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Abstract. We find a condition for the zeros of a Blaschke product B which guarantees that

B′ belongs to the Bergman space Ap

ω
induced by a doubling weight ω, and show that this condition

is also necessary if the zero-sequence of B is a finite union of separated sequences. We also give a

general necessary condition for the zeros when B′ ∈ Ap

ω
, and offer a characterization of when the

derivative of a purely atomic singular inner function belongs to Ap

ω
.

1. Introduction and main results

Let H(D) denote the space of analytic functions in the unit disc D = {z ∈
C : |z| < 1} of the complex plane C. A function ω : D → [0,∞), integrable over D,
is called a weight. It is radial if ω(z) = ω(|z|) for all z ∈ D. For 0 < p < ∞ and a
weight ω, the weighted Bergman space Ap

ω consists of f ∈ H(D) such that

‖f‖p
Ap

ω
=

ˆ

D

|f(z)|pω(z) dA(z) < ∞,

where dA(z) = dx dy
π

is the normalized Lebesgue area measure on D. As usual, Ap
α

stands for the classical weighted Bergman space induced by the standard radial weight
ω(z) = (1− |z|2)α, where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set

Mp(r, f) =

(
1

2π

ˆ 2π

0

|f(reit)|p dt
)1/p

, 0 < p < ∞,

and M∞(r, f) = max|z|=r |f(z)|. For 0 < p ≤ ∞, the Hardy space Hp consists of
f ∈ H(D) such that ‖f‖Hp = sup0<r<1Mp(r, f) < ∞.

A function Θ ∈ H∞ is an inner function if it has unimodular radial limits almost
everywhere on the boundary T of the unit disc D. The question of when the derivative
of an inner function belongs to the Hardy or the Bergman spaces has been a subject
of research since 1970’s. Membership of the derivative in the Hardy space Hp and its
Banach envelope Bp, with 0 < p < 1, was studied in [1, 3, 4, 7, 20, 33]. Derivatives of
inner functions in the weighted Bergman space Ap

α has been studied in [2, 19, 21], see
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[11, 13, 14, 15, 16, 17, 22, 32, 34] for recent developments. See also the monographs
[9] and [25]. Many known results on the classical weighted Bergman space Ap

α were
recently generalized in [6] to the setting of Ap

ω induced by a normal weight ω. Recall
that a radial weight ω is called normal if there exist real numbers a and b and
r0 ∈ (0, 1) such that

ω(r)

(1− r)a
ր ∞,

ω(r)

(1− r)b
ց 0,

for r > r0 [35]. Normal weights are essentially constant in hyperbolically bounded
sets [6, Lemma 1], hence they cannot oscillate too much, and in particular they do
not have zeros. The purpose of this note is to continue the line of investigation of
[6] with the difference that we consider weights ω that are less regular. The class
D̂ of radial weights ω such that ω̂(z) =

´ 1

|z|
ω(s) ds admits the doubling property

ω̂(z) ≤ Cω̂(1+|z|
2

) gives a sufficiently general setting for our purposes. Since the

definition of D̂ depends on integrals, it does not require any local smoothness for ω.
The point of departure of this study is the recent operator theoretic result which tells,
in particular, when the Schwarz–Pick lemma may be applied to the derivative of an
inner function in the norm of the Bergman space Ap

ω without causing any essential
loss of information. More precisely, if 0 < p < ∞ and ω ∈ D̂, then by the main result
in [31] the asymptotic equality

(1.1) ‖Θ′‖p
Ap

ω
≍
ˆ

D

(
1− |Θ(z)|2
1− |z|2

)p

ω(z) dA(z)

is valid for all inner functions Θ if and only if

sup
0<r<1

(1− r)p

ω̂(r)

ˆ r

0

ω(s)

(1− s)p
ds < ∞.

Writing ω ∈ D̂p if the supremum above is finite, an immediate consequence of this
result is that each subproduct of a Blaschke product B such that B′ ∈ Ap

ω with ω ∈ D̂p

also has its derivative in Ap
ω. We also deduce that, for ω ∈ D̂p, the derivative of a

finite product
∏n

j=1Θj of inner functions belongs to Ap
ω if and only if Θ′

j ∈ Ap
ω for all

j = 1, . . . , n. Therefore in this case we may consider different types of inner functions
separately. Before proceeding further, more definitions on weights are in order. We
say that ω ∈ D if there exist C = C(ω) ≥ 1, α = α(ω) > 0 and β = β(ω) ≥ α such
that

C−1

(
1− r

1− t

)α

ω̂(t) ≤ ω̂(r) ≤ C

(
1− r

1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1.(1.2)

It is known that the existence of β such that the right-hand inequality is satisfied
is equivalent to ω ∈ D̂ by [29, Lemma 1], and therefore D̂ = ∪p>0D̂p. It is easy to
see that the left-hand inequality is equivalent to the existence of K = K(ω) > 1 and
C = C(ω) > 1 such that the doubling property ω̂(r) ≥ Cω̂

(
1− 1−r

K

)
is satisfied for

all 0 ≤ r < 1. For details and more, see [30].
For a given sequence {zn} in D for which

∑
n(1 − |zn|) converges, the Blaschke

product associated with the sequence {zn} is defined as

B(z) =
∏

n

|zn|
zn

zn − z

1− znz
.
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A sequence {zn} in D is called separated (or uniformly discrete) if there exists δ > 0
such that

inf
k 6=n

∣∣∣∣
zk − zn
1− zkzn

∣∣∣∣ = δ.

Writing ω ∈ Jp if

sup
0<r<1

(1− r)p

ω̂(r)

ˆ 1

r

ω(s)

(1− s)p
ds < ∞,

the main result of this study on Blaschke products reads as follows.

Theorem 1. Let 1
2
< p < ∞ and ω ∈ D̂p ∩ D. Let B be the Blaschke product

associated with a finite union of separated sequences {zn}∞n=1. If either 1
2
< p ≤ 1

and ω ∈ D̂2p−1, or 1 < p < ∞ and ω ∈ Jp−1, then

(1.3) ‖B′‖p
Ap

ω
≍

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
.

To give some insight to the hypotheses let us take a look at the case 1 < p < ∞
in which ω ∈ D̂p ∩ Jp−1. Roughly speaking the containment in D̂p says that the
integral

´ r

0
ω(s)/(1 − s)p ds must grow as a negative power of 1 − r, and ω ∈ Jp−1

if
´ 1

r
ω(s)/(1 − s)p−1 ds tends to 0 as a positive power of 1 − r. In the case of the

standard weight ω(z) = (1 − |z|2)α, the requirement ω ∈ D̂p ∩ Jp−1 reduces to the
chain of inequalities p−2 < α < p−1. For this special case the result is well known,
and is generalized in [6, Theorem 2] for an appropriate subclass of normal weights.
Theorem 1 in turn generalizes the last-mentioned result.

