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Abstract. Let E be an infinite closed set in the Riemann sphere, and let T (E) denote its

Teichmüller space. In this paper, we study some metric properties of T (E). We prove Earle’s form

of Teichmüller contraction for T (E), holomorphic isometries from the open unit disk into T (E),

extend Earle’s form of Schwarz’s lemma for classical Teichmüller spaces to T (E), and finally study

complex geodesics and unique extremality for T (E).

Introduction

Let C denote the complex plane, ∆ := {z ∈ C : |z| < 1} denote the open unit

disk and Ĉ = C ∪ {∞} denote the Riemann sphere. Throughout this paper, we will

assume that E is a closed set in Ĉ and that 0, 1, and ∞ belong to E. The Teichmüller
space of E, denoted by T (E), was first studied by Lieb in his 1990 Cornell University
dissertation [14], written under the direction of Earle. It has several applications in
holomorphic motions, geometric function theory, and holomorphic families of Möbius
groups; see the papers [7, 12, 15, 18]. In this paper, we study some metric properties
of T (E). Our paper is arranged as follows. In §1, we give the relevant definitions
and also state various properties of T (E) that will be necessary in our paper. In §2,
we state the main theorems of our paper and also the motivations for these results.
In §§3–6, we give the proofs of our main theorems.

1. Teichmüller space of a closed set in Ĉ

We call a homeomorphism of Ĉ normalized if it fixes the points 0, 1, and ∞. Let
M(C) denote the open unit ball of the complex Banach space L∞(C). For each µ in

M(C), there exists a unique normalized quasiconformal homeomorphism of Ĉ onto
itself that has Beltrami coefficient µ, denoted by wµ.

Definition 1.1. The normalized quasiconformal self-mappings f and g of Ĉ
are said to be E-equivalent if and only if f−1 ◦ g is isotopic to the identity rel E.
The Teichmüller space T (E) is the set of all E-equivalence classes of normalized

quasiconformal self-mappings of Ĉ. The basepoint of T (E) is the E-equivalence class
of the identity map.

We define the projection

PE : M(C) → T (E)

https://doi.org/10.5186/aasfm.2017.4247
2010 Mathematics Subject Classification: Primary 32G15, 30F60; Secondary 32H02.
Key words: Teichmüller space of a closed set, Teichmüller contraction, holomorphic isometries,

Schwarz’s lemma, complex geodesics.



756 Nishan Chatterjee

by setting PE(µ) equal to the E-equivalence class of wµ, written as [wµ]E. Clearly,
PE maps the basepoint of M(C) to the basepoint of T (E). (We will use the same
notation 0 for the basepoints in M(C) and T (E).)

In his doctoral dissertation [14], Lieb proved that T (E) is a complex Banach
manifold such that the projection map PE is a holomorphic split submersion. For
more details, see [7].

The tangent space at the basepoint. Let A(E) be the closed subspace of
L1(C) consisting of the functions f in L1(C) whose restriction to Ec is holomorphic.
We identify L∞(C) with the dual space of L1(C) in the usual way. Set

A(E)⊥ = {µ ∈ L∞(C) : ℓµ(f) =

¨

C

µ(z)f(z) dx dy = 0 for all f in A(E)}.

Proposition 1.2. (Teichmüller’s lemma for T (E)) ker(P ′
E(0)) = A(E)⊥.

See Proposition 7.18 in [7].

Corollary 1.3. The tangent space to T (E) at its basepoint is naturally isomor-

phic to A(E)∗, the dual space of A(E).

The natural isomorphism sends the tangent vector P ′
E(0)µ to the linear functional

f 7→ ℓµ(f) on A(E).

Changing the basepoint. Let h be a normalized quasiconformal self-mapping

of Ĉ, and let Ẽ = h(E). By definition, the allowable map h∗ from T (Ẽ) to T (E) maps

the Ẽ-equivalence class of g to the E-equivalence class of g ◦ h for every normalized

quasiconformal self-mapping g of Ĉ.

Proposition 1.4. The allowable map h∗ : T (Ẽ) → T (E) is biholomorphic. If

µ is the Beltrami coefficient of h, then h∗ maps the basepoint of T (Ẽ) to the point

PE(µ) in T (E).

Forgetful maps. If E is a subset of the closed set Ẽ and µ is in M(C), then the

Ẽ-equivalence class of wµ is contained in the E-equivalence class of wµ. Therefore,

there is a well-defined forgetful map pẼ,E from T (Ẽ) to T (E) such that PE = pẼ,E◦PẼ .

Proposition 1.5. The forgetful map p
Ẽ,E

is a basepoint preserving holomorphic

split submersion.

Proof. Since PE = pẼ,E ◦ PẼ and PE and PẼ are holomorphic split submersions,
so is p

Ẽ,E
. �

The following proposition will be very useful in our paper.

Proposition 1.6. Let f be any holomorphic map of ∆ into T (E) and let µ be

any point in M(C) such that PE(µ) = f(0). There is a holomorphic map f̂ from ∆

to M(C) such that f̂(0) = µ and PE ◦ f̂ = f .

For proofs see Proposition 7.27 in [7] or Proposition 5.1 in [17]. This is an easy
consequence of the “universal” property of T (E) (see [15]) and Slodkowski’s theorem
on extensions of holomorphic motions (see [21]).

The Kobayashi and Teichmüller metrics on T (E).

Proposition 1.7. The Kobayashi metric on M(C) is given by

ρM (µ, ν) = tanh−1
∥∥∥ (µ− ν)

(1− µ̄ν)

∥∥∥
∞
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for all µ, ν in M(C). The infinitesimal Kobayashi metric on M(C) is given by

KM(µ, λ) =
∥∥∥ λ

(1− |µ|2)

∥∥∥
∞

for µ in M(C) and λ in L∞(C).

See Proposition 7.25 in [7].

By definition, the Teichmüller metric dT (E) on T (E) is given by

dT (E)(PE(µ), t) = inf{ρM(µ, ν) : ν ∈M(C) and PE(ν) = t}

for all µ in M(C) and t in T (E).
The infinitesimal Teichmüller metric FT (E) is defined on the tangent bundle of

T (E) by the formula

FT (E)(PE(µ), v) = inf{KM(µ, λ) : λ ∈ L∞(C) and P ′
E(µ)λ = v},

for any µ in M(C) and tangent vector v to T (E) at the point PE(µ).

