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Abstract. In this paper, we establish some Liouville type theorem for nonlinear elliptic equa-

tion in the Heisenberg group with nonlinear boundary value condition. We use the moving plane

method to prove our result.

1. Introduction

Liouville type theorems are very important in proving the priori bound for elliptic
equations. More precisely, to prove the priori bound, we usually use the blow up
method. After blowing up, we get a bounded solution for the limit equation, this
contradicts the nonexistence result of the limit equation. Hence, the priori bound
follows.

In the past few years, Liouville theorems for nonlinear elliptic equation on Hein-
senberg have attracted much attention of mathematicians. For example, in the paper
[1], the authors considered the following elliptic inequality on the Heisenberg group
Hn

(1.1) ∆Hu+ up ≤ 0 in Hn.

They proved that problem (1.1) possesses only trivial non-negative solution for 1 <
p ≤ Q

Q−2
, where Q = 2n+2 is the homogeneous dimension of Hn, a similar result for

the Laplacian equations on R
N . Moreover, the authors also proved the exponent Q

Q−2

is optimal for this inequality in the sense that, if p > Q

Q−2
, then problem (1.1) indeed

has a nontrivial positive solution. After the work of [1], there are plenty of works
concerning on the nonexistence results for the following elliptic equation rather than
elliptic inequality

(1.2) ∆Hu+ up = 0 in Hn.

In the Euclidean case, nonexistence of positive solution for equation

(1.3) ∆u+ up = 0 in R
N

has been established by Gidas and Spruck in [10]. They proved that problem (1.3)
does not possess positive solutions for 0 < p < N+2

N−2
. The proof of this result was

simplified by Chen and Li by using the moving plane method in [5]. Moreover, in both
papers, they proved that the exponent N+2

N−2
is optimal. Inspired by results for the

Euclidean case, a natural question is that whether similar nonexistence result holds
for problem (1.2) with 0 < p < Q+2

Q−2
. However, this problem has not been completely

solved yet, we only mention some partial results here. After the work [1], Birindelli
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and Prajapat studied the nonexistence result for cylindrical solution in [3], they
proved problem (1.2) does not possess positive cylindrical solutions providing 0 < p <
Q+2
Q−2

. Here we say that u is cylindrical in Hn if for any (x, y, t) ∈ Hn, where (x, y) ∈

R
N × R

N and t ∈ R is the anisotropic direction, we have u(x, y, t) = u(r, t) with

r =
√

x2 + y2. They used the moving plane method to prove this result. Although
the Heisenberg Laplacian satisfies the maximum principle, it is not invariant by the
usual reflection with respect to a hyperplane. In order to apply the moving plane
method, the authors introduced a new reflection called the “H-reflection” for the
Heisenberg Laplacian. Because the Heisenberg Laplacian is invariant with respect
to the H-reflection only for cylindrical solution, so the authors only obtained the
Liouville theorem for cylindrical solutions. After this work, in order to solve the
nonexistence result for any positive solution, much attentions have been paid to
prove that any positive solution for problem (1.2) is cylindrical symmetric. But up
to now, this conjecture has not been solved completely yet, partial results on this
aspect can be found in [2, 4, 9] and etc.

Besides using the moving plane method, other methods were also used to prove
the nonexistence results. For example, Xu [17] used the vector field method to study
the nonexistence result for the following equation

(1.4) ∆Hu+ h(x)up = 0 in Hn.

Under some assumptions on the weight h(x), she proved equation (1.4) possesses no
positive solutions providing 1 < p < 1 + 8n+7

(2n+1)2
. We note the exponent 1 + 8n+7

(2n+1)2
is

smaller than Q+2
Q−2

.
Recently, in order to overcome the nonlocal property of the fractional Heisenberg

Laplacian equations

(1.5) P 1
2
u = up in Hn,

Frank, González, Monticelli and Tan [8] studied the extended problem on Hn ×R
+.

More precisely, they proved problem (1.5) is equivalent to the following local problem

(1.6)

{

∂2U
∂λ2 + λ2 ∂U

2

∂t2
+ 1

2
∆HU = 0 in Ĥn

+ = Hn ×R
+,

−c∂U
∂λ

= U(., 0)p on ∂Ĥn
+ = Hn × {0},

where c is a positive constant depending only on n. In a sequencing paper [6], Cinti
and Tan proved the nonexistence of positive solution for problem equation (1.6).
More precisely, they proved problem (1.6) possesses no positive cylindrical solutions
provided 0 < p < Q+1

Q−1
, where Q = 2n+ 2 is the homogenous dimension of Hn.

