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Abstract. Let f be a transcendental entire function. The fast escaping set A(f) plays a key

role in transcendental dynamics and so it is useful to be able to identify points in this set. Recently

it was shown that, under certain conditions, the quite fast escaping set, Q(f), and the related set

Q2(f), are equal to A(f). In this paper we generalise these sets by introducing a family of sets

Qm(f), m ∈ N, and give several conditions under which Qm(f) is equal to A(f).

1. Introduction

Let f be a transcendental entire function. The set of points z ∈ C for which
(fn)n∈N forms a normal family in some neighbourhood of z is called the Fatou set

F (f) and the complement of F (f) is the Julia set J(f). An introduction to the
properties of these sets can be found in [2].

A lot of work has been done in recent years on a conjecture of Eremenko on the
escaping set of f . The escaping set I(f) of f is defined as follows:

I(f) = {z ∈ C : fn(z) → ∞}

and it was first studied by Eremenko in [8] who showed that for any transcendental
entire function f , we have I(f) ∩ J(f) 6= ∅, J(f) = ∂I(f) and all the components of

I(f) are unbounded. His conjecture, that all the components of I(f) are unbounded,
is still an open question. Significant progress has been made on the conjecture by
Rippon and Stallard who proved that I(f) has at least one unbounded component
(see [14, Theorem 1]). In order to do this, they considered a subset of the escaping
set known as the fast escaping set, A(f). This set was introduced by Bergweiler and
Hinkkanen in [3]. We will use the definition given by Rippon and Stallard in [16]
according to which

A(f) = {z : there exists ℓ ∈ N such that |fn+ℓ(z)| ≥Mn(R, f), for n ∈ N},

where
M(r, f) =M(r) = max

|z|=r
|f(z)|, for r > 0,

and R > 0 is large enough to ensure that M(r) > r for r ≥ R. In the same
paper they showed that A(f) has properties similar to the properties of I(f) listed
above. (Some of these results were shown in [3].) Note that the definition of A(f) is
independent of the choice of R > 0 with the property that M(r) > r for r ≥ R (see
[16, Theorem 2.2(b)]).

The set A(f) also has other nice properties (described in [16]) and plays a key
role in iteration of transcendental entire functions and, more widely, in the iteration
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of quasiregular mappings and transcendental self-maps of the punctured plane (see
[6] and [11]). Thus it is useful to be able to identify points that are fast escaping.
In [16, Theorem 2.7], it is shown that points that eventually escape faster than the
iterates of the function µε defined by µε(r) = εM(r), ε ∈ (0, 1), r > 0, are actually
fast escaping.

It is natural to ask whether this µε can be replaced by a smaller function. In
this context, Rippon and Stallard introduced the quite fast escaping set Q(f) in [17],
which is defined as follows:

Q(f) = {z : ∃ ε ∈ (0, 1), ℓ ∈ N such that |fn+ℓ(z)| ≥ µn
ε (R), for n ∈ N},

where µε =M(r)ε, ε ∈ (0, 1), and R > 0 is such that µε(r) > r for r ≥ R.
Points that are quite fast escaping arise naturally in complex dynamics and had

been used earlier by Bergweiler, Karpińska and Stallard in [5] and by Peter in [12] in
results on the Hausdorff measure and Hausdorff dimension of I(f) and J(f). It was
shown in [17] that there are many classes of functions for which Q(f) = A(f).

In [10] we generalised the quite fast escaping set by introducing the following
family of larger sets:

Qm(f) = {z : ∃ ε ∈ (0, 1), ℓ ∈ N such that |fn+ℓ(z)| ≥ µn
m,ε(R), for n ∈ N},

where µm,ε is defined by

logm µm,ε(r) = ε logmM(r), m ∈ N, ε ∈ (0, 1),

whenever the right-hand side of the equality is well defined, and whenever there exists
R = R(f, ε) > 0 such that µm,ε(r) > r for r ≥ R. In particular, whenever Qm(f)
is defined we have Qm(f) ⊂ I(f). For m = 1 there always exists R > 0 such that
µ1,ε(r) > r for r ≥ R. In the case where m = 1 we obtain the quite fast escaping set
Q(f); that is, Q1(f) = Q(f). The definition of Qm(f) is independent of the choice
of R (as for A(f) and Q(f)).

Note that for 0 < ε < 1 we have µm,ε(r) < µ1,ε(r) < M(r), for any m ≥ 2 and
for r large enough, so

A(f) ⊂ Q(f) ⊂ Qm(f) ⊂ I(f).

In Section 2 we give a large class of functions for which µm,ε(r) is greater than r for
r large enough.

