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Abstract. For distinct points p and q in a two-dimensional Riemannian manifold, one defines

their mediatrix Lpq as the set of equidistant points to p and q. It is known that mediatrices have

a cell decomposition consisting of a finite number of branch points connected by Lipschitz curves.

In the case of a topological sphere, mediatrices are called equators and it can be noticed that

there are no branching points, thus an equator is a topological circle with possibly many Lipschitz

singularities. This paper establishes that mediatrices have the radial linearizability property. This

is a regularity property that implies that at each singular or branching point mediatrices have a

geometrically defined derivative in each direction. In the case of equators we show that there are

at most countably many singular points and the sum of the angles over all singularities is always

finite.

1. Introduction

Let M be a compact, connected Riemannian manifold. For any distinct points
p, q ∈ M the mediatrix Lpq is defined as the set of points with equal distance to p
and q, that is

Lpq = {x ∈ M | d(x, p) = d(x, q)} ,

where d(·, ·) is the Riemannian distance in M . These geometrical objects can be
found in the very beginning of the foundations of geometry. As an illustration,
Leibniz proposed to define planes as mediatrices in the space. The first non-trivial
approach to mediatrices appears in the book [5] by Busemann, under the name of
bisectors. There, the last chapter is devoted mainly to the characterization of metric
spaces with flat bisectors. The remarkable result by Busemann is that metric spaces
having flat bisectors are (up to a cover) isometric to a finite dimensional Euclidean,
hyperbolic, or spherical space. In a more general framework, where one replaces
points p, q by disjoint compact sets P,Q ⊂ M , the locus of points with equal distance
to P and Q, the conflict set, has been extensively studied over the past fifty years,
mainly in the case of that M = R

n. The work on these sets goes back to the 60’s,
with the introduction by Milman of the central set (see [8]) and independently by
Harry Blum, of the medial axis (see [3]). Since then, an important body of work has
been developed in order to understand the structure of these sets in different settings
(see for instance [17, 2, 12, 13, 6]). Also, conflict sets and mediatrices have been
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studied from the topological point of view, and apparently in an independent way,
under the name of midsets (see [7]), and equidistant sets (see [16, 11]).

In [1], Bernhard and Veerman show that mediatrices in surfaces have a cell de-
composition consisting of a finite number of branch points connected by Lipschitz
curves. A branch point in a mediatrix is a point at which (a neighborhood of) the
mediatrix is not homeomorphic to an interval. However, singularity points may also
appear, where the mediatrix is not a differentiable curve. This paper establishes
additional geometric regularity properties of mediatrices in surfaces (see definitions
below), that imply that at each branch or singular point mediatrices have a geomet-
rically defined derivative in each direction.

Theorem A. (Short version) Mediatrices in surfaces have the radial linearizabil-
ity property.

This theorem allows then to define the angle of a singular point as the exterior
angle of the vertex it forms.

In the special case where the surface considered is a topological sphere, we will
give the special name of equator to mediatrices. We can characterize equators in
greater detail. The topology of the sphere restricts the appearance of branch points
in equators, as seen in [1], so it is a simple closed curve (a topological circle). In this
paper we see that the equator has at most countably many singularities, these are
Lipschitz, and the sum of the angles of these singularities has to be finite.

Theorem B. (Short version) Equators are Lipschitz simple closed curves with
at most countably many singularities and finite total angle.

The study of mediatrices came about to answer some questions that came up
in the study of focal decomposition pioneered by [9] and used in [15]. The simple
observation that mediatrices are level sets of the difference of the distance functions
to the corresponding points, allows to consider the relationship between the cut locus
and mediatrices. Namely, the distance function to a point is differentiable outside
the cut locus and hence, the Implicit Function Theorem yields that a mediatrix is
differentiable outside the union of the cut locus of the underlying points. It is well-
known (theorems by Singer–Gluck and Itoh) that the cut locus even for a C∞ surface
of revolution can be a pretty awful set. In contrast the mediatrix on any Cr, r ≥ 3,
surface is locally really surprisingly well-behaved (as we show below).