In this paper, we study another problem

(1.7)

{

∂2u
∂λ2 + 4λ2 ∂u

2

∂t2
+∆Hu+ f(u) = 0 in Ĥn

+ = Hn ×R
+,

−∂u
∂λ

= g(u) on ∂Ĥn
+ = Hn × {0},

i.e., both the equation and the boundary condition are nonlinear. Our main result is
the following

Theorem 1.1. Suppose that u ∈ C0(Ĥn
+) is a nonnegative cylindrical solution

for problem (1.7), i.e., u(x, y, t, λ) = u(r0, t, λ) with r0 =
√

x2 + y2, f, g : [0,+∞) →
[0,+∞) are continuous functions with the following properties:

(i) f(t), g(t) are nondecreasing in (0,+∞),

(ii) h(t) = f(t)

t
Q+3
Q−1

, k(t) = g(t)

t
Q+1
Q−1

are nonincreasing in (0,+∞),
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(iii) either h or k is not a constant.

Then u ≡ c with f(c) = g(c) = 0.

We want to use the moving plane method to prove our result. However, since the
nonlinearities are only assumed to be continuous rather than Lipschitz continuous,
the solutions are generally not of C2 class. As a result, the usual maximum principle
in a differential form does not work. In order to overcome this difficulty, we use some
integral inequality to substitute the maximum principle, which was first introduced by
Terracini in [15, 16]. After Terracini’s work, moving plane method based on integral
inequalities was widely used to prove Liouville theorems. For example, Damascelli
and Gladiali [7] proved some nonexistence results for the Laplacian equations with
general nonlinearities. Guo and Liu studied the general Liouville type theorem for
elliptic system and biharmonic equation in [12, 13, 11] respectively. Yu studied the
nonlinear Liouville type theorem for integral equation and integral system in [18].
Other results can be found in [19, 20] and etc.

The rest of this paper is devoted to the proof of Theorem 1.1. For completeness,
we first give some preliminaries on Heisenberg group in Section 2. The proof of
Theorem 1.1 is finally finished in Section 3. In the following, we denote by C some
constant, which may vary from line to line.

2. Preliminaries

In this section, we collect some basic properties concerning the Heisenberg group
Hn and its extension Ĥn

+. We also give some results on the operators ∆H and

L := ∂2

∂λ2 + 4λ2 ∂2

∂t2
+ ∆H . For proofs and more information we refer for example to

[12, 14, 8].
For elements in Hn, we shall use the notation ξ = (x, y, t) ∈ R

N × R
N × R,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). The Heisenberg group Hn is the
space R

2n+1 endowed with the group action ◦ defined by

ξ0 ◦ ξ =

(

x+ x0, y + y0, t+ t0 + 2

n
∑

i=1

(xiyi0 − yixi0)

)

,

where ξ = (x, y, t) and ξ0 = (x0, y0, t0). Let us denote by δλ the parabolic dilation in
R

2n+1, i.e.,

δλ(ξ) = (λx, λy, λ2t),

then it is easy to see δλ(ξ0 ◦ ξ) = δλ(ξ0) ◦ δλ(ξ). Moreover, the norm of Hn defined by

ρ = ‖ξ‖ =

[

( n
∑

i=1

(x2i + y2i )

)2

+ t2

]
1
4

is homogeneous of degree one with respect to the dilation δλ.
The associated distance between two points ξ, ξ0 of Hn is defined accordingly by

d(ξ, ξ0) = ‖ξ−1
0 ◦ ξ‖,

where ξ−1
0 is the inverse of ξ0 with respect to ◦. The open ball of radius R centered

at ξ0 is defined by

B(ξ0, R) = {ξ ∈ Hn : d(ξ, ξ0) < R}.

A direct calculation shows that

|B(ξ0, R)| = |B(0, R)| = RQ|B(0, 1)|,
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where Q = 2n + 2 and | · | denotes the Lebesgue measure. The number Q is usually
called the homogeneous dimension of Hn.