Our main goal is to find classes of functions for which Qm(f) = A(f) for all
m ∈ N since A(f) plays a significant role and the conditions for a point to be in
Qm(f) could be easier to check than the conditions for a point to be in A(f). In [10]
we considered the case m = 2, that is,

(1.1) µ2,ε(r) = exp((logM(r))ε)

and we found regularity conditions that imply that Q2(f) = A(f). In particular,
we proved that any transcendental entire function of finite order and positive lower
order satisfies Q2(f) = A(f). Recall that the order ρ(f) and lower order λ(f) of f
are defined by

ρ(f) = lim sup
r→∞

log logM(r)

log r
, λ(f) = lim inf

r→∞

log logM(r)

log r
.

In this paper we introduce new techniques that enable us to generalise this result
for any m ∈ N as given in the following theorem:

Theorem 1.1. Let f be a transcendental entire function of finite order and

positive lower order. Then Qm(f) is defined and Qm(f) = A(f), m ∈ N.
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In particular, Theorem 1.1 implies that functions in the Eremenko–Lyubich class
B that have finite order satisfy Qm(f) = A(f). Indeed, functions in the class
B have positive lower order and in fact have lower order not less than 1/2 (see
[13, Lemma 3.5]). Note that the class B consists of transcendental entire functions
whose set of singular values (that is, critical values and asymptotic values; see [9])
is bounded, and it is much studied in complex dynamics. Classes of functions that
satisfy the hypothesis of Theorem 1.1 were studied, for example, in [4] and [19].

We prove the theorem in two different ways. The first proof is based on a new
regularity condition and the second on a growth condition. In Section 3 we give our
first proof of Theorem 1.1 which is in two steps. We first introduce a new regularity
condition which we call m-log-regularity and that implies that Qm(f) = A(f). Let
f be a transcendental entire function. Then f is m-log-regular if and only if, for any
ε ∈ (0, 1), there exist R > 0 and k > 1 such that

(1.2) µm,ε(exp
m−1(rk)) ≥ expm−1(M(r)k), for r ≥ R.

We are not aware whether there is any relationship between the different m-log-
regularity conditions. For m = 1 we obtain the log-regularity condition that was first
introduced by Anderson and Hinkkanen in [1] and was used by Rippon and Stallard
in [17] as a sufficient condition for Q(f) to be equal to A(f). We then show that any
function that is m-log-regular satisfies Qm(f) = A(f). In the second step, we prove
that all functions of finite order and positive lower order are m-log-regular.

In Section 4 we prove Theorem 1.1 in a different way, again in two steps. We
give a growth condition that is sufficient for Qm(f) = A(f) and then we show that
any transcendental entire function of finite order and positive lower order satisfies
this growth condition.

In [10] we introduced a regularity condition called strong log-regularity which
implies that Q2(f) = A(f). In Section 5 we show how strong log-regularity is related
to 2-log-regularity. In particular we prove that a strongly log-regular function of
finite order is always 2-log-regular and we give an example of a 2-log-regular function
of finite order that fails to be strongly log-regular.

Acknowledgments. I would like to thank my supervisors Prof. Phil Rippon and
Prof. Gwyneth Stallard for their help in the preparation of this paper and Dave
Sixsmith for helpful comments.

2. Properties of Qm(f)

In this section we prove some basic properties of Qm(f). Just as for µ2,ε, in
the general case we do not know a priori that, for any given transcendental entire
function, µm,ε(r) is greater than r for r large enough. We show first that, for a large
class of functions, there is always a positive R such that µm,ε(r) > r, for r ≥ R, and
hence for these functions Qm(f) is defined.

Theorem 2.1. Let f be a transcendental entire function, m ≥ 2 and ε ∈ (0, 1).
If there exist q > 0, r0 > 0 and n ∈ N such that

(2.1) M(r) ≥ expn+1((logn r)q), for r ≥ r0,

then, for any c > 1, there exists R > 0 such that

µm,ε(r) > cr, for r ≥ R.

Note that (2.1) is true for all functions of positive lower order as well as some
functions of zero lower order. In particular, it is true for all the functions in class B
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as they have lower order not less than 1/2. In order to prove Theorem 2.1 we use
the following inequality.

Lemma 2.2. For any n ∈ N, p ≥ 1 and a1, . . . , an, b1, . . . , bn > 0 there exists

R > 0 such that

(2.2) a1 log(a2 log . . . log(anr) . . .) ≥ log(b1 log . . . log((bnr)
p) . . .), for r ≥ R.

