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Abstract. The paper identifies optimal constants in weighted LP inequalities for the dyadic
maximal function. The proof rests on Bellman function technique: the estimates are deduced from
the existence of certain special functions enjoying appropriate size conditions and concavity.

1. Introduction

The purpose of this paper is to study a sharp version of a very classical estimate
of harmonic analysis, the weighted L” bound for the dyadic maximal operator. Let us
start with introducing the necessary background and notation. Recall that the dyadic
maximal operator M on R” is an operator acting on locally integrable functions

¢: R" — R by the formula

Mo(z) =sup{(|¢])g: v € @, Q C R" is a dyadic cube}.
Here the dyadic cubes are those formed by the grids 27VZ" N =0,1,2,..., and (f)g
stands for ﬁ fQ fdz, the average of f over @ (|Q| denotes the Lebesgue measure

of ). This maximal operator plays a fundamental role in analysis and PDEs, and
in many applications it is of interest to control it efficiently, i.e., to have optimal or
at least good bounds for its norms. For instance, M satisfies the weak-type (1,1)
inequality

(1.1) A {z € R": M¢(z) > A} < / |p(u)|du, ¢ € L*(R"),
{Mo=2}
which, after integration, yields the corresponding L” estimate
P
(1.2 [M6lime) < L0l 1<p <o

Both estimates are sharp: the constant 1 in (1.1) and the constant p/(p — 1) in
(1.2) cannot be decreased. These two results have been successfully extended in
numerous directions and applied in various contexts of harmonic analysis. See e.g.
[4, 5, 6, 7, 8, 13, 14| and the monograph [3], consult also references therein.

The primary goal of the present paper is to establish a sharp weighted version
of (1.2). In what follows, the word ‘weight’ will refer to a nonnegative, integrable
function on the underlying measure space (here, R"™ with Lebesgue’s measure). The
following statement is a consequence of the classical work of Muckenhoupt [9]. Sup-
pose that 1 < p < oo is given and fixed, and let w be a weight on R™. Then M is
bounded as an operator on the weighted space

1/p
| f|Pw d:c) < oo}

LP(w) = {f R" = R: ||fllzrw) = </
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890 Adam Osekowski
if and only if w belongs to the dyadic A, class, i.e.,
[w]a, = sup(w>Q(w_1/(p_1))€2_l < 00,

where the supremum is taken over all dyadic cubes in R™. This result is a starting
point for many interesting further questions. For example, one can ask about the
dependence of || M| Lr(w)—sLr(w) On the size of the characteristic [w]4,. More precisely,
for a given 1 < p < oo, the problem is to find the least number o = a(p) such that

IMFllzow) < Colwla? 1 f ]| o)

for some C), depending only on p. This problem was solved in the nineties by Buckley
[1], who showed that the optimal exponent a(p) is equal to 1/(p — 1).

The contribution of this paper is the sharp upper bound for ||M]||s@w)—rr(w)
both in terms of p and [w]4,. Actually, we will work in the more general context
of probability spaces equipped with a tree-like structure [4]. Here is the precise
definition.

Definition 1.1. Suppose that (X, u) is a nonatomic probability space. A set
T of measurable subsets of X will be called a tree if the following conditions are
satisfied:

(i) X € T and for every Q € T we have p(Q) > 0.
(ii) For every @ € T there is a finite subset C'(Q)) C T containing at least two
elements such that
(a) the elements of C(Q) are pairwise disjoint subsets of @,
(b) @ =UC(Q).
(it)) T = Upso 7™ where T° = {X} and T = Jyerm C(Q)-
(iv) We have lim,;, o0 SUpgerm (@) = 0.

