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Abstract. In this paper, we give a parametrization of asymptotic Jenkins–Strebel rays. It is

a kind of global coordinates of the Teichmüller space. For any admissible curve family of a surface,

the subset of the boundary of the Teichmüller space which is constructed by pinching of the given

curve family can be determined. There exists a homeomorphism of the product of the boundary

space and several parameter spaces onto the Teichmüller space such that each family of asymptotic

Jenkins–Strebel rays is represented by the parameters. The idea is obtained by [MM75].

1. Introduction

The asymptotic behavior of Teichmüller geodesic rays has been studied in the
several ways. Ivanov, Lenzhen, and Masur give a condition such that any pair of
Teichmüller rays are bounded or divergent when the rays approach the boundary of
the Teichmüller space [Mas75, Mas80, Iva01, LM10]. Furthermore, the author proved
that under a condition, Jenkins–Strebel rays are asymptote and in general, the limit
value of the distance of any pair of Jenkins–Strebel rays is calculated. It is described
by the distance of boundary points of the rays in the augmented Teichmüller space
and the detour metric in the Gardiner–Masur boundary [Am14a, Am14b], about the
detour metric, see [Wal14, Wal12]. It is a limiting case of Minsky’s product region
theorem [Min96].

We focus on a set of asymptotic Jenkins–Strebel rays. Let Σ = Σg,p be a
Riemann surface of genus g with p punctures such that 3g − 3 + p > 0. Let
Γ = {γ1, . . . , γk} be a set of simple closed curves on Σ which are non-intersecting
and non-homotopic each other such that each curve is not homotopic to a point
and is not peripheral. We denote the Teichmüller space of Σ by T = Tg,p and
the (k − 1)-dimensional unit sphere such that all entries are positive by Sk−1

+ . For

any fixed [S∗, f ∗] ∈ T and (m1, . . . , mk) ∈ Sk−1
+ , we can construct a Jenkins–

Strebel ray r emanating from [S∗, f ∗] directed by the Jenkins–Strebel differential
with the moduli (α∗m1, . . . , α

∗mk) of associated cylinders where α∗ > 0 is some con-
stant. The end point of r corresponds to a Riemann surface Sc with nodes. We set
∂ΓT = {[X, g] | g : Sc → X is a quasiconformal mapping}. This is a subset of the
augmented Teichmüller space of Σ. Any Riemann surface on a Jenkins–Strebel ray
is given by a Riemann surface with nodes and a specific quadratic differential on
the noded surface. Indeed, the ordinary Riemann surface without nodes is obtained
by cutting off neighborhoods of the nodes and gluing each remaining surface. We
establish a mapping of the product of ∂ΓT and the spaces of parameters (coefficients
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a1, . . . , ak of the above differential in a representation near the nodes, length s of the
cutting, and arguments t1, . . . , tk of twists when gluing) onto the Teichmüller space
T . The following is our main theorem in this paper.

Theorem 1.1. There is a homeomorphism Φ̂ : ∂ΓT ×Sk−1
+ ×R

k×R → T such
that the following conditions hold;

(1) Let Φ̂([X, g], a1, . . . , ak, t1, . . . , tk, s) = [R, h]. For any j = 1, . . . , k,

Φ̂([X, g], a1, . . . , ak, t1, . . . , tj + 2π, . . . , tk, s) = τj([R, h]),

where τj is a Dehn twist about γj.
(2) Let [X, g] be a point in ∂ΓT . For any a ∈ Sk−1

+ and t ∈ R
k, the set

ra,t = {Φ̂([X, g], a, t, s) | s ∈ R≥0} is a Jenkins–Strebel ray whose mod-
uli of associated cylinders are represented by a positive scalar multiple of
(m1, . . . , mk), and it tends to [X, g] as s → ∞. Furthermore, {ra,t}a,t are
asymptotic each other.

Corollary 1.2. The mapping Φ̂ gives a global coordinate of the Teichmüller
space T .

In [Am14a], we find a condition under which two Jenkins–Strebel rays are as-
ymptotic. The condition contributes to the proof of (2) in the above theorem.

As a matter of fact, if k = 1, Φ̂ induces a Teichmüller disk, and the mapping is
the same as in the main result in [MM75]. We explain the detail in the remark after
the proof of Theorem 1.1 in §3.4.

Corollary 1.2 is related to plumbing coordinates, see [Kra90, EM12]. Our co-
ordinate has a high compatibility with Jenkins–Strebel rays. Moreover, we can see
some properties for the coordinate in §3.5. They give asymptotic behaviors of the
Jenkins–Strebel geodesics and estimations of the Teichmüller distance between two
points for the coordinate.

2. Preliminaries

2.1. Teichmüller spaces For Teichmüller spaces, we refer the reader to [IT92].
Let Σ = Σg,p be a Riemann surface of genus g with p punctures such that 3g−3+p >
0. We denote by T = Tg,p the Teichmüller space of Σ. It is described as follows;

T = {(S, f) | f : Σ → S is a quasiconformal mapping}/ ∼,

where ∼ is an equivalence relation such that (S1, f1) ∼ (S2, f2) means that there is
a conformal mapping h : S1 → S2 which is homotopic to f2 ◦ f

−1
1 . We write [S, f ] as

an equivalence class of (S, f), and set a base point of T by [Σ, id]. The Teichmüller
space T has a natural complete distance, called the Teichmüller distance, and denote
by dT . For any p1 = [S1, f1], p2 = [S2, f2],

dT (p1, p2) =
1

2
log infK(h),

where the infimum ranges over all quasiconformal mappings h : S1 → S2 which are
homotopic to f2 ◦ f

−1
1 .

2.2. Extremal lengths. Let ρ be a locally L1-measurable conformal metric
on Σ. It is represented by the conformally invariant form ρ = ρ(z)|dz| on any local
coordinate z of Σ where ρ(z) ≥ 0 is a measurable function of z. For any non-zero
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and non-peripheral simple closed curve γ on Σ, we define the ρ-length of γ and the
ρ-area of Σ by

lρ(γ) = inf
γ′∈[γ]

ˆ

γ′

ρ(z)|dz|, Aρ =

¨

Σ

ρ(z)2 dx dy,

respectively, where [γ] means the freely homotopy class of γ. The extremal length

ExtΣ(γ) of γ on Σ is defined by the following;

ExtΣ(γ) = sup
ρ

lρ(γ)
2

Aρ

,

where ρ ranges over all locally L1-measurable conformal metrics on Σ such that
0 < Aρ <∞. This definition is equivalent to the following;

ExtΣ(γ) = inf
1

M(γ)
,

where M(γ) ranges over all moduli of annuli on Σ with the core curve γ. For any
[S, f ] ∈ T and any γ on Σ, we define Ext[S,f ](γ) = ExtS(f(γ)).

Kerckhoff shows that the Teichmüller distance is also represented by the ratio of
the extremal lengths of simple closed curves.

Theorem 2.1. [Ker80, Kerckhoff’s formula for the Teichmüller distance] For
any p1 = [S1, f1], p2 = [S2, f2] ∈ T , the Teichmüller distance between p1 and p2 is
represented by

dT (p1, p2) =
1

2
log sup

γ

Extp2(γ)

Extp1(γ)
,

where γ ranges over all non-zero and non-peripheral simple closed curves on Σ.

Kerckhoff’s formula is useful for finding lower bounds of the Teichmüller distance.

2.3. Quadratic differentials. In this section, we refer to [Str84]. A holomor-

phic quadratic differential ϕ on Σ is a tensor of the form ϕ = ϕ(z) dz2, where z is a
local coordinate of Σ and ϕ(z) is a holomorphic function. The holomorphic quadratic
differential ϕ can contain poles at punctures. These differentials have the L1-norm
‖ϕ‖ =

˜

Σ
|ϕ|. The orders of poles of ϕ are at most 1 if and only if ‖ϕ‖ <∞.

The zeros and punctures of Σ are called critical points of ϕ. There is a local
coordinate w of Σ − {zeros of ϕ} which satisfies dw2 = ϕ(z) dz2. It is obtained by

the integral w =
´ z

z0

√
ϕ(z) dz, where z0, z are not critical points of ϕ. The coordinate

w is called a natural parameter of ϕ. A maximal straight arc z = γ(t) which satisfies
ϕ(γ(t))(dγ(t)/dt)2 < 0 is called a vertical trajectory of ϕ. Let Cϕ be the set of all
critical points and vertical trajectories of ϕ which join critical points. Any component
of Σ − Cϕ is an annulus swept out by simple closed vertical trajectories of ϕ, or a
minimal domain which is generated by recurrent vertical trajectories of ϕ. We call
ϕ a Jenkins–Strebel differential if all components of Σ − Cϕ are annuli. The core
curves of these annuli are simple closed curves which are non-intersecting and non-
homotopic each other such that each curve is not homotopic to a point and is not
peripheral. We call the curve family with such properties by an admissible curve

family.

2.4. Quadratic differentials with poles of order 2. We also refer to [Str84].
We consider holomorphic quadratic differentials with poles of order 2 at punctures
of a surface. Let Σ be a compact surface after filling the punctures of Σ. Let x ∈ Σ
be a puncture of Σ. We consider a meromorphic quadratic differential ϕ on Σ which
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has the representation ϕ = (a2/z2 + · · · ) dz2 such that z is a local coordinate of Σ
near x with z(x) = 0 and a > 0. The coefficient a is called a leading coefficient of ϕ
at x. This ϕ has a special property which does not work for quadratic differentials
without poles of order 2. Let f be a conformal mapping on a neighborhood of x and
set w = f(z) such that f(0) = 0. Then the representation of ϕ with respect to w has
the same leading coefficient a.

Let D be any component of Σ − Cϕ which has a puncture x. The mapping

w = exp(1/a
´
√
ϕ(z) dz) maps D conformally onto a punctured disk {0 < |w| < r}.

