A SIMPLE PROOF FOR THE BOUNDARY SCHWARZ LEMMA FOR PLURIHARMONIC MAPPINGS

Hidetaka Hamada

Kyushu Sangyo University, Faculty of Engineering 3-1 Matsukadai, 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan; h.hamada@ip.kyusan-u.ac.jp

Abstract. In this paper, we give a simple proof for the boundary Schwarz lemma for pluriharmonic mappings between Euclidean unit balls. We also give some generalization to C^1 -mappings between domains with smooth boundaries.

1. Introduction

Let B^n be the Euclidean unit ball in \mathbb{C}^n and let \mathbb{B}^{2n} be the Euclidean unit ball in \mathbb{R}^{2n} . Each $z = x + iy \in \mathbb{C}^n$ corresponds to $z' = (x, y)^T \in \mathbb{R}^{2n}$, where T denotes the transpose of vectors and matrices. For $z \in \mathbb{C}^n$, ||z|| denotes the Euclidean norm on \mathbb{C}^n . For $x \in \mathbb{R}^m$, ||x|| denotes the Euclidean norm on \mathbb{R}^m . For each $z'_0 \in \partial \mathbb{B}^{2n}$, the tangent space $T_{z'_0}(\partial \mathbb{B}^{2n})$ is defined by

$$T_{z_0'}(\partial \mathbf{B}^{2n}) = \{\beta \in \mathbf{R}^{2n} \colon z_0'^T \beta = 0\}.$$

A C^2 mapping $f: B^n \to \mathbb{C}^m$ is said to be pluriharmonic if the restriction of each component f_j to every complex line is harmonic.

Let Ω be a domain in \mathbb{R}^m . For a C^1 mapping $f: \Omega \to \mathbb{R}^M$, let $J_f(x)$ denote the $M \times m$ Jacobian matrix of f at $x \in \Omega$.

In recent years, the Schwarz lemma at the boundary for holomorphic mappings has been studied by many authors [1, 2, 3, 5, 6]. More recently, the following boundary Schwarz lemma for pluriharmonic mappings between Euclidean unit balls was proved by Liu, Dai and Pan [4].

Theorem 1.1. Let $f: B^n \to B^N$ be a pluriharmonic mapping for $n, N \ge 1$. If f is $C^{1+\alpha}$ at $z_0 \in \partial B^n$ for some $\alpha \in (0,1)$ and $f(z_0) = w_0 \in \partial B^N$, then we have

(I) $J_f(z'_0)\beta \in T_{w'_0}(\partial \mathbf{B}^{2N})$ for any $\beta \in T_{z'_0}(\partial \mathbf{B}^{2n})$;

(II) There exists a positive $\lambda \in \mathbf{R}$ such that $J_f(z'_0)^T w'_0 = \lambda z'_0$,

where z'_0 and w'_0 are real versions of z_0 and w_0 respectively, and

$$\lambda \ge \frac{1 - \|f(0)\|}{2^{2n-1}} > 0.$$

For the proof, they used the Schwarz lemma for pluriharmonic mappings [4, Theorem 1.1], a technical lemma [4, Lemma 2.1] and the Harnack inequality for nonnegative harmonic functions on the Euclidean unit ball in \mathbb{R}^n [4, Theorem 3.1]. In this paper, we will prove the following theorem by using the Harnack inequality for nonnegative harmonic functions on the unit disc U in \mathbb{C} and elementary arguments.

https://doi.org/10.5186/aasfm.2017.4245

²⁰¹⁰ Mathematics Subject Classification: Primary 32U05, 30C80.

Key words: Boundary Schwarz lemma, pluriharmonic mapping.

H. Hamada was partially supported by JSPS KAKENHI Grant Number JP16K05217.

We do not use the Schwarz lemma for pluriharmonic mappings [4, Theorem 1.1] and a technical lemma [4, Lemma 2.1].

The novelty of our theorem is as follows. We only need that f is C^1 at $z_0 \in \partial B^n$. Also, in (I), the assumption that f is pluriharmonic is not needed. In (II), we give an improvement of the lower estimate for λ .

Theorem 1.2. Let $f: B^n \to B^N$ be a C^1 mapping for $n, N \ge 1$. Assume that f is C^1 at $z_0 \in \partial B^n$ and $f(z_0) = w_0 \in \partial B^N$.