An important example, which links this definition with the preceding consider-
ations, is the cube X = [0,1)" endowed with Lebesgue measure and the tree of its
dyadic subcubes. Any probability space equipped with a tree gives rise to the cor-
responding maximal operator M, acting on integrable functions f: X — R by the
formula

Mrf(z) =sup{(|fllo: € Q Qe T},

where this time (p)g = ﬁ fQ @odpu is the average of ¢ over ) with respect to the

measure . In analogy to the dyadic setting described above, we say that a weight w
on X satisfies Muckenhoupt’s condition A, (where 1 < p < oo is a fixed parameter),
if
[w]a, = sup(w>Q(w_1/(p_1))€2_l < 00.
QeT

Furthermore, the weighted space LP(w) is given by

1/p
Lp(w):{f:X—>R: ||f||Lp(w):</X|f|pwd,u) <oo}.

To formulate the main result of this paper, we need to introduce a certain special
parameter d. Its geometric interpretation is explained on Figure 1 below. Let ¢ > 1
and 1 < p < oo be fixed. Then the line, tangent to the curve wv?~! = ¢ at the point
(1,cY®=1) " intersects the curve wvP~! = 1 at one point (if ¢ = 1) or two points
(if ¢ > 1). Take the intersection point with larger w-coordinate, and denote this
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coordinate by d(p, c). Formally, d = d(p, ¢) is the unique number in [0, p) satisfying
the equation

(1.3) cd(p—dpP~H = (p— 1"

wyP~t =1

Figure 1. The geometric interpretation of the number d = d(p, ¢).

We are ready to state the main result of the paper.

Theorem 1.2. If 1 < p < oo and w is an A, weight on X, then we have the
sharp bound
p
- e PATTR)
Some remarks are in order. First, by sharpness we mean that for any € > 0, any
probability space (X, u1), any 1 < p < oo and any ¢ > 1 there is an A, weight w with
[w]4, < csuch that

P

(1.5) M| Lo ) Lo ) > p—d(p,c) =

Thus, the above result is sharp also in the classical setting of [0,1)" equipped with
Lebesgue’s measure and the tree of dyadic subcubes; by straightforward dilation and
scaling, the result extends to the whole R". Second, note that the above statement
contains (1.2): indeed, setting ¢ = 1 (which corresponds to the unweighted setting),
we derive that d(p, ¢) = 1 and the optimal constant in (1.4) becomes equal to p/(p—1).
Finally, let us relate the above statement to the aforementioned result of Buckley.

Since d(p, c) < p, we see that (1.3) yields
p p 1/(p—1)
M| Lrw) s Lp(w) < = d(p, [w]a,)[w]a,
[ MT[| Lo w)— Lo (w) p— 0o [0l) p—l( (p, [w]a,)[w] 4, )
141/(p—1)
<P [w]i{p(p—l).
p—1

Our proof of (1.4) exploits the theory of two-weight inequalities. It follows from
the results of Sawyer in [16] that if w, v are two weights on R”, then the (dyadic)
maximal operator M is bounded as an operator from LP(v) to LP(w) if and only if
the weights satisfy the so-called testing condition

/ (./\/l(v_l/(p_l)x@))pwdx < C/ v V=) 4y
Q Q
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for all dyadic cubes @), where C' depends only on p, w and v. We will study a sharp
version of the testing condition for w = v, in the above context of probability spaces.
Then we will combine this estimate with the weighted version of Carleson embedding
theorem (cf. [11, 21|) and obtain the desired bound (1.4). Both these steps (i.e.,
sharp testing condition and Carleson imbedding theorem) will be established with
the use of the so-called Bellman function method. The technique reduces the problem
of proving a given inequality to the search for a certain special function, enjoying
appropriate size conditions and concavity. The method originates from the theory
of optimal stochastic control, and it has been studied intensively during the last
thirty years. Its connection to the problems of martingale theory was firstly observed
by Burkholder [2|, who used it to identify the unconditional constant of the Haar
system and related estimates for martingale transforms. This direction of research
was further explored by Burkholder, his PhD students and other mathematicians
(see [12] for the overview). In the nineties, Nazarov, Treil and Volberg (cf. [10, 11])
described the method from a wider perspective which allowed them to apply it to
various problems of harmonic analysis. Since then, the technique has proved to
be extremely efficient in various contexts; consult e.g. [15, 17, 18, 19, 20| and the
references therein.