In this situation, the equation a2dw2/w2 = ϕ(z) dz2 holds. The vertical trajectories
of a2dw2/w2 are circles of the form {|w| = r′} for any 0 < r′ < r. The length of each

trajectory is 2πa with respect to the metric |ϕ(z)|
1
2 |dz| = a|dw/w|.

Let Rk
+ be the set of k-tuples of positive real numbers. The following theorem is

the existence of quadratic differentials with poles of order 2 for given punctures and
leading coefficients.

Theorem 2.2. [Str84] Let x1, . . . , xk be punctures of Σ and fix (a1, . . . , ak) ∈ R
k
+.

There exists a unique holomorphic quadratic differential ϕ on Σ such that each com-
ponent of Σ−Cϕ is a punctured disk with each puncture xj , and all vertical trajecto-
ries of ϕ in each punctured disk are closed and surround the puncture, furthermore,
the leading coefficient of ϕ at xj is aj , for any j = 1, . . . , k.

2.5. Reduced moduli of punctured disks. For reduced moduli, we refer
§3.2 of [Str84] or §4.3 of [MM75]. The ordinary moduli are infinite for punctured
disks. However, reduced moduli for punctured disks are finite valued quantities and
have similar properties as ordinary one. Let x ∈ Σ be a puncture of Σ and D be a
punctured disk on Σ with the puncture x. Let f be a conformal mapping of D∪{x}
onto the unit disk {|w| < 1} such that f(x) = 0. Let h be another conformal mapping
of a neighborhood of x into {|z| < r0} such that h(x) = 0. We can regard z as a
local coordinate near x. For sufficiently small r > 0, we denote by M(r) the modulus
of D − h−1({|z| ≤ r}). We can write w = f ◦ h−1(z) = c1z + c2z

2 + · · · where
c1 6= 0. Since any Möbius transformation on a unit disk which fixes 0 is a rotation,
|c1| is independent on a choice of f . We denote r1 = max|z|=r |f ◦ h−1(z)| and r2 =
min|z|=r |f ◦h

−1(z)|. We can see these settings in Figure 1. By an easy computation,
the ratios r1/r = max|z|=r |c1 + c2z + · · · | and r2/r = min|z|=r |c1 + c2z + · · · | both
tend to |c1| as r → 0. By the inclusion relations between annuli {r1 < |w| < 1},
f(D − h−1({0 < |z| ≤ r})), and {r2 < |w| < 1}, the inequality

1

2π
log

1

r1
≤ M(r) ≤

1

2π
log

1

r2

holds and this says that

lim
r→0

(
M(r) +

1

2π
log r

)
=

1

2π
log

1

|c1|
.

We denote by Ṁ(D) this value and call it a reduced modulus of D with respect to
the puncture x and the local coordinate z. Also, if there is the conformal mapping
g of D ∪ {x} onto {|w| < r′} such that g ◦ h−1(0) = 0 and (dg ◦ h−1(z)/dz)(0) = 1

with respect to the coordinate z, then Ṁ(D) = (1/2π) log r′. Indeed, we consider
g/r′ as f of the above definition, then |c1| = 1/r′ and Ṁ(D) = (1/2π) log(1/|c1|) =
(1/2π) log r′. For the reduced moduli, this form is slightly useful (we use it in §3.2).

Clearly, for common x and z, if D ⊂ D′ then Ṁ(D) ≤ Ṁ(D′).
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Figure 1. The light gray domain in Σ is D, and the dark gray domain corresponds to h−1({|z| <

r}) in Σ such that it is included in D for sufficiently small r.

The following theorem is an extremal property for reduced moduli of any qua-
dratic differential comes from Theorem 2.2.

Theorem 2.3. [Str84] Let x1, . . . , xk be punctures of Σ and fix (a1, . . . , ak)
∈ R

k
+. By Theorem 2.2, we obtain a holomorphic quadratic differential ϕ on Σ with

the leading coefficients a1, . . . , ak of the representations of ϕ at x1, . . . , xk respectively.
We denote by {Dj}j=1,...,k the set of punctured disks with punctures x1, . . . , xk respec-
tively, obtained by Σ−Cϕ. Let {D′

j}j=1,...,k be any set of non-overlapping punctured

disks with punctures x1, . . . , xk respectively. Let Ṁ(Dj) and Ṁ(D′
j) be reduced

moduli of Dj and D′
j respectively, with xj and a common local coordinate for any

j = 1, . . . , k. Then the inequality

k∑

j=1

a2jṀ(D′
j) ≤

k∑

j=1

a2jṀ(Dj)

holds with equality only if D′
j = Dj for any j.

2.6. Teichmüller geodesics. The Teichmüller space has geodesics with respect
to the Teichmüller distance. They are given by affine mappings of Riemann surfaces
with respect to the natural parameters of the quadratic differentials.

Let [S, f ] ∈ T and ϕ be a non-zero holomorphic quadratic differential on S with
‖ϕ‖ < ∞. For any s ≥ 0, we consider the Beltrami coefficient µs = tanh(s)|ϕ|/ϕ
on S. By µs, a new Riemann surface Ss and an extremal quasiconformal mapping
(a Teichmüller mapping) fs : S → Ss are determined. Let z = x + iy be a natural
parameter of ϕ. The Teichmüller mapping fs is written by z = x + iy 7→ zs =
exp(2s)x+ iy. The holomorphic quadratic differential dz2s on Ss is also determined.
We set r : R≥0 → T , r(s) = [Ss, fs◦f ] and call it a Teichmüller geodesic ray directed
by ϕ and emanating from [S, f ]. If ϕ is Jenkins–Strebel, we call r a Jenkins–Strebel

ray.

2.7. Augmented Teichmüller spaces. The Teichmüller space has several
boundary representations. In particular, an extension of the Teichmüller space called
the augmented Teichmüller space consists of not only ordinary Riemann surfaces but
also Riemann surfaces with nodes. Any Jenkins–Strebel ray has an end point in the
boundary of the augmented Teichmüller space.

A connected Hausdorff space X is called a Riemann surface with nodes of genus
g with p punctures if X satisfies the following conditions;

(1) Any x ∈ X has a neighborhood which is homeomorphic to the unit disk
{|z| < 1}, or the set {(z1, z2) ∈ C

2 | |z1| < 1, |z2| < 1, z1 · z2 = 0}. (If x
corresponds to the latter case, it is called a node of X.)
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(2) Let x1, . . . , xk be nodes of X, and X1, . . . , Xr be connected components of
X − {x1, . . . , xk}. For any j = 1, . . . , r, each Xj is a Riemann surface of
genus gj with pj punctures such that 2gj − 2+ pj > 0, n =

∑r
j=1 pj − 2k, and

g =
∑r

j=1 gj − r + k + 1.

If X is a Riemann surface without nodes, it is also contained in this definition.
The augmented Teichmüller space T̂ = T̂ (Σ) of Σ is defined as follows;

T̂ = {(X, g) | X is a Riemann surface with nodes, g : Σ → X is a deformation}/ ∼,

where the deformation g : Σ → X is a continuous mapping such that it contracts
some disjoint loops on Σ to points (the nodes of X) and is a homeomorphism except
on the loops. The symbol ∼ is an equivalence relation such that (X1, g1) ∼ (X2, g2)
means that there is a conformal mapping h : X1 → X2 such that g2 is homotopic to
h ◦ g1. We denote by [X, g] an equivalence class of (X, g).

A topology on T̂ is defined by the following neighborhoods. Let [X, g] ∈ T̂ . For
any compact neighborhood V of the set of nodes of X and any ε > 0, a neighbor-
hood UV,ε = UV,ε([X, g]) of [X, g] is defined by all [X ′, g′] ∈ T̂ such that there is a
deformation h : X ′ → X which is a quasiconformal mapping on h−1(X − V ) and the

dilatation is 1 + ε such that g is homotopic to h ◦ g′. We can see T ⊂ T̂ with the
topology, and set the boundary ∂T = T̂ − T .

Any Jenkins–Strebel ray on T converges to a point on ∂T . To see this, let r
be a Jenkins–Strebel ray directed by ϕ on S and emanating from [S, f ] ∈ T . The
components of S −Cϕ are corresponding to annuli A1, . . . , Ak whose core curves are
represented by an admissible curve family {γ1, . . . , γk} on S respectively. Let 2πaj
be the length of each closed vertical trajectory in Aj with respect to the metric

|ϕ(z)|
1
2 |dz|. By the natural parameters of ϕ, there exists a constant cj > 0 such that

the coordinate w = cj exp(1/aj
´
√
ϕ(z) dz) determines a conformal mapping of Aj

onto the round annulus {1 < |w| < exp(2πMj)}, where Mj is the modulus of Aj .
We use the same symbol Aj for the round annulus, and cut each Aj into two annuli
Aj,1 = {exp(πMj) < |w| < exp(2πMj)} and Aj,2 = {1 < |w| < exp(πMj)}, and
stretch Aj,1 to {exp(−πMj) < |w| < 1} by H(w) = exp(−2πMj)w. We also use the
same symbol Aj,1 for the resulting annulus. Now, we obtain two annuli

Aj,1 = {exp(−πMj) < |w| < 1}, Aj,2 = {1 < |w| < exp(πMj)}

for any j = 1, . . . , k. By using this representation of S, we can see a geometric
construction of the end point of r.

For any s ≥ 0, we set

Aj,1(s) = {exp(−πMj exp(2s)) < |w| < 1},

Aj,2(s) = {1 < |w| < exp(πMj exp(2s))}.

