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Abstract. We construct a Sobolev homeomorphisms F ∈ W 1,2((0, 1)4,R4) which fails the
2-dimensional Lusin’s condition on H2-positively many hyperplanes, i.e. there exists C1 ⊂ [0, 1]2

with H2(C1) > 0, such that for each (z, w) ∈ C1 there is a set A(z,w) ⊂ [0, 1]2 with H2(A(z,w)) = 0

and H2
(
F (A(z,w) × {(z, w)})

)
> 0.

1. Introduction

It is well-known that each Sobolev mapping f : (0, 1)n → Rm is absolutely contin-
uous onHn−1 almost all lines parallel to coordinate axes (see e.g. [16, Theorem 2.1.4]).
It follows that H1 null sets on these lines are mapped to sets of H1 measure zero, i.e.
that f satisfies the one dimensional Lusin (N) condition there.

In models of Nonlinear Elasticity (see e.g. [1]) it is moreover natural to expect
that the mapping f : (0, 1)n → Rn is moreover a homeomorphism because of the
interpenetration of the matter and the same injectivity assumption is needed in
Geometric Function Theory (see [7, 8] and references given there). For these homeo-
morphisms it is crucial to know that sets of zero Hn measure are mapped to sets of
zero Hn measure as this corresponds to the fact that no material is “created” during
our deformation. It was shown that this n-dimensional Lusin (N) condition is true
for homeomorphisms in W 1,n((0, 1)n,Rn) by Reshetnyak [15] (see also [11, 14] or [7,
Theorem 4.10] for sharpness).

Let us note that k-dimensional Lusin (N) conditions are crucial ingredients for
various change of variables formulas and coarea formula (see e.g. [6], [7, Section A.8]
and [12]) which are extremely important tools in the area. Each Sobolev mapping
is approximatively differentiable a.e. and thus the area or coarea formula holds up
to a null set and thus the validity of the k-dimensional Lusin condition is in fact
equivalent to the validity of the formula.

The validity of the (n−1)-dimensional Lusin (N) condition for homeomorphism in
W 1,n−1((0, 1)n,Rn) onH1 almost every hyperplane was shown by Csörnyei, Hencl and
Malý in [4] and it was the crucial new ingredient in their result. Knowing these three
results for k = 1, n−1, n one could expect that the k-dimensional Lusin (N) condition
holds forW 1,k homeomorphisms forHn−k almost every k-dimensional subspace. Such
a result would be useful e.g. in [5, Theorem 12] as it would imply the validity of the
result also in the borderline case p = m without extra assumptions. The negative
result would show the necessity of the Hölder continuity in [13, Theorem 2].

Below we show that unfortunately such a result is not true.

https://doi.org/10.5186/aasfm.2017.4244
2010 Mathematics Subject Classification: Primary 46E35.
Key words: Lusin’s condition, Sobolev mapping.
Authors were supported by the ERC CZ grant LL1203 of the Czech Ministry of Education.



772 Stanislav Hencl and Aapo Kauranen

Theorem 1.1. There exists a homeomorphism F ∈ W 1,2((0, 1)4,R4) which fails
the 2-dimensional Lusin’s condition on H2 positively many hyperplanes. That is,
there exists C1 ⊂ [0, 1]2 with H2(C1) > 0 such that for each (z, w) ∈ C1 there is a set
A(z,w) ⊂ [0, 1]2 with H2(A(z,w)) = 0 and H2

(
F (A(z,w) × {(z, w)})

)
> 0.

Let us note that in the above result we have even

H2
(
πx,y
(
F (A(x,y) × {(z, w)})

))
> 0

where πx,y(x, y, z, w) = (x, y) denotes the projection to the xy-plane. We expect that
similarly it would be possible to construct a homeomorphism f ∈ W 1,k((0, 1)n,Rn)
which fails k-dimensional Lusin’s condition on Hn−k positively many k-dimensional
subspaces for every n ≥ 4 and k ∈ {2, 3, . . . , n− 2}. We have not pursued the details
as the construction for n = 4 and k = 2 is already quite complicated.

Let us briefly explain the main idea of our construction. It is known by the Ce-
sari’s construction that there is a mapping g ∈ W 1,2((0, 1)2,R2) which fails the two
dimensional Lusin (N) condition (see [2] or [7, Theorem 4.3]) but unfortunately this
mapping is far from being injective. We correct this by pushing the next steps of this
construction to higher level in the third dimension and we construct a homeomor-
phism g̃ : (0, 1)2 → R3 which fails the 2-dimensional Lusin (N) condition. We use
this construction for each (z, w) ∈ C1 and this is what our mapping F is essentially
doing up to translation on the 2-dimensional subspace (0, 1)2 × {(z, w)}. Around
these points we do just some finite approximation of the construction so that the
mapping is locally Lipschitz there and we do this cleverly so that the whole mapping
is a homeomorphism. It is easy to control

´
R2×{(z,w)} |DF |

2 for (z, w) ∈ C1 as we
know that g̃ ∈ W 1,2. For most of the points (z, w) /∈ C1 we know that F is Lipschitz
on R2 × {(z, w)} but the Lipschitz constant may grow as we approach C1. However
we can construct C1 so big that the H2-measure of those (z, w) /∈ C1 is really small
and this allows us to control

´
|DF |2 there.

1.1. Structure of the paper. Throughout the paper we will work in R4. The
points in R4 are usually denoted as (x, y, z, w), and these letters are used primarily to
distinguish the different coordinates i.e. w is the fourth coordinate. We use notation
x and y for points in R4.

In Section 2.2 we define a Cantor set C1, with positive two dimensional measure.
We will construct a mapping which fails Lusin’s condition on every hyperplane R2×
{(z, w)}, with (z, w) ∈ C1.

Our map is a composition of several homeomorphisms

(1.1) F = u ◦ π ◦ S.

The mapping S is defined as S(x, y, z, w) = (x, y, S̃(z, w)), where S̃ is a frames-to-
frames mapping squeezing Cantor set C1 onto C2 a Cantor set of small (but positive)
Hausdorff dimension. Similarly, mapping π is defined π(x, y, z, w) = (x, y, π̃(z, w)),
where π̃ : R2 → R2 is a bi-Lipschitz mapping which restricted on C2 is a projection
on line {0} ×R. The composition π ◦ S maps C1 to a certain Cantor set C3 on line
{0} ×R, while preserving planes parallel to {(0, 0)} ×R2.

In Section 3 we construct a homeomorphism u, between 3-dimensional domains,
which on the hyperplane R2 × {0} fails the 2-dimensional Lusin’s condition. This is
achieved with a construction similar to Cesari’s construction [2].

Finally, we set u(x, y, z, w) = (u(x, y, z), w) to obtain a homeomorphism which
breaks the Lusin’s condition on all hyperplanes R2 × {(0, w)} for w ∈ C3.
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2. Preliminaries

2.1. Notation. By ei we denote the basis vectors in R4, i.e. e1 = (1, 0, 0, 0) and
so on.

Throughout the paper |Mat| is the matrix with elements {|Mati,j|}ni,j=1 and in
context of matrices “/” and “≤” should be understood elementwise. Notice that for
all matrices A,B,C,D with positive entries we have that if A ≤ B and C ≤ D also

AC ≤ BD

when the multiplications are defined.
For f : (0, 1)n → Rn we use the notation ∂if for the partial derivative with respect

to i-th coordinate xi and by Df we denote the matrix of all derivatives, i.e. the i-th
column of Df is ∂if . We denote the usual m-dimensional Hausdorff measure by Hm.

2.2. Construction of the squeezing map S. In this subsection we define the
first part of our homeomorphism. On two coordinates the mapping is a typical frames-
to-frames mapping squeezing a Cantor set C1 of positive 2-dimensional measure to
a Cantor set C2 of dimension strictly smaller than 2. On two remaining coordinates
the mapping is the identity. The idea of the construction goes back to Ponomarev
[14] (see also [9, Section 5] and [7, Chapter 4.3]).

We will first give two Cantor set constructions in (0, 1)2. Our mapping S̃ will be
defined as a limit of a sequence of piecewise continuously differentiable homeomor-
phisms Sk : (0, 1)2 → (0, 1)2, where each Sk maps the k-th step of the first Cantor set
construction onto the second one. Then the limit mapping S̃ maps the first Cantor
set onto the second one. This mapping could be extended by identity outside of
(0, 1)2.

Figure 1. Cubes Qv and Q′v for v ∈ V1 and v ∈ V2.