Proposition 1.8. The Teichmüller and Kobayashi metrics on T (E) are equal,

and the infinitesimal Teichmüller and Kobayashi metrics are also equal.

See Proposition 7.30 in [7].

Definition 1.9. A map f : ∆ → T (E) is called a holomorphic isometry if f is
holomorphic and for any pair t, t′ in ∆, dT (E)(f(t), f(t

′)) = ρ∆(t, t
′).

Recall that the Poincaré metric on ∆ is given by

ρ∆(z, w) = tanh−1
∣∣∣ z − w

1− z̄w

∣∣∣

for all z and w in ∆.

Definition 1.10. A Beltrami coefficient µ in M(C) is called extremal in its E-
equivalence class, if PE(µ) = PE(ν) and ‖µ‖∞ ≤ ‖ν‖∞. Equivalently, µ in M(C) is
extremal in its E-equivalence class if dT (E)(0T , PE(µ)) = ρM(0, µ).

We defined a natural isomorphism mapping the tangent space to T (E) at its
basepoint onto a Banach space A(E)∗. That isomorphism is an isometry with respect
to the infinitesimal Teichmüller metric on the tangent space and the usual norm on
A(E)∗. Throughout this paper we will denote this infinitesimal Teichmüller norm by
ℓµ; so ℓµ is the norm of the linear functional

ℓµ(φ) =

¨

C

µφ dx dy on A(E).

Henceforth, we will denote this by

‖ℓµ‖T (E) = sup
‖φ‖=1

∣∣∣
¨

C

µφ dx dy
∣∣∣, φ ∈ A(E).

It is clear that ‖ℓµ‖T (E) ≤ ‖µ‖∞ for µ in L∞(C).

Definition 1.11. A Beltrami coefficient µ is infinitesimally extremal in its E-
equivalence class, if ‖ℓµ‖T (E) = ‖µ‖∞.

The following proposition is obvious.

Proposition 1.12. If E is a subset of Ẽ and pẼ,E : T (Ẽ) → T (E) is the forgetful

map, then

dT (E)(pẼ,E(s), pẼ,E(t)) ≤ d
T (Ẽ)(s, t)
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for all s and t in T (Ẽ).

When E is finite. Let E be a finite set (as usual, 0, 1, and ∞ belong to
E). Its complement Ec = Ω is the Riemann sphere with punctures at the points of
E. Since T (E) and the classical Teichmüller space Teich(Ω) are quotients of M(C)
by the same equivalence relation, T (E) can be naturally identified with Teich(Ω).
It is given in Example 3.1 in [15]. For the reader’s convenience, we include this
discussion. Let θ : T (E) → Teich(Ω) be the map defined by setting θ(PE(µ)) equal
to the Teichmüller class of the restriction of wµ to Ω (where, as usual, µ is in M(C)).
It is clear that θ is a well-defined map of T (E) into Teich(Ω). We claim that θ
is injective. For, suppose that the restrictions of wµ and wν to Ω are in the same
Teichmüller class. Then, there is a conformal map h of wµ(Ω) onto wν(Ω) such that
(wν)−1 ◦ h ◦ wµ is isotopic to the identity rel E. This map h is the identity, for it is
obviously a Möbius transformation and it fixes 0, 1, and ∞ because wµ and wν are
normalized. Therefore, wµ and wν are E-equivalent, and so θ is injective. Also, θ is
surjective, since the restriction map µ 7→ µ|Ω from M(C) to M(Ω) is bijective and
θ(PE(µ)) = Φ(µ|Ω) for all µ in M(C), where Φ: M(Ω) → Teich(Ω) is the standard
projection. This also shows that θ is biholomorphic, since PE and Φ induce the
complex structures of T (E) and Teich(Ω). Under this indentification dT (E) becomes
the (classical) Teichmüller metric for Teich(Ω). Furthermore, the norm of ℓµ is simply
the norm of the linear functional that µ induces on the Banach space of integrable
holomorphic functions on Ω. For standard facts on classical Teichmüller spaces, the
reader is refereed to the books [9, 11, 19].

We need the following form of Teichmüller contraction for T (E) when E is a
finite set. (Recall that when E is finite, T (E) is naturally identified with the classical

Teichmüller space Teich(Ĉ \ E). )

Theorem 1.13. Let µ ∈M(C), and PE(µ) = τ in T (E). Let µ0 be an extremal

in PE(µ). Set k0 = ‖µ0‖∞, k = ‖µ‖∞, K0 = (1+k0)/(1−k0), andK = (1+k)/(1−k).
Then

1

K0
−

1

K
≤

2

1− k2

(
k − ‖ℓ‖T (E)

)
≤ K −K0.

See Theorem 2 in [5].

Remark 1.14. Earle proved this result for Teich(X) where X is any hyperbolic
Riemann surface. He used the Reich–Strebel inequalities to obtain his result. We

need the special case when X = Ĉ \ E and E = {0, 1,∞, ζ1, · · ·, ζn}, n ≥ 1.

Approximations by finite subsets. Let E be infinite and let E1, E2, · · ·, En, · · ·
be a sequence of finite subsets of E such that {0, 1,∞} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·
and

⋃∞
n=1En is dense in E. Let 0 be the basepoint of T (E), and for each n ≥ 1, let

πn be the forgetful map pE,En
from T (E) to T (En). For any τ in T (E) and n ≥ 1

let τn = πn(τ). In particular, 0n = πn(0) is the basepoint of T (En) for all n ≥ 1. By
Proposition 1.12, we have

dT (En)(0n, τn) ≤ dT (En+1)(0n+1, τn+1) ≤ dT (E)(0, τ)

for all τ in T (E) and n ≥ 1.
The following two facts will be important in our paper. For proofs, see [15] and

[16].
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Proposition 1.15. For each τ in T (E) the increasing sequence {dT (En)(0n, τn)}
converges to dT (E)(0, τ).

Proposition 1.16. Let the infinite closed set E and the finite subsets En, n ≥ 1,
be as above, and let µ belong to L∞(C). The sequence {‖ℓµ‖T (En)} is increasing and

converges to ‖ℓµ‖T (E).

We will also need the following theorem. This appears in Earle’s paper [5].

Theorem 1.17. Let V be a complex Banach space and g : ∆ → V be a holo-

morphic map with g(0) = 0 and ‖g(t)‖ ≤ 1, ∀t ∈ ∆. Fix t ∈ ∆ \ {0}. If either of the

inequalities ‖g′(0)‖ ≤ 1 or ‖g(t)‖ ≤ |t| is strict, then both are strict and

ρ∆

(
‖g(t)‖

|t|
, ‖g′(0)‖

)
≤ ρ∆(0, t).