Proof. It suffices to prove (2.2) for p > 1. We use proof by induction. As
a1r ≥ log((b1r)

p), for r large enough, (2.2) is certainly true for n = 1. Suppose now
that (2.2) is true for some n ≥ 1. We will deduce that

(2.3) a1 log(a2 log. . .log(an log(an+1r)) . . .) ≥ log(b1 log . . . log(bn log((bn+1r)
p)) . . .),

for r large enough. To do this, note first that, for r large enough,

a1 log(a2 log . . . log(an log(an+1r)) . . .) ≥ log(b1 log . . . log((bn log(an+1r))
p) . . .),

by (2.2). Then, in order to deduce (2.3) it suffices to show that

(2.4) (bn log(an+1r))
p ≥ bnp log(bn+1r),

for r large enough. Note now that (2.4) is true since there exists R > 0 such that

bp−1
n

p
(log(an+1r))

p ≥ log(bn+1r), for r ≥ R,

and the result follows. �

Proof of Theorem 2.1. By definition, µm,ε(r) = expm(ε logmM(r)), so we have
to show that

(2.5) expm(ε logmM(r)) > cr, for r large enough.

We consider three different cases depending on the relative sizes of m and the positive
integer n from (2.1).

a) Suppose that n+ 1 = m. Then, by (2.1),

expm(ε logmM(r)) ≥ expm(ε logm(expn+1((logn r)q)))

= expm(ε(logn r)q)

> cr, for r large enough,

(2.6)

since ε(logn r)q > log logn cr = logm cr, for r large enough.
b) Suppose that n + 1 < m. Then, by (2.1),

expm(ε logmM(r)) ≥ expm(ε logm(expn+1((logn r)q))) = expm(ε logm−n−1((logn r)q)).

Hence, we need to show that, for any c > 1,

expm(ε logm−n−1((logn r)q)) > cr, for r large enough,

or, equivalently,

(2.7) ε logm−n−1((logn r)q) > logm cr, for r large enough,

which holds by applying Lemma 2.2 with n replaced by m, p = 1, a1 = ε, am−n−1 =
q, bm = c and all the other coefficients equal to 1.

c) Finally, suppose that n + 1 > m. Then, by (2.1),

expm(ε logmM(r)) ≥ expm(ε logm(expn+1((logn r)q))) = expm(ε expn+1−m((logn r)q)).

Hence, we need to show that, for any c > 1,

expm(ε expn+1−m((logn r)q)) > cr, for r large enough,
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or, equivalently,

(2.8) ε expn+1−m((logn r)q) > logm cr, for r large enough.

Note now that (2.8) is equivalent to

(2.9) (logn r)q > logn+1−m

(

1

ε
logm cr

)

, for r large enough.

If we apply Lemma 2.2 with n replaced by n+2, p = 1, a1 = q, bn+2−m = 1/ε, bn+2 = c
and the rest of the coefficients equal to 1 we obtain

q logn+1 r > logn+2−m

(

1

ε
logm cr

)

,

for r large enough and so (2.9) follows. �

We now show that Qm(f) has some basic properties similar to those of I(f), A(f)
and Q(f).

Theorem 2.3. Let f be a transcendental entire function and m ∈ N be such

that Qm(f) is defined. Then

Qm(f) 6= ∅, Qm(f) ∩ J(f) 6= ∅, and J(f) = Qm(f) ∩ J(f).

If, in addition, for any c > 1 and ε ∈ (0, 1), there exists R > 0 such that

(2.10) µm,ε(r) > cr, for r ≥ R,

then

J(f) = ∂Qm(f),

and Qm(f) has no bounded components.

Proof. All the properties above hold for A(f) (see [16]). As A(f) ⊂ Qm(f),

we certainly have Qm(f) 6= ∅ and Qm(f) ∩ J(f) 6= ∅. Also J(f) = A(f) ∩ J(f) ⊂

Qm(f) ∩ J(f). Since J(f) is closed, we also have Qm(f) ∩ J(f) ⊂ J(f) and so the
third property is also true.

In order to prove the two remaining properties, we follow the arguments in the
proof of [17, Theorem 2.1]. Note first that Qm(f) is infinite and completely invariant
under f which, since J(f) is the smallest closed completely invariant set with at least

three points, implies that J(f) ⊂ Qm(f). But any open subset of Qm(f) is contained
in F (f) since it contains no periodic points of f , and so J(f) ⊂ ∂Qm(f).