To define the gradient and the Heisenberg Laplacian of a function in Hn, we
introduce the following vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, 2, . . . , n,

Yi =
∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, . . . n,

and

T =
∂

∂t
.

Then {Xi, Yi, T} (i = 1, 2, . . . , n) form a base of the Lie algebra of vector fields which
is left invariant with respect to the Heisenberg action ◦. The Heisenberg gradient of
a function u is defined by

∇Hu = (X1u,X2u, . . . , Xnu, Y1u, Y2u, . . . , Ynu).

Moreover, the Heisenberg Laplacian ∆H is defined by

∆H =

n
∑

i=1

(X2
i + Y 2

i ).

A direct calculations show that

∆H =
n

∑

i=1

(

∂2

∂x2i
+

∂2

∂y2i
+ 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2i + y2i )

∂2

∂t2

)

.

For cylindrical function u(r, t), the above formula can be simplified to

∆Hu(r, t) =
∂2u

∂r2
+

2n− 1

r

∂u

∂r
+ 4r2

∂2u

∂t2
.

Analogously to Hn, in Ĥn
+, we define the following group law: for z = (x1, . . . , xn,

y1, . . . , yn, t, λ) ∈ Ĥn
+ and ẑ = (x̂1, . . . , x̂n, ŷ1, . . . , ŷn, t̂, λ̂) ∈ Ĥn

+, we define

ẑ ◦ z :=

(

x̂+ x, ŷ + y, t̂+ t+ 2
n

∑

j=1

(xj ŷj − yjx̂j), λ̂+ λ

)

.

Moreover, the norm of z ∈ Ĥn
+ is given by

‖z‖ = [(|x|2 + |y|2 + λ2)2 + t2]
1
4

and the distance dĤ between z and ẑ is defined by

dĤ(z, ẑ) := ‖ẑ−1 ◦ z‖.

Observe that when λ = λ̂ = 0, that is, z and ẑ belong toHn, then dĤ(z, ẑ) = dH(z, ẑ).

Similarly, for any given ẑ ∈ Ĥn
+, we define the open ball with center at ẑ and radius

R as

B(ẑ, R) = {z ∈ Ĥn
+ | dĤ(z, ẑ) < R}

and for z0 ∈ Hn × {0}, we denote

B+(z0, R) = {z ∈ Ĥn
+ | dĤ(z, z0) < R, λ > 0}.
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Hence, with the above notations, the operator L can be written explicitly as

L =
∂2

∂λ2
+

n
∑

j=1

(

∂2

∂x2j
+

∂2

∂y2j
+ 4yj

∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)

+ 4

(

λ2 +

n
∑

j=1

(x2j + y2j )
) ∂2

∂t2
.

The operator L can also be written as L = div(A∇T ), where A is a (2n+2)×(2n+2)
symmetric matrix with akj = δkj for k, j = 1, 2, . . . , 2n, aj,2n+1 = a2n+1,j = 2yj for
j = 1, 2, . . . , n, aj,2n+1 = a2n+1,j = −2xj for j = n + 1, n + 2, . . . , 2n, a2n+1,2n+1 =
4(|x|2 + |y|2 + λ2), a2n+2,2n+2 = 1 and aj,2n+2 = a2n+2,j = 0 for j = 1, 2, . . . , 2n+ 1.

We finally introduce the CR inversion on Ĥn
+ to end this section, which will be

used later. As in [6], for any (x, y, t, λ) ∈ Ĥn
+, we denote r = (|x|2 + |y|2 + λ2)

1
2 and

ρ = (r4 + t2)
1
4 . Also, we set

x̃i =
xit+ yir

2

ρ4
, ỹi =

yit− xir
2

ρ4
, t̃ = −

t

ρ4
, λ̃ =

λ

ρ2
.

We define the CR inversion of a regular function u(x, y, t, λ) in Ĥn
+ as

v(x, y, t, λ) =
1

ρQ−1
u(x̃, ỹ, t̃, λ̃).

As for u and its CR inversion v, we have the following

Lemma 2.1. Suppose that u ∈ C2(Ĥn
+)∩C(Ĥ

n
+) is a solution of (1.7), then the

CR inversion v of u satisfies

(2.1)

{

−Lv = f(u)
ρQ+3 in Ĥn

+ \ {0},

− ∂v
∂λ

= g(u)
ρQ+1 on ∂Ĥn

+ \ {0}.