2. Preliminaries

In what follows, M is a two-dimensional compact Riemannian manifold of class
Cr, r ≥ 3.

Minimizing geodesics. Let x ∈ M and θ in the unit tangent sphere SxM . We
write γx,θ : R → M the unit speed geodesic satisfying γx,θ(0) = x and γ′

x,θ(0) = θ. For
t∗ > 0 we say that γx,θ is a minimizing geodesic between x and γx,θ(t

∗) if the length
of γx,θ equals the infimum of lengths among absolutely continuous curves joining x
to γx,θ, that is, length(γx,θ

∣

∣

[0,t∗]
) = d(x, γx,θ(t

∗)). The triangle inequality yields that

γx,θ is minimizing for every 0 < t < t∗.

Polar coordinates. Recall that the exponential map expx at x ∈ M is defined
as

expx(v) = γx,v̂(|v|), where v ∈ TxM, v̂ =
v

|v|
if v 6= 0, and expx(0) = x.
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For small ρ > 0 (less than the injectivity radius injrad(M) > 0), one has that
expx

∣

∣

{|v|<ρ}
is a diffeomorphism. By fixing a polar coordinates system in TxM , one

can define (via expx) a local polar coordinates system centered at x on Bx,ρ =
{z ∈ M | d(x, z) < ρ}. In that way, a point z ∈ Bx,ρ, z 6= x, is identified with a
pair (θ, d) ∈ S

1 × (0, ρ), such that z = γx,θ(d), d = d(x, z) (recall that geodesics are
locally minimizing curves).

Minimizing directions. For p ∈ M , Θx,p ⊂ SxM is the set of directions θ
such that γx,θ is a minimizing curve from x to p. We endow SxM with the usual
arc-distance in the circle. Since M is complete one has that for x 6= p the set Θx,p is
non-empty and compact.

Lemma 1. [1] Let p 6= q ∈ M and x ∈ Lpq. Then Θx,p ∩Θx,q = ∅.

Proof. Let θ ∈ Θx,p∩Θx,q and d = d(x, p) = d(x, q). Then γx,θ(d) = q = p, which
is impossible. �

Lemma 2. Let x 6= p, and two convergent sequences xn → x, θn → θ, with
θn ∈ Θxn,p for every n (we identify Sxn

M with SxM via a local chart). Then one has
θ ∈ Θx,p.

Proof. Let dn = d(xn, p). Continuity of the distance function implies dn →
d(x, p). We have γxn,θn(dn) = p for every n. Taking the limit we obtain γx,θ(d(x, p)) =
p, and hence θ ∈ Θx,p. �

Corollary 3. If x ∈ Lpq, then there exist ρx > 0 and βx ∈ (0, π) such that

dSzM(Θz,p,Θz,q) ≥ βx

for all z ∈ Bx,ρx.

Proof. Given x we know from Lemma 2 that Θx,p ∩ Θx,q = ∅. Assume by
contradiction that there exist sequences zn → x, θp,n ∈ Θzn,p, θq,n ∈ Θzn,q with
|θp,n − θq,n| → 0. Choosing subsequences we can assume that there exists θ ∈ SxM
such that θp,n → θ, θq,n → θ. Lemma 2 implies that θ ∈ Θx,p ∩ Θx,q, which is
impossible. �

For p 6= q ∈ M and x ∈ Lpq, fix a positive orientation in SxM . A closed connected
set P in SxM is called a pre-wedge at x if its end-points are minimizing directions
to p and q respectively, and there are no other minimizing directions to p or q in its
interior. Such a set is clearly an arc of the circle, and with a slight abuse of notation
we denote it as: P = [θp, θq] ⊂ SxM (or [θq, θp]). Thus P satisfies:

• θp ∈ Θx,p, θq ∈ Θx,q.
• [θp, θq] ∩ (Θx,p ∪Θx,q) = {θp, θq}.