- (I) Then we have $J_f(z'_0)\beta \in T_{w'_0}(\partial \mathbf{B}^{2N})$ for any $\beta \in T_{z'_0}(\partial \mathbf{B}^{2n})$ and there exists a nonnegative $\lambda \in \mathbf{R}$ such that $J_f(z'_0)^T w'_0 = \lambda z'_0$;
- (II) Moreover, if f is pluriharmnic on B^n , then

$$\lambda \ge \frac{1 - (f(0)')^T w_0'}{2} \ge \frac{1 - \|f(0)\|}{2} > 0.$$

We give an example of a real analytic mapping f such that $\lambda = 0$ in (I) of the above theorem. So, we cannot conclude that $\lambda > 0$ in (I) of the above theorem.

Example 1.3. Let $f(z) = (e^{-(x_1-1)^2}, 0, ..., 0)^T$, $f: B^n \to B^N$, where $z = (x_1, ..., x_n)^T + i(y_1, ..., y_n)^T$. Let $z_0 = (1, ..., 0)^T \in \partial B^n$. Then we have $w_0 = f(z_0) = (1, ..., 0)^T \in \partial B^N$ and $J_f(z'_0) = O$. Therefore, $\lambda = 0$.

We give a generalization of Theorem 1.2 (I) to C^1 -mappings between domains with smooth boundaries. Let Ω be a domain in \mathbb{R}^n . Ω is said to have C^r boundary $(r \ge 1)$, if there exist a neighbourhood U of $\partial\Omega$ and a real valued C^r function ρ on U such that $\Omega \cap U = \{x \in U : \rho(x) < 0\}, \nabla \rho \neq 0$ on $\partial\Omega$, where

$$\nabla \rho(x) = \left(\frac{\partial \rho}{\partial x_1}(x), \dots, \frac{\partial \rho}{\partial x_n}(x)\right)^T$$
, for $x = (x_1, \dots, x_n)^T \in U$.

 ρ is called the defining function for Ω . For each $x_0 \in \partial \Omega$, the tangent space to $\partial \Omega$ at x_0 is defined as follows:

$$T_{x_0}(\partial\Omega) = \{\beta \in \mathbf{R}^n \colon \nabla \rho(x_0)^T \beta = 0\}.$$

Proposition 1.4. Let $\Omega_1 \subset \mathbf{R}^m$ be a domain with C^2 -boundary and $\Omega_2 \subset \mathbf{R}^M$ be a domain with C^1 -boundary for $m, M \geq 1$. Let ρ_j be the defining function for Ω_j for j = 1, 2, respectively. Let $f: \Omega_1 \to \Omega_2$ be a C^1 mapping. Assume that f is C^1 at $x_0 \in \partial \Omega_1$ and $f(x_0) = y_0 \in \partial \Omega_2$. Then we have $J_f(x_0)\beta \in T_{y_0}(\partial \Omega_2)$ for any $\beta \in T_{x_0}(\partial \Omega_1)$ and there exists a nonnegative $\lambda \in \mathbf{R}$ such that $J_f(x_0)^T \nabla \rho_2(y_0) = \lambda \nabla \rho_1(x_0)$.

2. Proof of Theorem 1.2

Proof of (I). Let $\beta \in T_{z'_0}(\partial \mathbf{B}^{2n})$ be fixed. We may assume that $\|\beta\| = 1$. Let $\gamma(t) = (1 - t^2)z'_0 + t\beta$. Then $\gamma(t) \in \mathbf{B}^{2n}$ for $t \in (-1, 1) \setminus \{0\}, \ \gamma(0) = z'_0$ and $\frac{d}{dt}\gamma(t)|_{t=0} = \beta$. Therefore the real valued function $(f(\gamma(t))')^T w'_0$ attain its local maximum at t = 0. Since this function is C^1 on (-1, 1), we have

$$\frac{d}{dt}(f(\gamma(t))')^T w_0'|_{t=0} = (J_f(z_0')\beta)^T w_0' = 0.$$

This implies that $J_f(z'_0)\beta \in T_{w'_0}(\partial \mathbf{B}^{2N})$. Next, assume that $J_f(z'_0)^T w'_0 = \lambda z'_0 + \beta$ for some $\lambda \in \mathbf{R}$ and $\beta \in T_{z'_0}(\partial \mathbf{B}^{2n})$. Then

$$\|\beta\|^2 = (\lambda z_0' + \beta)^T \beta = (J_f(z_0')^T w_0')^T \beta = w_0'^T J_f(z_0') \beta = 0$$

800

by the above argument. Therefore, we have $J_f(z_0')^T w_0' = \lambda z_0'$ for some $\lambda \in \mathbf{R}$. Let

(2.1)
$$u(\zeta) = 1 - (f(\zeta z'_0)')^T w'_0, \quad \zeta \in U.$$

Then $u(r) \ge u(1)$ for $r \in (0, 1)$. Therefore, we have

$$\lambda = (J_f(z'_0)z'_0)^T w'_0 = \lim_{r \to 1-0} \frac{u(r) - u(1)}{1 - r} \ge 0.$$