Suppose now that ∂Qm(f) ∩ U 6= ∅, where U is a Fatou component and take
z ∈ ∂Qm(f)∩U . Take also a disc ∆ centred at z with ∆ ⊂ U . Then ∆∩Qm(f) 6= ∅
and we take z0 ∈ Qm(f)∩U . If U is simply connected then, by applying [2, Lemma 7],
we have that there exists C > 0 such that

|fn(z1)| ≥ C|fn(z0)|,

for any z1 ∈ ∆ and n ∈ N. If (2.10) holds there exist R > 0 and ε ∈ (0, 1) such that
µm,ε(r) > r, r ≥ R and ℓ ∈ N such that, for n ∈ N,

|fn+ℓ(z1)| ≥ C|fn+ℓ(z0)| ≥ Cµn
m,ε(R),

and so

|fn+ℓ(z1)| ≥ µn−1
m,ε (R),

by (2.10). Therefore, any point in the neighbourhood ∆ of z lies in Qm(f), which
gives a contradiction. If the Fatou component U is multiply connected then U ⊂
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A(f) ⊂ Qm(f) (see [14, Theorem 2]) and so there is again a contradiction. Hence,
∂Qm(f) ⊂ J(f).

Finally, if Qm(f) has a bounded component, E say, then there is an open topo-

logical annulus A lying in the complement of Qm(f) that surrounds E. Since Qm(f)
is completely invariant under f , A is contained in F (f) by Montel’s theorem. But
from the previous property, J(f) = ∂Qm(f) and so A is contained in a multiply con-
nected Fatou component. As any multiply connected Fatou component is contained
in A(f) ⊂ Qm(f) we deduce that A ⊂ Qm(f) which gives a contradiction. �

3. Regularity conditions for Qm(f) = A(f)

In this section, we use regularity conditions to prove Theorem 1.1. In the in-
troduction we defined m-log-regularity, which is a sufficient condition for Qm(f)
to be equal to A(f). In fact, there also exists another regularity condition called
m-weak-regularity that is equivalent to Qm(f) = A(f). We will show later that m-
log-regularity is stronger than m-weak-regularity and hence if f is m-log-regular then
Qm(f) = A(f). Finally, we will use these ideas in order to prove Theorem 1.1. Note
that m-log-regularity is easier to check than m-weak-regularity which is defined as
follows:

Let R > 0 be any value such that M(r) > r for r ≥ R. We say that f is
m-weakly-regular if for any ε ∈ (0, 1) there exists r = r(R) > 0 such that

µn
m,ε(r) ≥Mn(R), for n ∈ N,

or, equivalently, if there exists ℓ = ℓ(R) ∈ N such that

µn+ℓ
m,ε (R) ≥Mn(R), for n ∈ N.

For m = 1 we have the weak regularity that was introduced by Rippon and Stallard
in [17].

We will show that m-weak-regularity is a necessary and sufficient condition for f
to satisfy Qm(f) = A(f). In order to prove our result we make use of the following
theorem of Rippon and Stallard (see [18, Theorem 1.4] and [17, Theorem 3.1]).

Theorem 3.1. Let f be a transcendental entire function. There exists R =
R(f) > 0 with the property that whenever (an) is a positive sequence such that

(3.1) an ≥ R and an+1 ≤M(an), for n ∈ N,

there exists a point ζ ∈ J(f) and a sequence (nj) with nj → ∞ such that

(3.2) |fn(ζ)| ≥ an, for n ∈ N, but |fnj(ζ)| ≤M2(anj
), for j ∈ N.

We now prove our result. The proof uses arguments used in the proof of [17,
Theorem 1.2].

Theorem 3.2. Let f be a transcendental entire function. Then f is m-weakly-

regular if and only if Qm(f) is defined and Qm(f) = A(f).

Proof. Suppose that f is m-weakly-regular and let R > 0 be such that M(r) > r
for r ≥ R. Then there exists r = r(R) > 0 such that

µn
m,ε(r) ≥Mn(R), for n ∈ N,

and so Qm(f) is defined.
If z ∈ Qm(f), then there exist ε ∈ (0, 1) and ℓ ∈ N such that

|fn+ℓ(z)| ≥ µn
m,ε(R), for n ∈ N.
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Let r = r(R) be as above. Then there exists N ∈ N such that µN
m,ε(R) > r so

|fn+ℓ+N(z)| ≥ µn+N
m,ε (R) ≥ µn

m,ε(r) ≥Mn(R), for n ∈ N,

and hence z ∈ A(f). Thus Qm(f) ⊂ A(f). Clearly A(f) ⊂ Qm(f) and so we have
Qm(f) = A(f) as claimed.