If s = 0, we regard Aj,1(0) and Aj,2(0) as Aj,1 and Aj,2 respectively. The surface Ss

corresponding to the point r(s) = [Ss, fs ◦ f ] of the ray r is obtained by the annuli
{Aj,l(s)} with the following gluings. In here, we denote the two boundaries of round
annuli by adding the characters ∂i and ∂o, where ∂i means a boundary component
which has the small radius, and ∂o means another one. After the action H−1

s (w) =
exp(2πMj exp(2s))w to Aj,1(s), the gluing of ∂iAj,1(s) and ∂oAj,2(s) is performed by
the identity mapping. Then we obtain Aj(s) = {1 < |w| < exp(2πMj exp(2s))} for
any j = 1, . . . , k. Also, for the gluing of A1(s), . . . , Ak(s), we use the gluing of the
neighborhoods of ∂iAj(s) and ∂oAj′(s) as the reverse of the decomposition of S−Cϕ
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for any j and j′. The resulting surface is conformally equivalent to Ss. Furthermore,
the Teichmüller mapping fs : S → Ss is represented by w 7→ |w|exp(2s)−1w on each
Aj,l.

For Aj,1(s) and Aj,2(s), as s→ ∞, we obtain

Aj,1(∞) = {0 < |w| < 1}, Aj,2(∞) = {|w| > 1},

respectively. We use the similar gluing for Aj,1(∞) and Aj,2(∞) as in the case of s,
then we obtain a Riemann surface S∞ with nodes and also a deformation f∞ : S →
S∞. We define r(∞) = [S∞, f∞ ◦ f ] ∈ ∂T . The ray r = r(s) converges to the point

r(∞) as s→ ∞ for the topology of T̂ (for example, see Proposition 4.3 in [HS07]).
Now, we determine the subset of the boundary ∂T which consists of Riemann

surfaces with nodes obtained by pinching the given admissible curve family Γ, it is
necessary to state Theorem 1.1. For that purpose, we use the following theorem in
[Str84]. Let Sk−1

+ = {(x1, . . . , xk) ∈ R
k
+ |
∑

j=1,...,k x
2
j = 1}.

Theorem 2.4. [Str84] For any admissible curve family Γ = {γ1, . . . , γk} on Σ
and m = (m1, . . . , mk) ∈ Sk−1

+ , there exist α > 0 and a Jenkins–Strebel differential
ϕ on Σ whose moduli of the annuli corresponding to Γ are αm = (αm1, . . . , αmk).
Such α is uniquely determined, and ϕ is also up to a positive scalar multiple.

Thereafter, we fix an admissible curve family Γ = {γ1, . . . , γk} on Σ, m =
(m1, . . . , mk) ∈ Sk−1

+ , and [S∗, f ∗] ∈ T . These elements play a role of the base
setting of Theorem 1.1. We apply the above theorem for f ∗(Γ) on S∗ and m. There
exist α∗ > 0 and a Jenkins–Strebel differential ϕ∗ on S∗ such that the moduli of
annuli corresponding to f ∗(Γ) are α∗

m. Let L1, . . . , Lk be the lengths of the closed

vertical trajectories in the annuli respectively, with respect to the metric |ϕ∗|
1
2 , and

set aj = Lj/2π. We normalize ϕ∗ to ϕ∗/
∑k

j=1 a
2
j and use the same symbol for it,

then each corresponding value a∗j = aj/
√∑k

j=1 a
2
j for ϕ∗ satisfies that

∑k
j=1 a

∗
j
2 = 1.

We denote a
∗ = (a∗1, . . . , a

∗
k) ∈ Sk−1

+ . The Jenkins–Strebel ray directed by ϕ∗ and
emanating from [S∗, f ∗] determines a deformation fc of S∗ onto a Riemann surface
Sc with nodes. We define

∂ΓT = {[X, g] | g : Sc → X is a quasiconformal mapping}.

We can regard ∂ΓT as the subset of ∂T via the action of the mapping fc◦f
∗ : Σ → Sc.

We consider a terminal quadratic differential on Sc introduced by ϕ∗ and fc. We
can choose a constant cj > 0 such that w = cj exp(1/a

∗
j

´
√
ϕ∗(z) dz) maps each

component of S∗−Cϕ∗ conformally onto the union of Aj,1 = {exp(−πα∗mj) < |w| <
1} and Aj,2 = {1 < |w| < exp(πα∗mj)} with the center line {|w| = 1}. Then we have
the representation ϕ∗(z) dz2 = a∗j

2 dw2/w2 on Aj,l. Since the Teichmüller mapping

associated to the ray preserves the representation a∗j
2 dw2/w2 on the stretched Aj,l,

naturally, we can induce the same description a∗j
2 dw2/w2 onAj,1(∞) = {0 < |w| < 1}

and Aj,2(∞) = {|w| > 1}. Then Sc has a quadratic differential J∗
c which has the

representation (a∗j
2/z2+· · · ) dz2 on a neighborhood of each node. On the other hand,

we apply Theorem 2.2 to each component of Sc −{nodes of Sc} with assigning a∗j to
each node of Sc. By the uniqueness of the theorem, the resulting differential equals
to J∗

c .

2.8. Dehn twists. A Dehn twist about a simple closed curve on a surface is
a homeomorphism of the surface onto itself. It acts the Teichmüller space, and the
action has the relationship with the parameters of the mapping in Theorem 1.1.
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Let A = {1 < |z| < r} be a round annulus on the complex plane with the usual
orientation. We consider the quasiconformal mapping

τθ(z) = z|z|i
θ

log r

on A. The quasiconformal dilatation K(τθ) = (1 + k(τθ))/(1− k(τθ)) is given by

k(τθ) =

∣∣∣∣
θ/2πM

2 + i(θ/2πM)

∣∣∣∣ ,

where M = (log r)/2π. If θ = 2π, we call τ2π a Dehn twist of A. For any n ∈ Z, it
holds τ2πn = (τ2π)

n. Next, we define Dehn twists on any surface Σ. Let γ be a simple
closed curve on Σ which is not homotopic to a point and is not peripheral. We take
an annular neighborhood Nγ ⊂ Σ of γ. There is a conformal mapping h : Nγ → A,
where A is a round annulus on the complex plane. We can apply τ2π on A and take
the conjugate by h, and set the identity mapping on Σ−Nγ , that is, the mapping

τγ =

{
h−1 ◦ τ2π ◦ h in Nγ

id in Σ−Nγ

is determined. It depends on the choice of Nγ and h. However, its homotopy class is
well-defined. Then, we call (the homotopy class) of τγ a Dehn twist of Σ about γ. The
Dehn twist τγ acts the Teichmüller space T . We define [τγ ]∗([S, f ]) = [S, f ◦τ−1

γ ] ∈ T

for any [S, f ] ∈ T .

3. Proof of the main theorem

In this chapter, we prove Theorem 1.1. We also fix the admissible curve family
Γ = {γ1, . . . , γk} on Σ, m = (m1, . . . , mk) ∈ Sk−1

+ , and [S∗, f ∗] ∈ T from the previous
chapter. We refer to [MM75] for the contents, statements, and proofs in the following
sections 3.1, 3.2, and 3.3.

3.1. Fuchsian equivalents, canonical local coordinates. To construct the
homeomorphism in Theorem 1.1, we need each criterion for a Fuchsian group and a
local coordinate of any Riemann surface with nodes in ∂ΓT .

In §2.7, we construct the Riemann surface Sc with nodes. For each connected
component Y of Sc − {nodes of Sc}, we denote punctures of Y without the original
punctures of Sc as follows, see also Figure 2;

(1) xj,1, xj,2: punctures which are obtained by fc ◦ f
∗(γj).

(2) xj : similar as the above, but the counterpart is in another component.

Figure 2. xj,1, xj,2 are assigned a pair of punctures corresponding to a node of Sc on the fixed

component Y . The counterpart of xj is not on Y .

We fix O ∈ Y . Let αj,1, αj,2, βj be simple closed curves on Y through O such
that αj,1, αj,2 are homotopic to xj,1, xj,2 respectively, βj is not homotopic to αj,1, αj,2.
For xj , we take similar αj , βj .

Let [X, g] ∈ ∂ΓT , x be a node g(xj,l) (or g(xj)) of X for l = 1, 2, and Y be a
component of X − {nodes of X} associated to x. We define a Fuchsian group Γx

associated to Y as follows;
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(1) The lift of g(αj,l) (or g(αj)) corresponds to a translation L : ζ 7→ ζ + 1 ∈ Γx

on the upper half plane H = {Im(ζ) > 0}.
(2) The lift of g(βj) has an attracting fixed point ζ = 1 on H. (If g(βj) cor-

responds to a parabolic element, ζ = 1 is a unique fixed point of it. This
situation is realized if Y is a 3-punctured sphere.)

The Fuchsian group Γx is uniquely determined by the component Y and the puncture
x. It is called a Fuchsian equivalent.

Let π : H → Y (= H/Γx) be a natural projection. The image Nx = π({Im(ζ) >
1}) is conformally equivalent to a punctured disk on Y by Shimizu’s lemma. For any
ζ ∈ H, we set z = P (ζ) = exp(2πiζ). The mapping P maps H/〈L〉 conformally onto
D(1), where D(r) = {0 < |z| < r} for any r > 0. The composition P ◦ π−1 of Nx

onto D(exp(−2π)) is a conformal mapping. Furthermore, let D be any punctured
disk on Y with the puncture x. If we regard π−1(D) as a connected component which
intersects {Im(ζ) > 1}, then the composition P ◦ π−1 of D into D(1) is a conformal
embedding. We use z as a coordinate of Nx via P ◦ π−1, and call it a canonical local

coordinate.
We decide the names of punctures in each component of Sc − {nodes of Sc} in

the first argument of this section. In addition to, we re-denote by xj,1, xj,2 the pair
of punctures which are determined by fc ◦ f

∗(γj) and the one of them is in one
component of Sc − {nodes of Sc}, another puncture is in the other component (the
case of (2) in the first discussion). Therefore, we can say that xj,1, xj,2 are punctures
of Sc − {nodes of Sc} which are determined by fc ◦ f

∗(γj) for any j = 1, . . . , k.
Let [X, g] ∈ ∂ΓT . For any a = (a1, . . . , ak) ∈ Sk−1

+ , we use Theorem 2.2 then
there exists a quadratic differential Jc dz

2 on X such that for any g(xj,l), Jcdz
2 =

(a2j/z
2+· · · )dz2 in any local coordinate z with z(g(xj,l)) = 0. Let X ′

j,l be a component
of X −CJc which corresponds to g(xj,l). We notice that CJc contains all nodes of X,
so X ′

j,l does not contain g(xj,l). We use z as the canonical local coordinate near g(xj,l)

and define the conformal mapping w = pj,l(z) = c′j,l exp(1/aj
´
√
Jc(z) dz), where the

constant c′j,l satisfies (dw/dz)(0) = 1. Then, there exists rj,l = rj,l([X, g], a) > 0 such
that pj,l(X

′
j,l) = D(rj,l) for any j = 1, . . . , k and l = 1, 2, see Figure 3. Incidentally,

by the argument in §2.5, we have Ṁ(X ′
j,l) = (1/2π) log rj,l.