2. Statements of the main results

For classical Teichmüller spaces, the principle of Teichmüller contraction was
proved in [8]. A sharp form of Teichmüller contraction was proved by Earle in [5].
Gardiner’s result was extended to the generalized Teichmüller space T (E) in [16],
which proved a δ−ǫ form of Teichmüller contraction. Our first result extends Earle’s
form of Teichmüller contraction to T (E); this sharpens and improves the δ − ǫ in-
equalities in [16].

Theorem I. Let µ ∈ M(C), and PE(µ) = τ in T (E). Let µ0 be an extremal

in the E-equivalence of µ. Set k0 = ‖µ0‖∞, k = ‖µ‖∞, K0 = (1 + k0)/(1− k0), and

K = (1 + k)/(1− k). Then

1

K0
−

1

K
≤

2

1− k2

(
k − ‖ℓ‖T (E)

)
≤ K −K0.

Our next result is on holomorphic isometries from ∆ into T (E). This extends
Theorem 5 in [6] to T (E).

Theorem II. Let f : ∆ → T (E) be holomorphic and let t1 ∈ ∆. Suppose either

that

(1) dT (E)(f(t1), f(t2)) = ρ∆(t1, t2) for some t2 ∈ ∆ \ {t1},

or

(2) FT (E)(f(t1), f
′(t1)) =

1

1− |t1|2
, then f is a holomorphic isometry.

In [5], Earle proved a form of Schwarz’s lemma for classical Teichmüller spaces.
Our next result extends that theorem to T (E). Let f : ∆ → T (E) be a basepoint
preserving holomorphic map and set

k0(t) = ‖µ‖∞ if t ∈ ∆, f(t) = PE(µ), and µ is extremal .

Theorem III. Let f : ∆ → T (E) be a basepoint preserving holomorphic map.

Fix any t in ∆ \ {0}. If either of the inequalities ‖f ′(0)‖T (E) ≤ 1 or k0(t) ≤ |t| is

strict, then both are strict and

ρ∆

(
k0(t)

|t|
, ‖f ′(0)‖T (E)

)
≤ 2ρ∆(0, t).

Our final theorem is on complex geodesics and unique extremality in T (E). It
extends Theorem 6 in [6] to T (E). We first need two definitions.
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Definition 2.1. A geodesic segment J in T (E) is the image of an injective
continuous map α : [0, 1] → T (E) such that

dT (E)(α(x0), α(x2)) = dT (E)(α(x0), α(x1)) + dT (E)(α(x1), α(x2))

whenever 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1. The points f(0) and f(1) are called the endpoints
of J . We say that the geodesic segment J joins the points τ1 and τ2 in T (E) if they
are the endpoints of J .

Definition 2.2. A Beltrami coefficient µ in M(C) is called uniquely extremal if
PE(ν) 6= PE(µ) whenever ν ∈ M(C), ν 6= µ, and ‖ν‖∞ ≤ ‖µ‖∞.

It is obvious that every “uniquely extremal” µ is extremal.

Theorem IV. Let µ0 ∈ M(C), µ0 6= 0 and µ0 be extremal in its E-equivalence

class. Then the following four statements are equivalent:

(1) The Beltrami coefficient µ0 is uniquely extremal and |µ0| = ‖µ0‖∞ a.e.

(2) There exists only one geodesic segment joining PE(0) and PE(µ0).
(3) There exists only one holomorphic isometry f : ∆ → T (E) such that f(0) =

PE(0) and f(‖µ0‖∞) = PE(µ0).
(4) There exists only one holomorphic map g : ∆ → M(C) such that g(0) = 0

and PE(g(‖µ0‖∞)) = PE(µ0).

Remark 2.3. Recall from §1 that when E is finite, T (E) is naturally identified

with the classical Teichmüller space Teich(Ĉ\E), and so, T (E) is finite-dimensional.
In that case all the above theorems are well-known; see [5], §7 and §8 in [6], and also
§9.3 and §9.5 in [13]. Therefore, for the rest of our paper, the blanket assumption
will be that E is an infinite closed set and that 0, 1, and ∞ belong to E.

3. Proof of Theorem I

Let τ ∈ T (E), PE(µ = τ , and µ0 be extremal in the E-equivalence class of µ. So
we have PE(µ) = PE(µ0) and ‖µ0‖∞ ≤ ‖µ‖∞. Let k = ‖µ‖∞ and k0 = ‖µ0‖∞. Also,
let

K =
1 + k

1− k
and K0 =

1 + k0
1− k0

.

We follow the construction given immediately after Theorem 1.13 (in §1). Let τn =
πn(τ), and let µ0(n) be extremal in its En-equivalence class. Let k0(n) = ‖µ0(n)‖∞
and let

K0(n) =
1 + k0(n)

1− k0(n)
.

Since T (En) is identified with the classical Teichmüller space Teich(Ĉ \ En), by
Theorem 1.13, the following is true for all n:

(3.1)
1

K0(n)
−

1

K
≤

2

1− k2

(
k − ‖ℓµ‖T (En)

)
≤ K −K0(n).

Since µ0(n) is extremal in its En-equivalence class, we have dT (En)(0n, τn) = ‖µ0(n)‖∞
= k0(n). Also, since µ0 is extremal in its E-equivalence class, we have dT (E)(0, τ) =
‖µ0‖∞ = k0. By Propositions 1.14 and 1.15, we have

lim
n→∞

K0(n) = K0 and lim
n→∞

‖ℓµ‖T (En) = ‖ℓµ‖T (E).

Taking limits in Equation (3.1), we obtain

�(3.2)
1

K0
−

1

K
≤

2

1− k2

(
k − ‖ℓµ‖T (E)

)
≤ K −K0.
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The following two corollaries will be very useful in our paper.

Corollary 3.1. (Hamilton–Krushkal–Reich–Strebel extremality condition for
T (E)) A Beltrami coefficient µ is extremal in its E-equivalence class if and only if it

is infinitesimally extremal in its E-equivalence class.

The proof is obvious.

We follow the same notations as in Theorem I. Let PE(µ) = τ , and let µ0 be
extremal in its E-equivalence class. Let k = ‖µ‖∞ and k0 = ‖µ0‖∞.