By V we denote the set of 4 vertices of the cube [−1, 1]2. The sets Vk =
V × . . .×V, k ∈ N, will serve as the sets of indices for our construction. Let γ > 0
be a fixed constant whose value we specify later and let us denote

(2.1) ϕ(k) =
1

2
(1 + 4−k) and bk = 2−γk.

Set z0 = z̃0 = (1
2
, 1

2
) and let us define

(2.2) rk =
1

2
ϕ(k)2−k and r̃k =

1

2
bk2
−k.

It follows that (0, 1)2 = Q(z0, r0) = Q(z̃0, r̃0) and further we proceed by induction.
For v = [v1, . . . , vk] ∈ Vk we denote w = [v1, . . . , vk−1] and we define (see Figure 1)

zv = zw +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj, Q′v = Q(zv,
rk−1

2
) and Qv = Q(zv, rk).
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Formally we should write w(v) instead of w but for the simplification of the notation
we will avoid this.

The number of the cubes {Qv : v ∈ Vk} is 4k. It is not difficult to find out that
the resulting Cantor set

C1 :=
∞⋂
k=1

⋃
v∈Vk

Qv

is a product of two Cantor sets in R. Moreover, H2(C1) > 0 since

H2

( ⋃
v∈Vk

Qv

)
= 4k(ϕ(k)2−k)2 k→∞→ 1

4
.

Analogously we define

z̃v = z̃w +
1

2
r̃k−1vk = z̃0 +

1

2

k∑
j=1

r̃j−1vj, Q̃′v = Q(z̃v,
r̃k−1

2
) and Q̃v = Q(z̃v, r̃k).

The resulting Cantor set

CB :=
∞⋂
k=1

⋃
v∈Vk

Q̃v

satisfies H2(CB) = 0 since limk→∞ bk = 0. It remains to find a homeomorphism S̃
which maps C1 onto C2.

�
�

@
@

@
@

�
�

Q′v

Qv

-Sk

�
�

@
@

@
@

�
�

Q̃′v
Q̃v

Figure 2. The transformation of Q′v \Q◦v onto Q̃′v \ Q̃◦v.

We will find a sequence of homeomorphisms Sk : (0, 1)2 → (0, 1)2. We set S0(x) =
x and we proceed by induction. We will give a mapping S1 which stretches each cube
Qv, v ∈ V1, homogeneously so that S1(Qv) equals Q̃v. On the annulus Q′v \ Qv, S1

is defined to be an appropriate radial map with respect to zv and z̃v in the image in
order to make S1 a homeomorphism. The general step is the following: If k > 1, Sk
is defined as Sk−1 outside the union of all cubes Qw, w ∈ Vk−1. Further, Sk remains
equal to Sk−1 at the centers of cubes Qv, v ∈ Vk. Then Sk stretches each cube
Qv, v ∈ Vk, homogeneously so that Sk(Qv) equals Q̃v. On the annulus Q′v \ Qv,
Sk is defined to be an appropriate radial map with respect to zv in preimage and
z̃v in image to make Sk a homeomorphism (see Figure 2). Notice that the Jacobian
determinant JSk(x) will be strictly positive almost everywhere in (0, 1)n.

In this construction we use the notation ‖x‖ for the supremum norm of x ∈ R2.
The mappings Sk, k ∈ N, are formally defined as

(2.3) Sk(x) =


Sk−1(x) for x /∈

⋃
v∈Vk Q′v,

Sk−1(zv) + (αk‖x− zv‖+ βk)
x−zv
‖x−zv‖ for x ∈ Q′v \Qv, v ∈ Vk,

Sk−1(zv) + r̃k
rk

(x− zv) for x ∈ Qv, v ∈ Vk,
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where the constants αk and βk are given by

(2.4) αkrk + βk = r̃k and αk
rk−1

2
+ βk =

r̃k−1

2
.

It is not difficult to find out that each Sk is a homeomorphism and maps⋃
v∈Vk

Qv onto
⋃

v∈Vk

Q̃v.

The limit S̃(x) = limk→∞ Sk(x) is clearly one to one and continuous and therefore a
homeomorphism. Moreover, it is not difficult to see that S is differentiable almost
everywhere, absolutely continuous on almost all lines parallel to coordinate axes and
maps C1 onto C2 (see [7, Chapter 4.3] for details).

Let k ∈ N and v ∈ Vk. We need to estimate DS̃(x) in the interior of the annulus
Q′v \Qv. Since

S̃(x) = S̃(zv) + (αk‖x− zv‖+ βk)
x− zv
‖x− zv‖

we obtain analogously to [7, Chapter 4.3] that

(2.5) |DS̃(x)| ∼ max

{
r̃k
rk
, αk

}
= max

{
bk
ϕ(k)

,
bk−1 − bk

ϕ(k − 1)− ϕ(k)

}
∼ 22k−γk.

and

(2.6) JS̃−1(x) . (ϕ(k − 1)− ϕ(k))22γk . 22(γ−1)k.

Our squeezing map S : R4 → R4 is defined as

S(x1, x2.x3, x4) = (x1, x2, S̃1(x3, x4), S̃2(x3, x4)).

If x is a point such that (x3, x4) ∈ C1, then we have

DS̃(x3, x4) = 0.

Actually, on this set the function is differentiable in the classical sense as can be
seen from the definition. Therefore

(2.7) |DS(x)| = 1 and JS(x) = 0

there.

2.3. Construction of the projection mapping π. We define

π(x, y, z, w) = (x, y, π̃(z, w))

where π̃ : R2 → R2 is a Lipschitz homeomorphism such that

(2.8) π̃(C2) ⊂
{

(z, w) : z = 0
}

which we construct below. By properties of bi-Lipschitz maps we have for almost
every x ∈ R4

1

L
≤ Dπ(x) ≤ L,

1

L2
≤ Jπ(x) ≤ L2,(2.9)

where L is the Lipschitz constant of π̃. Let us note that the construction of π̃ is
inspired by the similar construction in [3].

Let us denote by

Pr(z, w) =
(

0, w +
1

2
z
)

the projection of R2 onto {(z, w) : z = 0} in the direction of the vector (−2, 1).
To construct π̃ we choose γ big enough in the construction of C2 (see (2.1)). Then
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we obtain that the projection of cubes Pr(Qv), v ∈ V1, are pairwise disjoint (see
Figure 3).

As the construction of C2 is self-similar we obtain that the projection of cubes
Qv, v ∈ Vk, are also pairwise disjoint. Therefore it is not difficult to see that the
projection Pr : C2 →

{
(z, w) : z = 0

}
is in fact injective, i.e.

a, b ∈ C2, a 6= b⇒ Pr(a) 6= Pr(b).

It follows that we can find a mapping g : Pr(C2)→ R such that the projection on C2

is given by

Pr(z, w) = (z, w) + g(Pr(z, w)) · (−2, 1) for every (z, w) ∈ C2.

It is not difficult to see that g is a Lipschitz function and its Lipschitz constant can
be estimated by

C

min
(

dist(Pr(Qv), P r(Qṽ)) : v, ṽ ∈ V1,v 6= ṽ
) .

It follows that we can extend this Lipschitz function g to a Lipschitz function g : R→
R. Now we can define

π̃(z, w) = (z, w) + g(Pr(z, w)) · (−2, 1) for every (z, w) ∈ R2.

It is easy to see that π̃ is a Lipschitz homeomorphisms and moreover, that (2.8) holds.
Moreover, the inverse of this mapping is given by

π̃−1(z, w) = (z, w)− g(π̃(z, w)) · (−2, 1)

and hence π̃ is even bi-Lipschitz homeomorphism.

(−2, 1)

Figure 3. Projection is one to one—idea behind the self similarity argument.

2.4. Basic building block of u. Assume that we are given eight points
a1, a2, a3, a4, b1, b2, b3, b4 ∈ R3 such that points a1, a2, a3, a4 and b1, b2, b3, b4 are both
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a vertices of some non-degenerate convex quadrilaterals. We define a mapping P :=
Pai,bi : [0, 1]3 → R3 as

P (s, t, u) = a1 + t(a2 − a1) + u(a4 − a1 + t(a3 − a4 + a1 − a2)) + s[b1 − a1

+ t(b2 − a2 + a1 − b1) + u(b4 − a4 − b1 + a1

+ t(b3 − b4 + b1 − b2 − a3 + a4 − a1 + a2))].

(2.10)

We now explain how to obtain the mapping above. First we parametrize quadri-
lateral a1, a2, a3, a4 with {0} × [0, 1]2 and quadrilateral b1, b2, b3, b4 with {1} × [0, 1]2

such that vertices are mapped to vertices. For a1, a2, a3, a4 we use the parametrization

P (0, t, u) = a1 + t(a2 − a1) + u(a4 − a1 + t(a3 − a4 + a1 − a2)).

