Notice that

ν̂ε(x) = ψ̂(εx)ν̂(x).
By the notation M . N we mean that M ≤ CN for some constant C. The

dependence of C should be clear from the context. The notation M ≈ N means
that M . N and N . M . By C(a) and c(a) we mean positive constants depending
on the parameter a. The closed ball with centre x and radius r will be denoted by
B(x, r).

Lemma 2.1. Let θ ∈ M(O(n)) and α > (n− 1)(n− 2)/2. If θ(B(g, r)) ≤ rα for
all g ∈ O(n) and r > 0, then for x, z ∈ R

n \ {0}, r > 0,

(2.3) θ({g : |x− g(z)| < r}) . (r/|z|)α−(n−1)(n−2)/2.

Proof. First we may clearly assume that |z| = 1, and then also that |x| = 1,
because |x−g(z)| < r implies |x/|x|−g(z)| < 2r. Then Ox,z := {g ∈ O(n) : g(z) = x}
can be identified with O(n − 1). Hence it is a smooth compact (n − 1)(n − 2)/2-
dimensional submanifold of O(n) which implies that it can be covered with roughly
r−(n−1)(n−2)/2 balls of radius r. If g ∈ G satisfies |x− g(z)| < r, then g belongs to the
r-neighbourhood of Ox,z. The lemma follows from this. �

3. Proof of Theorem 1.1

The key to the proof of Theorem 1.1 is the following energy estimate. For µ, ν ∈
M(Rn), g ∈ O(n) and z ∈ R

n, let νε = ψε ∗ ν as above and set

(3.1) νg,z,ε(x) = νε(g
−1(x− z)), x ∈ R

n.

Lemma 3.1. Let β > 0 and θ ∈ M(O(n)) be such that θ(O(n)) ≤ 1 and for
x, z ∈ R

n \ {0}, r > 0,

(3.2) θ({g ∈ O(n) : |x− g(z)| < r}) ≤ (r/|z|)β.
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Let 0 < s, t < n, 0 < u = s+ t− n and u > n− β. Let µ, ν ∈ M(Rn). Then

(3.3)

¨

Iu(νg,z,εµ) dL
nz dθg ≤ C(n, s, t, β)Is(µ)It(ν).

Proof. We may assume that Is(µ) and It(ν) are finite. Define

ν̃g,x,ε(z) = νε(g
−1(x− z)), z ∈ R

n.

Then
̂̃νg,x,ε(z) = e−2πix·zν̂ε(−g

−1(z)).

Hence by Parseval’s formula for x, y ∈ R
n, x 6= y,

ˆ

νε(g
−1(x− z))νε(g

−1(y − z)) dLnz =

ˆ

̂̃νg,x,ε(z)̂̃νg,y,ε(z) dL
nz

=

ˆ

ν̂ε(−g
−1(z))ν̂ε(−g−1(z))e−2πi(x−y)·zdLnz

=

ˆ

ν̂ε(z)ν̂ε(z)e
2πig−1(x−y)·zdLnz.

It follows by Fubini’s theorem that

I :=

¨

Iu(νg,z,εµ) dL
nz dθg

=

˘

ku(x− y)νε(g
−1(x− z))νε(g

−1(y − z)) dµx dµy dLnz dθg

=

˚

ku(x− y)

(
ˆ

νε(g
−1(x− z))νε(g

−1(y − z)) dLnz

)
dµx dµy dθg

=

˚

ku(x− y)

(
ˆ

|ν̂ε(z)|
2e2πig

−1(x−y)·z dLnz

)
dµx dµy dθg

=

˚

ku,g,z ∗ µ(x) dµx|ν̂ε(z)|
2 dLnz dθg,

where

ku,g,z(x) = |x|−ue2πig
−1(x)·z = |x|−ue2πix·g(z).

One checks by direct computation that the Fourier transform of ku,g,z, in the sense
of distributions, is given by

k̂u,g,z(x) = c(n, u)|x− g(z)|u−n.

It follows that
¨

ku,g,z ∗ µ dµ =

ˆ

k̂u,g,z|µ̂|
2 dLn = c(n, u)

ˆ

|x− g(z)|u−n|µ̂(x)|2 dLnx.