Proof of (II). Assume that f is pluriharmonic on B^n . Then the function u defined in (2.1) is nonnegative and harmonic on the unit disc U in **C**. By Harnack's inequality on the unit disc, we have

$$\frac{1-r}{1+r}u(0) \le u(\zeta) \le \frac{1+r}{1-r}u(0), \quad \text{for } r = |\zeta| < 1.$$

Therefore,

$$\frac{1}{1+r}u(0) \le \frac{u(r) - u(1)}{1-r}, \quad \text{for } 0 < r < 1.$$

Letting $r \to 1 - 0$, we have

$$\frac{1 - (f(0)')^T w_0'}{2} \le (J_f(z_0') z_0')^T w_0' = \lambda$$

This completes the proof.

3. Proof of Proposition 1.4

Let $\beta \in T_{x_0}(\partial \Omega_1)$ be fixed. Let $\gamma(t) = x_0 + \varepsilon t\beta - t^2 \nabla \rho_1(x_0)$. Then $\gamma(0) = x_0$ and $\frac{d}{dt}\gamma(t)|_{t=0} = \varepsilon\beta$. Since Ω_1 has C^2 -boundary, there exist $\varepsilon > 0$ and $t_0 > 0$ such that $\gamma(t) \in \Omega_1$ for $t \in (-t_0, t_0) \setminus \{0\}$. Therefore the real valued function $\rho_2(f(\gamma(t)))$ attain its local maximum at t = 0. Since this function is C^1 near t = 0, we have

$$\frac{d}{dt}\rho_2(f(\gamma(t)))|_{t=0} = (\nabla\rho_2(y_0))^T J_f(x_0)\varepsilon\beta = 0.$$

This implies that $J_f(x_0)\beta \in T_{y_0}(\partial\Omega_2)$. Next, assume that $J_f(x_0)^T \nabla \rho_2(y_0) = \lambda \nabla \rho_1(x_0) + \beta$ for some $\lambda \in \mathbf{R}$ and $\beta \in T_{x_0}(\partial\Omega_1)$. Then

$$\|\beta\|^{2} = (\lambda \nabla \rho_{1}(x_{0}) + \beta)^{T} \beta = (J_{f}(x_{0})^{T} \nabla \rho_{2}(y_{0}))^{T} \beta = \nabla \rho_{2}(y_{0})^{T} J_{f}(x_{0}) \beta = 0$$

by the above argument. Therefore, we have $J_f(x_0)^T \nabla \rho_2(y_0) = \lambda \nabla \rho_1(x_0)$ for some $\lambda \in \mathbf{R}$. Since $x_0 - t \nabla \rho_1(x_0) \in \Omega_1$ for sufficiently small t > 0, we have

$$\begin{split} \lambda \|\nabla \rho_1(x_0)\|^2 &= (\nabla \rho_2(y_0))^T J_f(x_0) \nabla \rho_1(x_0) \\ &= -\frac{d}{dt} \rho_2(f(x_0 - t \nabla \rho_1(x_0)))|_{t=0} \\ &= \lim_{t \to +0} \frac{\rho_2(f(x_0)) - \rho_2(f(x_0 - t \nabla \rho_1(x_0)))}{t} \\ &\geq 0. \end{split}$$

Thus, $\lambda \geq 0$. This completes the proof.

801

Hidetaka Hamada

References

- KRANTZ, S. G.: The Schwarz lemma at the boundary. Complex Var. Elliptic Equ. 56, 2011, 455–468.
- [2] LIU, T., and X. TANG: A new boundary rigidity theorem for holomorphic self-mappings of the unit ball in Cⁿ. - Pure Appl. Math. Q. 11, 2015, 115–130.
- [3] LIU, T., J. WANG, and X. TANG: Schwarz lemma at the boundary of the unit ball in \mathbb{C}^n and its applications. J. Geom. Anal. 25, 2015, 1890–1914.
- [4] LIU, Y., S. DAI, and Y. PAN: Boundary Schwarz lemma for pluriharmonic mappings between unit balls. - J. Math. Anal. Appl. 433, 2016, 487–495.
- [5] TANG, X., and T. LIU: The Schwarz lemma at the boundary of the egg domain B_{p_1,p_2} in \mathbb{C}^n . - Canad. Math. Bull. 58, 2015, 381–392.
- [6] TANG, X., T. LIU, and J. LU: Schwarz lemma at the boundary of the unit polydisk in Cⁿ. -Sci. China Math. 58, 2015, 1639–1652.

Received 16 August 2016 • Accepted 12 January 2017