In order to show that the opposite direction of the theorem is also true we will
prove that if f is notm-weakly-regular andQm(f) is defined thenQm(f)\A(f) is non-
empty. Take R > 0 such that µm,ε(r) > r, for r ≥ R. Since f is notm-weakly-regular,

for any ℓ ∈ N there exist ε ∈ (0, 1) and n(ℓ) ∈ N such that µ
n(ℓ)+ℓ
m,ε (R) < Mn(ℓ)(R)

and hence, for any n ∈ N with n > n(ℓ), we have

(3.3) µn+ℓ
m,ε (R) < Mn(R).

Now, by Theorem 3.1, with an = µn
m,ε(R), n ∈ N, there exists a point ζ and a

sequence (nj) → ∞ as j → ∞, such that

(3.4) |fn(ζ)| ≥ µn
m,ε(R), for n ∈ N,

and

(3.5) |fnj(ζ)| ≤M2(µnj

m,ε(R)), for j ∈ N.

It follows from (3.4) that ζ ∈ Qm(f). Also, (3.3) and (3.5) together imply that, for
each ℓ ∈ N and sufficiently large values of j, we have

|f (nj−ℓ+2)+ℓ−2(ζ)| = |fnj(ζ)| ≤M2(µnj

m,ε(R)) < M2(Mnj−ℓ(R)) =Mnj−ℓ+2(R).

Hence, ζ /∈ A(f), so Qm(f) 6= A(f), as required. �

We now give the proof of Theorem 1.1. The proof is in two steps. First, we prove
the following result which implies that all m-log-regular functions satisfy Qm(f) =
A(f).

Theorem 3.3. Let f be a transcendental entire function. If f is m-log-regular,

then f is m-weakly-regular and hence Qm(f) = A(f).

Proof. Suppose that f is m-log-regular and let 0 < ε < 1. Let R > 0 be so large
that M(r) > r for r ≥ R. Since f is m-log-regular, for any ε ∈ (0, 1) there exists
r0 ≥ R and k > 1 such that

µm,ε(exp
m−1(rk)) ≥ expm−1(M(r)k), for r ≥ r0.

Hence,

µm,ε(µm,ε(exp
m−1(rk))) ≥ µm,ε(exp

m−1(M(r)k)) ≥ expm−1((M(M(r))k)

and so, using this argument repeatedly, we have

µn
m,ε(exp

m−1(rk)) ≥ expm−1(Mn(r)k), for ≥ r0 and n ∈ N.

Thus, whenever r ≥ r0, we have

µn
m,ε(exp

m−1(rk)) ≥ Mn(r) ≥ Mn(R), for n ∈ N,

and so f is m-weakly-regular. Hence, by Theorem 3.2, Qm(f) = A(f). �

The second part of the proof of Theorem 1.1 is to show that all functions of finite
order and positive lower order are m-log-regular. In order to prove this we will need
the following lemma.
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Lemma 3.4. For any n ∈ N and any d > 0, q, q′ ∈ (0, 1), there exists R > 0
such that

(3.6) logn(rq) > d(logn r)q
′

, for r ≥ R.

Proof. We will prove (3.6) using induction. For n = 1,

q log r > d(log r)q
′

, for r large enough.

Suppose that (3.6) is true for some n ∈ N. Then

d(logn+1 r)q
′

= d(logn(log r))q
′

< logn((log r)q), for r large enough.

Hence, in order to prove (3.6) it suffices to show that there exists R > 0 such that

logn+1(rq) > logn((log r)q), for r ≥ R, n ∈ N,

or equivalently that

log(rq) > (log r)q, for r ≥ R,

which is true, and so, the result follows. �

We now prove the following result.

Theorem 3.5. Let f be a transcendental entire function of finite order and

positive lower order. Then f is m-log-regular.

Proof. Let f be a transcendental entire function of finite order and positive lower
order. We begin by noting that there exist 0 < q < p such that

(3.7) er
q

≤M(r) ≤ er
p

, for r large enough.

By the definition of µm,ε, in order to prove that f is m-log-regular we need to
show that for any ε ∈ (0, 1), there exist R > 0 and k > 1 such that f satisfies (1.2)
or, equivalently,

(3.8) ε logmM(expm−1(rk)) ≥ logm(expm−1(M(r)k)), for r ≥ R.

But (3.7) implies that

logmM(expm−1(rk)) ≥ logm−1((expm−1(rk))q)

and

logm(expm−1(M(r)k)) ≤ logm(expm(krp)) = krp,

and so (3.8) is implied by

ε logm−1((expm−1(rk))q) ≥ krp,

that is,

(3.9) (expm−1(rk))q ≥ expm−1(
krp

ε
), for r large enough.

We set rk = logm−1 s and (3.9) becomes

(3.10) logm−1(sq) ≥
k

ε
(logm−1 s)p/k, for s large enough.