As Iu(µ) < ∞, this is easily checked approximating µ with ψε ∗ µ and using the
Lebesgue dominated convergence theorem. Thus

(3.4) I = c(n, u)

˚

|x− g(z)|u−n dθg|µ̂(x)|2|ν̂ε(z)|
2 dLnx dLnz.

We first observe that if |x| ≥ 2|z|, then
ˆ

|x− g(z)|u−n dθg ≤ θ(O(n))2n−u|x|u−n ≤ 22n|x|s−n|z|t−n.
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Similarly if |z| ≥ 2|x|, then
ˆ

|x− g(z)|u−n dθg ≤ θ(O(n))2n−u|z|u−n ≤ 22n|x|s−n|z|t−n.

Suppose then that |z|/2 ≤ |x| ≤ 2|z|. Then by the assumption (3.2)
ˆ

|x− g(z)|u−n dθg =

ˆ ∞

0

θ({g : |x− g(z)|u−n > λ}) dλ

= (n− u)

ˆ ∞

0

θ({g : |x− g(z)| < r})ru−n−1 dr

.

ˆ |z|

0

(r/|z|)βru−n−1 dr +

ˆ ∞

|z|

ru−n−1 dr

≈ |z|u−n ≈ |x|s−n|z|t−n,

since β + u− n > 0. It follows that

(3.5) I .

¨

|x|s−n|z|t−n|µ̂(x)|2|ν̂ε(y)|
2 dx dy . Is(µ)It(ν),

as required. �

Next we show that, with θ as above, for θ × Ln almost all (g, z) the measures
νg,z,εµ converge weakly as ε → 0. It is immediate that for almost all (g, z) this takes
place through some sequence (εj), depending on (g, z), but we would at least need
one sequence which is good for almost all (g, z). The proof of the following theorem
was inspired by an argument of Kahane in [K].

Theorem 3.2. Let s, t and u be positive numbers with u = s+ t−n > 0 and let
µ, ν ∈ M(Rn) with Is(µ) < ∞ and It(ν) < ∞. Let ψε be an approximate identity
and νε = ψε ∗ ν. For g ∈ O(n) and z ∈ R

n, let νg,z,ε be as in (3.1). Finally, let
θ ∈ M(O(n)) be as in Lemma 3.1. Then for θ × Ln almost all (g, z), as ε → 0, the
measures νg,z,εµ converge weakly to a measure λg,z with the properties

(a) spt λg,z ⊂ sptµ ∩ (g(spt ν) + z),

(b)

ˆ

λg,z(R
n) dLnz = µ(Rn)ν(Rn) for θ almost all g ∈ O(n),

(c)

¨

Iu(λg,z) dL
nz dθg ≤ C(n, s, t, β)Is(µ)It(ν).

Proof. If the convergence takes place, the support property (a) is clear.
Let φ ∈ C+

0 (R
n). Then by Lemma 3.1,

¨

(
ˆ

νg,z,εφ dµ

)2

dLnz dθg . Is(µ)It(ν) <∞.

Hence by Fatou’s lemma

ˆ

(
lim inf
ε→0

ˆ

(
ˆ

νg,z,εφ dµ

)2

dLnz

)
dθg . Is(µ)It(ν) <∞.

Thus for θ almost all g there is a sequence (εj) tending to 0 such that

sup
j

ˆ

(
ˆ

νg,z,εjφ dµ

)2

dLnz <∞.
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On the other hand, defining the measure µφ,g by
´

h dµφ,g =
´

h(−g−1(x))φ(x) dµx,
we have

ˆ

νg,z,εφ dµ =

ˆ

νε(g
−1(x)− g−1(z))φ(x) dµx = µφ,g ∗ ν ∗ ψε(−g

−1(z)),

and the measures µφ,g ∗ ν ∗ ψε converge weakly to µφ,g ∗ ν. Consequently, µφ,g ∗ ν is
an L2 function on R

n and the convergence takes place almost everywhere. It follows
now that for θ almost all g ∈ O(n) and for every φ ∈ C+

0 (R
n) the finite limit

(3.6) Lg,zφ := lim
ε→0

ˆ

νg,z,εφ dµ = lim
ε→0

µφ,g ∗ ν ∗ ψε(−g
−1(z)) = µφ,g ∗ ν(−g

−1(z))

exists for almost all z ∈ R
n. Let D be a countable dense subset of C+

0 (R
n) containing

a function φ0 which is 1 on the support of µ. Then there is a set E of measure zero
such that (3.6) holds for all z ∈ R

n\E for all φ ∈ D, the exceptional set is independent
of φ. Applying (3.6) to φ0 we see that

sup
ε>0

ˆ

νg,z,ε dµ <∞.