In Section 2 we first establish sharp upper bounds for ‖B′‖Ap
ω
, when B is a

general Blaschke product, by using standard techniques. To show that Ap
ω-norm of

B′ dominates the sum in (1.3) is more involved and the true difficulty in proving
Theorem 1 stems from the fact that ω ∈ D does not admit any local smoothness. We
circumvent the problem by using maximal functions, their boundedness and Carleson
measures for Ap

ω. Therefore our reasoning is substantially different from that of [6,
Theorem 2]. The proof of Theorem 1 is presented in Section 2 where we also point
out that the hypothesis ω ∈ D can be relaxed to ω ∈ D̂ if 1 ≤ p < ∞ and B is a
Carleson–Newman Blaschke product. The significant difference between the classes
D and D̂ is that D̂ contains the so-called rapidly increasing weights that induce
Bergman spaces Ap

ω lying in a sense much closer to the Hardy spaces Hp than any of
the standard weighted Bergman spaces Ap

α [28]. The canonical example of a smooth

weight in D̂ \ D is vα(z) = (1− |z|)−1
(
log e

1−|z|

)−α

for each 1 < α < ∞.

It is natural to search for necessary conditions for the zeros {zn} of a Blaschke
product B when its derivative belongs to Ap

ω. It is known by [3] that
∑

n(1−|zn|)β <
∞ for all β > (1+α)/−α if B′ ∈ A1

α with −1 < α < −1/2. This result was recently
generalized in [32] to other values of p < 1: If B′ ∈ Ap

α, where 3/2 +α < p ≤ 1, then∑
n(1 − |zn|)β < ∞ for all β > (2 + α − p)/(p − α − 1). The case (a) of the next

result gives an analogue of these results for Ap
ω.

Theorem 2. Let ω be a radial weight, and let B be the Blaschke product asso-

ciated with a sequence {zn}∞n=1.
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(a) Let 1
2
< p ≤ 1. If there exist ε > 0 and a constant C = C(p, ε, ω) > 0 such

that

ω̂(r) ≤ C

(
1− r

1− t

)p−ε

ω̂(t), 0 ≤ r ≤ t < 1,(1.4)

then ‖B′‖Ap
ω
&
∑∞

n=1 ω̂(zn)
1
ε (1− |zn|)γ for all γ > 1−p

ε
.

(b) Let 1 < p < ∞. If there exist ε > p − 1, 1−p
1+ε−p

< γ < 0 and a constant

C = C(p, ε, ω, γ) ≥ 1 such that

C−1

(
1− r

1− t

)γ(p−ε−1)

ω̂(t) ≤ ω̂(r) ≤ C

(
1− r

1− t

)p−ε

ω̂(t), 0 ≤ r ≤ t < 1,(1.5)

then ‖B′‖p
Ap

ω
&
∑∞

n=1 ω̂(zn)
1

1+ε−p (1− |zn|)γ.

If ω(z) = (1−|z|)α, then ω̂(zn)
1
ε (1−|zn|)γ ≍ (1−|zn|)

α+1
ε

+γ. Since γ > (1−p)/ε,
we have (α + 1)/ε + γ > (2 + α − p)/ε, where ε ≤ p − α − 1 by the hypothesis
(1.4). Thus [32, Theorem 1] follows from Theorem 2. Further, (b) shows that if
B′ ∈ Ap

α with α < 0 and p > max{1, 2(1 + α)}, then
∑

n(1 − |zn|)β < ∞ for all
β > (p− 2)/α− 1. This is a natural counterpart of [3, Theorem 6] for p > 1.

The proof of Theorem 2 is given at the end of Section 2. The argument we employ
uses ideas from the proofs of [3, Theorem 6] and [32, Theorem 1]. The presence of
a general weight ω instead of the standard weight causes technical obstructions in
the argument, but also allows us to make certain parts of the proof more simple and
transparent. Therefore Theorem 2 can be considered as a streamlined generalization
of [3, Theorem 6] and [32, Theorem 1].

Singular inner functions are of the form

Sσ(z) = exp

(
ˆ

T

z + w

z − w
dσ(w)

)
, z ∈ D,

where σ is a positive measure on T, singular with respect to the Lebesgue measure.
If the measure σ is purely atomic, then this definition reduces to the form

S(z) =
∏

n

exp

(
γn

z + ξn
z − ξn

)
= exp

(
∑

n

γn
z + ξn
z − ξn

)
, z ∈ D,

where ξn ∈ T are distinct points and γn > 0 satisfy
∑

n γn < ∞. This type of
functions are known as purely atomic singular inner functions associated with {ξn}
and {γn}. If there exist ε > 0 and an index j such that |ξj − ξn| > ε for all n 6= j,
then S is said to be associated with a measure having a separate mass point. In
the case where the product has only one term, S is called an atomic singular inner
function.

In Section 3 we consider purely atomic singular inner functions. A useful auxiliary
result for our purposes is a combination of the first corollary of [2, Theorem 5] and
[27, Theorems 4.4.5 and 4.4.8]: If 0 < p < ∞ and S is a singular inner function, then

(1.6)

´ 2π

0
(1− |S(reit)|)p dt

(1− r)p
&





1, p < 1
2
,

log
(

e
1−r

)
, p = 1

2
,

(1− r)1/2−p, p > 1
2
,

for 0 ≤ r < 1. An immediate consequence of this estimate and (1.1) is that there does
not exist singular inner functions S such that S ′ ∈ Ap

ω if ω ∈ D̂p and either p = 1
2

and
´ 1

0
ω(r) log

(
1

1−r

)
dr = ∞ or p > 1

2
and
´ 1

0
ω(r)(1− r)

1
2
−p dr = ∞. Regarding (1.6),
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we will show that purely atomic singular inner functions associated with measures
whose masses γn satisfy

∑
n γ

p̂
n < ∞, where p̂ = min{1

2
, p}, obey ≍ instead of & only.

Further, it will turn out that for p ≥ 1
2

these are the only singular inner functions
satisfying ≍ instead of & in (1.6). As a consequence of these deductions and (1.1),
we obtain the following theorem which is the last of the main results of this study.

Theorem 3. Let 0 < p < ∞ and p̂ = min{1
2
, p}. Let ω be a radial weight, and

let S be a purely atomic singular inner function satisfying
∑∞

n=1 γ
p̂
n < ∞. Moreover,

assume that either ω ∈ D̂p or S is associated with a measure having a separate mass

point.