For m = 1, if we choose k > p/q then, for any ε ∈ (0, 1), (3.10) holds for s large
enough. For m > 1, if we choose k > p then, for any ε ∈ (0, 1), (3.10) holds for s
large enough, by Lemma 3.4. �

It is easy to see that if we combine Theorem 3.3 and Theorem 3.5 we obtain
Theorem 1.1.
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4. Growth conditions for Qm(f) = A(f)

In this section we give a second proof of Theorem 1.1 by introducing a growth
condition, given in the following theorem, that implies that Qm(f) = A(f). The
same lower bound for m = 2 appears in [15, Theorem 6].

Theorem 4.1. Let f be a transcendental entire function, m ≥ 2 and φm(t) =
logm−1M(expm−1(t)). If there exist 0 < q < 1 and 0 < q̃ < ∞ such that, for some

n ≥ 0,

(4.1) expn+m−1((logn+m−2 t)q) ≤ φm(t) ≤ expn+m−1((logn+m−2 t)q̃),

for t large enough, then

(i) for any d > 1 and any p > 1/q there exists t0 > 0 such that

φm(ψm(t)) ≥ (ψm(φm(t)))
d, for t ≥ t0,

where ψm(t) = expn+m−1((logn+m−1 t)p);
(ii) f is m-weakly-regular and so Qm(f) = A(f).

Remark 4.1. As 0 < q < 1, the left bound in (4.1) becomes smaller as n
increases. If we also take q̃ > 1, then the right bound increases with n and hence the
condition (4.1) is more easily satisfied for larger n. As we will prove in Theorem 4.2,
all functions of positive lower order and finite order satisfy (4.1) with n = 0.

Proof. (i) We have that

ψm(φm(t)) ≤ expn+m−1((logn+m−1(expn+m−1(logn+m−2 t)q̃))p)

= expn+m−1((logn+m−2 t)q̃p)

and also

φm(ψm(t)) ≥ expn+m−1((logn+m−2(expn+m−1((logn+m−1 t)p)))q)

= expn+m−1((exp((logn+m−1 t)p))q) = expn+m(q(logn+m−1 t)p)

≥ expn+m((logn+m−1 t)pq) ≥ (expn+m−1((logn+m−2 t)pq̃))d,

for any d > 1 and for t large enough, since putting w = logn+m−1 t gives

expn+m−1((logn+m−1 t)pq)

expn+m−2((logn+m−2 t)pq̃)
=

expn+m−1(wpq)

expn+m−2((ew)pq̃)
=

expn+m−1(wpq)

expn+m−2(epq̃w)

=
expn+m−1(wpq)

expn+m−1(pq̃w)
→ ∞ as w → ∞

and so

expn+m−1((logn+m−1 t)pq) ≥ d expn+m−2((logn+m−2 t)pq̃), for t large enough.

Thus

φm(ψm(t)) ≥ (ψm(φm(t)))
d, d > 1, for t large enough.

(ii) Now let φm,ε(t) = φm(t)
ε and note that from the definition of φm,

M ℓ(r) = expm−1(φℓ
m(log

m−1 r)).

Note also that

µm,ε(r) = expm(ε logmM(r)) = expm(ε logm(expm−1 φm(log
m−1 r)))

= expm(log(φm,ε(log
m−1 r)) = expm−1(φm,ε(log

m−1 r)),
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and so,

µℓ
m,ε(r) = expm−1(φℓ

m,ε(log
m−1 r)).

Hence, in order to show that there exists r = r(R) > 0 such that

µℓ
m,ε(r) ≥ M ℓ(R), for ℓ ∈ N,

it suffices to show that there exists r = r(R) > 0 such that

φℓ
m,ε(r) ≥ φℓ

m(R), for ℓ ∈ N.

We showed in (i) that, for any d > 1, φm(ψm(t)) ≥ (ψm(φm(t)))
d, if t is sufficiently

large, or, equivalently, that given ε > 0

φm,ε(ψm(t)) ≥ ψm(φm(t)), for t large enough.

Therefore,

φm,ε(s) ≥ ψm(φm(ψ
−1
m (s))), for s large enough.

Since ψm(t) ≥ t, by iterating we obtain

φℓ
m,ε(s) ≥ ψm(φ

ℓ
m(ψ

−1
m (s))) ≥ φℓ

m(ψ
−1
m (s)), for s large enough.

The result follows. �

In order to complete the proof of Theorem 1.1 it remains to show that Theo-
rem 4.1 can be applied to functions of finite order and positive lower order.