Then by the Cauchy criterion the denseness of D yields that whenever z ∈ R
n \ E,

there is the finite limit Lg,zφ := limε→0

´

νg,z,εφ dµ for all φ ∈ C+
0 (R

n). Hence by
the Riesz representation theorem the positive linear functional Lg,z corresponds to a
Radon measure λg,z to which the measures νg,z,εµ converge weakly.

The claim (b) follows from (3.6):
ˆ

λg,z(R
n) dLnz =

ˆ

Lg,zφ0 dL
nz =

ˆ

µφ0,g ∗ ν(−g
−1(z)) dLnz

= µφ0,g(R
n)ν(Rn) = µ(Rn)ν(Rn).

The claim (c) follows from Lemma 3.1, Fatou’s lemma and the lower semicontinuity
of the energy-integrals under the weak convergence. �

Proof of Theorem 1.1. Theorem 1.1 follows from Lemma 3.1 and Theorem 3.2:
Let

G = {g ∈ O(n) : Ln({z ∈ R
n : dimA ∩ (g(B) + z)) ≥ s+ t− n}) = 0}.

Then G is a Borel set. We leave checking this to the reader. It is a bit easier
when A and B are compact. We may assume the compactness since A and B as
in the theorem contain compact subsets with positive measure, cf. [Fe, 2.10.48].
Suppose, contrary to what is claimed, that dimG > 2n − s − t + (n − 1)(n − 2)/2.
Let dimG > α > 2n − s − t + (n − 1)(n − 2)/2. Then by Frostman’s lemma,
cf. [M4, Theorem 8.8], and Lemma 2.1 there is θ ∈ M(G) satisfying (3.2) with
β = α − (n − 1)(n− 2)/2 > 2n− s− t. By Frostman’s lemma there are µ ∈ M(A)
and ν ∈ M(B) such that µ(B(x, r)) ≤ rs and ν(B(x, r)) ≤ rt for all balls B(x, r).
Then by easy estimation, for example, as in the beginning of Chapter 8 in [M4],
Is′(µ) < ∞ and It′(ν) < ∞ for 0 < s′ < s and 0 < t′ < t. By Theorem 3.2(b)
the set Eg = {z : λg,z(R

n) > 0} has positive Lebesgue measure for θ almost all
g. It then follows from Theorem 3.2(a) and (c) and (2.2) that for θ almost all
g, dimA ∩ (g(B) + z) ≥ s + t − n for almost all z ∈ Eg. This contradicts the
definition of G and the fact that θ has support in G. �
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4. Intersections and the decay of spherical averages

For µ ∈ M(Rn) define the spherical averages

σ(µ)(r) = r1−n

ˆ

S(r)

|µ̂(x)|2 dσn−1
r x, r > 0,

where σn−1
r is the surface measure on the sphere S(r) = {x ∈ R

n : |x| = r}. Notice
that if σ(µ)(r) . r−γ for r > 0 and for some γ > 0, then Is(µ) < ∞ for 0 < s < γ.
We now prove that under such decay condition we can improve Theorem 1.1:

Theorem 4.1. Let t, γ and Γ be positive numbers with t, γ < n. Let µ, ν ∈
M(Rn) with σ(µ)(r) ≤ Γr−γ for r > 0, Iγ(µ) <∞ and It(ν) <∞.

(a) If γ + t > 2n− 1, then

(4.1) Ln({z ∈ R
n : dim sptµ ∩ (spt ν + z) ≥ γ + t− n}) > 0.

(b) If γ + t ≤ 2n− 1, then there is E ⊂ O(n) with

dimE ≤ 2n− 1− γ − t+ (n− 1)(n− 2)/2

such that for g ∈ O(n) \ E,

(4.2) Ln({z ∈ R
n : dim sptµ ∩ (g(spt ν) + z)) ≥ γ + t− n}) > 0.