The rest of this paper is organized as follows. In the next section we provide the
proof of (1.4). Section 3 is devoted to the construction of an example showing that
the constant in (1.4) cannot be smaller than p/(p — d(p, [w]a,)). In the final part of
the paper we explain how the Bellman function corresponding to the sharp version
of Sawyer’s condition was discovered.

2. Proof of (1.4)

Throughout this section, p € (1,00) is given and fixed. For any ¢ > 1, introduce
the domain

D=D,.={(u,v,w) € (0,00)*: 1 <wv’ ! < ¢}

and let B: D, . — R be the function given by the formula

B(u,w,v) = Mu”w + L(cd(p, C))p/(p—l)v _ ped(p, ¢) u

d(p,c) — 1 d(p,c) — 1 d(p,c)—1"
We will prove that this object has the following properties.
Lemma 2.1. (i) If uwr~'w < ¢, then
(2.1) g—f(u, w,v) < 0.
(i) For any positive w, v satisfying wv?~! < ¢ we have
(2.2) B(v,w,v) < (cd(p, )P/ ®Vy,
(iii) We have
(2.3) B(u,w,v) > u’w.
Proof. (i) We easily compute that
oB pd(p, c)

= T (wly—e) <
8u(u,w,v) d(p,c)—l(u w—oc) <0.
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(ii) Plugging u = v in the formula for B gives
/(p—1)
d(p,c) (p— 1)(Cd(P, C))p g ped(p, )

By = g1 Ao -1 i 1"
cd(p,e)  (p=1)(edp.c >)”/“"”V_ ped(p.c)
ST o-1""" dpo- a0 c) — 1
_dp=Ndp.e) [ ye-n ]
= o) -1 {( d(p, )) 1} )

)" = 0= 1)/(p— d(p.c)). s
c(};(;’lc))dipic) [(cd(p, c))l/(p_l) - 1} = —C(Z: ;)(Zfi’)c) = (cd(p, ¢))P/ P~V
(iii) The majorization is equivalent to
w’w+ (p—1) (cd(p, c))p/(p_l)v — ped(p, e)u > 0.
Let u > 0 be fixed. Since wvP~! > 1, the left-hand side above is not smaller than
G(v) :==u"v'"" + (p — 1)(cd(p, c))p/(p_l)v — ped(p, c)u.
We compute that G'(v) = (p — 1)( — (u/v)? + (cd(p, ¢))?*~V)) and hence G attains

its minimum at the point v = u(cd(p, ¢))~/®~1. We easily check that this point is a
root of G and hence the assertion follows. OJ

It remains to apply (1.3): we have (cd(p,

Now we will establish a sharp version of Sawyer’s dyadic testing condition.

Theorem 2.2. Suppose that a weight w satisfies [w]a, = c¢. Then forany R € T,

@) [ M) wdi < (edlp. ) [ w0 dg
R R

The constant is the best possible.
Proof. We split the reasoning into three parts.

Step 1. Auxiliary notation. The set R belongs to some generation of the tree
T: say, R € T™. For any n and any = € X, let Q"(x) be the element of T"
which contains x; such a set is uniquely defined for almost all x. Next, introduce the
notation

o =YD _
in = (W)gre, vn = (W) oy, U = o Vi

In the probabilistic language, the functional sequences (wy, )n>m and (v,,)p>m, are mar-
tingales corresponding to the terminal variables w and w™"®=Y while (u,)p>m is
the maximal function of (v,),>m. Note that for any n > m and any @ € T", the
functions u,, w,, and v,, are constant on () and we have