For the proof of this Lemma, please see the proof of Lemma 3.1 in [6].

3. Proof of Theorem 1.1

With the above notations and preliminaries, we can prove Theorem 1.1 now. We
want to use the moving plane method to prove our result. The first step of moving
plane is to show that this procedure can be started at some point. Since we don’t
know the decay behaviors of u, it seems impossible to use this method directly on u.
As one usually use the Kelvin transformation in Euclidean case, we turn to the CR
inversion function v of u.

We recall that v, the CR inverse of u at (0, 0, 0, 0), is defined by

v(x, y, t, λ) =
1

ρQ−1
u(x̃, ỹ, t̃, λ̃).

From the definition, we know that v is continuous in Ĥn
+ \ {0} and v decays to zero

at infinity. Moreover, we have the following decay estimate

(3.1) lim
ρ→∞

ρQ−1v(r, t, λ) = u(0).

Since u is a cylindrical function and satisfies the equation (1.7), then v is also
cylindrical and satisfies

(3.2)

{

−Lv = f(u)
ρQ+3 in Ĥn

+ \ {0},

− ∂v
∂λ

= g(u)
ρQ+1 on ∂Ĥn

+ \ {0}
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by Lemma 2.1. If we define h(t) = f(t)

t
Q+3
Q−1

and k(t) = g(t)

t
Q+1
Q−1

, then the above equation

turns to be

(3.3)

{

−Lv = h(ρQ−1v)v
Q+3

Q−1 in Ĥn
+ \ {0},

− ∂v
∂λ

= k(ρQ−1v)v
Q+1

Q−1 on ∂Ĥn
+ \ {0}.

Now we can start the moving plane method on the function v. First, we give the
environment we will work in. Let Σµ = {(x, y, t, λ) ∈ Ĥn

+ | t ≥ µ}, Tµ = {(x, y, t, λ) ∈

Ĥn
+|t = µ} and pµ = (0, 0, 2µ, 0). As in [6], we define the H-reflection function vµ of

v with respect to Tµ on Σµ by

vµ(x, y, t, λ) = vµ(r0, t, λ) = v(r0, 2µ− t, λ) = v(y, x, 2µ− t, λ)

for any (x, y) such that (x2 + y2)
1
2 = r0. Then we can infer from equation (3.3) that

vµ satisfies

(3.4)







−Lvµ = h(ρQ−1
µ vµ)v

Q+3

Q−1
µ in Ĥn

+ \ {pµ},

−∂vµ
∂λ

= k(ρQ−1
µ vµ)v

Q+1

Q−1
µ on ∂Ĥn

+ \ {pµ}.

If we defined wµ = v − vµ, then we have the following key lemma.

Lemma 3.1. For any fixed µ > 0, we have w+
µ , v ∈ L2#(Σµ) ∩ L∞(Σµ) with

2# = 2(Q+1)
Q−1

. Further more, there exists Cµ > 0, which is nonincreasing in µ, such

that
ˆ

Σµ

|∇Ĥ(v − vµ)
+|2 dz

≤ Cµ

[

(
ˆ

Aµ

1

|ρ|2Q+2

)
2

Q+1

+

(
ˆ

Bµ

1

|ρ|2Q

)
1
Q

]

·

(
ˆ

Σµ

|∇Ĥ(v − vλ)
+|2 dz

)

,

(3.5)

where ∇Ĥ = ( ∂
∂λ
, 2λ ∂

∂t
, X1, X2, . . . , Xn, Y1, Y2, . . . , Yn) and Aµ = {(x, y, t, λ) ∈ Σµ|v >

vµ}, Bµ = {(x, y, t, λ) ∈ ∂Σµ|v > vµ, λ = 0}.