Figure 3. The light gray domain corresponds to X ′

j,l, the dark one is Ng(xj,l), and the more

dark one in Y means their intersection.

3.2. The continuity of Jc dz
2. To obtain the continuity of the mapping in

Theorem 1.1, we would like to show the following proposition. The following proofs
of the proposition and lemmas are similar as of [MM75], but with little difficultly by
the existence of a.

Proposition 3.1. The quadratic differential Jc dz
2 is continuous on ∂ΓT ×Sk−1

+ .
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Let [Xn, gn] ∈ ∂ΓT , an = ((a1)n, . . . , (ak)n) ∈ Sk−1
+ be arbitrary sequences which

converge to [X, g] ∈ ∂ΓT , a = (a1, . . . , ak) ∈ Sk−1
+ respectively. For each n, by

Theorem 2.2, there exists a quadratic differential (Jc)n dz
2 corresponding to Xn and

an. Similarly, Jc dz
2 corresponding to X and a is determined. To show that (Jc)ndz

2

converges to Jc dz
2 as n → ∞, we use the following lemmas. We notice that for the

name of the projection of H onto H/Γx for any Fuchsian equivalent Γx, we use the
common character π.

Lemma 3.2. There exists R1 = R1(a) > 0 such that rj,l,n = rj,l([Xn, gn], an) ≥
R1 for any j, l, and sufficiently large n.

This lemma says that the radius rj,l,n which is determined in the previous section,
is not degenerated when n tends to ∞ for any j, l. Moreover, the lower bound of
rj,l,n depends only on a.

Proof. Let {Dj,l,n} be a family of mutually disjoint punctured disks on Xn such
that each Dj,l,n has the puncture xn = gn(xj,l). The mapping P ◦ π−1 of Dj,l,n

into D(1) is conformal. We use the canonical local coordinate z of Dj,l,n as in §3.1,
then P ◦ π−1 is an identity mapping near xn, we have P ◦ π−1(0) = 0 and (d(P ◦
π−1)(z)/dz)(0) = 1. We combine this fact with the properties of reduced moduli (see

§2.5), we have Ṁ(Dj,l,n) ≤ Ṁ(D(1)) = 0. Furthermore, let X ′
j,l,n be a component of

Xn−C(Jc)n which corresponds to xn, and pj,l,n be the conformal mapping ofX ′
j,l,n onto

D(rj,l,n) in the last paragraph of §3.1. We also have (1/2π) log rj,l,n = Ṁ(X ′
j,l,n) ≤

Ṁ(D(1)) = 0 and rj,l,n ≤ 1. Let (aj,1)n = (aj,2)n be both (aj)n, and use Theorem 2.3,
then

∑

j,l

(aj,l)
2
nṀ(Dj,l,n) ≤

∑

j,l

(aj,l)
2
nṀ(X ′

j,l,n) =
1

2π

∑

j,l

(aj,l)
2
n log rj,l,n ≤ 0.

If we take Nxn
⊂ Dj,l,n, then −1 = Ṁ(Nxn

) ≤ Ṁ(Dj,l,n) ≤ 0, and

−2 = −2
∑

j

(aj)
2
n = −

∑

j,l

(aj,l)
2
n =

∑

j,l

(aj,l)
2
nṀ(Nxn

) ≤
1

2π

∑

j,l

(aj,l)
2
n log rj,l,n ≤ 0.

Then we obtain −4π ≤
∑

j,l(aj,l)
2
n log rj,l,n ≤ 0. By log rj,l,n ≤ 0 for any j, l, n,

the inequality −4π ≤ (aj)
2
n log rj,l,n holds. Let a = minj aj. By the assumption,

an converges to a, so we can take a/2 ≤ aj/2 < (aj)n for any j and sufficiently
large n. Therefore, we can set a bound R1 = R1(a) = exp(−16π/a2) > 0 such that
R1 < rj,l,n ≤ 1. �

For any R < exp(−2π), we denote Nx(R) = {p ∈ Nx| |z(p)| < R}. We notice
that P ◦ π−1(Nx(R)) = D(R).

Lemma 3.3. There exists R2 = R2(a) > 0 such that Nxn
(R2) ⊂ X ′

j,l,n for any
j, l, and sufficiently large n.

The lemma says that we can ensure a small radius R2 in Nxn
such that the whole

of Nxn
(R2) can be mapped conformally into D(rj,l,n) by pj,l,n, and the radius is not

degenerated when n tends to ∞ for any j, l. In Figure 3, the above process is to
reduce the dark domain in Y such that it is contained the light domain.

Proof. We consider the conformal mapping F (w) = P ◦ π−1 ◦ p−1
j,l,n(w) of D(R1)

into D(1) such that F (0) = 0. We can see (dF (w)/dw)(0) = 1 by the definitions
of pj,l,n, and the canonical local coordinate. Therefore, we can apply Koebe’s 1/4-
theorem, and conclude thatD(R1/4) ⊂ F (D(R1)). LetR2 = min(R1/4, exp(−2π)) =
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R1/4 then D(R2) ⊂ F (D(R1)). On the other hand, p−1
j,l,n(D(R1)) ⊂ X ′

j,l,n by
Lemma 3.2. By combining the above two, we have D(R2) ⊂ F (D(R1)) ⊂ P ◦
π−1(X ′

j,l,n) and hence Nxn
(R2) ⊂ X ′

j,l,n. �

In particular, R2 = R1/4 = exp(−16π/a2)/4 is continuous when a varies contin-
uously.

Lemma 3.4. We take any 0 < r ≤ R2 and set Xn(r) = Xn −
⋃

j,lNxn
(r). There

exists M =M(a, r) > 0 such that
˜

Xn(r)
|(Jc)n| ≤M for sufficiently large n.

It says that the differential (Jc)ndz
2 is locally uniformly bounded for fixed a.

Proof. We suffice to consider only in X ′
j,l,n(r) = X ′

j,l,n ∩ Xn(r). By Lemma 3.3,
we have that X ′

j,l,n(r) 6= ∅ for any j, l and sufficiently large n. We apply Koebe’s

1/4-theorem to the conformal mapping pj,l,n ◦ π ◦ P−1 of D(r) into D(rj,l,n) so that
D(r/4) ⊂ pj,l,n(Nxn

(r)) ⊂ D(rj,l,n). We obtain
¨

X′
j,l,n

(r)

|(Jc)n| ≤ 2π(aj)
2
n log

rj,l,n
r
4

< 2π log
4

r
,

that is, the upper bound comes from the area of the annulus {r/4 < |w| < rj,l,n} in
D(rj,l,n) with respect to the metric (aj)

2
n|dw

2/w2|, and by (aj)n < 1, rj,l,n ≤ 1. We
can take M as the multiple of 2k of the right hand side (the number 2k comes from
the all combinations of j = 1, . . . , k and l = 1, 2). �

Remark. Maybe we cannot take the constants R1, R2, and M which are inde-
pendent on a in Lemma 3.2, 3.3, and 3.4 respectively, see §23.4 in [Str84].

Now, we obtain the proof of Proposition 3.1.

Proof of Proposition 3.1. We recall the assumption written in the below of
the statement of Proposition 3.1. We can choose each components Yn of Xn −
{nodes of Xn} and Y of X − {nodes of X} such that the corresponding Fuchsian

equivalents Γxn
of Yn converges to Γx of Y for each fixed puncture. Let (J̃c)n be a

holomorphic quadratic differential on H which is given by lifting of (Jc)ndz
2 on Yn.

Since the sequence {(J̃c)n} is normal by Lemma 3.4, then we can choose a subse-

quence if necessary such that {(J̃c)n} converges locally uniformly to a holomorphic

quadratic differential (J̃c)∞ on H. By Lemma 3.2, each rj,l,n does not degenerate as

n → ∞. This means that (J̃c)∞ 6= 0. We use Γx and project (J̃c)∞ to H dz2 on
Y = H/Γx. We regard the puncture of Y corresponding to L : ζ 7→ ζ + 1 ∈ Γx as

x = g(xj,l). For any ε > 0, let σ be a non-critical vertical trajectory of (J̃c)∞ on H

whose length is greater than 2πaj + ε with respect to the metric |(J̃c)∞|
1
2 . By the

uniformity of {(J̃c)n}, there exists a sequence {σn} such that each σn is a non-critical

vertical trajectory of (J̃c)n whose length is greater than 2π(aj)n with respect to the

metric |(J̃c)n|
1
2 for sufficiently large n, and σn converges to σ. Since such σn is pro-

jected to a closed trajectory of (Jc)n dz
2 on Yn, it satisfies L(σn) ∩ σn 6= ∅ and then

σ also satisfies L(σ) ∩ σ 6= ∅. The projection of σ is a closed trajectory of Hdz2 on
Y such that it surrounds x. We conclude that any non-critical vertical trajectory of
Hdz2 on Y whose length is greater than or equal to 2πaj with respect to the metric

|H|
1
2 |dz| is closed. On the other hand, by the convergence of (J̃c)n, clearly we can

see that Hdz2 has the expansion (a2j/z
2 + · · · )dz2 near x. We carry out the above

method for any components Yn and Y , that is, for any j = 1, . . . , k and l = 1, 2.