(a) If p < 1
2
, then S ′ ∈ Ap

ω and
´

D

(
1−|S(z)|2

1−|z|2

)p
ω(z) dA(z) < ∞.

(b) If p = 1
2
, then the following statements are equivalent:

(i) S ′ ∈ Ap
ω;

(ii)
ˆ

D

(
1− |S(z)|2
1− |z|2

)p

ω(z) dA(z) < ∞;

(iii)
ˆ 1

0

ω(r) log

(
1

1− r

)
dr < ∞.

(c) If p > 1
2
, then the following statements are equivalent:

(i) S ′ ∈ Ap
ω;

(ii)
ˆ

D

(
1− |S(z)|2
1− |z|2

)p

ω(z) dA(z) < ∞;

(iii)
ˆ 1

0

ω(r)(1− r)
1
2
−p dr < ∞.

Theorem 3 is based on Theorems 8 and 10, to be proven in Section 3, which show
that Mp

p (r, S
′) and

´ 2π

0
(1− |S(reit)|)p dt/(1− r)p are comparable under appropriate

hypotheses. Since these results concern the Lp-means of S ′, they immediately give
information on the question of when S ′ belongs to the Hardy space Hp. At this
point it is also worth observing that for all inner functions Θ the quantities ‖Θ′‖pHp

and sup0<r<1

´ 2π

0
(1 − |Θ(reit)|)p dt/(1 − r)p are comparable, see, for example, [31,

Theorem 2].
We have not found the statement of Theorem 3 even in the special case of the

classical weighted Bergman spaces Ap
α in the existing literature. Although, by using

the estimates for
´ 2π

0
(1 − |S(reit)|) dt and M1/2(r, S

′) established in [1, 5], where
S is as in Theorem 3, one may easily prove some particular cases of our theorem.
Moreover, in view of the main result in [26] our result does not come as a surprise in
the case of atomic singular inner functions.

2. Blaschke products

We begin with upper bounds for ‖B′‖Ap
ω

when B is any Blaschke product. For
short, we write ω ∈ D̂log if

sup
0<r<1

(
log

(
e

1− r

)
ω̂(r)

)−1 ˆ r

0

log

(
e

1− s

)
ω(s) ds < ∞.

Proposition 4. Let B be the Blaschke product associated with a sequence

{zn}∞n=1, and let ω be a radial weight.

(a) If 0 < p < 1
2
, then ‖B′‖p

Ap
ω
.
∑∞

n=1(1− |zn|)p.
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(b) If p = 1
2

and ω ∈ D̂log, then

‖B′‖p
Ap

ω
.

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
log

e

1− |zn|
.

(c) If 1
2
< p ≤ 1 and ω ∈ D̂2p−1, then

‖B′‖p
Ap

ω
.

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
.

(d) If 1 < p < ∞ and ω ∈ D̂p ∩ Jp−1, then

‖B′‖p
Ap

ω
.

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
.

Proof. Since
B′(z)

B(z)
=

∞∑

n=1

|zn|2 − 1

(1− znz)(zn − z)
,

we have

|B′(z)| =
∣∣∣∣∣

∞∑

n=1

1− |zn|2
(1− znz)(zn − z)

∣∣∣∣∣

∣∣∣∣∣

∞∏

k=1

|zk|
zk

zk − z

1− zkz

∣∣∣∣∣

≤
∞∑

n=1

1− |zn|2
|zn − z||1− znz|

|zn − z|
|1− znz|

|Bn(z)| ≤
∞∑

n=1

|ϕ′
zn(z)|,

where Bn(z) =
∏

k 6=n
|zk|
zk

zk−z
1−zkz

and ϕa(z) =
a−z
1−az

for all a, z ∈ D. If 0 < p ≤ 1, then
h(x) = xp is sub-additive, and hence

ˆ

D

|B′(z)|pω(z) dA(z) ≤
∞∑

n=1

(1− |zn|2)p
ˆ

D

ω(z)

|1− znz|2p
dA(z),

where, by direct calculations,

ˆ

D

ω(z)

|1− znz|2p
dA(z) ≍





1, 0 < p < 1
2
,

´ 1

0
log e

1−|zn|r
ω(r) dr, p = 1

2
,

´ 1

0
ω(r)

(1−|zn|r)2p−1 dr,
1
2
< p ≤ 1.

The assertions in the cases (a)–(c) now follow by dividing the integrals into two parts,
from zero to |zn| and the rest, then by estimating in a natural manner and finally
using the hypotheses. If p ≥ 1, then the Schwarz–Pick lemma and a similar deduction
as in the case p = 1 yield

ˆ

D

|B′(z)|pω(z) dA(z) ≤
ˆ

D

|B′(z)| ω(z)

(1− |z|)p−1
dA(z)

.

∞∑

n=1

(1− |zn|)
ˆ 1

0

ω(r)

(1− r)p−1(1− |zn|r)
dr,

and the assertion (d) follows similarly as in the previous cases. �

Let N(f)(z) = supζ∈Γ(z) |f(ζ)| denote the maximal function related to the lens
type regions

Γ(z) =

{
ζ ∈ D : | arg z − arg ζ | < 1

2

(
1−

∣∣∣∣
ζ

z

∣∣∣∣
)}

, z ∈ D \ {0},
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with vertexes inside the disc. The Hardy–Littlewood maximal theorem [12, The-
orem 3.1, p. 55] shows that N : Ap

ω → Lp
ω is bounded and there exists a constant

C > 0, independent of p, such that

(2.1) ‖f‖p
Ap

ω
≤ ‖N(f)‖p

Lp
ω
≤ C‖f‖p

Ap
ω
, f ∈ H(D),

see [28, Lemma 4.4] for details. With these preparations we are ready to prove our
main result on Blaschke products.

Proof of Theorem 1. By Proposition 4 it suffices to show that
∑∞

n=1
ω̂(zn)

(1−|zn|)p−1

is dominated by a constant times ‖B′‖p
Ap

ω
. Note that for Proposition 4 we have to

assume either 1
2
< p ≤ 1 and ω ∈ D̂2p−1 or 1 < p < ∞ and ω ∈ D̂p ∩ Jp−1. In the

remaining part of the proof only the hypothesis ω ∈ D̂p ∩ D is needed. It is worth
noting that this part uses some ideas from the proof of [31, Theorem 1].