For the points bi the mapping is defined similarly.
For other values of s we use linear interpolation (see Figure 4)

P (s, t, u) = (1− s)P (0, t, u) + sP (1, t, u).

We define

(2.11) P (ai, bi) := P (a1, a2, a3, a4, b1, b2, b3, b4) = P ([0, 1]3).

The second notation is justified by the fact that the set above is defined by the
ordered set of vertices.

a1

a3

a2

a4 b1

b2

b3

b4

P ({s} × [0, 1]2)

P ({s′} × [0, 1]2)

P ({1} × [0, 1]2)

Figure 4. Image of P ([0, 1]3).

Remark 1. (1) Notice that the set P (ai, bi) is not necessarily a polyhedron.
(2) Assume we are given two sets of eight points, K and L, and the corresponding

mappings PK and PL, respectively. Then if on some face of [0, 1]3 the two
mappings agree on vertices, then they agree on that face. This will be used
later to show the continuity of mappings constructed from these mapping
elements.

Conditions for homeomorphicity. Our main purpose is to construct a homeomor-
phism. The mapping P defined in (2.10) not a homeomorphism in general and we
need some extra condition to guarantee this. The Lemma 2.2 is sufficient for us. The
proofs are elementary and we provide only the outline of the proof.
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Lemma 2.1. Let a, b, c, d ∈ R2 be distinct points such that Q = abcd is a convex
non-degenerate quadrilateral. Then P : [0, 1]2 → Q

(2.12) P (t, u) = a+ t(b− a) + u[d− a+ t(c− d+ a− b)]
is a homeomorphism.

Proof. P is obviously continuous. We will prove it is also injection. For any
given t the set P (t, [0, 1]) is a line segment with endpoints q1(t) = a + t(b − a) and
q2(t) = d+ t(c− d). Moreover, it is easy to see (see Figure 5) that for 0 < t < t′ < 1
the line segments P (t, [0, 1]) and P (t′, [0, 1]), with t, t′ ∈ (0, 1) do not intersect. It
follows that P is a homeomorphism. �

q1(t)

q2(t)

q1(t′)

q2(t′)

A

B

CD

Figure 5. P : [0, 1]2 → Q is a homeomorphism.

Lemma 2.2. If
(1) segments a1a2, a3a4, b1b2 and b3b4 are parallel,
(2) quadrilaterals a1a2b2b1 and a3a4b4b3 are disjoint,
(3) segments a1b1, a2b2, a3b3 and a4b4 are mutually disjoint and
(4) for 0 < s < s′ < 1 the sets P ({s} × [0, 1]2) and P ({s′} × [0, 1]2) are disjoint.

(See Figure 4.)
then P is a homeomorphism onto its image.

Proof. It is enough to show that P is injective. The condition (3) implies that
all point qi(s) = (1− s)ai + sbi are all different. The condition (1) implies that line
segments q1(s)q2(s) and q3(s)q4(s) are parallel, which again implies that q1q2q3q4 is a
planar quadrilateral. Assumption (2) tells us that q1q2q3q4 is non-degenerate. This
quadrilateral is convex because both a1a2a3a4 and b1b2b3b4 are.

Notice that Lemma 2.1 shows that P |{s}×[0,1]2 is homeomorphism. By (4) we
know that P ({s} × [0, 1]2) and P ({s′} × [0, 1]2) are disjoint for s 6= s′. Hence it is
not difficult to see that P is indeed a homeomorphism. �

On the derivative of P . We will also need some information on the derivative of
mapping P . We always have the trivial estimate (set a5 = a1 and b5 = b1)

(2.13) |∂iP (s, t, u)| . max{|aj − aj+1|, |bj − bj+1|, |aj − bj| : j = 1, 2, 3, 4}.
In some cases we need better estimates and for this reason we record the formulas
for derivatives for future reference. These are (see (2.10))

∂1P (s, t, u) = (b1 − a1)(1− t− u) + t(b2 − a2)(2.14)
+ u(b4 − a4 + t(b1 − a1 + a2 − b2 + b3 − a3 + a4 − b4)),

∂2P (s, t, u) = (a2 − a1)(1− s) + (b2 − b1)s(2.15)
+ u[(1− s)(a3 − a4 + a1 − a2) + s(b3 − b4 + b1 − b2)]
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and
∂3P (s, t, u) = (1− s)[(1− t)(a4 − a1) + t(a3 − a2)]

+ s[(1− t)(b4 − b1) + t(b3 − b2)].
(2.16)

3. Construction of Cesari type mapping u

In this section we define homeomorphism between two hollow polyhedra (see
Figures 6 and 7). The idea is to construct the homeomorphism by first decomposing
both polyhedra into ten pieces and the mapping is first defined on those pieces using
mappings defined in Subsection 2.4. These sets and the homeomorphism between
them are later used in iteration process leading to the final homeomorphism.

In the next two subsections we will define these polyhedra, their decompositions
and homeomorphisms from the pieces to [0, 1]3. After that we combine these map-
pings to obtain a homeomorphism from one polyhedron to another.

3.1. Domain polyhedra. Let 0 < h < H, 0 < er < R and R − r < H − h. In
the following list we have vertices of polyhedron

A := A(R, r,H, h) =

([
−R

2
,
R

2

]2

×
[
−H

2
,
H

2

])
\
([
−r

2
,
r

2

]2

×
[
−h

2
,
h

2

])
.

(1) a1 = R
2

(e1 + e2) + H
2
e3

(2) a2 = R
2

(−e1 + e2) + H
2
e3

(3) a3 = R
2

(−e1 − e2) + H
2
e3

(4) a4 = R
2

(e1 − e2) + H
2
e3

(5) b1 = R
2

(e1 + e2)

(6) b2 = R
2

(−e1 + e2)

(7) b3 = R
2

(−e1 − e2)

(8) b4 = R
2

(e1 − e2)

(9) c1 = R
2

(e1 + e2)− H
2
e3

(10) c2 = R
2

(−e1 + e2)− H
2
e3

(11) c3 = R
2

(−e1 − e2)− H
2
e3

(12) c4 = R
2

(e1 − e2)− H
2
e3

(13) a′1 = r
2
(e1 + e2) + h

2
e3

(14) a′2 = r
2
(−e1 + e2) + h

2
e3

(15) a′3 = r
2
(−e1 − e2) + h

2
e3

(16) a′4 = r
2
(e1 − e2) + h

2
e3

(17) b′1 = r
2
(e1 + e2)

(18) b′2 = r
2
(−e1 + e2)

(19) b′3 = r
2
(−e1 − e2)

(20) b′4 = r
2
(e1 − e2)

(21) c′1 = r
2
(e1 + e2)− h

2
e3

(22) c′2 = r
2
(−e1 + e2)− h

2
e3

(23) c′3 = r
2
(−e1 − e2)− h

2
e3

(24) c′4 = r
2
(e1 − e2)− h

2
e3.

This polyhedron is split into ten pieces: first to A− = A ∩ {z < 0} and A+ =
A∩ {z ≥ 0} and then both these pieces are split to five disjoint pieces. These pieces
(in case of A+) are the top A+t and four quadrants A+1, A+2, A+3, A+4. They are
defined as (see (2.11) for the definition of P )

(3.1)

A+t = P (a′1, a
′
2, a
′
3, a
′
4, a1, a2, a3, a4),

A+1 = P (b′1, b
′
2, a
′
2, a
′
1, b1, b2, a2, a1),

A+2 = P (b′2, b
′
3, a
′
3, a
′
2, b2, b3, a3, a2),

A+3 = P (b′3, b
′
4, a
′
4, a
′
3, b3, b4, a4, a3),

A+4 = P (b′4, b
′
1, a
′
1, a
′
4, b4, b1, a1, a4).

Replacing a by c here we obtain the analogous decomposition for A−.
Now we define mappings from these sets onto [0, 1]3. Since A+i, i = 1, 2, 3, 4, are

the same sets up to a rotation we describe this map for A+t and A+4 only. Let us
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first consider the set A+4. We define f+4 : A+4 → [0, 1]3 by

(3.2) f+4(x, y, z) =

(
log x

r/2

log R
r

,
y + x

2x
,

z
h
2

+ H−h
2

2x−r
R−r

)
.

This mapping is essentially the inverse of mapping P defined in Section 2.4 precom-
posed with logarithmic scaling in one direction. For i = 1, 2, 3 f+i is defined as a
f+4 ◦Ri where Ri is the rotation mapping A+i to A+4.

Figure 6. A picture of polyhedron A. We have marked with dashed lines the plane z = 0 and
the edges of A+t and A+4.