The midpoint θ̂ of a wedge P = [θp, θq] is the unique point contained in the pre-wedge

that equidistant from its endpoints.

Lemma 4. [1] There are finitely many pre-wedges at x ∈ Lpq.

Proof. Assume
(

[θnp , θ
n
q ]
)

n∈N
is an infinite sequence of different pre-wedges at x.

We must have limn |θ
n
p−θnq | = 0, since pre-wedges have disjoint interiors. We conclude

that the sequences of end-points (θnp )n∈N, (θnq )n∈N have a common accumulation

point θ̂. Compactness of Θx,p and Θx,q yields that θ̂ belongs to Θx,p ∩Θx,q which is
impossible. �
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For 0 < ρ < injrad(M) and a pre-wedge [θp, θq] ⊂ SxM , we define the corre-
sponding wedge at x of radius ρ as

Wx,ρ[θp, θq] = {expx(r, θ) | 0 ≤ r < ρ, θ ∈ [θp, θq]} ⊂ M.

In [1] the authors show how the mediatrix Lpq is located in M with respect to the
wedges at x ∈ Lpq in the following sense:

Theorem 5. (Bernhard and Veerman [1]) Let M be a 2-dimensional compact
Riemannian manifold of class Cr, r ≥ 3. For every pair of distinct points p, q ∈ M
the mediatrix Lpq = {x ∈ M | d(x, p) = d(x, q)} verifies

(1) Let x ∈ Lpq. If the cardinalities ♯Θx,p and ♯Θx,q are both 1, then for small
ρ the intersection Lpq ∩ Bx,ρ is a continuous simple curve passing through x
and differentiable at x.

(2) Let x ∈ Lpq and 0 < ρ < injrad(M). The intersection Lpq ∩Bx,ρ is contained
in the finite union of the wedges of radius ρ at x.

(3) Let Wx,ρ[θp, θq] be a wedge at x ∈ Lpq. The intersection Lpq ∩Wx,ρ[θp, θq] is a
Lipschitz simple curve connecting x to a boundary point of Wx,ρ[θp, θq]. This
curve is called a spoke at x.

(4) There are finitely many points x ∈ Lpq so that there exists more than two
pre-wedges at x.

(5) The mediatrix Lpq is homeomorphic to a finite and closed simplicial 1-complex.

Notice that (1) above is a direct consequence of the fact that the distance function
to a fixed point p ∈ M is differentiable outside the cut locus of p and a direct
application of the Implicit Function Theorem. The Theorem above says that Lpq ∩
Bx,ρ is the finite union of two or more Lipschitz spokes emanating from x ∈ Lpq. The
goal of this article is to study the behavior of a single spoke as it approaches x ∈ Lpq.
We show that spokes are radially linearizable in the following sense:

Definition. Let φ : [0, 1] → M be a continuous simple curve. We say that φ is

radially linearizable at x = φ(0) ∈ M if there exists a direction θ̂ ∈ SxM such that

lim
t→0+

θ(t) = θ̂,

where φ(t) = (θ(t), d(t)) in polar coordinates centered at x.

Theorem A. (Radial Linearizability of Mediatrices) Let M be a 2-dimensional
compact Riemannian manifold of class Cr, r ≥ 3. Let p 6= q ∈ M , x ∈ Lpq, and
Wx,ρ[θp, θq] a wedge at x. The spoke Lpq ∩Wx,ρ[θp, θq] is radially linearizable at x in

the direction of the midpoint θ̂ of [θp, θq].

Notice that this Theorem asserts that Lpq ∩Wx,ρ[θp, θq] is tangent to the bisector
of the angle ∠θpθq, and hence, Lpq is tangent to the directions of the equidistant set
to Θx,p and Θx,q in SxM . A similar result was conjectured in [1] (compare also with
[2]).