Let {zn}∞n=1 =
⋃M

j=1{zjn}∞n=1, where each {zjn}∞n=1 is separated with a separation
constant δj . Let r < min{δj : j = 1, . . . ,M} such that for given j, the discs ∆(zjn) =
{z ∈ D : |zjn − z| < r(1− |zjn|)} are pairwise disjoint. Then

|B(z)| ≤ |z − zjn|
|1− zjnz|

≤ |z − zjn|
1− |zjn|

< r, z ∈ ∆(zjn),

and hence

sup
z∈∪∆(zjn)

|B(z)| ≤ r < 1, j = 1, . . . ,M.

Since ω ∈ D by the hypothesis, ω̂ is essentially constant in each disc ∆(zjn) by (1.2).
This and the obvious inequality 1 − |B(rξ)| ≤

´ 1

r
|B′(sξ)| ds, valid for almost every

ξ ∈ T, now yield

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
=

M∑

j=1

∞∑

n=1

ω̂(zjn)

(1− |zjn|)p−1

.

M∑

j=1

∞∑

n=1

ˆ

∆(zjn)

(1− |B(z)|)p dA(z) ω̂(zjn)

(1 − |zjn|)p+1

≍
M∑

j=1

∞∑

n=1

ˆ

∆(zjn)

(1− |B(z)|)p ω̂(z)

(1− |z|)p+1
dA(z)

≤ M

ˆ

D

(1− |B(z)|)p ω̂(z)

(1− |z|)p+1
dA(z)

≤ M

ˆ

D

(
ˆ 1

|z|

∣∣∣∣B
′

(
s
z

|z|

)∣∣∣∣ ds
)p

ω̂(z)

(1− |z|)p+1
dA(z).

Consider first the case 0 < p ≤ 1. By [31, Lemma 4], the inner integral is
dominated by a constant times

(
ˆ 1

|z|

N(B′)

(
s
z

|z|

)p

(1− s)p−1 ds

) 1
p

.
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This estimate together with Fubini’s theorem and (2.1) gives

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
.

ˆ

D

|B′(z)|p(1− |z|)p−1

(
ˆ |z|

0

ω̂(s)

(1− s)p+1
ds

)
dA(z)

=

ˆ

D

|B′(z)|p dµp,ω(z),

where

dµp,ω(z) = (1− |z|)p−1

(
ˆ |z|

0

ω̂(s)

(1− s)p+1
ds

)
dA(z).

The right-hand side is bounded by a constant times ‖B′‖p
Ap

ω
if Ap

ω is continuously
embedded into Lp

µp,ω
, that is, if µp,ω is a p-Carleson measure for Ap

ω. By [29, Theo-
rem 1] this is the case if (and only if) µp,ω(S(a)) . ω(S(a)) for all Carleson squares
S(a) = {z ∈ D : | arg z − arg a| < 1−|a|

2
, |z| ≥ |a|} with a ∈ D \ {0}. Since both µp,ω

and ω are radial, this condition is equivalent to

(2.2)
ˆ 1

r

(1− t)p−1

(
ˆ t

0

ω̂(s)

(1− s)p+1
ds

)
dt . ω̂(r), 0 < r < 1.

Fubini’s theorem shows that the left-hand side equals to

1

p

(
(1− r)p

ˆ r

0

ω̂(s)

(1− s)p+1
ds+

ˆ 1

r

ω̂(s)

1− s
ds

)
,

where, by an integration by parts and the hypothesis ω ∈ D̂p,
ˆ r

0

ω̂(s)

(1− s)p+1
ds =

1

p

(
ω̂(r)

(1− r)p
− ω̂(0) +

ˆ r

0

ω(s)

(1− s)p
ds

)

≤ 1

p

(
ω̂(r)

(1− r)p
− ω̂(0) + D̂p(ω)

ω̂(r)

(1− r)p

)
,

and
ˆ 1

r

ω̂(s)

1− s
ds =

ˆ 1

r

ω̂(s)

(1− s)β
ds

(1− s)1−β
.

ω̂(r)

(1− r)β

ˆ 1

r

ds

(1− s)1−β
≍ ω̂(r)

by the first inequality in (1.2). It follows that (2.2) is satisfied, and hence the case
0 < p ≤ 1 is proved.

Let now 1 < p < ∞ and ω ∈ D̂p ∩ D. Two integrations by parts show that the
condition ω ∈ D̂p is self-improving in the sense that if ω ∈ D̂p, then ω ∈ D̂p−ε for all
ε > 0 sufficiently small, see the proof of [31, Lemma 3] for details. Hence we may

choose ε = ε(p, ω) ∈ (0, p− 1) such that ω ∈ D̂p−ε, and define h(z) = (1− |z|)
p−1−ε

p .
Then Hölder’s inequality and Fubini’s theorem yield

ˆ

D

(
ˆ 1

|z|

∣∣∣∣B
′

(
s
z

|z|

)∣∣∣∣ ds
)p

ω̂(z)

(1− |z|)p+1
dA(z)

≤
ˆ

D

ˆ 1

|z|

∣∣∣∣B
′

(
s
z

|z|

)∣∣∣∣
p

h(s)p ds

(
ˆ 1

|z|

dt

h(t)p′

)p−1
ω̂(z)

(1− |z|)p+1
dA(z)

=

ˆ 1

0

ˆ 2π

0

|B′(seiθ)|p dθh(s)p
ˆ s

0

(
ˆ 1

r

dt

h(t)p′

)p−1
ω̂(r)

(1− r)p+1
r dr ds
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≍
ˆ

D

|B′(z)|ph(z)p
ˆ |z|

0

(
ˆ 1

r

dt

h(t)p′

)p−1
ω̂(r)

(1− r)p+1
dr dA(z)

≍
ˆ

D

|B′(z)|p(1− |z|)p−1−ε

(
ˆ |z|

0

ω̂(r)

(1− r)p+1−ε
dr

)
dA(z).

Since the p-Carleson measures for Ap
ω are independent of p by [29, Theorem 1], (2.2)

with p replaced by p − ε implies that µp−ε,ω is a p-Carleson measure for Ap
ω. The

assertion in the case 1 < p < ∞ follows, and the proof is complete. �

The Blaschke product B with the zero-sequence {zn} is called a Carleson–Newman
Blaschke product if the measure

µ =
∞∑

n=1

(1− |zn|)δzn

is a p-Carleson measure for Hp. This is equivalent to {zn} being a finite union
of uniformly separated sequences which is the same as B being a finite product of
interpolating Blaschke products. An equivalent quantitative condition is

(2.3) sup
a∈D

∞∑

n=1

(1− |ϕa(zn)|) < ∞,

see [12, 23, 24]. Recall that {zn}∞n=1 is uniformly separated, if there exists a constant
δ > 0 such that

inf
n∈N

∏

k 6=n

∣∣∣∣
zk − zn
1− zkzn

∣∣∣∣ = δ.