638 Masanori Amano

By the uniqueness of the quadratic differential with poles of order 2 which has the
closed vertical trajectories and the specified leading coefficients near the punctures
of Theorem 2.2, Hdz2 equals to Jcdz

2. �

3.3. The construction of Φ. In this section, we construct a mapping Φ of
∂ΓT ×Sk−1

+ × (R/2πZ)k×R onto T /〈τ1, . . . , τk〉 before obtaining Φ̂ in Theorem 1.1.
We recall the construction of Sc, see §2.7. For the fixed admissible curve family

Γ on Σ, m ∈ Sk−1
+ , and [S∗, f ∗] ∈ T , there exist α∗ > 0 and a Jenkins–Strebel

differential ϕ∗ on S∗ with the moduli α∗
m for the annuli corresponding to f ∗(Γ). The

Riemann surface Sc with nodes corresponds to the end point of the Jenkins–Strebel
ray directed by ϕ∗ and emanating from [S∗, f ∗]. It is constructed by Aj,1(∞) = {0 <
|z| < 1}, Aj,2(∞) = {|z| > 1} with the appropriate gluing. The differential ϕ∗

induces a quadratic differential J∗
c dz

2 on Sc which has the representation a∗2j dw2/w2

on Aj,l(∞) for any j = 1, . . . , k and l = 1, 2. In other words, the leading coefficients
of J∗

c dz
2 is a

∗ at the nodes. For each component (Sc)
′
j,l of Sc − CJ∗

c
, we can decide

a conformal mapping p∗j,l of (Sc)
′
j,l onto Aj,l(∞) by the construction of J∗

c in the last
paragraph of §2.7. We notice that it is not equal to pj,l in §3.1.

The way of constructing the mapping Φ is that, roughly speaking, we cut neigh-
borhoods near nodes of a Riemann surface with nodes in ∂ΓT , glue the resulting
surfaces using given parameters, and obtain an element of T /〈τ1, . . . , τk〉. So we
must decide a criterion when gluing.

We denote by x = xj,l the puncture of (Sc)
′
j,l corresponding to a node of Sc. Let

Γx be the Fuchsian equivalent of (Sc)
′
j,l and x. The natural projection π = πx : H →

H/Γx ⊃ (Sc)
′
j,l is determined by Γx. We fix a point ξj,l ∈ D(1) such that it satisfies

the following conditions;

(1) The absolute value holds |ξj,l| < R2(a
∗), so π ◦ P−1(ξj,l) is in Nx(R2(a

∗)) ⊂
(Sc)

′
j,l (recall Lemma 3.3).

(2) The point π ◦ P−1(ξj,l) is sent on the positive real axis in Aj,l(∞) by p∗j,l.

For any [X, g] ∈ ∂ΓT and a ∈ Sk−1
+ , let Jc = Jc([X, g], a) be a quadratic differential

on X such that it has each leading coefficient aj at the puncture x = g(xj,l), and X ′
j,l

be the component of X − CJc associated to x. Let π = πx be the natural projection
determined by the Fuchsian equivalent of X ′

j,l and x. By the above ξj,l, a point

π ◦ P−1(ξj,l · (R2(a)/R2(a
∗))) is in Nx(R2(a)) ⊂ X ′

j,l by Lemma 3.3. We set

qj,1(ζ) = eiθj,1pj,1(ζ)/rj,1, qj,2(ζ) = eiθj,2rj,2/pj,2(ζ),

where the conformal mapping pj,l : X
′
j,l → D(rj,l) is introduced in §3.1, and we take

θj,l such that qj,l ◦ π ◦ P−1(ξj,l · (R2(a)/R2(a
∗))) > 0. Then we have the conformal

mappings qj,1 : X
′
j,1 → Aj,1(∞), qj,2 : X

′
j,2 → Aj,2(∞).

We notice that Jc is continuous when [X, g] and a vary continuously by Lemma 3.1,
so pj,l, rj,l are continuous. In addition to, R2(a) is also continuous so that θj,l and
qj,l are.

Now, we define a mapping

Φ: ∂ΓT × Sk−1
+ × (R/2πZ)k ×R → T /〈τ1, . . . , τk〉,

where each τj is the Dehn twist of Σ about γj, that is τγj . We fix [X, g] ∈ ∂ΓT ,

a = (a1, . . . , ak) ∈ Sk−1
+ , t = (t1, . . . , tk) ∈ (R/2πZ)k, and s ∈ R. Let denote ω =

([X, g], a, t, s). First, there is a quadratic differential Jcdz
2 onX given by Theorem 2.2

for [X, g] and a. By each mapping qj,l in the above discussion, each component X ′
j,l

of X − CJc is mapped onto Aj,l(∞). We remove the set {|ζ | ≤ exp(−πmj exp(2s))}
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from Aj,1(∞), and {|ζ | ≥ exp(πmj exp(2s))} from Aj,2(∞). We denote the resulting
two annuli by Aj,l(s) and apply the stretch and the rotation

hj : ζ 7→ exp(2πmj exp(2s) + itj)ζ

to Aj,1(s). We also denote the resulting surface by Aj,1(s). Now, we have

Aj,1(s) = {exp(πmj exp(2s)) < |ζ | < exp(2πmj exp(2s))},

Aj,2(s) = {1 < |ζ | < exp(πmj exp(2s))}.

We glue the boundaries ∂iAj,1(s) and ∂oAj,2(s) by the identity mapping so that
obtain Aj(s) = {1 < |ζ | < exp(2πmj exp(2s))} whose modulus is mje

2s. Next, we
glue A1(s), . . . , Ak(s) each other by the original gluing mappings of X after each
action of h−1

j in a small tubular neighborhood in ∂oAj(s). Then, we obtain the
resulting Riemann surface and denote it by Sω. The associated homeomorphism
gc : X − {nodes of X} → Sω − Γω is also determined, where Γω is some admissible
curve family on Sω. For the composition fω = gc ◦ g ◦ fc ◦ f : Σ − Γ → Sω − Γω,
since f(Γ) is degenerated by fc, we can find a homeomorphism of Σ onto Sω which
is homotopic to fω up to the Dehn twists τ1, . . . , τk of Σ. We denote it by the same
symbol fω, and set Φ(ω) = [Sω, fω] ∈ T /〈τ1, . . . , τk〉.

In particular, by the above construction, we have

Φ([Sc, id], a
∗, 0, . . . , 0, (logα∗)/2) = [S∗, f ∗].

In fact, the setting of each criterion ξj,l in this section, is to give the equation.

3.4. Complete the proof of Theorem 1.1. To prove Theorem 1.1, we perform
by the following 3-steps.

Step 1. Φ is bijection. We construct the inverse Φ−1, that is, we decide each
element of ∂ΓT , Sk−1

+ , (R/(2πZ))k, and R for any [S, f ] ∈ T /〈τ1, . . . , τk〉. By
Theorem 2.4, there exist α > 0 and a Jenkins–Strebel differential ϕ on S associated
to the admissible curve family f(Γ) with moduli αm. We set s(α) = (logα)/2 ∈ R.
The Jenkins–Strebel ray r directed by ϕ and emanating from [S, f ] determines the end
point r(∞) ∈ ∂ΓT , and denote it by [X, g]. As in §2.7, let a(ϕ) = {a1(ϕ), . . . , ak(ϕ)}
be the lengths of the closed vertical trajectories homotopic to each of f(Γ) divided

by 2π, with respect to the metric |ϕ|
1
2 . We normalize ϕ so that a(ϕ) ∈ Sk−1

+ .

The conformal mapping w = ̺j,l(z) = cj,l exp(1/aj(ϕ)
´
√
ϕ(z) dz) where cj,l > 0

and z is any local coordinate of S, maps each component of S − Cϕ − f(Γ) onto
a round annulus Aj,l. We stretch these annuli, then the Riemann surface X with
nodes is obtained by Aj,1(∞) = {0 < |w| < 1} and Aj,2(∞) = {|w| > 1} with the
same gluing as in the case of S. The quadratic differential ϕ has the representation
aj(ϕ)

2dw2/w2 in Aj,l, and so in Aj,l(∞). Hence we have a quadratic differential Jc
on X with the leading coefficients a(ϕ), it is also obtained by Theorem 2.2. By the
above discussion, we can regard ̺j,l as a conformal mapping of each component X ′

j,l

of X − CJc onto Aj,l(∞). Compare the last paragraph of §2.7. Now, we can see the
difference between the mapping ̺j,l which is determined from S along the ray r, and
the mapping qj,l which is determined by the mapping pj,l and the criterion ξj,l (see
§3.3). The composition qj,l ◦ ̺

−1
j,l (1) is in the unit circle, and let ϑj,l ∈ R/(2πZ) be

an argument of it. Then each tj = ϑj,2 − ϑj,1 modulo 2π is well defined in R/(2πZ).
We set t(ϕ) = (t1, . . . , tk) ∈ (R/(2πZ))k.