Proof. Since µ > 0, there exists r > 0 such that Σµ ⊂ Ĥn
+ \ Br(0). By the

decay estimate of v, see equation (3.1), we have v and hence (v − vµ)
+ ≤ v ∈

L2#(Σµ)∩L
∞(Σµ). Now, we choose a cylinder symmetric cut-off function 0 ≤ ηε ≤ 1

such that

ηε =

{

1 if 2ε ≤ ‖z ◦ p−1
µ ‖ ≤ 1

ε
,

0 if ‖z ◦ p−1
µ ‖ ≤ ε or ‖z ◦ p−1

µ ‖ ≥ 2
ε
,

|∇Ĥη| ≤
C
ε

for ε < ‖z ◦ p−1
µ ‖ ≤ 2ε and |∇Ĥη| ≤ Cε for 1

ε
< ‖z ◦ p−1

µ ‖ ≤ 2
ε
.

Since v and vµ satisfy the following equations

−Lv(x, y, t) = h(ρQ−1v(x, y, t, λ))v(x, y, t, λ)
Q+3

Q−1

and

−Lvµ(x, y, t) = h(ρQ−1
µ vµ(x, y, t, λ))vµ(x, y, t, λ)

Q+3

Q−1 ,
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we use ψ = ηε(v − vµ)
+ as a test function and denote φ = η2ε(v − vµ)

+, then we get
ˆ

Σµ∩{2ε≤‖z◦p−1
µ ‖≤ 1

ε
}

|∇Ĥ(v − vµ)
+|2 ≤

ˆ

Σµ

|∇Ĥψ|
2

=

ˆ

Σµ

∇Ĥ(v − vµ)
+∇Ĥφ dz +

ˆ

Σµ

[(v − vµ)
+]2|∇Ĥηε|

2 dz

=

ˆ

Aµ

−L(v − vµ)φ dz +

ˆ

Bµ

∂(v − vµ)

∂ν
φ dz′ + Iε

=

ˆ

Aµ

[

h(ρQ−1v)v
Q+3

Q−1 − h(ρQ−1
µ vµ)v

Q+3

Q−1
µ

]

φ dz

+

ˆ

Bµ

[

k(ρQ−1v)v
Q+1

Q−1 − k(ρQ−1
µ vµ)v

Q+1

Q−1
µ

]

dz′ + Iε,

(3.6)

where Iε =
´

Σµ
[(v− vµ)

+]2|∇Ĥηε|
2 dz. Since h, k are nonincreasing functions, ρ > ρµ

and v(z) > vµ(z) in Aµ and Bµ, we conclude that

h(ρQ−1v) ≤ h(ρQ−1
µ vµ) and k(ρQ−1v) ≤ k(ρQ−1

µ vµ)

in Aµ and Bµ respectively. Hence we have
ˆ

Σµ∩{2ε≤‖z◦p−1
µ ‖≤ 1

ε
}

|∇Ĥ(v − vµ)
+|2

≤

ˆ

Aµ

h(ρQ−1v)
[

v
Q+3

Q−1 − v
Q+3

Q−1
µ

]

φ dz +

ˆ

Bµ

k(ρQ−1v)
[

v
Q+1

Q−1 − v
Q+1

Q−1
µ

]

dz′ + Iε.

By the decay estimate of v, see equation (3.1), we conclude that the constant C1
µ :=

Q+3
Q−1

sup{h(ρQ−1v(x, y, t, λ))+k(ρQ−1v(x, y, t, λ))|t ≥ µ} is well-defined for µ > 0 and
is nonincreasing in µ. So we deduce from the above inequality that

ˆ

Σµ∩{2ε≤‖z◦p−1
µ ‖≤ 1

ε
}

|∇Ĥ(v − vµ)
+|2 dz

≤ C1
µ

[
ˆ

Aµ

v
4

Q−1 (v − vµ)φ dz +

ˆ

Bµ

v
2

Q−1 (v − vµ)φ dz
′

]

+ Iε.