Corollary 3.2. If either k0 or ‖ℓµ‖T (E) is less than k then both are less than k.

Moreover,

(3.3) ρ∆

(
k0
k
,
‖ℓµ‖T (E)

k

)
≤ ρ∆(0, k).

The proof is straightforward. See, for example, the proof of Corollary 1 in [5].

4. Proof of Theorem II

Let L : L∞(C) → A(E)∗ be the linear map that takes µ in L∞(C) to the func-
tional ℓµ defined as

L(µ)(φ) = ℓµ(φ) =

¨

C

µφ dx dy, for φ ∈ A(E).

By Proposition 1.4, we can assume, without loss of generality that t1 = 0 and
that f(0) = 0. We use the same notation 0 for the basepoints in ∆, M(C), and

T (E). By Proposition 1.6, there exists a holomorphic map f̂ : ∆ →M(C) such that

f̂(0) = 0 and PE ◦ f̂ = f .
Let us assume there is t2 ∈ ∆\{0} such that dT (E)(0, f(t2)) = ρ∆(0, t2). We have

ρ∆(0, t2) = dT (E)(0, f(t2)) ≤ ρM (0, f̂(t2)) ≤ ρ∆(0, t2)

where dT (E)(0, f(t2)) ≤ ρM(0, f̂(t2)) because PE : M(C) → T (E) is holomorphic,

PE(0) = 0 and PE(f̂(t2)) = f(t2); and also, ρM (0, f̂(t2)) ≤ ρ∆(0, t2) because f̂ : ∆ →

M(C) is holomorphic and f̂(0) = 0. From the above inequality, we get

dT (E)(0, f(t2)) = ρM(0, f̂(t2)) = ρ∆(0, t2).

Hence f̂(t2) is extremal and ‖f̂(t2)‖∞ = |t2|.

Let g : ∆ → A(E)∗ be defined as g = L ◦ f̂ ; then ‖g(t)‖ ≤ ‖f̂(t)‖∞ < 1, for all
t in ∆. For all µ ∈ L∞(C), we have ‖ℓµ‖ ≤ ‖µ‖∞. We also have g(0) = 0 since

f̂(0) = 0 and ℓ0 = 0. So we can apply Schwarz’s Lemma to both g and f̂ , and since

f̂(t2) is extremal, it will be infinitesimally extremal by Corollary 3.1. Hence we have

‖g(t2)‖ = ‖ℓ
f̂(t2)

‖ = ‖f̂(t2)‖∞ = |t2|.

This is the case of equality in Schwarz’s lemma, and hence we get

‖g′(0)‖ = ‖f̂ ′(0)‖∞ = 1.

From the definition of L we see that L(µ) = 0 if and only if P
′

E(0)µ = 0. Using
chain rule we obtain

‖ℓµ‖ = inf{‖ν‖∞ : ℓµ = ℓν} = inf{‖ν‖∞ : PE
′(0)µ = PE

′(0)ν}.
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Hence we get

‖ℓ
f̂ ′(0)‖ = inf{‖ν‖∞ : P ′

E(0)ν = P ′
E(0)f̂

′(0)} = inf{‖ν‖∞ : P ′
E(0)ν = f ′(0))},

which gives

1 = ‖f̂ ′(0)‖∞ = ‖ℓ
f̂ ′(0)‖ = FT (E)(0, f

′(0)).

Since we assumed t1 = 0 and f(0) = 0, we obtain

FT (E)(f(t1), f
′(t1)) =

1

1− |t1|2
.

This proves 1 ⇒ 2.
Now let us assume 2, that is there is a t1 ∈ ∆ such that

FT (E)(f(t1), f
′(t1)) =

1

1− |t1|2
.

Again without loss of generality we assume t1 = 0 and f(0) = 0. With our assumption
we thus have f : ∆ → T (E) is a holomorphic map, and f(0) = 0 and FT (E)(0, f

′(0)) =
1.

Consider the holomorphic map f̂ : ∆ →M(C) such that f̂(0) = 0 and PE◦f̂ = f.
Using Schwarz’s lemma as before we observe that

1 = FT (E)(0, f
′(0)) ≤ ‖f̂ ′(0)‖∞ ≤ 1.

This implies that ‖f̂ ′(0)‖∞ = 1.

Again let g = L ◦ f̂ that is g(t) = ℓ
f̂(t). We get ‖g′(0)‖ = ‖f̂ ′(0)‖∞ = 1. This is

the case of equality in Schwarz’s lemma, and hence we get

‖g(t)‖ = ‖f̂(t)‖∞ = |t| for all t ∈ ∆.

So for all t in ∆, f̂(t) is extremal and ‖f̂(t)‖∞ = |t|. We see that for all t in ∆ the
following is true because of extremality and the last equation:

dT (E)(0, f(t)) = dT (E)(PE(0), PE(f̂(t))) = ρM(0, f̂(t)) = ρ∆(0, t).

Since t1 = 0 and f(0) = 0 we get dT (E)(f(0), f(t)) = ρ∆(0, t), and so,

dT (E)(f(t1), f(t)) = ρ∆(t1, t)

for all t in ∆. So 2 ⇒ 1 trivially, and actually does imply something stronger.
Finally, we will show that for all t, t′ in ∆, dT (E)(f(t), f(t

′)) = ρ∆(t, t
′). If t1 = t′

we have nothing to prove, so let us assume t1 6= t′. We have already seen that any
t ∈ ∆ could have been chosen as t1 and hence we can simply assume t = t1 and we
thus get

ρ∆(t, t
′) = ρ∆(t1, t

′) = dT (E)(f(t1), f(t
′)) = dT (E)(f(t), f(t

′))

which proves that f is a holomorphic isometry. �

We note the following corollary, whose proof is obvious.