(25) [ i =u(@uwla. [ i dn = @il
Q Q
Furthermore, the sequence (u,),>m, is nondecreasing and satisfies
; — =1/(p—1) — 1/(p—1)
( ) nh—>nolo un(']:) - Sup <w >Q”(m) Sup <U) XR>Q”($)
2.6
—sup<w 1/(p— 1X >Qn —MT( —1/(p— DXR)

n>0

almost everywhere.
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Step 2. Monotonicity property. The main part of the proof is to show that
the sequence ([, B(uy, wn, v,) dp) . is nondecreasing. It follows from (2.5) that if
n > m and @ is an element of 7", then

(2.7) / Bt Wy v) djt = 11(Q) By s v) g = / Bltn, st Vst dit
Q Q

since the dependence of B on w and v is linear. Now we will show that

(28) B(unawn-l-lavn-l—l) Z B(un-i-lawn—i-lavn—i-l)-

This is clear if u, = u,.;. On the other hand, the inequality u,,; > u, implies
Vil = Upp1 > U, (since u,41 = u, V vuy1). Therefore, we have v~ tw,,; < u2~!.
cvijﬁ < ¢ and uf;llwnﬂ = Vi, qWpt1 < ¢, so for any u € [u,,u,41] we have the
estimate u”~'w,; < ¢. Combining this observation with (2.1) immediately yields

(2.8) and hence (2.7) gives

/ B(urw Wp, Vn) dﬂ Z / B(un-‘rla Wnt1, Vn-‘,—l) dﬂ

Q Q

Summing over all @ € 7" contained in R, we get the aforementioned monotonicity
property of the sequence ( [, B(up, Wy, v,,) djt)

n>m’

Step 3. Completion of the proof. For a given n > m, let us apply (2.3) to get

(2.9) /uﬁwndug/B(un,wn,vn)dpg/B(um,wm,vm)d,u.
R R R

Since R € 7™, the functions w,, and v,, are constant on R and u,, = v,,,. Therefore,
by (2.2),

/ B s ) dpt < p(R)(cd(p, &))" Vv
R

= (cd(p, C))p/(p—l)/w—l/(p—l) dp.
R

(2.10)

On the other hand, w, is the conditional expectation of w on 7", so f pUbW, dy =
n—oo

[rwtwdpy === [(M(w™/®Vxg))Pwdy, where in the last passage we have ex-
ploited (2.6) and Lebesgue s monotone convergence theorem. Combining these obser-
vations with (2.9) yields (2.4). The sharpness of this estimate will follow immediately
from the sharpness of (1.4). See Remark 2.4 below. O

We are ready to establish our main result. It follows from the sharp weighted
version of Carleson embedding theorem (cf. [21]), which we prove here for the sake
of completeness.

Theorem 2.3. Suppose that w is an A, weight. Let K be a positive constant
and assume that nonnegative numbers ag, Q € T, satisty

(2.11) Z g (w P < K {w /ey,
QCR
for all R € T. Then for any integrable and nonnegative function f on X we have

(2.12) S aglfh < K (%)p/xfpw du.

QeT
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Proof. By homogeneity, we may and do assume that K = 1. Consider the
functional sequences (%,,)n>0, (Vn)n>0, (Zn)n>0 and (t,)n>o given by

xn(2) = <fpw>Q”(:c)> yn(z) = <f>Q”(x)a Zn = <w_1/(p_1)>Q”(x)

and
1
W=l S agurey,
@) ool ger
Note that
(2.13) Vo < x}/”z,ll_l/p and t, <z,

where the first estimate follows from the Holder inequality and the second is due to
(2.3). Introduce the function B: [0,00)? x (0,00)> = R by

P I-p
D t
B t)=|—— -y z4+ — )
(xy,2,) (p—l) Y <Z p—l) ]

This function is concave: it is easy to check that the Hessian D?B is nonpositive-
definite in the interior of the domain. Therefore for any nonnegative numbers x, y,
any positive numbers z, t and any h > —x, k > —y, 1 > —z and m > —t we have