We need to confirm that α, ϕ, and r(∞) do not depend on the actions of τ1, . . . , τk
before set Φ−1([S, f ]) = (r(∞), a(ϕ), t(ϕ), s(α)). Let γ be one of Γ = {γ1, . . . , γk}
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and we compare the elements as above for [S, f ] and [τγ ]∗([S, f ]) respectively. In
general, a number α > 0 and a Jenkins–Strebel differential ϕ in Theorem 2.4 are
determined by a base Riemann surface S, an admissible curve family Γ, and numbers
m = (m1, . . . , mk). We recall the action of the mapping class group to the Teichmüller
space, that is [τγ]∗([S, f ]) = [S, f ◦ τ−1

γ ]. Then we use a common S. We consider

f(Γ) and f ◦ τ−1
γ (Γ). We see that τ−1

γ (γj) = γj for any j = 1, . . . , k, because γ is
one of the admissible curve family Γ whose curves are disjoint and are not homotopic
each other, then each γj is invariant by the Dehn twists about any γj′ so we have
f(Γ) = f ◦ τ−1

γ (Γ). Since m is fixed, then the resulting α and ϕ on S are common
elements. Therefore, a(ϕ), t(ϕ), s(α) are also common values. Next, we consider
Jenkins–Strebel rays r and r′ directed by the common ϕ and emanating from [S, f ]
and [τγ ]∗([S, f ]) respectively. We can write the rays r(s) = [Ss, fs ◦ f ] and r′(s) =
[Ss, fs◦f ◦τ

−1
γ ] by the construction of the Teichmüller geodesic rays with the common

S and ϕ (see §2.6). Clearly, it holds r′(s) = [τγ ]∗(r(s)). There is well-known fact
that the equations τf(γ) = f ◦ τγ ◦ f

−1 and τfs◦f(γ) = fs ◦ τf(γ) ◦ f
−1
s hold, where these

equalities mean as the homotopy equivalent. Then

dT (r(s), r′(s)) ≤
1

2
logK(τfs◦f(γ)).

By the definition of twists in §2.8, the dilatation K(τfs◦f(γ)) = (1 + ks)/(1 − ks) is
determined by

ks =

∣∣∣∣
2π

2παme2s

2 + i 2π
2παme2s

∣∣∣∣ ,

where αm is a modulus of the annulus corresponding to f(γ) determined by ϕ such
that m is a corresponding entry of m. The modulus of the annulus corresponding to
fs ◦ f(γ) is αme2s. As s→ ∞, we conclude that r and r′ are asymptotic, then their
end points coincide, that is r(∞) by the main theorem of [Am14a].

Step 2. Φ is continuous. We consider the continuity of Φ. We set sequences
and a point in T , namely, pn = [Sn, fn] = Φ([Xn, gn], an, tn, sn), p

′
n = [S ′

n, f
′
n] =

Φ([Xn, gn], an, t, s), and p = Φ([X, g], a, t, s), and let ([Xn, gn], an, tn, sn) converges to
([X, g], a, t, s). For the triangle inequality d(pn, p) ≤ d(pn, p

′
n)+ d(p

′
n, p), we suffice to

show that the right hand side converges to 0 as n → ∞, where d is the Teichmüller
distance on T /〈τ1, . . . , τk〉 by the natural projection.

For d(pn, p
′
n), the Riemann surfaces Sn and S ′

n are determined by a common
quadratic differential (Jc)n dz

2 on Xn with the leading coefficients an for any n. Let
ϕn and ϕ′

n be the Jenkins–Strebel differentials on Sn and S ′
n respectively, obtained

by the construction of Φ. This means that we can construct a quasiconformal map-
ping of Sn onto S ′

n with a suitable homotopy class as the mapping such that each
component of Sn − Cϕn

is mapped one of S ′
n − Cϕ′

n
. Let an = ((a1)n, . . . , (ak)n),

tn = ((t1)n, . . . , (tk)n), and t = (t1, . . . , tk). The components corresponding to fn(γj)
and f ′

n(γj) are annuli, and also by the construction of Φ, they are represented by
parallelograms

Pj(0, (hj)n + i(tj)n(aj)n, (hj)n + i((tj)n(aj)n + (lj)n), i(lj)n),

P ′
j(0, (h

′
j)n + itj(aj)n, (h

′
j)n + i(tj(aj)n + (lj)n), i(lj)n)

respectively, where (hj)n = 2π(aj)nmje
2sn , (h′j)n = 2π(aj)nmje

2s, and (lj)n = 2π(aj)n
for any j = 1, . . . , k and any n. In fact, (hj)n and (h′j)n are the heights, (lj)n is the
circumference of the annuli with respect to ϕn and ϕ′

n. In particular, we can take
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these parallelograms such that |(tj)n − tj| ≤ π for any j and sufficiently large n be-
cause now we consider the quotient space (R/2πZ)k which contains tn and t. There
is each natural affine mapping of Pj onto P ′

j for any j = 1, . . . , k, that is

x+ iy 7→
(h′j)n

(hj)n
x+ i

(
(tj − (tj)n)(aj)n

(hj)n
x+ y

)
.

So we obtain a quasiconformal mapping of Sn onto S ′
n by combining the above map-

pings for all j = 1, . . . , k. We calculate its dilatation, hence we have

d(pn, p
′
n) ≤

1

2
log max

j=1,...,k

1 + (kj)n
1− (kj)n

,

where

(kj)n =

∣∣∣∣∣∣

(tj−(tj)n)(aj )n
(hj)n

+ i
(
1−

(h′
j)n

(hj)n

)

(tj−(tj)n)(aj )n
(hj)n

+ i
(
1 +

(h′
j)n

(hj)n

)

∣∣∣∣∣∣
=

∣∣∣∣∣

tj−(tj)n
2π

+ imj (e
2sn − e2s)

tj−(tj)n
2π

+ imj (e2sn + e2s)

∣∣∣∣∣ .

Clearly d(pn, p
′
n) → 0 as n→ ∞.

For d(p′n, p), by Proposition 3.1, a differential (Jc)ndz
2 obtained by [Xn, gn], an

converges to a differential Jcdz
2 corresponding to [X, g], a. Then for the common t

and s, the sequence p′n converges to p, so we have d(p′n, p) → 0 as n→ ∞. By these
argument, we conclude that Φ is continuous.

Step 3. The lift Φ̂ of Φ. Finally, we consider a lift of Φ. Since the set ∂ΓT ×
Sk−1
+ ×R

k ×R and the Teichmüller space T are simply connected, there exists the

bijective and continuous lift Φ̂ : ∂ΓT × Sk−1
+ ×R

k ×R → T of Φ such that

Φ̂([Sc, id], a
∗
1, . . . , a

∗
k, 0, . . . , 0, (logα

∗)/2) = [S∗, f ∗].

The complex dimension of ∂ΓT is 3g − 3 + p − k. Therefore the real dimension of
∂ΓT × Sk−1

+ ×R
k ×R and T are both 6g − 6 + 2p. We can use Brouwer’s theorem

hence Φ̂ is a homeomorphism.
For any j, the equation

Φ̂([X, g], a, t1, . . . , tj + 2π, . . . , tk, s) = τj ◦ Φ̂([X, g], a, t1, . . . , tj, . . . , tk, s)

clearly holds. For any s ≥ 0 and other fixed parameters, Φ̂([X, g], a, t, s) is a Jenkins–

Strebel ray directed by ϕ and emanating from Φ̂([X, g], a, t, 0) where ϕ is determined

by Theorem 2.4 with the corresponding Riemann surface of Φ̂([X, g], a, t, 0) and m.
For any a, t, these ray have the same end point [X, g] and positive scalar multiples
of the common moduli m of the annuli corresponding to each ϕ. By Theorem in
[Am14a], they are asymptotic each other. We complete the proof of Theorem 1.1. �

Remark. We consider the case of k = 1 and denote the curve γ1 by γ. The
mapping Φ: ∂γT × {1} × (R/2πZ)×R → T /〈τγ〉 is related to a Teichmüller disk.
For simplicity, we drop {1}. In this situation, m = 1 and α∗ is a modulus of an
annulus S∗ − Cϕ∗ . We set Ψ: (R/2πZ)×R → D/〈T 〉 as

Ψ(t, s) =
e2s − α∗ + i

t

2π

e2s + α∗ + i
t

2π

,
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where T is a biholomorphic automorphism of D = {|z| < 1} such that

T (z) =
(i− 2α∗)z − i

iz − (i+ 2α∗)
.

For any z ∈ D, let Fz : S
∗ → Sz be a Teichmüller mapping constructed by the

Beltrami coefficient z|ϕ∗|/ϕ∗, and

D[ϕ∗] = {[Sz, Fz ◦ f
∗] | z ∈ D}

be the Teichmüller disk of the origin [S∗, f ∗]. The mapping F (z) = [Sz, Fz ◦ f
∗] of

D onto D[ϕ∗] is a biholomorphic mapping such that F (0) = [S∗, f ∗]. The action
[τγ ]∗ is a biholomorphic isometry of D[ϕ∗] onto itself. The mapping T is a pull-
back of [τ−1

γ ]∗ by F . The composition Φ ◦ (id∂γT ,Ψ
−1) : ∂γT × D/〈T 〉 → T /〈τγ〉

satisfies that {[X, g]} ×D/〈T 〉 is mapped to D[ϕ]/〈τγ〉 where D[ϕ] is a Teichmüller
disk by some Jenkins–Strebel differential ϕ whose boundary contains [X, g], for any
[X, g] ∈ ∂γT . The lift of the composition Φ◦ (id∂γT ,Ψ

−1) : ∂γT ×D/〈T 〉 → T /〈τγ〉
such that ([Sc, id], 0) is mapped to [S∗, f ∗] coincides to the mapping of the main result
in [MM75].

For any admissible curve family Γ = {γ1, . . . , γk}, we apply the above Masur
and Marden’s theorem to T iteratively, then obtain a homeomorphism of ∂ΓT and
parameter spaces onto T . That is, first we construct a homeomorphism Φ̂1 : ∂γ1T ×
D → T , and the set ∂γ1T is represented by the Teichmüller space T (Σ\{γ1})
or a product of Teichmüller spaces comes from the components of T (Σ\{γ1}),
next we apply the theorem to it and combine with Φ̂1, we have a homeomorphism
Φ̂2 : ∂{γ1,γ2}T × D

2 → T . We continue the process, finally a homeomorphism

Φ̂k : ∂ΓT × D
k → T is obtained. However, in the domain of Φ̂k, each unit disk

D is not correspond to any Teichmüller disk on the whole T without the first D

by Φ̂1. It is difficult to consider various geometric properties of T by Φ̂k (k ≥ 2).