Corollary 4.1. Let f : ∆ → T (E) be a holomorphic map with f(0) = PE(0).
Let t ∈ ∆ \ {0}. Define k0(t) = ‖ν‖∞ where f(t) = PE(ν) and ν is extremal in its E-

equivalence class. We also know that ‖f ′(0)‖T (E) = FT (E)(0, f
′(0)). Then k0(t) = |t|

if and only if ‖f ′(0)‖T (E) = 1.
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5. Proof of Theorem III

Let f : ∆ → T (E) be a baepoint preserving holomorphic map; by Proposition 1.6,

there exists a holomorphic map f̂ : ∆ → M(C), such that f̂(0) = 0 and f = PE ◦ f̂ .
Let V0 be the Banach space of all tangent vectors at the basepoint of T (E). We also
know that PE

′(0) takes the tangent vectors ν in the tangent space at the basepoint

of M(C) (which is L∞(C)) to the functional ℓν . So PE
′(0) ≡ L. Let g = L ◦ f̂ such

that g(t) = ℓ
f̂(t); then g : ∆ → V0 is holomorphic and

f ′(0) = (PE ◦ f̂)
′
(0) = P ′

E(0)(f̂
′(0)) = L(f̂ ′(0)) = ℓ

f̂ ′(0) = g′(0)

since L is linear. Let t ∈ ∆ \ {0} be fixed and one of the following inequalities
‖f ′(0)‖ ≤ 1 and k0(t) ≤ |t| be strict, then both are strict by Corollary 4.1. So we get

‖g′(0)‖ = ‖f ′(0)‖ < 1

and so by Theorem 1.16 we get ‖g(t)‖ < |t| and hence ‖ℓ
f̂(t)‖ < |t| or ‖ℓ

f̂(t)‖T (E) < |t|.

By the same theorem we also get

(5.1) ρ∆

(
‖ℓ
f̂(t)‖T (E)

|t|
, ‖f ′(0)‖T (E)

)
≤ ρ∆(0, t).

If ‖ℓ
f̂(t)‖T (E) = ‖f̂(t)‖∞, then by Corollary 3.1, f̂(t) is extremal and k0(t) =

‖ℓ
f̂(t)‖T (E) and so by (5.1) we get

(5.2) ρ∆

(
k0(t)

|t|
, ‖f ′(0)‖T (E)

)
≤ ρ∆(0, t).

Suppose ‖ℓ
f̂(t)‖T (E) < ‖f̂(t)‖∞. Let r = ‖f̂(t)‖∞

|t|
. Let k = ‖µ‖∞ and k0 = ‖µ0‖∞. By

Corollary 3.2 we have

(5.3) ρ∆

(
k0
k
,
‖ℓµ‖T (E)

k

)
≤ ρ∆(0, k).

So for µ = f̂(t), k = r|t| and k0(t) = k0, we have

(5.4) ρ∆

(
k0(t)

r|t|
,
‖ℓ
f̂(t)‖T (E)

r|t|

)
≤ ρ∆(0, r|t|).

Let us consider the map α : ∆ → ∆ given by α(z) = rz; then α is holomorphic and
α(0) = 0. Let

k0(t)

r|t|
= a and

‖ℓ
f̂(t)‖T (E)

r|t|
= b.

Then, a, b ∈ ∆ and by Schwarz’s lemma we get ρ∆(ar, br) ≤ ρ∆(a, b). This gives

(5.5) ρ∆

(
k0(t)

|t|
,
‖ℓ
f̂(t)‖T (E)

|t|

)
≤ ρ∆

(
k0(t)

r|t|
,
‖ℓ
f̂(t)‖T (E)

r|t|

)

We also have

(5.6) ρ∆(0, r|t|) = ρ∆(α(0), α|t|) ≤ ρ∆(0, |t|) = ρ∆(0, t).

Combining (5.4), (5.5), and (5.6), we get

(5.7) ρ∆

(
k0(t)

|t|
,
‖ℓ
f̂(t)‖T (E)

|t|

)
≤ ρ∆(0, t).
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Combining (5.1) and (5.7), and using the triangle inequality, we obtain

ρ∆

(
k0(t)

|t|
, ‖f ′(0)‖T (E)

)
≤ 2ρ∆(0, t). �

6. Proof of Theorem IV

Step 1. (2) implies (3). Let f1 and f2 be two holomorphic isometries from ∆
into T (E), such that f1(0) = f2(0) = PE(0) and f1(‖µ0‖∞) = f2(‖µ0‖∞) = PE(µ0).
By (2) there is only one geodesic segment joining 0 and PE(‖µ0‖∞). Therefore, the
image of the line segment [0, ‖µ0‖∞] is pointwise the same under both f1 and f2. This
implies that the holomorphic mapping f1 − f2 is identically zero on the line segment
[0, ‖µ0‖∞], and so f1 − f2 is identically zero on ∆.

Step 2. (1) implies (4). Let µ0 be extremal and |µ0| = ‖µ0‖∞ a.e. Let g : ∆ →
M(C) be a holomorphic map with g(0) = 0 and PE(g(‖µ0‖∞)) = PE(‖µ0‖∞). By
Schwarz’s lemma, ‖g(‖µ0‖∞)‖∞ ≤ ‖µ0‖∞. Since µ0 is uniquely extremal, we have

g(‖µ0‖∞) = µ0. Consider a function f in M(C) (the closure of M(C) in L∞(C)),

with |f(z)| = 1 a.e. Let h be another function in M(C) such that h(z) 6= 0 in C \Zh
where Zh = {z ∈ C : h(z) = 0} and m(Zh) = 0, where m denotes the usual Lebesgue
measure. Let Ef = {z ∈ C : |f(z)| 6= 1}. By our assumption, m(Ef ) = 0. Consider

the function ft(z) = f(z) + th(z). Let Fh = {ft, t ∈ ∆}. Suppose Fh ⊂ M(C). For
any t ∈ ∆ define Ht = {z ∈ C : |ft(z)| > 1}. Let f(z) = eiθ(z), h(z) = |h(z)|eiφ(z)

and l(z) = φ(z)− θ(z). Also, t = |t|eiψ. Then we have

|ft(z)| =
√

1 + |t|2(|h(z)|)2 + 2|t|(|h(z)|) cos(l(z) + ψ).

If ft ∈M(C), then m(Ht) = 0, and if z ∈ C \Ht, then

1 + |t|2(|h(z)|)2 + 2|t|(|h(z)|) cos(l(z) + ψ) ≤ 1.

But |t|2(|h(z)|)2 + 2|t|(|h(z)|) cos(l(z) + ψ) ≤ 0. This implies

− cos l(z) cosψ − sin l(z) sinψ ≥
|t||h(z)|

2
.

Consider the functions f1, fi, f−1 and f−i. Let G = Ef ∪Zh ∪H1 ∪Hi ∪H−1 ∪H−i.
By our assumption, m(G) = 0 and if z ∈ C \G, then h(z) 6= 0, and

− cos l(z) ≥
|h(z)|

2
, − sin l(z) ≥

|h(z)|

2
, cos l(z) ≥

|h(z)|

2
, sin l(z) ≥

|h(z)|

2
.