The following result shows that in Theorem 1 we may omit the hypothesis ω ∈ D
if 1 ≤ p < ∞ and B is a Carleson–Newman Blaschke product.

Proposition 5. Let 1 ≤ p < ∞ and ω ∈ D̂p, and let B be the Carleson–Newman

Blaschke product associated with {zn}∞n=1. Then

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
. ‖B′‖p

Ap
ω
.

Proof. It is well known that the Carleson–Newman Blaschke product B satisfies

(2.4) 1− |B(z)|2 &
∞∑

n=1

(1− |ϕzn(z)|2), z ∈ D.

We sketch a proof of this fact for the convenience of the reader. Since 1 − r2 ≤
−2 log r for 0 < r ≤ 1, 2 log |B(z)| ≤ −

∑∞
n=1 (1− |ϕzn(z)|2), and hence |B(z)|2 ≤

exp (−
∑∞

n=1 (1− |ϕzn(z)|2)). This together with (2.3) and the fact that (1− e−x)/x
is decreasing yields (2.4). By combining (1.1) and (2.4) we deduce

‖B′‖p
Ap

ω
&

ˆ

D

∞∑

n=1

(
1− |ϕzn(z)|2

)p ω(z)

(1− |z|)p dA(z)

≍
∞∑

n=1

(1− |zn|)p
ˆ 1

0

ω(s)

(1− |zn|s)2p−1
ds &

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
,

and the assertion is proved. �
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If Θ is an inner function, then there exists a Blaschke product BΘ associated
with a uniformly separated sequence {zn} such that 1 − |Θ(z)| ≍ 1 − |BΘ(z)| for
all z ∈ D [7, 8]. BΘ is called an approximating Blaschke product of Θ. By using
Proposition 5, we obtain the following result.

Corollary 6. Let 1 < p < ∞ and ω ∈ D̂p such that ω̂(r)(1 − r)1−p & 1, as

r → 1−, and let Θ be an inner function. Then Θ′ ∈ Ap
ω if and only if Θ is a finite

Blaschke product.

Proof. Since Θ′ ∈ H∞ if Θ is a finite Blaschke product, it suffices to prove the
“only if” part of the assertion. Let Θ be an inner function and assume first that its
approximating Blaschke product BΘ has infinitely many zeros {zn}∞n=1. Then (1.1),
Proposition 5 and the hypothesis ω̂(r)(1− r)1−p & 1, as r → 1−, yield

‖Θ′‖p
Ap

ω
≍
ˆ

D

(
1− |Θ(z)|2
1− |z|2

)p

ω(z) dA(z) ≍
ˆ

D

(
1− |BΘ(z)|2

1− |z|2
)p

ω(z) dA(z)

≍ ‖B′
Θ‖pAp

ω
&

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
= ∞.

Hence Θ′ ∈ Ap
ω only if BΘ is a finite Blaschke product. But if BΘ has finitely many

zeros, then

|Θ′(z)| ≤ 1− |Θ(z)|2
1− |z|2 ≍ 1− |BΘ(z)|2

1− |z|2 ≍ |B′
Θ(z)|, |z| → 1−,

and hence Θ is continuous up to the boundary [10, Theorem 3.11]. Therefore Θ is a
finite Blaschke product, and the assertion is proved. �

We next establish a generalization of [6, Corollary 2] and [19, Theorem 7(b)].
For q > 0 and a weight ω, we write ωq(z) = ω(z)(1− |z|)q for all z ∈ D. Corollary 7
shows that, under appropriate hypotheses, the quantities ‖Θ′‖Ap

ω
and ‖Θ′‖Ap+q

ωq
are

finite at the same time for each inner function Θ.

Corollary 7. Let 1
2
< p < ∞, 0 < q < ∞ and ω ∈ D, and let Θ be an inner

function. If

(a) 1 < p < ∞ and ω ∈ D̂p ∩ Jp−1, or

(b) p+ q ≤ 1 and ω ∈ D̂2p−1, or

(c) 1 < p+ q ≤ 1 + q and ω ∈ D̂2p−1 ∩ Jp−1,

then ‖Θ′‖p
Ap

ω
≍ ‖Θ′‖p+q

Ap+q
ωq

.

Proof. We begin with showing that if ω ∈ D and 0 < q < ∞, then

(2.5) ω̂q(z) ≍ ω̂(z)(1− |z|)q, z ∈ D.

Since for each radial ω we have ω̂q(z) ≤ ω̂(z)(1 − |z|)q for all z ∈ D, it suffices to
show that ω̂q(r) & ω̂(r)(1 − r)q for all 0 ≤ r < 1. To see this, let C = C(ω) ≥ 1,
α = α(ω) > 0 and β = β(ω) ≥ α be the constants appearing in (1.2). Let 0 ≤ r < 1
and choose a = a(ω) such that 1−C−1/α < a < 1. Set r0 = r and rn+1 = rn+a(1−rn)
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for all n ∈ N ∪ {0}. Then rn → 1−, as n → ∞, and hence (1.2) yields

ω̂q(r) =

∞∑

n=0

ˆ rn+1

rn

ω(s)(1− s)q ds ≥
∞∑

n=0

(1− rn+1)
q (ω̂(rn)− ω̂(rn+1))

= (1− r)q
∞∑

n=0

(1− a)q(n+1) (ω̂(rn)− ω̂(rn+1))

≥ (1− r)q
∞∑

n=0

(1− a)q(n+1)ω̂(rn)

(
1− C

(
1− rn+1

1− rn

)α)

= (1− C(1− a)α) (1− r)q
∞∑

n=0

(1− a)q(n+1)ω̂(rn)

≥ C−1 (1− C(1− a)α) ω̂(r)(1− r)q
∞∑

n=0

(1− a)q(n+1)

(
1− rn
1− r

)β

= C−1 (1− C(1− a)α) ω̂(r)(1− r)q
∞∑

n=0

(1− a)n(q+β)+q ≍ ω̂(r)(1− r)q,

and (2.5) follows.
Let BΘ be the approximating Blaschke product of Θ with zeros {zn}∞n=1. Let

first 1 < p < ∞. By using (2.5) it is easy to see that the conditions ω ∈ D̂p and
ω ∈ Jp−1 are equivalent to ωq ∈ D̂p+q and ωq ∈ Jp+q−1, respectively. Therefore (1.1),
Theorem 1 and (2.5) yield

‖Θ′‖p
Ap

ω
≍ ‖B′

Θ‖pAp
ω
≍

∞∑

n=1

ω̂(zn)

(1− |zn|)p−1
≍

∞∑

n=1

ω̂q(zn)

(1− |zn|)p+q−1
≍ ‖B′

Θ‖p+q

Ap+q
ωq

≍ ‖Θ′‖p+q

Ap+q
ωq

,

and thus the assertion is proved for 1 < p < ∞. The other two cases follow in a
similar manner. �

We end this section with the proof of Theorem 2.