Moreover, if we set C2
µ = C1

µ · sup{v(x, y, t, λ)
4

Q−1ρ4 + v(x, y, t, λ)
2

Q−1ρ2 | t ≥ µ}, then
we infer from the decay estimate of v that C2

µ is still well-defined for µ > 0 and is
nonincreasing in µ. So it follows from the above inequality that

ˆ

Σµ∩{2ε≤‖z◦p−1
µ ‖≤ 1

ε
}

|∇Ĥ(v − vµ)
+|2 dz

≤ C2
µ

[
ˆ

Aµ

1

ρ4
(v − vµ)φ dz +

ˆ

Bµ

1

ρ2
(v − vµ)φ dz

′

]

+ Iε

≤ C2
µ

[
ˆ

Aµ

1

ρ4
[(v − vµ)

+]2η2ε dz +

ˆ

Bµ

1

ρ2
[(v − vµ)

+]2η2ε dz
′

]

+ Iε

≤ C2
µ

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

·

(
ˆ

Σµ

[(v − vµ)
+]

2Q+2

Q−1 dz

)
Q−1

Q+1

+ C2
µ

(
ˆ

Bµ

1

ρ2Q

)
1
Q
(
ˆ

∂Σµ

[(v − vµ)
+]

2Q
Q−1 dz′

)
Q−1

Q

+ Iε.

(3.7)
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Next we claim that Iε → 0 as ε → 0. In fact, if we denote Bε = {z ∈ Σµ : ε <
||z ◦ p−1

µ ‖ < 2ε or 1
ε
< ‖z ◦ p−1

µ ‖ < 2
ε
}, then we get

ˆ

Bε

|∇Ĥηε|
Q+1 dz ≤ C.

Hence, we infer from Hölder inequality that

Iε ≤

(
ˆ

Bε

[(v−vµ)
+]2

#

dz

)
2

2#

·

(
ˆ

Bε

|∇Ĥηε|
Q+1 dz

)
2

Q+1

≤ C

(
ˆ

Bε

[(v−vµ)
+]2

#

dz

)
2

2#

→ 0

as ε → 0.
Finally, let ε → 0 in equation (3.7), and set Cµ = C2

µ(S + ST ) with S and ST

being the Sobolev constant and Sobolev trace inequality constant respectively, then
we get

ˆ

Σµ

|∇Ĥ(v − vµ)
+|2 dz

≤ C2
µ

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

·

(
ˆ

Σµ

[(v − vµ)
+]

2Q+2

Q−1 dz

)
Q−1

Q+1

+ C2
µ

(
ˆ

Bµ

1

ρ2Q

)
1
Q
(
ˆ

∂Σµ

[(v − vµ)
+]

2Q
Q−1 dz′

)
Q−1

Q

≤ Cµ

[

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

+

(
ˆ

Bµ

1

ρ2Q

)
1
Q

]

·

(
ˆ

Σµ

|∇Ĥ(v − vµ)
+|2 dz

)

.

Moveover, it follows from the above procedure that Cµ satisfies all the requirements
in the lemma. �

Before we continue the proof of Theorem 1.1, we give some comment on this
Lemma. As we notified in the introduction of this paper, since f, g are only assumed
to be continuous, the solution is usually not of C2 class, hence the maximum principles
in differential forms do not work. Thanks to the inequality of this Lemma, it can
play the same role as the maximum principle. In fact, if we can prove

Cµ

[

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

+

(
ˆ

Bµ

1

ρ2Q

)
1
Q

]

< 1,

then we get v ≤ vµ, the same conclusion as the maximum principle in a differential
form implies.

The next lemma shows that we can start the moving plane for µ sufficient large.

Lemma 3.2. Under assumptions of Theorem 1.1, there exists µ0 > 0, such that

for all µ ≥ µ0, we have v ≤ vµ in Σµ.

Proof. The conclusion of this lemma is a direct corollary of Lemma 3.1. In fact,
by the decay behavior of v, see equation (3.1), we can choose µ0 large enough such
that

Cµ

[

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

+

(
ˆ

Bµ

1

ρ2Q

)
1
Q

]

<
1

2

for all µ ≥ µ0, then equation (3.5) implies that
ˆ

Σµ

|∇Ĥ(v − vµ)
+|2 dz = 0.
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The assertion follows. �

Now we move the plane from the right to the left and suppose this process stops
at µ1. More precisely, we define

(3.8) µ1 = inf{µ | v ≤ vµ̄ in Σµ̄ for all µ̄ ≥ µ},

then we have the following

Lemma 3.3. If µ1 > 0, then v(z) ≡ vµ1
(z) for all z ∈ Σµ1

.

Proof. We prove the conclusion by contradiction. Suppose that v 6≡ vµ1
, then we

claim that the plane can be moved to the left a little. That is, we will show that there
exists δ > 0, such that v(z) ≤ vµ(z) in Σµ for all µ ∈ [µ1 − δ, µ1]. This contradicts
the choice of µ1.