Corollary. Mediatrices in surfaces have no cusp like points.

3. Proof of Theorem A

The distance function has one-side directional differential. For p ∈ M ,
the triangle inequality implies that the function x 7→ d(x, p) is 1-Lipschitz. Even
though d(x, p) is not necessarily differentiable in M (in fact, it is not differentiable
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at the cut locus of p), for every x ∈ M this function has a one-sided derivative in
every direction. More precisely, let θ ∈ SxM . The limit

lim
t→0+

d(γx,θ(t), p)− d(γx,θ(0), p)

t

does exist. This fact, and the explicit formula for the limit, is a well known fact
that can be deduced from the first variation formula. The following Proposition
often appears as a folkloric result, and a proof can be found in the Plaut’s work [10,
p. 844]:

Proposition 6. Using the above notation, one has

lim
t→0+

d(γx,θ(t), p)− d(γx,θ(0), p)

t
= − cos(dSxM(θ,Θx,p)),

where dSxM(·, ·) is the Riemannian distance on the unit circle between θ and the
compact set of minimizing directions from x to p.

Lemma 7. Let g : [0, 1) → R be a continuous function and c ∈ R. Assume that
the one-sided derivative exists and verifies

g′+(t) ≡ lim
s→0+

g(t+ s)− g(t)

s
> c

for every t ∈ [0, 1). Then g(t) > g(0) + ct for every t ∈ (0, 1).

Proof. By considering the function g(t) − ct we can reduce the problem to the
case c = 0. For every t ∈ [0, 1) there exists δt > 0 such that g(t + s)− g(t) > 0 for
0 < s < δt. Hence g can not have local maximal points. As g is continuous, the only
possibility is that g is strictly increasing. �

In what follows we use the notation of the statement of the Main Theorem, that
is, we fix a pre-wedge [θp, θq] at x ∈ Lpq, write θ̂ the midpoint of [θp, θq], and ρx > 0
given by Corollary 3.

Lemma 8. If Lpq ∩Wx,ρ[θp, θq] ∩ γx,θ([0, ρx)) contains a sequence of points con-

verging to x then θ = θ̂.

Proof. Define fpq(z) = d(z, q) − d(z, p). Hence Lpq = f−1
pq (0). Proposition 6

allows to deduce that fpq has one-side differential at x in the direction of θ equal to

− cos |θ − θ̃p| + cos |θ − θ̃q| for some θ̃p ∈ Θx,p, θ̃q ∈ Θx,q. If the restriction of fpq to
the ray γx,θ has roots accumulating at x then this one-side differential must be equal

to zero. The only possible case is θ̃p = θp, θ̃q = θq (otherwise minimizing geodesics

will cross) and it follows that the only solution is θ = θ̂. �

This Lemma says that whenever a spoke crosses infinitely many times a geodesic
ray emanating from x, and the crossing points approach x, then the geodesic ray
necessarily points in the direction of the bisector of the corresponding pre-wedge.
The next result estimates for how much the points in the geodesic ray γx,θ̂ fail to
belong to the mediatrix Lpq.

Lemma 9. Given p and q, then for each x ∈ Lpq there exists a positive function
η such that

∣

∣

∣
d
(

γx,θ̂(t), q
)

− d
(

γx,θ̂(t), p
)
∣

∣

∣
≤ η(t)t for 0 ≤ t < ρ,

and limt→0 η(t) = 0.
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Proof. The function t 7→ fpq
(

γx,θ̂(t)
)

together with its first (right directional)
derivative vanish at t = 0 and the result follows. �

The next result says that for points that fail to belong to Lpq by few, we can find
a genuine point in the mediatrix close to it. This result is inspired by Section 4.2 of
[11].