Proof of Theorem 2. Let 1
2
< p < ∞ and ε > 0 be as in the statement of

the theorem. Assume, without loss of generality, that {zn} is ordered by increasing
moduli and zn 6= 0 for all n. An integration by parts shows that ω ∈ D̂p if and only
if

(1− r)p

ω̂(r)

ˆ r

0

ω̂(s)

(1− s)p+1
ds ≍ 1, r → 1−.

But since (1.4) is satisfied by the hypothesis,
ˆ r

0

ω̂(s)

(1− s)p+1
ds .

ω̂(r)

(1− r)p−ε

ˆ r

0

ds

(1− s)p+1−p+ε
≍ ω̂(r)

(1− r)p
, 0 ≤ r < 1,

and thus ω ∈ D̂p. Further, by the proof of [3, Theorem 6],

1− |B(z)|2
1− |z|2 =

∞∑

n=1

|Bn(z)|2
1− |zn|2
|1− znz|2

, z ∈ D,

where

Bn(z) =

n−1∏

j=1

zj − z

1− zjz
, n ∈ N, z ∈ D,
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and hence (1.1) implies

‖B′‖p
Ap

ω
≍
ˆ

D

(
∞∑

n=1

|Bn(z)|2
1− |zn|
|1− znz|2

)p

ω(r) dA(z).(2.6)

We next estimate |Bn| appropriately downwards close to the boundary. To do this,
let

ρε,γ(z) = ω̂(z)
1

ε+min{0,1−p} (1− |z|)γ−1, z ∈ D,

and set γ0 = inf{γ ≥ 0:
∑∞

n=1 ρn(1− |zn|) < ∞}, where ρn = ρε,γ(zn). Since {zn} is
a Blaschke sequence, γ0 ≤ 1. Let γ > γ0 = γ0(ε) so that

∑∞
n=1 ρn(1−|zn|) converges.

As in the proof of [32, Theorem 1], note that

r − |zj |
1− |zj |r

≥ |zj|ρ ⇐⇒ r ≥ |zj|+ |zj |ρ
1 + |zj |ρ+1

, 0 < r < 1, 0 < ρ < ∞,

and let

rj =
|zj|+ |zj |ρj
1 + |zj|ρj+1

= 1− (1− |zj |)(1− |zj|ρj )
1 + |zj |ρj+1

, j ∈ N.

Then |zj | < rj < 1 for all j ∈ N. Moreover, for |z| ≥ Rn = max1≤j≤n rj, we have

|Bn(z)| ≥
n−1∏

j=1

|z| − |zj |
1− |zj ||z|

≥
n−1∏

j=1

Rn − |zj |
1− |zj|Rn

≥
n−1∏

j=1

|zj |ρj ≥
∞∏

j=1

|zj |ρj

= exp

(
∞∑

j=1

ρj log |zj|
)

≥ exp

(
−

∞∑

j=1

ρj(1− |zj |)
|zj |

)
& 1.

(2.7)

Let 1
2
< p ≤ 1. Then (2.6), Minkowski’s inequality and (2.7) yield

‖B′‖Ap
ω
&

∞∑

n=1

(
ˆ

D

|Bn(z)|2p
(1− |zn|)p
|1− znz|2p

ω(z) dA(z)

) 1
p

&

∞∑

n=1

(
ˆ

D\D(0,Rn)

(1− |zn|)p
|1− znz|2p

ω(z) dA(z)

) 1
p

≍
∞∑

n=1

(1− |zn|)
(
ˆ 1

Rn

ω(r) dr

(1− |zn|r)2p−1

) 1
p

.

Recall that |zj| < rj ≤ Rj, and hence

‖B′‖Ap
ω
&

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(Rn)

1
p &

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
1− Rn

1− |zn|

) p−ε
p

=

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
inf1≤j≤n(1− rj)

1− |zn|

) p−ε
p

.

Since 1 − rj ≥ (1 − |zj |)(1 − |zj|ρj )/2 and {zn}∞n=1 is ordered by increasing moduli,
we obtain

‖B′‖Ap
ω
&

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
inf1≤j≤n(1− |zj |)(1− |zj |ρj)

1− |zn|

) p−ε
p

≥
∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
inf

1≤j≤n
(1− |zj |ρj)

) p−ε
p

.
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Now that
∑∞

j=1 ρj(1 − |zj |) converges and zj 6= 0 for all j, there exists δ > 0 such
that

inf
j∈N

|zj|ρj = inf
j∈N

(
|zj|(1−|zj |)

−1
)ρj(1−|zj |)

≥ δ.

Therefore

‖B′‖Ap
ω
&

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
inf

1≤j≤n
|zj|ρj log

1

|zj|ρj

) p−ε
p

&

∞∑

n=1

(1− |zn|)
1
p
−1ω̂(zn)

1
p

(
inf

1≤j≤n
ρj(1− |zj|)

) p−ε
p

≥
∞∑

n=1

(1− |zn|)
1+γ(p−ε)−p

p ω̂(zn)
1
ε .

If B′ ∈ Ap
ω, then 1 + γ(p− ε)− p > pγ0, and by letting γ → γ0, we deduce γ0 ≤ 1−p

ε
.

The assertion in the case 1
2
< p ≤ 1 follows.

Let p > 1. Then we can drop p inside the sum in (2.6) without using Minkowski’s
inequality. Hence, by deducting as above, we obtain

‖B′‖p
Ap

ω
&

∞∑

n=1

(1− |zn|)1−pω̂(Rn) &
∞∑

n=1

(1− |zn|)1−pω̂(zn)

(
inf

1≤j≤n
ρj(1− |zj |)

)p−ε

.

Since the left-hand inequality of (1.5) is equivalent with the asymptotic inequality

ω̂(r)
1

1+ε−p (1− r)γ & ω̂(t)
1

1+ε−p (1− t)γ , 0 ≤ r ≤ t < 1,

we have

‖B′‖p
Ap

ω
&

∞∑

n=1

(1− |zn|)1+γ(p−ε)−pω̂(zn)
1

1+ε−p .

If B′ ∈ Ap
ω, then 1+ γ(p− ε)− p > γ0, and by letting γ → γ0, we deduce γ0 ≤ 1−p

1+ε−p
.