On the other hand, we can see some properties for our mapping Φ̂ in the following
section.

3.5. Some properties of Φ̂. We already know the asymptotic behavior of two
Jenkins–Strebel rays, see [Am14b] and [Am14a]. In this time, we describe it by using

Φ̂. The following corollary is obtained directly by Theorem 1.1 and the main result
in [Am14b].

Corollary 3.5. For any [X, g], [X ′, g′] ∈ ∂ΓT , a, a′ ∈ Sk−1
+ , and t, t′ ∈ R

k, the
following equation holds;

lim
s→∞

dT (Φ̂([X, g], a, t, s), Φ̂([X ′, g′], a′, t′, s+ λ)) = max{d∂ΓT ([X, g], [X ′, g′]), |λ|},

where d∂ΓT is the Teichmüller distance in ∂ΓT and λ is a constant.

Proof. Let [S, f ] = Φ̂([X, g], a, t, s) and [S ′, f ′] = Φ̂([X ′, g′], a′, t′, s + λ). The
associated Jenkins–Strebel differentials on S and S ′ have annuli corresponding to the
core curves f(γj) and f ′(γj) respectively, for any j = 1, . . . , k. Hence, such annuli are
homotopic each other by the mapping f ′◦f−1. (We call this condition by “similar” in

[Am14b].) By the construction of Φ̂, we use the common m = (m1, . . . , mk) for mod-
uli of such annuli, in detail they are m1e

2s, . . . , mke
2s and m1e

2(s+λ), . . . , mke
2(s+λ),
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respectively. We have

lim
s→∞

dT ([S, f ], [S ′, f ′])

= max

{
d∂ΓT ([X, g], [X ′, g′]),

1

2
log max

j=1,...,k

{
mje

2(s+λ)

mje2s
,

mje
2s

mje2(s+λ)

}}

= max{d∂ΓT ([X, g], [X ′, g′]), |λ|},

by the main theorem in [Am14b]. �

Next, we check several estimations of the Teichmüller distance between two points
when each element of Φ̂ varies. We denote the elements by [X, g], [X ′, g′] ∈ ∂ΓT ,
a = (a1, . . . , ak), a

′ = (a′1, . . . , a
′
k) ∈ Sk−1

+ , t = (t1, . . . , tk), t
′ = (t′1, . . . , t

′
k) ∈ R

k, and
s, s′ ∈ R.

Proposition 3.6. We have

dT (Φ̂([X, g], a, t, s), Φ̂([X, g], a, t, s′)) = |s− s′|,(1)

dT (Φ̂([X, g], a, t, s), Φ̂([X, g], a, t′, s)) ≤
1

2
logmax

j
K(τtj−t′j

),(2)

where K(τθ) is defined in §2.8. There exists a constant c(a, a′) and we fix any s0 >
c(a, a′). Then, there exists a constant C(a, a′, s0) such that the following inequality

(3) dT (Φ̂([X, g], a, t, s), Φ̂([X, g], a′, t, s)) ≤ C(a, a′, s0)

holds for any s > s0. Moreover, the right hand side of the above inequalities (2),(3)
tend to 0 as s→ ∞, s0 → ∞ respectively. On the lower estimate, we have

(4) dT (Φ̂([X, g], a, t, s), Φ̂([X ′, g′], a′, t′, s′)) ≥ |s− s′| −
1

2
log k.

Proof. The first two equality and inequality are easy. If only parameter s varies,
the image of Φ̂ lies a Jenkins–Strebel geodesic line on T , then we obtain (1). Next,

for a parameter t, let [R, h] = Φ̂([X, g], a, t, s) and [R′, h′] = Φ̂([X, g], a, t′, s). By the

construction of Φ and Φ̂, there is a quasiconformal mapping of the Riemann surface
R onto R′ such that any annular subset Aj(s) of R is mapped onto one of R′ as the
twist τt′j−tj , and it is homotopic to h′ ◦ h−1. By K(τt′j−tj ) = K(τtj−t′j

), we conclude

that the inequality (2) holds.
Now, we consider about (3). Let idX : X → X be the identity mapping. We use

the canonical local coordinate z of X (see §3.1) and write idX(z) = z. Let pj,l and
p′j,l be the conformal mappings on each components X −CJc and X −CJ ′

c
described

in also §3.1 such that the differentials Jc and J ′
c on X are determined by a and a

′

respectively. We recall qj,l in §3.3, and let w = qj,l(z) and w′ = q′j,l(z) onto Aj,l(∞).
On the sets Aj,1(∞) = {0 < |w| < 1}, Aj,2(∞) = {|w| > 1}, for the simplicity, we
regard them as D(1) = {0 < |w| < 1} by acting the mapping w 7→ 1/w for Aj,2(∞).
We have

∣∣∣∣
dw′

dw
(0)

∣∣∣∣ =
∣∣∣∣
dw′

dz
(0)

∣∣∣∣
/ ∣∣∣∣

dw

dz
(0)

∣∣∣∣ =
∣∣∣∣∣
ei(±θ′

j,l
)

rj,l(a′)

dp′j,l(z)

dz
(0)

∣∣∣∣∣

/ ∣∣∣∣
ei(±θj,l)

rj,l(a)

dpj,l(z)

dz
(0)

∣∣∣∣

=
rj,l(a)

rj,l(a′)
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by (dpj,l(z)/dz)(0) = (dp′j,l(z)/dz)(0) = 1. We use the estimation of rj,l(a) in
Lemma 3.2, then

R1(a) ≤
rj,l(a)

rj,l(a′)
≤

1

R1(a′)
.

We consider the conformal mapping Ij,l = q′j,l ◦ idX ◦ (qj,l)
−1 of Aj,l(∞) = D(1)

into C. It is described by Ij,l(w) = c1w+ ψ(w) where c1 6= 0 and ψ(w) = cnw
n + · · ·

is a convergent power series where cn 6= 0, n ≥ 2. It has the absolute value of the
derivative |c1| = rj,l(a)/rj,l(a

′) at the origin. Then we have R1(a) ≤ |c1| ≤ 1/R1(a
′).

Let

c = c(a, a′) =
1

2
log

(
−
2 log(R2(a)R1(a

′))

πm

)
,

where m = minj mj . We take s0 > c and fix it, and also take any s > s0. Let
R0 = exp(−πm exp(2s0)) and we have R0 < (R2(a)R1(a

′))2. Now, we consider the
following continuous mapping Fj,l of D(1) onto the image of Ij,l.

Fj,l(w) =





w (0 < |w| ≤ R0)

c
2
(

1− log |w|
logR0

)

1 w (R0 ≤ |w| ≤ R
1
2

0 )

c1w + φ(w)ψ(w) (R
1
2

0 ≤ |w| ≤ 2R
1
2

0 )

Ij,l(w) (2R
1
2

0 ≤ |w| < 1)

where φ(w) = (|w| − R
1
2

0 )/R
1
2

0 ∈ [0, 1]. Let [S, f ] = Φ̂([X, g], a, t, s) and [S ′, f ′] =

Φ̂([X, g], a′, t, s). Our strategy is that, we construct a quasiconformal mapping of
S onto S ′ which is homotopic to f ′ ◦ f−1 to estimate dT ([S, f ], [S ′, f ′]). By the

construction of Φ̂, S and S ′ are assembled by

Aj,l(s) = {exp(−πmj exp(2s)) < |w| < 1}

for any j = 1, . . . , k and l = 1, 2 with the gluings come from Jc and J ′
c respectively.

Hence, we show that the mapping Fj,l is quasiconformal, and modify it to the mapping
of Aj,l(s) which is still quasiconformal. Finally we compose the mappings of all
j = 1, . . . , k and l = 1, 2, so that it becomes as a mapping of S onto S ′.

We see that Fj,l is the appropriate mapping. We apply Koebe’s 1/4-theorem to
Ij,l and conclude that the image Ij,l(D(1)) contains D(R1(a)/4) = D(R2(a)), and
the inequality R2(a) > (R2(a)R1(a

′))2 > R0 holds. This yields that the image of the
punctured disk D(R0) by Fj,l (it equals to itself) is contained in the image of D(1) by

Ij,l. The mapping satisfies that Fj,l(w) = c1w on {|w| = R
1
2

0 }. We can check that the

image of {R0 ≤ |w| ≤ R
1
2

0 } by Fj,l does not invert, and it is contained in D(R2(a)),

that is, R0 < |c1|R
1
2

0 < R2(a). Certainly, we can see that

R0 < R2(a)R1(a
′)R

1
2

0 < R1(a)R
1
2

0 ≤ |c1|R
1
2

0 < |c1|R2(a)R1(a
′) ≤ R2(a).

We confirm that the mapping Fj,l is a quasiconformal mapping. Clearly, the

mappings on {0 < |w| ≤ R0} and {2R
1
2

0 ≤ |w| < 1} are conformal. The mapping on

{R0 ≤ |w| ≤ R
1
2

0 } is a quasiconformal mapping. Indeed, if the mapping is transformed
by the multiple of R0, then we have the mapping

w 7→ |w|

log |c1|

logR
− 1

2
0 · |w|

i
arg c1

logR
− 1

2
0 w
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of {1 ≤ |w| ≤ R
− 1

2

0 } onto {1 ≤ |w| ≤ |c1|R
− 1

2

0 }. It consists of the twist of {1 ≤ |w| ≤

R
− 1

2

0 } of the angle arg c1 (see §2.8), and the expansion to {1 ≤ |w| ≤ |c1|R
− 1

2

0 }. The
absolute value of the Beltrami coefficient of the mapping is the following;

(5)

∣∣∣∣
log c1

logR0 − log c1

∣∣∣∣ < 1.