This is not possible. Therefore, at least one of the following functions f1, f−1, fi,

or f−i does not belong to M(C). This implies that f is a complex extreme point of

M(C). Let λ = µ0
‖µ0‖∞

. Since |µ0| = ‖µ0‖∞ a.e. we have |λ| = 1 a.e. Therefore λ is a

complex extreme point for M(C).
Now define h : ∆ →M(C) as,

h(t) =

{
g(t)
t

if t 6= 0,

g′(0) if t = 0.

Then h is holomorphic and h(‖µ0‖∞) = λ. By the strong maximum modulus principle
(see Proposition 6.19 in [4]) we have h(t) = λ. This implies

g(t) = tλ =
tµ0

‖µ0‖∞
.

Since µ0 is uniquely extremal, g is uniquely determined, and we are done.
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Step 3. (4) implies (3). Let f : ∆ → T (E) be a holomorphic isometry such that

f(0) = PE(0) and f(‖µ0‖∞) = PE(µ0). Consider the holomorphic map f̂ : ∆ →

M(C) such that f̂(0) = 0 and PE ◦ f̂ = f . Then PE(f̂(‖µ0‖∞)) = PE(µ0). By the
uniqueness condition in (4), we have

f̂(t) =
tµ0

‖µ0‖∞
, t ∈ ∆.

This implies

f(t) = PE

(
tµ0

‖µ0‖∞

)
, t ∈ ∆.

So f is uniquely determined.

Step 4. (3) implies (1). We first show that if (3) holds, then |µ0| = ‖µ0‖∞
a.e. Let r ∈ (0, 1) and Zr = {z ∈ C : |µ0(z)| < r‖µ0‖∞} we need to show that
m(Zr) = 0. Let χr be the characteristic function of Zr. Let φ ∈ A(E), where A(E) is
the closed subspace of L1(C) consisting of maps holomorphic in Ec. Define functions
f1 : ∆ → T (E) and fr : ∆ → T (E) by

f1(t) = PE

(
tµ0

‖µ0‖∞

)

and

fr(t) = PE

(
tµ0

‖µ0‖∞
+

1− r

2
t

(
t− ‖µ0‖∞

(
χr

|φ

φ

)))
.

These maps are holomorphic and we also have f1(0) = fr(0) = 0 and f1(‖µ0‖∞) =
fr(‖µ0‖∞) = PE(µ0). They are also isometries since ρ∆(0, ‖µ0‖∞) = dT (E)(0, PE(µ0)).
So, by (3) they coincide and we obtain

0 = f ′
1(0)− f ′

r(0) =
1− r

2
‖µ0‖∞P

′
E(0)

(
χr

|φ|

φ

)
.

This implies

P ′
E(0)

(
χr

|φ|

φ

)
= 0.

Since P ′
E(0)(µ) = ℓµ, we get

ℓ(χr
|φ|
φ )

= 0.

In particular,
ℓ(χr

|φ|
φ )

(φ) = 0.

So,
¨

Zr

|φ| dx dy = 0.

This shows that m(Zr) = 0 since φ is an arbitrary function in A(E). Let Z =⋃
r∈Q∩(0,1) Zr, then m(Z) = 0. This shows that |µ0| = ‖µ0‖∞ a.e. For any (nor-

malized) quasiconformal homeomorphism h of Ĉ, we define its Beltrami coefficient
as

µh =
hz̄
hz
.

If h and j are two quasiconformal homeomorphisms, we have the composition
formula

µh◦j =
µj + (µh ◦ j)αj
1 + µ̄j(µh ◦ j)αj
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where

αj =
|jz|

2

(jz)2
.

If ν ∈ M(C), then by wν we mean the unique normalized quasiconformal homeo-
morphism with Beltrami coefficient ν a.e.

Let ν ∈ M(C) such that ‖ν‖∞ ≤ ‖µ0‖∞ and PE(ν) = PE(µ0). Since µ0 is
extremal, it follows that ν is also extremal and ‖ν‖∞ = ‖µ0‖∞. Hence f(t) =

PE

(
tν

‖ν‖∞

)
is a holomorphic isometry. So, by (3) we obtain

PE

(
tν

‖ν‖∞

)
= PE

(
tµ0

‖µ0‖∞

)
.

Since ν is extremal, by (3) we obtain |ν| = ‖ν‖∞ = ‖µ0‖∞ a.e. Also, PE(sν) =
PE(sµ0), for any s in (0, 1).

So (wsµ0)−1◦wsν is isotopic to the identity rel E. This implies wµ0 ◦(wsµ0)−1◦wsν

is isotopic to wµ0 rel E. This implies (wµ0)−1 ◦ wλ is isotopic to the identity rel E,
where

wλ = wµ0 ◦ (wsµ0)−1 ◦ wsν.

This implies PE(λ) = PE(µ0). Now let h = wµ0 ◦ (wsµ0)−1 and j = wsµ0 such that
h ◦ j = wµ0 . By the formula for composition of quasiconformal mappings, we get

|µh ◦ j| =
|µ0|(1− s)

1− s|µ0|2
.

We know that |µ0| = ‖µ0‖∞ a.e. Let ‖µ0‖∞ = k and sk = k′. We get

|µh ◦ j| =
k − k′

1− kk′
= k′′ a.e.

Since j is quasiconformal and therefore absolutely continuous, it follows that |µh| =

k′′ a.e. Now let us consider h = wµ0 ◦ (wsµ0)−1 and j = wsν so that h ◦ j = wλ. By
similar calculations we obtain

λ =
sν + (µh ◦ j)αj
1 + sν̄(µh ◦ j)αj

.

Since |sν| = k′ a.e. and |µh ◦ j| = k′′ a.e. and |αj | = 1 we write sν = k′eiθ a.e. and
(µh ◦ j)αj = k′′eiφ a.e. Hence

λ = eiθ
k′ + k′′eil

1 + k′k′′eil

where l = φ− θ. Therefore, |λ| = | k
′+k′′eil

1+k′k′′eil
|. Next, note that

k′ + k′′eil

1 + k′k′′eil
≤

k′ + k′′

1 + k′k′′
⇐⇒

(k′ + k′′ cos l)2 + k′′2 sin2 l

(1 + k′k′′ cos l)2 + k′2k′′2 sin2 l
≤

k′2 + 2k′k′′ + k′′2

1 + 2k′k′′ + k′2k′′2

⇐⇒ (1− k′2)(1− k′′2)(1− cos l) ≥ 0.