For the set A+t we use the homeomorphism f+t : A+t → [0, 1]3,

f+t(x, y, z)

=

 log
[

(2z−h)(R−r)
r(H−h)

+ 1
]

log R
r

,
x

R−r
H−h(2z − h) + r

+
1

2
,

y
R−r
H−h(2z − h) + r

+
1

2

 .
(3.3)

Also this mapping is obtained as a inverse of mapping defined in Section 2.4
composed with scaling. The scaling is chosen so that the final mapping defined in
(3.17) below is continuous on A+i∩A+t, for i = 1, 2, 3, 4. Finally we set f−t(x, y, z) =
f+t(x, y,−z).

Remark 2. (1) It is easy to check that all f±i are homeomorphisms. More-
over, they are Lipschitz with constants depending on H, h R, and r only.

(2) Notice, that all mappings f±i map points ai, bi, ci onto corners of {1}× [0, 1]2

and points a′i, b′i, c′i onto corners of {0} × [0, 1]2. Another thing to notice is
that if the intersection A±i∩A±j is nonempty then the mappings f±i and f±j
agree on this intersection.
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Derivatives of f±i. We also record the derivatives of these mappings for future
reference

|Df+4|(x, y, z)

=

∣∣∣∣∣∣∣∣∣
1
x

(
log R

r

)−1
0 0

− y
2x2

1
2x

0
z·H−h
R−r

(h2 +H−h
2

2x−r
R−r )

2 0 1
h
2

+H−h
2

2x−r
R−r

∣∣∣∣∣∣∣∣∣ ≤


1
x

(
log R

r

)−1
0 0

1
x

1
2x

0
z·H−h
R−r

(h2 +H−h
2

2x−r
R−r )

2 0 1
h
2

+H−h
2

2x−r
R−r

 ,(3.4)

(3.5) Df+t(x, y, z) =


0 0

(
log R

r

)−1 2(R−r)
(2z−h)(R−r)+r(H−h)

1
R−r
H−h (2z−h)+r

0 −2x

( R−rH−h (2z−h)+r)
2
R−r
H−h

0 1
R−r
H−h (2z−h)+r

−2y

( R−rH−h (2z−h)+r)
2
R−r
H−h

 .
It follows from (3.3) that

|x| / R− r
H − h

(2z − h) + r and |y| / R− r
H − h

(2z − h) + r.

With this and (3.5) we obtain the estimate

‖Df+t(x, y, z)‖ / 1
R−r
H−h(2z − h) + r

·max

{
1,
R− r
H − h

,
R− r
H − h

(
log

R

r

)−1
}
.

Eventually, we will choose these parameters so that H − h > R − r and R
r
> e and

in this case we have

(3.6) ‖Df+t(x, y, z)‖ / 1
R−r
H−h(2z − h) + r

.

Figure 7. Polyhedron T (j) it consists of polyhedron S(j) with vertices αi, βi and γi minus
polyhedron U(j) with vertices α′i, β′i and γ′i. We did not draw all points, but the points βi et cetera
are in similar order as points αi.

3.2. Target polyhedra. Our aim is to construct a homeomorphism from A to
the set T (j), a polyhedron with a cavity, which is defined below (also see Figure 7).
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To define the set we introduce several parameters. Let j be a positive integer. The
used parameters are

(3.7) ϕ(j) =
1

2
(1 + 4−j), Kj = 2−j−2ϕ(j), Pj = 10−j and Tj = 1− 10−j.

We set
T (j) = S(j) \ U(j),

(see Figure 7) where S(j) is the polyhedron with vertices
(1) α1 = 2Kje1 + 4−je3

(2) α2 = 4−je3

(3) α3 = −2Kje2 + 4−je3

(4) α4 = 2Kj(e1 − e2) + 4−je3

(5) β1 =
Pj
2
e1

(6) β2 = 0

(7) β3 = −Pj
2
e2

(8) β4 =
Pj
2

(e1 − e2)

(9) γ1 =
P 2
j+1

2
e1 −

P 3
j+1

2
e3

(10) γ2 = −P 3
j+1

2
e3

(11) γ3 = −P 2
j+1

2
e2 −

P 3
j+1

2
e3

(12) γ4 =
P 2
j+1

2
(e1 − e2)− P 3

j+1

2
e3

and U(j), is the polyhedron with vertices
(1) α′1 = Kj(e1 − e2) + 2Kj+1(e1 + e2) + 4−j−1(1 + 3Tj)e3

(2) α′2 = Kj(e1 − e2) + 2Kj+1(−e1 + e2) + 4−j−1(1 + 3Tj)e3

(3) α′3 = Kj(e1 − e2) + 2Kj+1(−e1 − e2) + 4−j−1(1 + 3Tj)e3

(4) α′4 = Kj(e1 − e2) + 2Kj+1(e1 − e2) + 4−j−1(1 + 3Tj)e3

(5) β′1 = Kj(e1 − e2) +
Pj+1

2
(e1 + e2) + 3 · 4−j−1Tje3

(6) β′2 = Kj(e1 − e2) +
Pj+1

2
(−e1 + e2) + 3 · 4−j−1Tje3

(7) β′3 = Kj(e1 − e2) +
Pj+1

2
(−e1 − e2) + 3 · 4−j−1Tje3

(8) β′4 = Kj(e1 − e2) +
Pj+1

2
(e1 − e2) + 3 · 4−j−1Tje3

(9) γ′1 = Kj(e1 − e2) +
P 2
j+2

2
(e1 + e2) + (3 · 4−j−1Tj −

P 3
j+2

2
)e3

(10) γ′2 = Kj(e1 − e2) +
P 2
j+2

2
(−e1 + e2) + (3 · 4−j−1Tj −

P 3
j+2

2
)e3

(11) γ′3 = Kj(e1 − e2) +
P 2
j+2

2
(−e1 − e2) + (3 · 4−j−1Tj −

P 3
j+2

2
)e3

(12) γ′4 = Kj(e1 − e2) +
P 2
j+2

2
(e1 − e2) + (3 · 4−j−1Tj −

P 3
j+2

2
)e3.

Let us comment on the choice of these points. Notice that the center of square
with vertices α1, α2, α3 and α4 is

Kj(e1 − e2) + 4−je3.

Similarly it is also a center of squares α′1α′2α′3α′4, β′1β′2β′3β′4 and γ′1γ′2γ′3γ′4 up to different
third coordinate. Further, notice that by (3.7) we have

Kj > 2Kj+1, Kj >
Pj+1

2
and Kj >

P 2
j+2

2

which shows that the first term defining points α′i, β′i and γ′i is more important while
the second is just a small adjustment. Finally the third term gives the proper height.
Let us notice, that these expressions really give a set of points as displayed in Figure 7.
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We split also the set T (j) into ten pieces using the notation introduced in Sec-
tion 2.4. These sets are

• T+t = P (α′1, α
′
2, α

′
3, α

′
4, α1, α2, α3, α4),

• T+1 = P (β′1, β
′
2, α

′
2, α

′
1, β1, β2, α2, α1),

• T+2 = P (β′2, β
′
3, α

′
3, α

′
2, β2, β3, α3, α2),

• T+3 = P (β′3, β
′
4, α

′
4, α

′
3, β3, β4, α4, α3),

• T+4 = P (β′4, β
′
1, α

′
1, α

′
4, β4, β1, α1, α4),

• T−t = P (γ′1, γ
′
2, γ
′
3, γ
′
4, γ1, γ2, γ3, γ4),

• T−1 = P (β′1, β
′
2, γ
′
2, γ
′
1, β1, β2, γ2, γ1),

• T−2 = P (β′2, β
′
3, γ
′
3, γ
′
2, β2, β3, γ3, γ2),

• T−3 = P (β′3, β
′
4, γ
′
4, γ
′
3, β3, β4, γ4, γ3) and

• T−4 = P (β′4, β
′
1, γ
′
1, γ
′
4, β4, β1, γ1, γ4).

In what follows we will use the mappings defined in Section 2.4 in order to map
[0, 1]3 to T±i homeomorphically. This map is denoted by g±i : [0, 1]3 → T±i, with
i = t, 1, 2, 3, 4.

Homeomorphicity of g±i. We use Lemma 2.2 to show that mappings g±i are
homeomorphic. We will show some details for g+4; the other mappings are similar.
The conditions (1), (2) and (3) in these Lemmas are obvious from our choice of points.
Now it is enough to show that P ({s}× [0, 1]2) does not intersect with P ({s′}× [0, 1]2)
as in Figure 4. However, this is easy to see by our choice of points in T+4 (see
Figure 7).