Theorem 4.2. Let f be a transcendental entire function of finite order and

positive lower order. Then f satisfies the hypotheses of Theorem 4.1 and hence

Qm(f) = A(f).

Proof. As f is of finite order and positive lower order, (3.7) implies that, for
m ≥ 2 there exist q ∈ (0, 1) and p ∈ (1,∞) such that

(4.2) logm−2((expm−1 t)q) ≤ φm(t) = logm−1M(expm−1 t) ≤ logm−2((expm−1 t)p),

for t large enough.
In order to show that (4.2) implies (4.1), it suffices to show that

(4.3) expm−1((logm−2 t)q) ≤ logm−2((expm−1 t)q)

and

(4.4) logm−2((expm−1 t)p) ≤ expm−1((logm−2 t)p),

for t large enough. Note that (4.3) is equivalent to

(logm−2 t)q ≤ log2m−3(expm−1 t)q, for t large enough,

which, for s = expm−1 t, becomes

(4.5) (log2m−3 s)q ≤ log2m−3 sq, for s large enough.

By Lemma 3.4, (4.5) holds for s large enough and hence so does (4.3).
Similarly, using Lemma 3.4, one can show that (4.4) is true. Therefore, the

hypotheses of Theorem 4.1 are satisfied for q and p = q̃. �
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5. 2-log-regularity and strong log-regularity

In [10] we introduced a sufficient condition for Q2(f) = A(f) called strong log-
regularity. A transcendental entire function f is strongly log-regular if, for any ε ∈
(0, 1), there exist R > 0 and k > 1 such that, for r > R,

(5.1) logM(rk) ≥ (k logM(r))1/ε.

Note that strong log-regularity implies log-regularity (see [10]), which, as mentioned
in the introduction, is the same as 1-log-regularity.

Both strong log-regularity and 2-log-regularity imply Q2(f) = A(f) and also
any transcendental entire function of finite order and positive lower order is both
strongly log-regular and 2-log-regular. Therefore it is of interest to know how these
two conditions are related. For a function of finite order we have the following result.

Theorem 5.1. Let f be a transcendental entire function of finite order. If f is

strongly log-regular then f is 2-log-regular.

Proof. As f is of finite order, (3.7) implies that there exists p ≥ 0, such that

(5.2) logM(r) ≤ rp, for r large enough.

Also since f is strongly log-regular, for any ε ∈ (0, 1), there exist R > 0 and k > 1
such that

(5.3) logM(rk) ≥ (k logM(r))1/ε, for r > R.

In order to show that f is 2-log-regular we will show that, for any ε ∈ (0, 1),

µ2,ε(exp(r
k)) ≥ exp(M(r)k), for r large enough;

that is, using the definition of µ2,ε(r),

(5.4) (logM(exp(rk)))ε ≥ M(r)k, for r large enough.

It is obvious from the definition of 2-log-regularity that if the condition holds for any
ε ∈ (0, 1/ep) it will hold for any ε ∈ (0, 1) and so we now fix ε ∈ (0, 1/ep) and show
that (5.4) holds for this value of ε.

Consider now

(5.5) n =

[

k log r − log log r

log k

]

,

where [x] denotes the integer part of the real number x. Then kn ≤ rk/ log r, which
gives us that exp(rk) ≥ rk

n

. Hence

(logM(exp(rk)))ε ≥ (logM(rk
n

))ε,

and by applying (5.3) n times, we deduce that

(logM(exp(rk)))ε ≥ k1+1/ε+...+1/εn−1

(logM(r))1/ε
n−1

, for r large enough.

Therefore, it suffices to show that

(logM(r))1/ε
n−1

≥M(r)k,

or, equivalently, that
(

1

ε

)n−1

log logM(r) ≥ k logM(r), for r large enough.
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By (5.2) it is sufficient to show that
(

1

ε

)n−1

≥ krp,

or, equivalently,

(5.6) (n− 1) log
1

ε
≥ log k + p log r, for r large enough.

In order to show that (5.6) is true we first note that it follows from (5.5) that

n− 1 ≥
k log r

log k
−

log log r + 2 log k

log k
,

and so
(5.7)

(n− 1) log
1

ε
− p log r ≥

((

log
1

ε

)

k

log k
− p

)

log r −

(

log
1

ε

)

log log r + 2 log k

log k
.

Since log 1
ε
> p, there exists R0 > 0 such that

((

log
1

ε

)

k

log k
− p

)

log r ≥

(

log
1

ε

)

log log r + 2 log k

log k
+ log k, for r ≥ R0.