The last inequality is true since k′ < 1, k′′ < 1 and cos l ≤ 1. So we get

|λ| ≤
k′ + k′′

1 + k′k′′
= k.

Since PE(µ0) = PE(λ) and µ0 is extremal, it follows that λ is extremal. Hence |λ| = k
a.e. This implies ∣∣∣ k

′ + k′′eil

1 + k′k′′eil

∣∣∣ = k′ + k′′eil

1 + k′k′′eil
.
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This implies
(1− k′

2
)(1− k′′

2
)(1− cos l) = 0.

Since k′ < 1 and k′′ < 1, this holds if and only if cos l = 1, i.e. cos(φ− θ) = 1. This
implies sν = k′eiθ a.e. and (µh ◦ j)αj = k′′eiφ a.e. have the same arguments and can
be rewritten as sν = k′eiθ a.e. and (µh ◦ j)αj = k′′eiθ a.e.

We can write (µh ◦ j)αj = m · sν where m = k′

k′′
> 0, so

λ = ν
s+ms

1 +ms2k2
.

This shows that λ is a positive multiple of ν. Let us write (for simplicity) λ = pν
where p > 0. So, ‖λ‖∞ = p‖ν‖∞. But we have ‖λ‖∞ = ‖ν‖∞ = ‖µ0‖∞ = k > 0. So
p = 1 and hence λ = ν a.e. Hence

wν = wλ = wµ0 ◦ (wsµ0)−1 ◦ wsν a.e. =⇒ wν ◦ (wsν)−1 = wµ0 ◦ (wsµ0)−1 a.e.

Since s ∈ (0, 1) is arbitrary, letting s → 0, we observe wν = wµ0 a.e and hence
ν = µ0 a.e.. This proves that µ0 is uniquely extremal.

Step 5. (1) implies (2). Let µ0 be uniquely extremal, and |µ0| = ‖µ0‖∞ = k a.e.
Let α : [0, 1] → T (E) be an injective continuous map, defined by α(t) = PE(tµ), so
that α([0, 1]) is a geodesic segment joining PE(0) and PE(µ0). We want to show this
is the only geodesic segment joining PE(0) and PE(µ0).

Let us assume that there is another injective continuous map β : [0, 1] → T (E),
such that β([0, 1]) is another geodesic segment joining PE(0) and PE(µ0). Let ν ∈
M(C) be a point such that PE(ν) ∈ β([0, 1]) \ α([0, 1]). Let ν0 be extremal in the
E-equivalence class of ν. Since PE(ν0) is an interior point of the geodesic segment
we see that

(6.1) dT (E)(PE(0), PE(ν0)) ≤ dT (E)(PE(0), PE(µ0)).

Since |µ0| = k a.e. and ν0 is extremal, we see that |µ0| ≥ |ν0| a.e. Consider the

mapping wη = wµ0 ◦ (wν0)−1, so that wη ◦ wν0 = wµ0 .
Let η0 be the extremal in the E-equivalence class of η. Observe that wη0◦wν0 = wµ̃

for some µ̃ such that PE(µ̃) = PE(µ0). So we get

|η ◦ wν0| =
∣∣∣ µ0 − ν0
1− ν0µ0

∣∣∣

and

|η0 ◦ w
ν0| =

∣∣∣ µ̃− ν0
1− ν0µ̃

∣∣∣.

Let ‖µ̃‖∞ = n and ‖ν0‖∞ = l. Since µ0 and ν0 are both extremal, we get l < k ≤ n.
Now consider the map

f(z) =
z − a

1− āz
, a ∈ ∆.

This map is holomorphic in ∆ and f(a) = 0. So, if 1 > δ1 > δ2 > a, then a ∈ Bδ2(0) ⊂
Bδ1(0), where Bδ(0) = {z ∈ ∆: |z − a| < δ}. Since f is a Möbius transformation, by
maximum modulus principle,

δ1 > δ2 ⇐⇒ sup
z∈Bδ1

(0)

|f(z)| = sup
z∈∂Bδ1

(0)

|f(z)| > sup
z∈∂Bδ2

(0)

|f(z)| = sup
z∈Bδ2

(0)

|f(z)|

and

δ1 = δ2 ⇐⇒ sup
z∈Bδ1

(0)

|f(z)| = sup
z∈∂Bδ1

(0)

|f(z)| = sup
z∈∂Bδ2

(0)

|f(z)| = sup
z∈Bδ2

(0)

|f(z)|.
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Applying this to our problem we see that for all possible values of ν0, since ‖µ̃‖∞ = n
and n ≥ k, we have

sup
µ̃

∣∣∣ µ̃− ν0
1− ν0µ̃

∣∣∣ ≥ sup
µ0

∣∣∣ µ0 − ν0
1− ν0µ0

∣∣∣.

So

sup
ν0

sup
µ̃

∣∣∣ µ̃− ν0
1− ν0µ̃

∣∣∣ ≥ sup
ν0

sup
µ0

∣∣∣ µ0 − ν0
1− ν0µ0

∣∣∣.

This implies that ‖η0‖∞ ≥ ‖η‖∞. Since ‖η0‖∞ ≤ ‖η‖∞, we conclude that
‖η0‖∞ = ‖η‖∞. By the above discussion we have n = k, that is ‖µ0‖∞ = ‖µ̃‖∞.

We conclude that µ̃ is extremal, and since µ0 is uniquely extremal, µ̃ = µ0. So

wη0 = wµ0 ◦ (wν0)−1.

This gives us

(6.2) dT (E)(PE(0), PE(η0)) = dT (E)(PE(ν0), PE(µ0)).

Since PE(0), PE(ν0) and PE(µ0) are on a geodesic segment, we have

dT (E)(PE(0), PE(ν0)) + dT (E)(PE(ν0), PE(µ0)) = dT (E)(PE(0), PE(µ0)).

Using Equation (6.2) we get

dT (E)(PE(0), PE(ν0)) + dT (E)(PE(0), PE(η0)) = dT (E)(PE(0), PE(µ0)).

Since µ0, ν0, and η0 are extremal in their respective equivalence classes, we get

(6.3) ρ∆(0, ‖ν0‖∞) + ρ∆(0, ‖η0‖∞) = ρ∆(0, ‖µ0‖∞).