Derivatives of g±i. In the end we will need estimates of derivatives of mappings
g±i, i = t, 1, 2, 3, 4. Notice that all points αi, βi, γi, α′i, β′i and γ′i defined in the begin-
ning of this section have norm bounded by C2−j. With (2.13) this implies that

|Dg±i| . 2−j for i ∈ {1, 2, 3, 4, t}.

For i 6= t we need finer estimates. We will explain only the case of g+4 and the
set T+4 = P (β′4, β

′
1, α

′
1, α

′
4, β4, β1, α1, α4). Other estimates are obtained similarly.

By (2.15) we have

∂2g+4 = (β′1−β′4)(1−s)+(β1−β4)s+u[(1−s)(α′1−α′4+β′4−β′1)+s(α1−α4+β4−β1)].

Vectors β1 − β4, β
′
1 − β′4, α1 − α4 and α′1 − α′4 are all parallel to e2. Moreover,

|β1 − β4| ≤ Pj and the same applies to |β′1 − β′4|. It follows that

|∂2g+4(s, t, u)| . Pj + 2−ju

and that ∂2g+4(s, t, u) is parallel to e2.
We collect the estimates for previous paragraphs into following matrix

(3.8) |Dg±i|(s, t, u) /

2−j 0 2−j

2−j Pj + u2−j 2−j

2−j 0 2−j


with i = 2, 4 and

(3.9) |Dg±i|(s, t, u) /

Pj + u2−j 2−j 2−j

0 2−j 2−j

0 2−j 2−j


with i = 1, 3. Here |Mat| is the matrix with elements {|Mati,j|}ni,j=1 and “/” is
understood elementwise.
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Similarly we get using (2.14), (2.15) and (2.16) for T+t = P (α′1, α
′
2, α

′
3, α

′
4, α1, α2,

α3, α4)

(3.10) |Dg±t|(s, t, u) /

2−j 2−j 0
2−j 0 2−j

2−j 0 0


and also

(3.11) ‖Dg±t(s, t, u)‖ / 2−j.

3.3. Compositions of g±i and f±i. In this section we will define the main
pieces in the construction of map u. We fix β > 0 large enough whose exact value
will be fixed later. We set

(3.12) Rj = exp(−jβ+1)

and

(3.13) rj = 2Rj+1.

Using the mean value theorem we obtain for large j

(3.14) log
Rj

rj
≈ βjβ.

Recall that γ was introduced in (2.1) and set

(3.15) Hj = 2(−γ−1)j−1

and

(3.16) hj = 2(−γ−1)(j+1)−1.

It is easy to check that we have 0 < erj < Rj, 0 < hj < Hj and for big values of j
also Rj − rj < Hj − hj as desired.

The map we are going to define in this section is a homeomorphism

uj : A(Rj, rj, Hj, hj)→ T (j).

We do this by first defining maps from A±i to T±i.
Composing homeomorphism f±i and g±i we obtain a homeomorphism

u±i = g±i ◦ f±i : A±i → T±i.

These u±i map points ai, bi, ci to points αi, βi, γi, respectively, for every i for which
map in question is defined.

We define the mapping

(3.17) ũ : A→ T (j) as ũ|A±i = u±i.

Notice, that these mappings agree on intersections ofA±i, where i = 1, 2, 3, 4, t, if they
are not empty and mappings are defined on those intersections. This is quite easy to
see. These intersections are faces of polyhedra A±i and we know that mappings agree
on the vertices. Moreover, notice that the logarithmic scaling used in the definition
of f±i affects only the first coordinate and with observations of Remark 2 it follows
from our definitions of g±i and f±i that mappings agree on intersections. This gives
a rise to a homeomorphism ũ : A→ T (j) defined as ũ|A±i = u±i.

Estimates of derivatives. Next we will show that certain estimates for derivatives
hold on A+4 and A+t.
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Let us write

ρ(x, y, z) =
log x

rj/2

log
Rj
rj

and ω(x, y, z) =
z

hj
2

+
Hj−hj

2

2x−rj
Rj−rj

.

These are the first and third component of f+4 respectively (see (3.2)). By (3.4) and
(3.8) we have the following estimate for the partial derivatives

|Dũ|(x, y, z) = |Dg+4(f+4(x, y, z)) ·Df+4(x, y, z)|

/

2−j 0 2−j

2−j Pj + ω2−j 2−j

2−j 0 2−j

 ·


1
x

(
log R

r

)−1
0 0

1
x

1
2x

0
Hj−hj
Rj−rj

ω

hj
2

+
Hj−hj

2

2x−rj
Rj−rj

0 1
hj
2

+
Hj−hj

2

2x−rj
Rj−rj


/

 2−j

x

(
log R

r

)−1
0 0

2−j

x

(
log R

r

)−1
+ (Pj + ω2−j) 1

x

Pj+ω2−j

2x
0

2−j

x

(
log R

r

)−1
0 0


+

2−j

hj
2

+
Hj−hj

2

2x−rj
Rj−rj


Hj−hj
Rj−rj ω 0 1
Hj−hj
Rj−rj ω 0 1
Hj−hj
Rj−rj ω 0 1

 .

(3.18)

To simplify these estimates we notice that

Rj − rj ≥
1

2
x

for all large j. This gives (see (3.15) and (3.16))

(3.19)
2−j

hj
2

+
Hj−hj

2

2x−rj
Rj−rj

Hj − hj
Rj − rj

.
2−j

Hj

Hj

x
=

2−j

x
.

Now from (3.18) and (3.19) we obtain that on A+4 for all large j we have

(3.20) |Dũ| (x, y, z) .
2−j

x
.

If z = 0 we have ω = 0 and together with the facts

2(c+1)jRj ≤
(

log
Rj

rj

)−1

and Pj ≤ 2−j
(

log
Rj

rj

)−1

we obtain for z = 0 slightly better estimate

(3.21) |Dũ| (x, y, 0) .
2−j

x

(
log

R

r

)−1

.
2−jj−β

x
.

For the set A+t, using (3.6) and (3.11), we get the estimate

‖Dũ(x, y, z)‖ / 2−j

Rj−rj
Hj−hj (2z − hj) + rj

.(3.22)



786 Stanislav Hencl and Aapo Kauranen

Blocks and flowers. Let the Rot(θ) be the rotation matrix of angle θ around
z-axis. Later it is convenient for us to map several of the sets A (defined in Subsec-
tion 3.1) at the same time. To this end we define a block

(3.23) Bl(R, r,H, h) =
4⋃
i=0

Rot
(
i
π

2

)(
A+

R

2
(e1 − e2)

)
and a flower (see Figure 8 and Figure 9)

(3.24) Fl(j) =
4⋃
i=0

Rot
(
i
π

2

)
T (j).

Further we define a mapping
(3.25) uBl(R,r,H,h) : Bl(R, r,H, h)→ Fl(j)

by

(3.26) u|Roti(A+R
2

(e1−e2))(x) = Rot
(
i
π

2

)
ũ
(
Rot
(
−iπ

2

)
x
)
.

The set [−R,R]2 × [−H
2
, H

2
] in Figure 8 is divided into four pieces and u is mapping

each of these pieces onto corresponding big flowers. In the middle of each piece we
have a block (see the shaded regions in Figure 8) that will be used in the next steps
of the construction. We will divide this block again into four smaller pieces and map
each piece onto smaller flower which lies inside the big flower. Below we describe in
detail how we proceed further by induction and we define smaller and smaller pieces
inside that are mapped to smaller and smaller flowers.

Figure 8. The set Bl(Rj , rj , Hj , hj). The points marked in the picture are needed later.
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Figure 9. The set Fl(j). The points marked in the picture are needed later.

Remark 3. Notice that by our construction uBl(R,r,H,h) maps all faces of Bl(R, r,
H, h) onto faces of Fl(j). Moreover, it is easy to see that the restrictions of uBl(R,r,H,h)

on any of these faces is essentially like the mappings defined in Subsection 2.4. Again
we have the property that if we know the images of corners of the face the mapping
is uniquely defined. We will use this in the next Subsection.

3.4. Construction of u. We start by decomposing the three dimensional
hyperplanes in the domain into blocks and in the codomain into flowers. Then, using
the mapping defined in previous subsection, we obtain a homeomorphism between
domains in R3. This map is then extended to a homeomorphism between domains
in R4 by defining the map as identity in the fourth coordinate.

In order to describe the above mentioned decomposition to blocks and flowers
describe a sequence of points used as centers of suitable blocks. To this end we recall
the multi-index notation. Finite sequences ī = (i1, i2, . . . , ij), with ik ∈ {1, 2, 3, 4}
and j ∈ N, are called multi-indices. The length of a multi-index is the number of its
components and is denoted by l(̄i). The set of all multi-indices is denoted by I and
the set of all multi-indices of length j by Ij.