The assertion in the case 1 < p < ∞ follows, and the proof is complete. �

3. Purely atomic singular inner functions

Recall that purely atomic singular inner functions are of the form

S(z) =
∏

n

exp

(
γn

z + ξn
z − ξn

)
= exp

(
∑

n

γn
z + ξn
z − ξn

)
, z ∈ D,

where ξn ∈ T are distinct points and
∑

n γn < ∞. If the product has only one term,
with γ1 = γ and ξ1 = ξ, then we write S = Sγ,ξ.

Theorem 8. Let 0 < p < ∞ and p̂ = min{1
2
, p}. Let S be the purely atomic

singular inner function associated with {ξn} and γ = {γn} ∈ ℓp̂. Then

(3.1)

´ 2π

0
(1− |S(reit)|)p dt

(1− r)p
≍ hp(r) =





1, p < 1
2
,

log
(

1
1−r

)
, p = 1

2
,

(1− r)1/2−p, p > 1
2
,

for 1
2
< r < 1.
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Proof. By (1.6), it suffices to show that
´ 2π

0
(1 − |S(reit)|)p dt . (1 − r)php(r).

We begin with an estimate for S = Sγ,ξ, where ξ = eiθ. Since

|1− eis|2 = 2(1− cos s) = 2s2
∞∑

k=1

(−1)k−1s
2(k−1)

(2k)!

≥ 2s2
(
1

2
− π2

4!
+

π4

6!
− π6

8!

)
≥ s2

3
, −π ≤ s ≤ π,

(3.2)

we obtain
ˆ 2π

0

(1− |Sγ,ξ(re
it)|)p dt =

ˆ 2π

0

(
1− exp

(
−γ

1− r2

|1− rei(t−θ)|2
))p

dt

= 2

ˆ π

0

(
1− exp

(
−γ

1− r2

|1− reis|2
))p

ds

= 2

ˆ π

0

(
1− exp

(
−γ

1− r2

(1− r)2 + r|1− eis|2
))p

ds

≤ 2

ˆ π

0

(
1− exp

(
−2γ

1− r

(1− r)2 + rs2

3

))p

ds(3.3)

= 2

√
3

r
γ

1
2 (1− r)

1
2

ˆ

2γ
1−r

2γ(1−r)

(1−r)2+rπ2/3

(1− e−x)
p
dx

x
3
2

(
2− x(1−r)

γ

) 1
2

≤ 2
√
6 γ

1
2 (1− r)

1
2

ˆ

2γ
1−r

γ(1−r)
2

(1− e−x)
p
dx

x
3
2

(
2− x(1−r)

γ

) 1
2

,
1

2
< r < 1.

To prove the general case, we may assume that {γn}∞n=1 is non-increasing. Write
Sn = Sγn,ξn for short. If

´ 2π

0
(1 − |S(reit)|)p0 dt . (1 − r)

1
2 for some p0 > 1

2
, then

the same clearly holds for all p ≥ p0. Therefore it suffices to prove the assertion for
0 < p ≤ 1. Since

1− |S(z)| = 1−
∞∏

n=1

|Sn(z)| ≤
∞∑

n=1

(1− |Sn(z)|), z ∈ D,

we obtain
ˆ 2π

0

(1− |S(reit)|)p dt ≤
ˆ 2π

0

(
∞∑

n=1

(1− |Sn(re
it)|)
)p

dt

≤
ˆ 2π

0

∞∑

n=1

(1− |Sn(re
it)|)p dt =

∞∑

n=1

ˆ 2π

0

(1− |Sn(re
it)|)p dt

=
∑

γn>γ1(1−r)

ˆ 2π

0

(1− |Sn(re
it)|)p dt+

∑

γn≤γ1(1−r)

ˆ 2π

0

(1− |Sn(re
it)|)p dt

= I1(r) + I2(r).

By (3.3), we have

I1(r) . (1− r)
1
2

∑

γn>γ1(1−r)

γ
1
2
n

(
ˆ 2γ1

γn(1−r)
2

+

ˆ

2γn
1−r

2γ1

)
(1− e−x)

p
dx

x
3
2

(
2− x(1−r)

γn

) 1
2

.(3.4)
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If γn ≥ 2γ1(1− r), then

I3(r) =

ˆ 2γ1

γn(1−r)
2

(1− e−x)
p
dx

x
3
2

(
2− x(1−r)

γn

) 1
2

≤
ˆ 2γ1

γn(1−r)
2

dx

x
3
2
−p

≍ γ
p̂− 1

2
n (1− r)p−

1
2hp(r), n ∈ N,

because 1− e−s ≤ s for s ∈ (0,∞). If γ1(1− r) < γn < 2γ1(1− r), then

I3(r) =

(
1− r

γn

) 1
2
ˆ

2γ1(1−r)
γn

(1−r)2

2

(
1− exp

(
− γny

1−r
)
))p

dy

y
3
2 (2− y)

1
2

≤
(
1− r

γn

) 1
2

(
ˆ 1

(1−r)2

2

+

ˆ 2

1

) (
1− exp

(
− γny

1−r
)
))p

dy

y
3
2 (2− y)

1
2

.

(
1− r

γn

) 1
2
−p ˆ 1

(1−r)2

2

dy

y
3
2
−p

+ γ
− 1

2
1 ≍ γ

p̂− 1
2

n (1− r)p−
1
2hp(r), n ∈ N.

Hence I3(r) . γ
p̂− 1

2
n (1− r)p−

1
2hp(r). By an analogous manner, we can also show that

I4(r) =

ˆ

2γn
1−r

2γ1

(1− e−x)
p
dx

x
3
2

(
2− x(1−r)

γn

) 1
2

. γ
p̂− 1

2
n (1− r)p−

1
2hp(r), γn > γ1(1− r).

Now, by using the estimates for I3 and I4 in (3.4), we obtain I1(r) . ‖γ‖p̂
ℓp̂
(1 −

r)php(r). Further, since
ˆ 2π

0

(1− |Sn(re
it)|)p dt =

ˆ 2π

0

(
1− exp

(
−γn

1− r2

|ξn − reit|2
))p

dt

. γp
n(1− r)p

ˆ 2π

0

dt

|1− reit|2p . γp
n(1− r)

1
2hp(r), n ∈ N,

we have

I2(r) . (1− r)
1
2hp(r)

∑

γn≤γ1(1−r)

γp
n . ‖γ‖p̂

ℓp̂
(1− r)php(r).

By combining the estimates for I1 and I2 we deduce the assertion. �

Note that Theorem 8 in the case p = 1 has been proved earlier in [1], but the proof
there is based on different methods. The following corollary shows that Theorem 8
is sharp for p ≥ 1

2
.