This implies

(6.4) ‖η0‖∞ =
‖µ0‖∞ − ‖ν0‖∞
1− ‖ν0‖∞‖µ0‖∞

.

Since we have

wη0 = wµ0 ◦ (wν0)−1,

we obtain

(6.5) |η0 ◦ w
ν0| =

∣∣∣ µ0 − ν0
1− ν̄0µ0

∣∣∣.

Let ν0 = sµ0, s = |s|eiφ and µ0 = keiθ and |s| < 1. By Equation (6.4) we get

(6.6) ‖η0‖∞ = k
1− sup |s|

1− sup |s|k2
.

By Equation (6.5) we get

(6.7) |η0 ◦ w
ν0| = k

∣∣∣ 1− |s|ei(φ−θ)

1− |s|k2ei(θ−φ)

∣∣∣.

Setting ω = φ− θ, we rewrite this as

(6.8) |η0 ◦ w
ν0| = k

∣∣∣ 1− |s|eiω

1− |s|k2e−iω

∣∣∣.
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It is easy to see that
∣∣∣ 1− |s|eiω

1− |s|k2e−iω

∣∣∣ ≥ 1− |s|

1− |s|k2

⇐⇒
(1− |s| cosω)2 + |s|2 sin2 ω

(1− |s|k2 cosω)2 + |s|2k4 sin2 ω
≥

(1− |s|)2

(1− |s|k2)2

⇐⇒ (1− k2)(1− |s|2k2)(1− cosω) ≥ 0.

The last inequality is true since k < 1, s < 1 and cosω ≤ 1. So Equation (6.7) gives

|η0 ◦ w
ν0| ≥ k

1− |s|

1− |s|k2
.

Hence

(6.9) ‖η0‖∞ ≥ k
1− |s|

1− |s|k2
.

It is easy to see from Equations (6.6) and (6.9) that

k
1− sup |s|

1− sup |s|k2
≥ k

1− |s|

1− |s|k2
=⇒ |s| = sup |s| := S.

From Equations (6.6) and (6.8) we get

k
1− S

1− Sk2
= ‖η0‖∞ ≥ |η0 ◦ w

ν0| = k
∣∣∣ 1− Seiω

1− Sk2eiω

∣∣∣ ≥ k
1− S

1− Sk2
.

This gives

k
∣∣∣ 1− Seiω

1− Sk2eiω

∣∣∣ = k
1− S

1− Sk2
.

This is true if and only if

(1− k2)(1− S2k2)(1− cosω) = 0.

That can happen only when cosω = cos(φ− θ) = 1, which means ν0 and µ0 have the
same arguments and hence we can write ν0 = Sµ0, 1 > S > 0. But that contradicts
our assumption. So we conclude that there is only one geodesic segment joining
PE(0) and PE(µ0), which completes the proof. �

Acknowledgement. I want to thank the referee for her/his careful reading and
valuable suggestions. I also want to thank Professor Yunping Jiang who read an
earlier draft of this paper and gave several helpful comments.

References

[1] Ahlfors, L.V.: Lectures on quasiconformal mappings. Second edition. - Univ. Lecture Ser.
38, Amer. Math. Soc., 2006.

[2] Ahlfors, L.V., and L. Bers: Riemann’s mapping theorem for variable metrics. - Ann. of
Math. 72, 1960, 385–404.

[3] Chae, S. B.: Holomorphy and calculus in normed spaces. - Marcel Dekker, New York, 1985.

[4] Dineen, S.: The Schwarz lemma. - Oxford Math. Monogr., Oxford Univ. Press, Oxford, 1990.

[5] Earle, C. J.: Schwarz’s lemma and Teichmüller contraction. - Contemp. Math. 311, 2002,
79–85.

[6] Earle, C. J., I. Kra, and S. L. Krushkal: Holomorphic motions and Teichmüller spaces. -
Trans. Amer. Math. Soc. 343:2, 1994, 927–948.



770 Nishan Chatterjee

[7] Earle, C. J., and S. Mitra: Variation of moduli under holomorphic motions. - Contemp.
Math. 256, 2000, 39–67.

[8] Gardiner, F. P.: - On Teichmüller contraction. - Proc. Amer. Math. Soc. 118, 1993, 865–875.

[9] Gardiner, F. P., and N. Lakic: Quasiconformal Teichmüller theory. - Math. Surveys
Monogr. 76, Amer. Math. Soc., Providence, 1993.

[10] Harris, L.A.: Schwarz–Pick systems of pseudometrics for domains in normed linear spaces.
- In: Advances in holomorphy, North-Holland Math. Studies 34, North-Holland, Amsterdam,
1979, 345–406.

[11] Hubbard, J.H.: Teichmüller theory and applications to geometry, topology and dynamics.
Volume I. Teichmüller theory. - Matrix Editions, Ithaca, NY, 2006.

[12] Jiang, Y., and S. Mitra: Douady–Earle section, holomorphic motions, and some applications.
- Contemp. Math. 575, 2012, 219–251.

[13] Lehto, O.: Univalent functions and Teichmüller spaces. - Grad. Texts in Math. 109, Springer-
Verlag, Berlin, 1987.

[14] Lieb, G. S.: Holomorphic motions and Teichmüller space. - Ph.D. dissertation, Cornell Uni-
versity, 1990.

[15] Mitra, S.: Teichmüller spaces and holomorphic motions. - J. Anal. Math. 81, 2000, 1–33.

[16] Mitra, S.: Teichmüller contraction in the Teichmüller space of a closed set in the sphere. -
Israel J. Math. 125, 2001, 45–51.

[17] Mitra, S.: On extensions of holomorphic motions – a survey. - In: Geometry of Riemann
surfaces, edited by Gardiner, González-Diez and Kourouniotis, London Math. Soc. Lecture
Note Ser. 368, 2010, 283–308.

[18] Mitra, S., and H. Shiga: Extensions of holomorphic motions and holomorphic families of
Möbius groups. - Osaka J. Math. 47, 2010, 1167–1187.

[19] Nag, S.: The complex analytic theory of Teichmüller spaces. - John Wiley and Sons, New
York, 1988.

[20] Rudin, W.: Functional analysis. Second edition. - McGraw-Hill, New York, 1992.

[21] Slodkowski, Z.: Holomorphic motions and polynomial hulls. - Proc. Amer. Math. Soc. 111,
1991, 347–355.

Received 4 October 2016 • Accepted 23 December 2016