Let ω : {1, 2, 3, 4} → {e1 + e2, e1 − e2,−e1 + e2,−e1 − e2} be some bijection. We
define points (recall that Rk are defined in (3.12))

aī = a(i1,i2,...,ij) :=

j∑
k=1

Rk

2
ω(ik).

For locations of these points in construction see Figures 8 and 10.
In what follows we are interested in blocks

Bl

(
Rj, rj,

2−(γ+1)j

2
,
2−(γ+1)(j+1)

2

)
+ aī,

where j ∈ N and ī ∈ Ij. From now on we will abuse the notation and write

Bl(j, ī) for Bl
(
Rj, rj,

2−(γ+1)j

2
,
2−(γ+1)(j+1)

2

)
+ aī.
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Figure 10. First generations of Bl(Rj , rj , Hj , hj) with points aī in the xy-plane.

Let us note that by (3.13), (3.15) and (3.16) the size of smaller blocks inside (the
shaded parts in Figure 8) correspond to the size of the big blocks of the next gener-
ation.

The analogous pieces in the codomain are defined similarly. First, we define
points (recall that Tk and Kk are defined in (3.7))

pī =

j∑
k=1

(
Kkω(ik) + 3 · 4−k−1Tke3

)
.

For locations of these points in construction see Figure 9. Again, we abuse the
notation and denote

Fl(j, ī) := Fl(j) + pī.

Given the set Fl(j, ī) we notice that sets Fl(j+ 1, (̄i, ij+1)) intersect Fl(j, ī) only
on the boundaries of its four cavities. Easiest way to see this is to check that vertices
of certain Fl(j + 1, (̄i, ij+1)) are exactly the vertices of one of the cavities. This is
enough since both the cavities and the sets Fl(j + 1, (̄i, ij+1)) are polyhedrons. By
definition the vertices of Fl(j + 1) are obtained by rotating points α4, β4 and γ4

around z-axis. These points are{
2Kj+1(±e1 ± e2) + 4−j−1e3,

Pj+1

2
(±e1 ± e2),

P 2
j+2

2
(±e1 ± e2)−

P 3
j+2

2
e3

}
On the other hand, the vertices of the cavity U(j) of the set T (j) defined in Sub-
section 3.2 are the points α′i, β′i and γ′i. These differ from vertices of Fl(j + 1) by
Kj(e1 − e2) + 3 · 4−j−1Tje3. As all the cavities of Fl(j) are obtained as rotations of
U(j) we see that vertices of Fl(j + 1) differ from vertices of a given cavity of Fl(j)
by one of the vectors

p(̄i,ij+1) − pī = Kjω(ij+1) + 3 · 4−j−1Tje3,

ij+1 = 1, 2, 3, 4. This shows that sets Fl(j + 1, (̄i, ij+1)) intersect Fl(j, ī) only on
the boundaries of its four cavities. Moreover, faces of Fl(j + 1, (̄i, ij+1)) are faces of
certain cavity of Fl(j, ī).
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Now we define the mapping

u : [−R1

2
,
R1

2
]2 × [− 1

2γ+1
,

1

2γ+1
]→ R3

such that

u|Blj,̄i(x, y, z) = uBlj,̄i−aī((x, y, z)− aī) + bī.

The mapping u is a homeomorphism since all u|Blj,̄i are and by previous discus-
sions u|Blj,̄i and u|Blj+1,̄i′

agree on intersections Blj,̄i ∩Blj+1,̄i′ by Remark 3 since the
mappings agree on the vertices in the intersection.

3.5. Properties of u. Now we will show that u is locally Lipschitz continuous
outside a small exceptional set and that u fails 2-dimensional Lusin’s condition on
hyperplane R2 × {0}. To show this we define two more Cantor sets. We set

(3.27) Cd =
∞⋂
j=1

⋃
ī∈Ij

([
−Rj

2
,
Rj

2

]2

+ aī

)
× {0} ⊂ R2 × {0} ⊂ R3.

First notice that by our choice of Rj (3.12) the Hausdorff dimension of Cd is 0. Every
point x /∈ Cd has a neighborhood which intersects only finite number of the sets
Bl(j, ī). On each of these sets u is Lipschitz and therefore u is locally Lipschitz
outside of Cd.

Moreover, it is easy to see that Cd is the set of accumulation points of the count-
able set {aī}. By the definition we have u(aī) = pī for all ī. By continuity the
accumulation points of {aī} are mapped to the accumulation points of {pī}. We will
show that the set of accumulation points of {pī} has positive 2-dimensional Hausdorff
measure. First, the z-coordinate of all these accumulation points is

z0 =
∞∑
j=1

3 · 4−j−1Tj.

We write p̃ī for the projection of pī to xy-plane. It is now quite easy to see that the
set of accumulation points is

(3.28) Ct =
∞⋂
j=1

⋃
{̄i∈Ij}

(
[−Kj, Kj]

2 + p̃ī
)
× {z0}.

By (3.7) we have Kj = 2−j−3(1 + 4−j) and it is easy to see that

H2(Ct) = lim
j→∞

4j(2Kj)
2 > 0.

Therefore, u fails 2-dimensional Lusin condition on the plane R2 × {0}.
Finally we define u : [−R1

2
, R1

2
]2 × [− 1

2γ+1 ,
1

2γ+1 ]2 → R4 by

(3.29) u(x, y, z, w) = (u(x, y, z), w).

By the above discussion this mapping is homeomorphism, locally Lipschitz for all
(x, y, 0, w) with (x, y, 0) /∈ Cd and it fails 2-dimensional Lusin’s condition on every
plane R2 × {(0, w)}.
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4. Final mapping

Our desired mapping

(4.1) F :

[
−R1

2
,
R1

2

]2

× [0, 1]2 → R4

is

(4.2) F (x, y, z, w) = u ◦ π ◦ S(x, y, z, w).

As a composition of homeomorphisms this mapping is clearly homeomorphism onto
its image.

4.1. F is in ACL. We want to show that F is inW 1,1. It is enough to check that
F satisfies ACL-condition and that the derivative is integrable. The ACL-condition
means that F is absolutely continuous on H3-a.e. line parallel to coordinate axes.

We first notice that for every (x, y) ∈ R2 we have by the definition of π and S

(4.3) π ◦ S({(x, y)} ×R2) = {(x, y)} ×R2.

Recall also that u is locally Lipschitz at every point outside Cd×R. Since u is defined
on compact set we see that u is, in fact, Lipschitz on every plane parallel to zw-plane
which does not intersect the Cantor set Cd.

Let
E = {(x, y, z, w) : (x, y, 0) ∈ Cd}.

By (4.3) we have π ◦S(E) = E. We have H3(E) = 0 since the dimension of Cd is zero
(see Subsection 3.5). We denote by Ex the projection to yzw-plane and we define
Ey, Ez, Ew similarly. All these projections have also zero H3-measure.

Consider first the lines parallel to the x-axis. Let (y, z, w) /∈ Ex. Let

Lx = {(t, y, z, w) : t ∈ [t1, t2]}

be a line segment contained in the domain. Recall that π ◦ S(t, y, z, w) = (t, y, π̃ ◦
S̃(z, w)) and thus π ◦S is is just a translation on the line segment and thus Lipschitz.
By the definition of Ex we know that S◦π(Lx) does not intersect the E and therefore u
is locally Lipschitz on the curve π◦S(Lx). Thus, F = u◦π◦S is absolutely continuous
on this line. Lines parallel to y-axis are handled similarly.

Now consider lines parallel to z-axis. Let (x0, y0, w0) /∈ Ez and let

Lz = {(x0, y0, t, w0) : t ∈ [t1, t2]}

be a line segment. On this line segment π ◦ S is absolutely continuous. Since π ◦
S(E) = E and (x0, y0, w0) /∈ Ez we have dist(π ◦ S(Lz), E) > 0. This implies that
u is Lipschitz on π ◦ S(Lz) and absolute continuity of F on Lz now follows. Lines
parallel to w-axis are handled analogously. Thus F is absolutely continuous on these
lines. This concludes our proof of F being ACL.

4.2. F is in W 1,2. We know that f is continuous and satisfies the ACL-
condition. It is now enough to show that DF ∈ L2

loc.
We will use chain rule to estimate the derivative. In the complement of the set[

−R1

2
, R1

2

]2 × C1 use of chain rule is allowed. To see this notice that u is C1 outside
a set of measure zero, namely the union of the set E (defined in Subsection 4.1) and
boundaries of sets A±i of all generations of the construction of u. Also mapping S
is locally bi-lipschitz outside of

[
−R1

2
, R1

2

]2 × C1 and therefore preimages of sets of
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measure zero have measure zero. Thus, in the complement of
[
−R1

2
, R1

2

]2 × C1 we
have

(4.4) |DF (x)| ≤ |Du(π ◦ S(x))| |Dπ(S(x))| |DS(x)|
for almost every x.