Now we prove our claim. Suppose that v(z) 6≡ vµ1
(z), then we infer from the

continuity that v(z) ≤ vµ1
(z). Moreover, we have

h(ρQ−1v)v
Q+3

Q−1 =
f(ρQ−1v)

ρQ+3
≤
f(ρQ−1vµ1

)

ρQ+3
=

f(ρQ−1vµ1
)

[ρQ−1vµ1
]
Q+3

Q−1

v
Q+3

Q−1
µ1

≤
f(ρQ−1

µ1
vµ1

)

[ρQ−1
µ1 vµ1

]
Q+3

Q−1

v
Q+3

Q−1
µ1 = h(ρQ−1

µ1
vµ1

)v
Q+3

Q−1
µ1 ,

where the first inequality holds since f is nondecreasing, the second inequality is a
consequence of (ii) in Theorem 1.1.

This equation implies
−Lv ≤ −Lvµ1

,

then we infer from the maximum principle in [6] that v < vµ1
in Σµ1

since v 6≡
vµ1

. Moreover, since 1
ρ2Q+2χAµ

→ 0, 1
ρ2Q

χBµ
→ 0 a.e. as µ → µ1 and 1

ρ2Q+2χAµ
≤

1
ρ2Q+2χµ1−δ,

1
ρ2Q

χBµ
≤ 1

ρ2Q
χµ1−δ for µ ∈ [µ1 − δ, µ1] and some δ > 0, then we infer

from the dominated convergence theorem that
ˆ

Aµ

1

ρ2Q+2
dz → 0

and
ˆ

Bµ

1

ρ2Q
dz′ → 0

as µ → µ1. In particular, there exists δ > 0, such that

Cµ

[

(
ˆ

Aµ

1

ρ2Q+2

)
2

Q+1

+

(
ˆ

Bµ

1

ρ2Q

)
1
Q

]

<
1

2

for all µ ∈ [µ1 − δ, µ1]. Then we infer from Lemma 3.1 that v ≤ vµ for all µ ∈
[µ1 − δ, µ1]. This contradicts the definition of µ1. �

Proposition 3.4. Let u, f, g as in Theorem 1.1 and suppose that u is positive.

Let v be the CR inversion of u centered at a point p = (0, 0, t0, 0), then v is symmetric

with respect to Tt0 .

Proof. To prove that v is symmetric with respect to Tt0 , we use the method
of moving plane as above. We first make a CR inversion at p = (0, 0, t0, 0), then
we carry out the procedure as the above and get the corresponding µ1 = µ1(t0). If
µ1 > t0, then it follows from Lemma 3.3 that v is symmetric with respect to Tµ1

. But
the symmetry together with equation (3.2) and equation (3.3) imply that ‖zµ‖ = ‖z‖
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since either h or k is not a constant, which is impossible. Hence we get that µ1 ≤ t0.
Similarly, we can also perform the moving plane procedure from the left and find a
corresponding µ′

1 ≥ t0. Finally, we infer from vµ1
(z) ≥ v(z) and vµ′

1
(z) ≤ v(z) that

µ1 = µ′
1 = t0. That is, v hence u is symmetric with respect to Tt0 . �

Proof of Theorem 1.1. By Proposition 3.4, we conclude that the CR inversion
function v of u at p = (0, 0, t0, 0) is symmetric with respect to the Tt0 for any t0 ∈ R.
Since t0 is arbitrary, then we conclude that u is independent of t. However, this
implies that u satisfies the equation

{

−∆u = f(u) in R
2n+1
+ ,

−∂u
∂λ

= g(u) on ∂R2n+1
+ .

Since f, g is nondecreasing in (0,∞) and

f(t)

t
2n+3
2n−1

=
f(t)

t
Q+2

Q−2

t
Q+3

Q−1
− 2n+3

2n−1 ,
g(t)

t
2n+1
2n−1

=
g(t)

t
Q+1

Q−1

t
Q+1

Q−1
− 2n+1

2n−1

is decreasing in t, then Theorem 1.1 in [20] implies that u ≡ c with f(c) = g(c) =
0. �
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