Lemma 10. Let x ∈ Lpq and ρx > 0, βx ∈ (0, π) given by Corollary 3. There
exists εx > 0 such that for all z ∈ Bx,ρx/2 that verifies |d(z, q)− d(z, p)| < εx there
exists z∗ ∈ Lpq, and

d(z, z∗) <
|d(z, q)− d(z, p)|

1− cos(βx)
.

z

p

q

x

z∗

ρx

Lpq

Figure 1.

Proof. Let’s assume that d(z, q) > d(z, p). Pick θ ∈ Θz,q (this also gives θ /∈ Θz,p).
By moving continuously along the geodesic ray z(t) ≡ γz,θ(t) we must encounter
a point z∗ ≡ z(t∗) in the mediatrix Lpq (since γz,θ reaches q). We estimate the
distance t∗ between z and z∗. Note that since d(x, z) < ρx/2 then by construction
d(x, z(t)) < ρx at least for t ≤ ρx/2.

By Proposition 6 we have

lim
s→0+

d(z(t + s), p)− d(z(t), p)

s
= − cos(dSz(t)M(z′(t),Θz(t),p)).

For every t ∈ [0, ρx/2] one has z′(t) ∈ Θz(t),q and so Corollary 3 implies that there is
a βx ∈ (0, π) so that

cos(dSz(t)M(z′(t),Θz(t),p)) ≤ cos βx

Now Lemma 7 implies that for every t ∈ (0, ρx/2]

d(z(t), p) ≥ d(z, p)− t cos βx.

We also have that
d(z(t), q) = d(z, q)− t.

Putting these two together we have that

d(z(0), q)− d(z(0), p) > 0,

d(z(t), q)− d(z(t), p) ≤ d(z(0), q)− d(z(0), p)− t(1− cos(βx)).

Now, if we choose εx ≡ 1
2
ρx(1− cos(βx)) > 0, then t0 =

d(z,q)−d(z,p)
1−cos(βx)

is in (0, ρx/2]

so that the last inequality holds at t0 giving d(z(t), q)− d(z(t), p) ≤ 0. Therefore, by
continuity of the distance function, we have t∗ ≤ t0 and the Lemma is verified. �

Proof of Theorem A. Pick x ∈ Lpq and a wedge Wx,ρ[θp, θq]. Reasoning by
contradiction let’s suppose that there exists τ > 0 such that the spoke contains a
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sequence of points xn converging to x outside the cone [θ̂ − τ, θ̂ + τ ] × (0, ρ) (in
polar coordinates centered at x). Lemmas 9 and 10 assert that the spoke contains a
sequence of points inside the cone as it approaches x, since the spoke passes through
a point at a distance less than (1 − cos βx)

−1η(t)t from γx,θ̂(t) and thus inside the

cone for t sufficiently small. By the continuity of the spoke, it must cross γx,θ̂+τ (or

γx,θ̂−τ ) an infinite number of times, and Lemma 8 says that this is impossible unless
τ = 0. �

4. Equators and the Pugh–Tangerman example

Let M be a simply connected 2-dimensional Riemannian manifold of class Cr, r ≥
3 (a sphere). For p 6= q ∈ M we already know that there are at most finitely many
points x ∈ Lpq such that Lpq is not locally homeomorphic to an interval at x (that
is, there are more than two wedges at x). Let us call such a point a branching point

(and a simple point to a non-branching point). For a simple point x the Theorem A

asserts that Lpq has two well defined directions θ̂1, θ̂2 ∈ SxM at x (the bisectors of
the two pre-wedges at x, or in other words, the equidistant set in SxM of the sets of
minimizing directions from x to p and q respectively). We define the angle at x as

∠Lpq
(x) =

∣

∣π − |θ̂1 − θ̂2|
∣

∣.

If ∠Lpq
(x) 6= 0 we say that x is a Lipschitz singularity of the equator Lpq.

p

q

Figure 2. The Pugh–Tangerman example.