In the set
[
−R1

2
, R1

2

]2 × C1 the situation is a bit more complex. Notice that u is
not differentiable on the set

[
−R1

2
, R1

2

]2×{0}×R as it is defined in different ways on
both sides of this plane. Moreover, the preimage of this plane under π ◦ S contains[
−R1

2
, R1

2

]2 × C1 which has positive 4-dimensional measure. In this case |Du(y)| in
(4.4) must be interpreted as the maximum of one-sided partial derivatives of u at
y. To show that (4.4) holds almost everywhere with this interpretation of |Du| we
consider any point

x = (x, y, z, w) ∈

([
−R1

2
,
R1

2

]2

× C1

)
\ E.

The set E is defined in Subsection 4.1. Notice that for such x we have ∂xF (x, y, z, w)
= ∂xu(x, y, π◦S(z, w)). For x /∈ E this partial derivative exists because even though u
is defined in different way on different pieces these definitions agree on the boundaries
of pieces. Thus, (4.4) is valid at least when we have |∂xF (x, y, z, w)| on the left hand
side. Naturally same applies to ∂y. Now it suffices to show that ∂zF (x) = 0 and
∂wF (x) = 0 for x /∈ E.

By (4.3) we have π ◦ S(E) = E and as mentioned in Subsection 4.1 u is locally
Lipschitz in the complement of E. Before (2.7) it is stated that S is differentiable and
we have ∂zS = 0 and ∂wS = 0. This fact with local Lipschitz continuity of u in the
complement of E implies ∂zF (x) = 0 and ∂wF (x) = 0 for every x /∈ E as desired.

It follows thatˆ
[−R1

2
,
R1
2 ]

2
×[0,1]2

|DF (x)|2 dx =

ˆ
[−R1

2
,
R1
2 ]

2
×[0,1]2

|D(u ◦ π ◦ S)(x)|2 dx

≤
ˆ

[−R1
2
,
R1
2 ]

2
×[0,1]2

|Du(π ◦ S(x))|2 |Dπ(S(x))|2 |DS(x)|2 dx

≈
ˆ

[−R1
2
,
R1
2 ]

2
×[0,1]2

|Du(π ◦ S(x))|2 |DS(x)|2 dx.

(4.5)

We integrate over the sets
[
−R1

2
, R1

2

]2 × C1 and its complement separately.

4.3. Integration over the complement of the Cantor set. On the set([
−R1

2
,
R1

2

]2

× [0, 1]2

)
\

([
−R1

2
,
R1

2

]2

× C1

)
we may use the change of variable since π ◦ S it belongs to W 1,1 and satisfies n-
dimensional Lusin’s condition. This follows from the fact that S is locally Lipschitz
outside the set

[
−R1

2
, R1

2

]2 × C1.
Biggest issue here is that the derivative and Jacobian of S at a given point

S−1 ◦ π−1(x) depend on the distance of x to the set R2 × π̃ ◦ S̃(C1). Therefore it is
natural to decompose the domain to tubes around R2 × π̃ ◦ S̃(C1) but our mapping
u is defined using 3-dimensional slices. We will decompose the domain into tubes,
as mentioned and compute the integral over them first. The total integral is then
obtained as a sum over all tubes.
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It is easy to see that the Cantor set C3 = π̃(C2) can be written as {0}× C4 where
C4 is a one-dimensional Cantor type set. Moreover, we can write this C4 as

C4 =
∞⋂
j=1

⋃
I∈Ij

Ij,i,

where each Ij consists of 4j intervals. In fact we can choose these intervals Ij,i to be
π̃(Qv) for v ∈ Vj and then they will have all the same size

(4.6) diam(π̃(Qv)) = 3
2
2−γk2−k.

If the parameter γ in definition of C2 is chosen large enough the sets 2Ij,i, with
i = 1, . . . , 4j are mutually disjoint (see Figure 3).

Define the sets

Uj,i =

(
[−1

2
Hj,

1

2
Hj]× Ij,i

)
\

 ⋃
I∈Ij+1, I⊂Ij,i

[−1

2
hj,

1

2
hj]× I

 .

Notice, that for each (z, w) ∈ Uj,i we have dist((z, w), C3) ≈ 2−(γ+1)j by (3.15), (3.16)
and (4.6)

The following lemma says that all the points in Uj,i have their preimages un-
der π−1 in some squares of our Cantor set construction with the almost the same
generation.

Lemma 4.1. If (z, w) ∈ Uj,i, then π̃−1(z, w) ∈ Q̃v with v ∈ Vl (see Subsec-
tion 2.2 for definitions) with |l − j| ≤ k, where k is independent of j and the chosen
point.

Proof. By assumption we have d(C3, (z, w)) ≈ 2−(1+γ)j. Since π is bi-Lipschitz
and π̃(C2) = C3 we have

C−1L−12−(1+γ)j ≤ d(C2, π̃
−1(z, w)) ≈ 2−(1+γ)j ≤ CL2−(1+γ)j,

where L is Lipschitz constant of π̃−1. This is equivalent to

2−(1+γ)(j−l) ≤ d(C2, π̃
−1(z, w)) ≈ 2−(1+γ)j ≤ 2−(1+γ)(j+l),

which implies the claim. �

Notice that if π̃−1(z, w) is in a square of generation j in construction of C2 then
S−1 ◦ π−1(z, w) is also in a square of generation j, but in the construction of C1, of
course.

This and the previous lemma together with (2.5) and (2.6) imply the following
estimates. If x ∈ R2 × Uj,i then we have (up to constants)

(4.7)
∣∣DS(S−1 ◦ π−1(x))

∣∣ . 2−cj

ϕ(j)− ϕ(j + 1)
= 2(2−γ)j

and

(4.8)
∣∣JS−1(π−1(x))

∣∣ . 22cj(ϕ(j)− ϕ(j + 1)) = 2(2γ−2)j.
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Now we may start the integration. Recall that I1 = (−1, 1). Using the change of
variable formula, recalling that π is bi-Lipschitz mapping and using (2.9) we obtainˆ

(
[−R1

2
,
R1
2 ]

2
×[0,1]2

)
\
(
[−R1

2
,
R1
2 ]

2
×C1

) |Du(π ◦ S(x))|2 |DS(x)|2 dx

=

ˆ
(I2

1×π̃◦S̃([0,1]2))\(I2
1×π̃◦S̃(C1))

|Du(y)|2
∣∣DS(S−1 ◦ π−1(y))

∣∣2 JS−1◦π−1(y) dy

≈
ˆ

(I2
1×π̃◦S̃([0,1]2))\(I2

1×π̃◦S̃(C1))
|Du(y)|2

∣∣DS(S−1 ◦ π−1(y))
∣∣2 JS−1(π−1(y)) dy

=
∞∑
j=1

4j∑
i=1

ˆ
I2
1×Uj,i

|Du(y)|2
∣∣DS(S−1 ◦ π−1(y))

∣∣2 JS−1(π−1(y)) dy.

(4.9)

Using now estimates (4.7) and (4.8) we obtain that
ˆ

(I2
1×[0,1]2)\(I2

1×C1)
|Du(π ◦ S(x))|2 |DS(x)|2 dx /

∞∑
j=1

4j∑
i=1

4ĵ

I2
1×Uj,i
|Du(y)|2 dy.(4.10)

Applying now Fubini’s theorem we obtainˆ
I2
1×Uj,i

|Du(y)|2 dy ≤
ˆ
I2
1×[− 1

2
Hj ,

1
2
Hj ]×Ij,i

|Du(y)|2 dy

≤ 2

ˆ
Ij,i

ˆ
[0, 1

2
Hj ]

ˆ
I2
1

|Du(x, y, z)|2 d(x, y) dz dw

= 2
∞∑
k=j

ˆ
Ij,i

ˆ
[ 1
2
Hk+1,

1
2
Hk]

ˆ
I2
1

|Du(x, y, z)|2 d(x, y) dz dw.

(4.11)

Assume now that z0 ∈ [1
2
Hk+1,

1
2
Hk]. We will compute value ofˆ

I2
1

|Du(x, y, z0)|2 d(x, y).