Corollary 9. If S is a singular inner function, then the following statements are

equivalent:

(a) S is a purely atomic singular inner function associated with γ ∈ ℓ
1
2 ;

(b) M
1/2
1/2 (r, S

′) . log
(

1
1−r

)
, as r → 1−;

(c)
´ 2π

0
(1− |S(reit)|) 1

2 dt . (1− r)
1
2 log

(
1

1−r

)
, as r → 1−;

(d) there exists 1
2
< p < ∞ such that

´ 2π

0
(1−|S(reit)|)p dt . (1− r)

1
2 , as r → 1−;

(e)
´ 2π

0
(1− |S(reit)|)p dt . (1− r)

1
2 , as r → 1−, for each 1

2
< p < ∞.

Proof. The statements (a) and (b) are equivalent by [5, Theorem 2.2]. Moreover,
(a) implies (c)–(e) by Theorem 8, and (c) implies (b) by the Schwarz-Pick lemma.
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To complete the proof, it suffices to show that (d) implies (a). If (a) does not hold,
then the proof of [5, Theorem 2.2] yields

(1− r)−
1
2

ˆ 2π

0

(1− |S(reit)|)p dt → ∞, r → 1−,

for each 0 < p < ∞, and this clearly contradicts (d). Thus the assertion is proved. �

If an inner function Θ satisfies either
(
log

1

1− r

)−1

M
1/2
1/2 (r,Θ

′) −→ 0+, r → 1−,

or
´ 2π

0
(1− |Θ(reit)|)p dt

(1− r)
1
2

−→ 0+, p >
1

2
, r → 1−,

then it is a Blaschke product. In the first case, the assertion is a direct consequence of
[5, Theorem 2.1]. In the latter case, the assertion follows by (1.6) and a special case
of the Beurling factorization according to which every non-constant inner function
is either a Blaschke product, a singular inner function or a product of the previous
ones [10].

Theorem 3 for ω ∈ D̂p can be proved by using Theorem 8 and (1.1), as will
be shown later. To deal with the remaining case, we will use the following result
which shows that Mp

p (r, S
′) ≍ hp(r) for each purely atomic singular inner function S

associated with a measure having a separate mass point.

Theorem 10. Let 0 < p < ∞ and p̂ = min{1
2
, p}. Let S be the purely atomic

singular inner function associated with {ξn} and γ = {γn} ∈ ℓp̂, and having a separate

mass point in its inducing measure. Then there exists r0 = r0(p, S) ∈ (0, 1) such that

(3.5)

´ 2π

0
(1− |S(reit)|)p dt

(1− r)p
≍ Mp

p (r, S
′) ≍ hp(r), r0 < r < 1,

where hp is as in Theorem 8.

Proof. Let ξj be a separate mass point and write S =
∏∞

n=1 Sn, where Sn = Sγn,ξn.
It suffices to show that Mp

p (r, S
′) & Mp

p (r, S
′
j) for r close enough to one because then

this together with Theorem 8, the Schwarz–Pick lemma and the main result of [26]
yields

hp(r) ≍
´ 2π

0
(1− |S(reit)|)p dt

(1− r)p
& Mp

p (r, S
′) & Mp

p (r, S
′
j) ≍ hp(r), r0 < r < 1.

To prove Mp
p (r, S

′) & Mp
p (r, S

′
j), note first that

|S ′(z)| =
∣∣∣∣∣−2

∞∑

n=1

γnξn
(z − ξn)2

exp

(
∞∑

k=1

γk
z + ξk
z − ξk

)∣∣∣∣∣

= 2

∣∣∣∣∣

∞∑

n=1

γnξn
(z − ξn)2

∣∣∣∣∣ exp
(
−

∞∑

k=1

γk
1− |z|2
|z − ξk|2

)

≥
(

γj
|z − ξj|2

−
∑

n 6=j

γn
|z − ξn|2

)
exp

(
−

∞∑

k=1

γk
1− |z|2
|z − ξk|2

)
.
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For each k ∈ N, write ξk = eiθk , where 0 ≤ θk < 2π. By the hypothesis, there exists
ε = ε(S) ∈ (0, π) such that |θj −θk| > ε for all k 6= j. Let first |t−θj | < ε

2
and r > 1

2
.

Then (3.2) yields

exp

(
−
∑

k 6=j

γk
1− r2

|reit − eiθk |2

)
= exp

(
−
∑

k 6=j

γk
1− r2

(1− r)2 + r|1− ei(t−θk)|2

)

≥ exp

(
−6
∑

k 6=j

γk
r(t− θk)2

)
≥ exp

(
−48

ε2

∑

k 6=j

γk

)
≥ exp

(
−48

ε2
‖γ‖ℓ1

)

and

f(reit) =
γj

|reit − eiθj |2 −
∑

n 6=j

γn
|reit − eiθn |2 ≥ γj

(1− r)2 + r(t− θj)2
− 24

ε2
‖γ‖ℓ1.

Set M = M(S) = (24/ε2)‖γ‖ℓ1. Then, for r > max
{

1
2
, 1−

√
γj
4M

}
and |t − θj | <√

γj
4M

, we obtain

f(reit) ≥ 1

2

γj
(1− r)2 + r(t− θj)2

≥ γj
6|reit − eiθj |2 .

If α = min
{√

γj
4M

, ε
2

}
, then, by combining the estimates above, we deduce

Mp
p (r, S

′) ≥
ˆ θj+α

θj−α

|S ′(reit)|p dt &
ˆ θj+α

θj−α

|S ′
γj ,ξj

(reit)|p dt ≍ Mp
p (r, S

′
γj ,ξj

)

for r close enough to one depending on p and S. Thus the assertion is proved. �

With these results in hand we can easily establish Theorem 3.

Proof of Theorem 3. Let us begin with the case ω ∈ D̂p. By multiplying (3.1) by
rω(r) and integrating with respect to r we obtain

ˆ

D\D(0, 1
2
)

(
1− |S(z)|2
1− |z|2

)p

ω(z) dA(z) ≍
ˆ 1

1
2

hp(r)ω(r) r dr,

where S and hp are as in Theorem 8. The assertion in Theorem 3 for ω ∈ D̂p now
follows by (1.1). If S is associated with a measure having a separate mass point, then
the assertion can be proved by an analogous manner using (3.5). �

The statement in Theorem 3 for p ≤ 1
2

is actually valid for each radial weight ω

and each purely atomic singular inner function S with γ ∈ ℓp̂. This is an immediate
consequence of Theorem 8, the Schwarz–Pick lemma and [5, Theorem 2.2]. Further,
it is worth observing that S ′ ∈ Hp if and only if p < 1

2
.
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