Pugh–Tangerman example. A very illustrative example is what has come to
be known as Pugh’s Cigar C embedded in R

3. It consists of the cylinder given by
x2 + y2 = 1 plus two (unit) hemispheres glued to each of the boundaries. Let p be
its North Pole and q its South Pole. The equator is given by the circle at z = 0.

We can obtain an arbitrarily smooth cigar by smoothing around |z| = ±1. If
we add a “bump” in the flat “northern” part of the cigar, keeping C as a smooth
manifold, is easy to see that the equator will develop a Lipschitz singularity near the
closest point to the bump. Adding a sequence of bumps in the northern part that
do not intersect each other we can create a cigar whose equator will have countably
many Lipschitz singularities.
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In what follows we want to show that this is, in some sense, the worst possible
behavior for equators. This proposition is inspired on conversations in the 1990’s by
Pugh and Tangerman with Veerman at Rockefeller University.

Theorem B. Let M be a sphere of class Cr, r ≥ 3 and p 6= q ∈ M . Then the
equator Lpq verifies

(1) Lpq is a Lipschitz simple closed curve.
(2) There are at most countably many Lipschitz singularities in Lpq. Moreover

the angles at these singularities form an absolutely summable sequence, that
is

∑

x∈Lpq

∠Lpq
(x) < ∞.

Proof. Simple closed follows from earlier results in [1]. The novelty here is the
Lipchitz property. The fact that the equator is a simple closed curve implies that
at each x ∈ Lpq there are exactly two spokes, and thus exactly two wedges. By
Theorem A, the mediatrix is tangent to the bi-sectors of these two wedges, and thus
the singularity is Lipschitz.

We saw that at a given point x ∈ Lpq there are exactly two wedges each of which
is bounded by two minimizing geodesics γx,p and γx,q. Take the complement of the
closure of these wedges. If it is the empty set, the equator is differentiable at x.
If not, then (a) that complement is a maximal wedge shaped set bounded by two
minimizing geodesics from x to p, or (b) bounded two minimizing geodesics from x
to q, or (c) both of these occur. In case (a) let us denote by Jx,p the open domain
bounded by the indicated geodesic rays from x to p and by µx,p the opening angle
at x of that wedge-shaped figure. Similarly we have Jx,q and µx,q for case (b). Case
(c) means that both Jx,p and Jx,p are non-empty. Notice that Jx,p = ∅ if and only if
♯Θx,p = 1.

If we have two minimizing geodesics from x1, x2 ∈ Lpq to p (or q) that intersect
at a point z, we would have two different geodesics γ1 and γ2 from z to p forming
a non-zero angle. Since both γ1 and γ2 are minimizing they have the same length
d(z, p), but by triangle inequality

d(x1, z) + length(γ2) > d(x1, p) = d(x1, z) + length(γ1),

thus these geodesics do not intersect. Therefore the collection (as x runs on Lpq) of
Jordan domains Jx,p,Jx,q are pairwise disjoint. We conclude that there are at most
countably many points x ∈ Lpq such that ♯Θx,p or ♯Θx,q are different from 1. A direct
examination yields that

2∠Lpq
(x) =

∣

∣µx,p − µx,q

∣

∣.

The Gauss–Bonnet Theorem applied to Jx,p gives
ˆ

Jx,p

k(w) dw = µx,p + αx,p,

where αx,p is the angle of the landing geodesic rays make at p (note that µx,p is the
angle they make at x), and k(w) is the curvature at w ∈ M . We estimate

∑

x∈Lpq

∠Lpq
(x) <

1

2

∑

x∈Lpq

(

ˆ

Jx,p

|k(w)| dw+

ˆ

Jx,q

|k(w)| dw + |αx,p|+ |αx,q|

)

≤
1

2

(
ˆ

M

|k(w)| dw + 4π

)

.
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This also shows that ∠Lpq
(x) is bounded, giving a Lipschitz constant for all

singularities, and therefore the whole curve. �
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