Together with (5.7), this is sufficient to prove (5.6). �

The converse of Theorem 5.1 is not always true though. We now use a function,
that was constructed by Rippon and Stallard in [17, Example 6.1], in order to prove
that there exists a 2-log-regular function of finite order which is not strongly log-
regular.

We will need the following result:

Lemma 5.2. Let φ and ψ be real functions defined on (0,∞) with lim inft→∞ φ(t) >
1 and such that

φ(t) ∼ ψ(t), as t→ ∞.

Let ε ∈ (0, 1). If for some ε′ ∈ (0, ε), there exist t0 > 0 and k > 1 such that

(5.8) φ(ekt) ≥ exp(
k

ε′
φ(t)), for t ≥ t0

then there exists t1 > 0 such that

ψ(ekt) ≥ exp(
k

ε
ψ(t)), for t ≥ t1.

Proof. Let

(5.9) φ(t) = ψ(t)(1 + ǫ(t)),

where ǫ(t) → 0 as t→ ∞ and suppose that φ satisfies (5.8). Then

(5.10) log φ(tk) ≥
k

ε′
φ(log t), for log t ≥ t0.

It follows from (5.9) and (5.10) that

logψ(tk) + log(1 + ǫ(tk)) ≥
k

ε′
ψ(log t)(1 + ǫ(log t)), for log t ≥ t0.
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Hence, since 1 + ǫ(log t) → 1 as t → ∞, log(1 + ǫ(tk)) → 0, as t → ∞, ε′ ∈ (0, ε),
and lim inft→∞ φ(t) > 1, there exists t1 > 0, such that

log(ψ(tk)) ≥
k

ε
ψ(log t), for t ≥ t1,

as claimed. �

Example 5.1. There exists a transcendental entire function of finite order that
is 2-log-regular but not strongly log-regular.

Proof. The main idea of the proof is to use a function f constructed by Rippon
and Stallard [17, Example 6.1], which has order zero and is not log-regular (and hence
is not strongly log-regular) and show that f is 2-log-regular.

In order to show that f is 2-log-regular we need to show that, for any ε > 0,
there exist r0 > 0 and k > 1 such that

µ2,ε(exp(r
k)) ≥ exp(M(r)k), for r ≥ r0,

or equivalently,

log(M(exp(rk)) ≥M(r)k/ε, for r ≥ r0.

Hence, the condition we have to prove for ψ(t) = logM(et) is that, for any ε ∈ (0, 1),
there exist t1 > 0 and k > 1 such that

(5.11) ψ(exp(kt)) ≥ exp

(

k

ε
ψ(t)

)

, for t ≥ t1.

The function f in [17, Example 6.1] was found by first constructing a real, in-
creasing, convex function φ with certain properties and then using a result of Clunie
and Kövari from [7] (see [17, Lemma 6.3]) in order to obtain a transcendental entire
function f such that ψ(t) = logM(et) ∼ φ(t).

Let µ(t) = exp(t1/2), t ≥ 0. Then take t0 > 1 so large that exp(3
4
t1/2) > t for

t ≥ t0, and define tn = µn(t0) and kn = t
1/4
n+1, n ≥ 0. Rippon and Stallard defined φ

as follows:

φ(t) =

{

µn(t), t ∈ [tn+1/kn, tn+1],

µ(t), otherwise,

where µn(t) denotes the linear function such that µn(t) = µ(t) for t = tn+1/kn =

t
3/4
n+1, t = tn+1.

We will first show that for any ε′ ∈ (0, 1), there exist t0 > 0 and k > 1 such that

(5.12) φ(exp(kt)) ≥ exp

(

k

ε′
φ(t)

)

, for t ≥ t0.

Let ε′ ∈ (0, 1) and k > 1. When φ(t) = µ(t) = exp(t1/2), we have

φ(exp(kt)) ≥ µ(exp(kt)) = exp

(

exp

(

1

2
kt

))

≥ exp

(

k

ε′
exp(t1/2)

)

= exp

(

k

ε′
φ(t)

)

,

for t large enough, and so (5.12) holds for these values of t.

Now suppose that t ∈ [t
3/4
n+1, tn+1], for some n ∈ N. Then,

φ(exp(kt)) ≥ φ(exp(kt
3/4
n+1)) ≥ µ(exp(kt

3/4
n+1)) = exp(exp(1

2
kt

3/4
n+1))

≥ exp( k
ε′
exp(t

1/2
n+1)), for tn+1 large enough,

= exp( k
ε′
φ(tn+1)) ≥ exp( k

ε′
φ(t)),
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and hence (5.12) is satisfied.
Now, Lemma 5.2 implies that ψ satisfies (5.11), which means that f is 2-log-

regular. �
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