Proof. Let u = γ+ t−n. As above, we only need to show that the the conclusion
of Lemma 3.1 holds under the present assumptions, but now the upper bound in
(3.3) will be a constant involving Γ, It(ν), Iγ(µ), Iu(µ), µ(R

n) and ν(Rn). For the
statement (a) there is no θ integration (or θ is the Dirac measure at the identity
map) and n−1 < u < n, and for the statement (b) θ satisfies (3.2) with some β with
n− 1− u < β < n− u.

We again have (3.4). For the part where |x| > 2|z| or |z| > 2|x| we can argue as
before.

To prove (a), suppose n− 1 < u < n. Then it suffices to show
¨

|z|/2≤|x|≤2|z|

|x− z|u−n|µ̂(x)|2|ν̂ε(z)|
2 dLnx dLnz . ΓIt(ν).

Since −1 < u− n < 0 and |x− z| ≥ ||x| − |z||, the integral can be estimated by
¨

|z|/2≤|x|≤2|z|

|x− z|u−n|µ̂(x)|2|ν̂ε(z)|
2 dLnx dLn z

≤

ˆ ˆ 2|z|

|z|/2

|r − |z||u−nrn−1σ(µ)(r) dr|ν̂ε(z)|
2 dLnz

. Γ

ˆ

|z|n−1−γ+u−n+1|ν̂ε(z)|
2 dLnz

= Γ

ˆ

|z|t−n|ν̂ε(z)|
2 dLnz = C(n, t)−1ΓIt(ν).

We establish the statement (b) by showing that
˚

|z|/2≤|x|≤2|z|

|x− g(z)|u−n dθg|µ̂(x)|2|ν̂ε(z)|
2 dLnx dLnz . ΓIt(ν),
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where θ ∈ M(O(n)) is as in Lemma 3.1 with n − 1 − u < β < n− u. We first have
as in the proof of Lemma 3.1

ˆ

|x− g(z)|u−n dθg = (n− u)

ˆ ∞

0

θ({g : |x− g(z)| < r})ru−n−1 dr

.

ˆ ∞

||x|−|z||

(r/|z|)βru−n−1 dr = (n− β − u)−1||x| − |z||β+u−n|z|−β,

because θ({g : |x− g(z)| < r}) = 0 if r < ||x| − |z||. Using this we can estimate
˚

|z|/2≤|x|≤2|z|

|x− g(z)|u−n dθg|µ̂(x)|2|ν̂ε(z)|
2 dLnx dLn z

.

ˆ ˆ 2|z|

|z|/2

|r − |z||β+u−n|z|−βrn−1σ(µ)(r) dr|ν̂ε(z)|
2 dLnz

. Γ

ˆ

|z|β+u−n+1−β+n−1−γ|ν̂ε(z)|
2 dLnz

= Γ

ˆ

|z|t−n|ν̂ε(z)|
2 dLnz = c(n, t)−1ΓIt(ν). �

For 0 < s < n denote by γn(s) the supremum of the numbers γ such that

(4.3) σ(µ)(r) . Is(µ)r
−γ for r > 0

holds for all µ ∈ M(Rn) with support in the unit ball. Estimates for γ(s) are dis-
cussed in [M5, Chapter 15]. For s ≤ (n−1)/2 the optimal, rather easy, result γ(s) = s
is valid, see [M5, Lemma 3.15]. This together with Theorem 4.1 yields immediately
Theorem 1.3. For s > (n − 1)/2 the optimal estimate fails and Theorem 4.1 only
gives a lower bound for the dimension of intersections which stays below and bounded
away from dimA + dimB − n. The deepest estimates are due to Wolff [W] in the
plane and to Erdoğan [E] in higher dimensions. They give γn(s) ≥ (n + 2s − 2)/4
for n/2 ≤ s ≤ (n + 2)/2. Theorem 4.1 combined with this leads to the result that if
dimA+ dimB/2− (3n+ 2)/4 > u > 0, then

Ln({z ∈ R
n : dimA ∩ (g(B) + z)) > u}) > 0

for g ∈ O(n) outside an exceptional set E with dimE ≤ n(n−1)/2−u. Plugging into
Theorem 4.1 other known estimates for γn(s) gives similar rather weak intersection
results.