First, notice that this choice of z0 means that the hyperplane {z = z0} intersects
all blocks Bl(l, ī), l ≤ k used in the definition of u (see Subsection 3.4 for definitions).
Intersections with Bl(k, ī) are squares (subsets of A+t) and intersections with Bl(k, ī)
for l < k are rectangular annuli (subsets of A+1, A+2, A+3 and A+4)—see Figure 6
and (3.1). For this reason we consider these sets separately. That is, we have

ˆ
I2
1

|Du(x, y, z0)|2d(x, y) =
k∑
l=1

∑
ī∈{1,2,3,4}l

ˆ
B(l,̄i)∩{z=z0}

|Du(x, y, z)|2 d(x, y)

=
k−1∑
l=1

∑
ī∈{1,2,3,4}l

ˆ
[
−Rl

2
,
Rl
2

]2
\[− rl2 ,

rl
2 ]

2
+aī

|Du(x, y, z0)|2 d(x, y)︸ ︷︷ ︸
=:I

+
∑

ī∈{1,2,3,4}k

ˆ
[
−Rk

2
,
Rk
2

]2
+aī

|Du(x, y, z0)|2 d(x, y)︸ ︷︷ ︸
=:II

(4.12)
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For fixed l these integrals are clearly the same for each aī. By (3.20) and (3.14)
we have for I

I =

ˆ
[
−Rl

2
,
Rl
2

]2
\[− rl2 ,

rl
2 ]

2
|Du(x, y, z0)|2 d(x, y) ≤ 4

ˆ
[
rl
2
,
Rl
2

]

ˆ
[−x,x]

4−l

x2
dy dx

= 8 · 4−l
ˆ

[
rl
2
,
Rl
2

]

1

x
dx = 8 · 4−l log

Rl

rl
≤ 8 · 4−llβ.

(4.13)

The case II is similar. However, here we have to take in to account that u is
defined differently on the part (subset of A+t)

Sk =

[
− Rk − rk

2(Hk − hk)
(z0 −

hk
2

) +
rk
4
,
Rk − rk

2(Hk − hk)
(z0 −

hk
2

) +
rk
4

]2

and on the part (subset of A+1 ∪ A+2 ∪ A+3 ∪ A+4)

Ak =

[
−Rk

2
,
Rk

2

]2

\ Sk.

To simplify notation in the following calculation we denote

Dk(z0) =
Rk − rk

2(Hk − hk)
(z0 −

hk
2

) +
rk
4
.

Using (3.20) and (3.22) we obtain

II =

ˆ
[
−Rk

2
,
Rk
2

]2 |Du(x, y, z0)|2 d(x, y)

=

ˆ
Ak

|Dũ(x, y, z0)|2 d(x, y) +

ˆ
Sk

|Dũ(x, y, z0)|2 d(x, y)

/ 4−k

[ˆ
[Dk(z0),

Rk
2

]

ˆ
[−x,x]

1

x2
dy dx+

ˆ
[−Dk(z0),Dk(z0)]2

1

(Dk(z0))2
dy dx

]

/ 4−k log
Rk

rk
/ 4−kkβ.

(4.14)

Plugging (4.13) and (4.14) into (4.12) we obtain

(4.15)
ˆ
I2
1

|Du(x, y, z0)|2 d(x, y) ≤
k∑
l=1

4l · 4−llβ / kβ+1.

Inserting this expression into (4.11) and using (3.15) and (4.6) we obtainˆ
I2
1×Uj,i

|Du(y)|2 dy /
∞∑
k=j

ˆ
Ij,i

ˆ
[ 1

2
Hk+1,

1
2
Hk]

kβ+1 /
∞∑
k=j

2−2(γ+1)kkβ+1

/ 2−2(γ+1)jjβ+1.

(4.16)

Finally, (4.10) with (4.16) giveˆ
(I2

1×[0,1]2)\(I2
1×C1)

|Du(π ◦ S(x))|2 |DS(x)|2 dx

/
∞∑
j=1

4j∑
i=1

4j
ˆ
I2
1×Uj,i

|Du(y)|2 dy ≤
∞∑
j=1

22j−2γjjβ+1 <∞
(4.17)

here the convergence follows from the choice γ > 1.
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4.4. Integration over the Cantor set. Next we calculate the integral over[
−R1

2
, R1

2

]2 × C1. Notice that in this case we cannot use the change of variable as in
previous case. The reason is that S(I2

1 × C1) is a null set. Remember that by (2.7)
we have DS = 1. By (3.21) we have

|Du(π ◦ S(x, y, z, w))| = 2−j

|(x, y)− aī|∞ log
Rj
rj

for all (x, y) ∈ [−Rj
2
,
Rj
2

]2 \ [− rj
2
,
rj
2

]2 + aī and (z, w) ∈ C1.
Using these facts, polar coordinates and (3.14) we obtainˆ

[−R1
2
×R1

2 ]
2
×C1
|Du(π ◦ S(x))|2 |DS(x)|2 dx

=

ˆ
C1

ˆ
[−R1

2
×R1

2 ]
2
|Du(π ◦ S(x))|2 dx

=
∞∑
j=1

∑
ī∈{1,2,3,4}j

ˆ
C1

ˆ
[−

Rj
2
,
Rj
2

]2\[−
rj
2
,
rj
2

]2+aī

|Du(π ◦ S(x))|2 dx

≤
∞∑
j=1

∑
ī∈{1,2,3,4}j

ˆ
C1

ˆ
[−

Rj
2
,
Rj
2

]2\[−
rj
2
,
rj
2

]2

4−j

|(x, y)|2∞ log2 Rj
rj

d(x, y) d(z, w)

= H2(C1)
∞∑
j=1

ˆ
[
rj
2
,
Rj
2

]

1

r log2 Rj
rj

dr = H2(C1)
∞∑
j=1

1

log
Rj
rj

/ H2(C1)
∞∑
j=1

1

jβ
<∞.

(4.18)

Therefore our mapping truly is in W 1,2 by (4.5), (4.17) and (4.18).

4.5. Failure of Lusin’s condition (N) on positively many 2-dimensional
hyperplanes. For any (z, w) ∈ C1, it suffices to show that F restricted to the
hyperplane

[
−R1

2
, R1

2

]2 × {(z, w)} fails to satisfy 2-dimensional Lusin’s condition.
This is now simple. First, by (2.8)

π̃ ◦ S̃(C1) = C3 ⊂ {0} ×R

and, second, u fails 2-dimensional Lusin’s condition on every plane
[
−R1

2
, R1

2

]
×

{(0, w)}, for which it is defined as was mentioned at the end of Subsection 3.4.

4.6. On higher integrability of the derivative. Let Ω ⊂ Rk and f ∈
W 1,k(Ω,Rk). Recall, that the condition

|Df |k logα(e+ |Df |) ∈ L1

implies that f satisfies k-dimensional Lusin’s (N) condition if α > 1 but not neces-
sarily if α ≤ 1. This follows from more general results in [10].

We can use this result on two-dimensional planes and we obtain that in our
example we can’t possibly hope better regularity than L2 logL. Our mapping gets
very close to this. One can check that actually DF ∈ L2 logα(e+L) for every α < 1.
Mapping does not require real changes, only the choice of β at the end is different.
It seems plausible that similar example exists also with DF ∈ L2 log(e+L) but this
seems to require a lot of changes in the mapping. Existence of such example would
mean that homeomorphicity does not make mapping any better then other Sobolev
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mappings when one considers 2-dimensional Lusin’s condition on planes for mappings
between domains in R4. This is clearly different from the case of codimension 1 by
results of [4].

To check the integrability one proceeds as in W 1,2-case. We list here some differ-
ences with the estimates. Integration over the set([

−R1

2
,
R1

2

]2

× [0, 1]2

)
\

([
−R1

2
,
R1

2

]2

× C1

)
is essentially the same. Instead of (4.16) one hasˆ

I2
1×Uj,i

|Du(y)|2 logα(|Du(y)|) dy /
∞∑
k=j

ˆ
Ij,i

ˆ
[ 1

2
Hk+1,

1
2
Hk]

kβ+1kαβ

/ 2−2(γ+1)jjβ(α+1)+1

(4.19)

but this does not affect the convergence of the integral analogous to (4.17).
The integration over the Cantor set is similar. Instead of (4.18) we haveˆ

[−R1
2
×R1

2 ]
2
×C1
|Du(π ◦ S(x))|2 |DS(x)|2 logα(e+ |Du(π ◦ S(x))|) dx

/ H2(C1)
∞∑
j=1

logα 1
rj

log
Rj
rj

/ H2(C1)
∞∑
j=1

jα(β+1)

jβ
<∞

(4.20)

for β big enough as α < 1 is fixed. These two estimates give the desired integrability.
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