Since the mapping does not invert that we see as above, it is smaller than 1.
So, we aim at the mapping c1w+φ(w)ψ(w). We denote it by h(w) and compute

its partial derivatives. We have

hw(w) = c1 +
1

2R
1
2

0

w− 1
2 w̄

1
2ψ(w) + φ(w)

dψ(w)

dw
, hw̄(w) =

1

2R
1
2

0

w
1
2 w̄− 1

2ψ(w),

and

|hw(w)| ≥ |c1| −
1

2R
1
2

0

|ψ(w)| −

∣∣∣∣
dψ(w)

dw

∣∣∣∣ , |hw̄(w)| =
1

2R
1
2

0

|ψ(w)|.

We would like to obtain a lower bound of |hw(w)| − |hw̄(w)| apart from 0 and an
upper bound of the ratio |hw̄(w)/hw(w)| apart from 1. Let ψ(w) = wn−1ω(w) and
ω(w) = cnw+ · · · . The derivative is dψ(w)/dw = (n−1)wn−2ω(w)+wn−1dω(w)/dw.
We apply Koebe’s distortion theorem for conformal mappings to ω(w), then

∣∣∣∣
ω(w)

cn

∣∣∣∣ ≤
|w|

(1− |w|)2
,

∣∣∣∣
1

cn

dω(w)

dw

∣∣∣∣ ≤
1 + |w|

(1− |w|)3
.

On the other hand, we apply de Branges’s theorem to I(w)/c1, then |cn/c1| ≤ n. Let

R = 2R
1
2

0 , and we notice that the domain of h is contained in |w| ≤ R. We combine
the above inequalities, and have

|ψ(w)| ≤
n|c1||w|

n

(1− |w|)2
≤

n|c1|R
n

(1− R)2
,

∣∣∣∣
dψ(w)

dw

∣∣∣∣ ≤ (n− 1)|w|n−2|ω(w)|+ |w|n−1

∣∣∣∣
dω(w)

dw

∣∣∣∣

≤
n(n− 1)|c1||w|

n−1

(1− |w|)2
+
n|c1||w|

n−1(1 + |w|)

(1− |w|)3

=
|c1||w|

n−1(n2 + (2n− n2)|w|)

(1− |w|)3
≤
n2|c1|R

n−1

(1−R)3

when n ≥ 2.

Claim 3.7. If R < exp(−1), then nRn ≤ 2R2 and n2Rn−1 ≤ 4R for any n ≥ 2.

Proof. The function xRx (x > 0) has a maximum value at x = −1/(logR) < 1
and is monotone decreasing in x > −1/(logR), then we have nRn ≤ 2R2. Simi-
larly we consider the function x2Rx−1 (x > 0). It has a maximum value at x =
−2/(logR) < 2 and is also monotone decreasing in x > −2/(logR), then we have
n2Rn−1 ≤ 4R. �

By a rough estimation, R = 2R
1
2

0 < 2R2(a)R1(a
′) < exp(−32π)/2 < exp(−1), it

fills the requirement of the claim. Therefore, the estimates of the absolute values of
ψ and its derivative are

|ψ(w)| ≤
2|c1|R

2

(1− R)2
,

∣∣∣∣
dψ(w)

dw

∣∣∣∣ ≤
4|c1|R

(1− R)3
.
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We give a lower estimation of |hw(w)| − |hw̄(w)| as follows;

|hw(w)| − |hw̄(w)| ≥ |c1| −
2

R

2|c1|R
2

(1− R)2
−

4|c1|R

(1−R)3

= |c1|

(
1−

4R

(1− R)2
−

4R

(1−R)3

)

= |c1|
1− 11R + 7R2 −R3

(1−R)3
> 0.

The first positive zero of the right hand side is about 0.096788. Of course, our R
is smaller than such value. Then |hw|

2 − |hw̄|
2 > 0, it says that h is a locally C1-

diffeomorphism. Moreover, since the domain of h, that is, {R
1
2

0 ≤ |w| ≤ 2R
1
2

0 } is
a compact set, h is proper, so it is a covering mapping. Since h is a rotation on

{|w| = R
1
2

0 }, the covering transformation group of h is Z/Z = 1. We conclude that h
is a C1-diffeomorphism. We calculate the dilatation

∣∣∣∣
hw̄
hw

∣∣∣∣ ≤
2|c1|R

(1− R)2
1

|c1|
(
1− 2R

(1−R)2
− 4R

(1−R)3

)

=
2R(1− R)

(1− R)3 − 2R(1−R)− 4R
=

2R(1− R)

1− 9R + 5R2 − R3
< 1.

(6)

The right hand side equals to 1 if R is also about 0.096788. Consequently, h is a
quasiconformal mapping, then the entire mapping Fj,l is also quasiconformal for any
j = 1, . . . , k and l = 1, 2.

Remark. The modified part of Fj,l from Ij,l does not contact the critical sets

CJc and CJ ′
c
. That is, the image of {0 < |w| ≤ 2R

1
2

0 } by Fj,l is contained in D(1).

Because, if |z| = 2R
1
2

0 = R,

|Ij,l(w)| = |h(w)| ≤ |c1||w|+ |ψ(w)| ≤
R

R1(a′)
+

2R2

R1(a′)(1−R)2

=
R

R1(a′)

{
1 +

2R

(1− R)2

}
< 2R2(a)

{
1 +

2R

(1−R)2

}

<
e−16π

2

{
1 +

2R

(1− R)2

}
< 1.

We construct a quasiconformal mapping of S onto S ′ which is homotopic to f ′ ◦
f−1. We recall that S and S ′ are assembled by Aj,l(s) = {exp(−πmj exp(2s)) < |w| <
1}. We notice that exp(−πmj exp(2s)) < R0 for any j and l. Let Hj,l be a mapping of
Aj,l(s) onto Aj,l(∞) = D(1) which enlarges the sub annulus {exp(−πmj exp(2s)) <
|w| < R0} to {0 < |w| < R0}. Therefore, we can define the composition

H−1
j,l ◦ Fj,l ◦Hj,l(w) =

{
w (exp(−πmj exp(2s)) < |w| ≤ R0)

Fj,l(w) (R0 ≤ |w| < 1)

becomes as a mapping F of S onto S ′ after combining the mappings of all j = 1, . . . , k
and l = 1, 2. We confirm that F is homotopic to f ′ ◦ f−1. We recall that the original
mapping Ij,l corresponding to the identity mapping of X. By the construction of

Φ̂, the mapping Ij,l leads to the same homotopy class of f ′ ◦ f−1 in the outside of
neighborhoods of core curves f(γj) and f ′(γj) on S and S ′ respectively. Therefore, we
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only consider Fj,l(z) in {R0 ≤ |z| ≤ R
1
2

0 } and {R
1
2

0 ≤ |z| ≤ 2R
1
2

0 }. In {R0 ≤ |z| ≤ R
1
2

0 },
Fj,l induces the twist of arg c1 (and an expansion). Let cj,l be as c1 in Aj,l(∞). We can

choice each argument of c1 such that | arg cj,1 + arg cj,2| ≤ π. In {R
1
2

0 ≤ |z| ≤ 2R
1
2

0 },
if the half twist (θ = π) appears, it has a large dilatation. Indeed, its dilatation k(π)
is

k(π) =

∣∣∣∣
1

2 log 2/π + i

∣∣∣∣ ≈ 0.914886.

However, the mapping Fj,l has the dilatation at most about 2.187543× 10−44. (The
right hand side of (6) as R = exp(−32π)/2.) We can say that the mapping F cannot
change the homotopy class of f ′ ◦ f−1. Furthermore, for the gluing of each Aj,l(s) of
S and S ′, it is used a common t. Therefore, we finish to prove that the mapping F
is homotopic to f ′ ◦ f−1.

We have

dT ([R, h], [R′, h′]) ≤
1

2
logK(F ) =

1

2
logmax

j,l

{
1 + (k1)j,l
1− (k1)j,l

,
1 + (k2)j,l
1− (k2)j,l

}
,

where (k1)j,l, (k2)j,l are (5), (6) for each j = 1, . . . , k and l = 1, 2 respectively. We set
the constant C(a, a′, s0) as the right hand side of the above inequality, and it tends
to 0 as s0 → ∞ (so s→ ∞) since (5), (6) tend to 0.

The last inequality is again easy. We set [S, f ] = Φ̂([X, g], a, t, s), [S ′, f ′] =

Φ̂([X ′, g′], a′, t′, s′), and ϕ is the holomorphic quadratic differential on S determined

by X, a, and the construction of Φ̂. Let ρ be a conformal metric on R equals to |ϕ|
1
2 .

By the definition of the extremal lengths in §2.2, we have

a2j∑k

j=1 a
2
jmje2s

=
(2πaj)

2

∑k

j=1(2πaj)
2mje2s

=
lρ(f(γj))

2

Aρ

≤ Ext[S,f ](γj) ≤
1

mje2s
.

For [S ′, f ′], the similar inequality holds. By Kerckhoff’s formula of the Teichmüller
distance (Theorem 2.1),

dT ([S, f ], [S ′, f ′]) ≥
1

2
log

Ext[S′,f ′](γj)

Ext[S,f ](γj)
≥

1

2
log

(
a′2j∑k

j=1 a
′2
j mje2s

′
·mje

2s

)

= s− s′ +
1

2
log

a′2j mj∑k
j=1 a

′2
j mj

.

This is satisfied for any j = 1, . . . , k, then the following holds;

dT ([S, f ], [S ′, f ′]) ≥ s− s′ +
1

2
log

maxj a
′2
j mj∑k

j=1 a
′2
j mj

.

An easy method gives that the logarithmic part of the above inequality equals or
greater than 1/k. By the symmetry of the distance, the similar inequality that
changes s− s′ to s′ − s holds. Consequently, we obtain (4). �

3.6. Questions.

(1) What is an upper estimate of dT (Φ̂([X, g], a, t, s), Φ̂([X ′, g′], a, t, s))?
(2) What is a lower estimate of the Teichmüller distance between any two points

depending on d([X, g], [X ′, g′])? (Maybe, it will be required that parameters
s, s′ are sufficiently large.)
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