5. Examples

The first example here shows that in Theorem 1.1 the bound (n − 1)(n − 2)/2
is sharp in the case where both sets have the maximal dimension n. This of course
does not tell us anything in the plane but it explains the appearance of the dimension
of O(n − 1). In the following we identify O(n − 1) with a subset of O(n) letting
g ∈ O(n− 1) mean the map (x1, . . . , xn) 7→ (g(x1 . . . , xn−1), xn).

Example 5.1. Let n ≥ 3. There are compact sets A,B ⊂ R
n such that dimA =

dimB = n and for every g ∈ O(n− 1), dimA ∩ (g(B) + z) ≤ n− 1 for all z ∈ R
n.

Proof. Let C,D ⊂ R be compact sets such that dimC = dimD = 1 and for
every z ∈ R the intersection C ∩ (D+ z) contains at most one point. Such sets were
constructed in [M1], the construction is explained also in [M4, Example 13.18]. Let
F be the closed unit ball in R

n−1 and take A = F × C and B = F ×D. These sets
have the required properties. �
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The following example shows that we need some additional assumptions, for
example as in Theorem 4.1, to get any result using only translations:

Example 5.2. There are compact sets A,B ⊂ R
n such that dimA = dimB = n

and for every z ∈ R
n the intersection A ∩ (B + z) contains at most one point.

Proof. Let C,D ⊂ R be the compact sets of the previous example. Take A = Cn

and B = Dn. These sets have the required properties. �

We do not know sharp bounds for the dimension of exceptional sets of Theo-
rem 1.1. For simplicity, consider this question in the plane. Let d(s, t) ∈ [0, 1], 0 <
s, t ≤ 2, s + t > 2, be the infimum of the numbers d > 0 with the property that for
all Borel sets A,B ⊂ R

2 with dimA = s, dimB = t and for all 0 < u < s+ t− 2,

dim{g ∈ O(2) : L2({z ∈ R
2 : dimA ∩ (g(B) + z) > u}) = 0} ≤ d.

The problem is to determine d(s, t). We know from Theorem 1.1 that if s + t > 3,
then d(s, t) ≤ 4− s− t. In particular d(2, 2) = 0. This suggests that d(s, t) might be
4− s− t when s+ t > 3. However we know from Theorem 1.3 that d(s, t) ≤ 3− s− t
whenever s ≤ 1/2. I would be happy to see some examples sheding light into this
question.

6. Concluding remarks

As mentioned in the Introduction, intersection problems of this type for general
sets were first studied by Kahane in [K] and by the author in [M1], involving transfor-
mations such as similarities. For the orthogonal group the result in [M2] concerned
the case where one of the sets has dimension bigger than (n+1)/2. In [M3] a general
method was developed to get dimension estimates for the distance sets and intersec-
tions once suitable spherical average estimates (4.3) for measures with finite energy
are available. Such deep estimates were proved by Wolff in [W] and Erdoğan in [E].
They gave the best known results for the distance sets, see [M5, Chapters 15 and 16],
but only minor progress for the intersections, as mentioned in Section 4. The known
estimates for σ(µ) are discussed in [M5, Chapter 15], see also [LR] for a recent one.

The reverse inequality in Theorem 1.1 fails: for any 0 ≤ s ≤ n there exists a
Borel set A ⊂ R

n such that dimA ∩ f(A) = s for all similarity maps f of Rn. This
follows from [F2], see also [M4, Example 13.19] and the further references given there.
The reverse inequality holds if dimA × B = dimA + dimB, see [M1]. This latter
condition is valid if, for example, one of the sets is Ahlfors–David regular, see [M4,
pp. 115–116]. For such reverse inequalities no rotations g are needed (or, equivalently,
they hold for every g).

Exceptional set estimates in the spirit of this paper were first proved for projec-
tions by Kaufman in [Ka], then continued by Kaufman and the author [KM] and
by Falconer [F1]. Peres and Schlag [PS] proved such estimates for large classes of
generalized projections. Exceptional set estimates for intersections with planes were
first proved by Orponen [O1] and continued by Orponen and the author [MO]. In
[O2] Orponen derived estimates for radial projections. All these estimates except
those in [MO] and some in [PS] are known to be sharp. Some of these and other
related results are also discussed in [M5].

Recently Donoven and Falconer [DF] investigated Hausdorff dimension of inter-
sections for subsets of certain Cantor sets and Shmerkin and Suomala [SS] for large
classes of random sets.
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