0B
B(X+hay+kaz+1at+m) SB(XaY>Zat)+—B(X>YaZ>t)h

o0x
0B 0B 0B
+ a—yB(Xa Y, 2, t)k + gB(Xa Y, 2, t)l + EB(}Q Y, 2, t)m‘

(2.14)

Now we will show that the sequence (fX B(%n, Y, Zn, tn) dit)n>0 enjoys a certain
monotonicity property. To this end, fix n > 0, ) € T" and pairwise disjoint elements
Q1, Qo - .., Qu of T™! whose union is Q. Put x = x,|g, ¥ = ¥ulg, 2 = za|g and
t = t,|¢. Furthermore, for any j = 1, 2, ..., m, let h;, k;, 1; and m; be given by
X+hj = Xut1lg,, ¥ T K = ¥ur1|Qj, 2+ 1 = 2,11|Q; and t +m; = t, 1. It is easy
to check that

(2.15) Z Z((%))hj - Z

J

Q) @) _
W@ 2@

Concerning the dynamics of the sequence (t,),>0, we see that

1
e L apwHE=Dy?
Q) Rg;zg "
CagwT VTN TN u@) 1 —1/(p-1)\p
) *Z Q) W@y RCQ%ETO“R““ Vi
Cag(uw e Q)
QT )

which is equivalent to

(2.16) Em: M) %
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Let us apply (2.14), with h =h;, k =k;, 1 = 1; and m = m;, multiply throughout by
1(Q;)/1(Q) and sum the obtained estimates over j. By (2.15) and (2.16), we get

Z%B(x+hj,y+kj,z+1j,t +m;)
7=1

Q)

B
< B(x,y,2z,t) — g—t(x,y,z,t) :

However, we have

0B P p t P P
- t) = - p - >

<

~— =

(in the last passage we have exploited the second estimate in (2.13)), so the preceding
estimate implies
1 / 1 ag(f >2)
AN B(Xn 1y Yn+1,2Zn 1>tn 1)dM§ —/ B(XmYn,thn)d,U— .
wQ) Jo A w@) Jq Q)

Multiply both sides by u(Q) and sum over all Q € T™ to obtain

[ Bzt i < [ Bl vzt di— Y aolrl
X X QeT™

and hence for each n we have

/B(Xn+1,yn+1,zn+1,tn+1)duS/ B(x0,y0.Z0, o) dp — Y ag{f)h
X X QeTk, k<n

Now, by the first inequality in (2.13), we have

P
p 1-
B(%p+1, Ynt1, Znt1, Bog1) = (p — 1) (Xn+1 = Yni1Zagh) =0

and, obviously,

p \" p \"
B(x0, Yo, 2o, to) < <—) Xp = (—) / fPw dp.
p—1 p—1 X

Combining these observations with the previous estimate and letting n — oo yields
the assertion. U

Proof of (1.4).  Take an arbitrary A, weight w and a function f, and set
c = [w]a,. We may assume that f is nonnegative, since the passage from f to |f]
does not change the L? norm of the function and may only increase the the maximal
function M+ f. Furthermore, by a simple approximation argument, we may assume
that f is measurable with respect to a o-algebra generated by some generation 7.
Then we have My f = maxgern n<n(f)oxo and hence for each x € X there is an
element @@ = Q(z) belonging to |J, ., 7" such that My f(z) = (f)g. Such a @ may
not be unique: in such a case we pick the set belonging to 7" with n as small as
possible.

For any Q) € T, take E(Q) = {z € @ : Q(z) = @} and put ag = w(E£(Q)). We
will prove that the inequality (2.4) implies (2.11) with K = (cd(p, ¢))?/®=V. To this
end, observe that for any R we have

1 1o 1 1 (p—
D > aglw V) = B /RZXE(Q)<7~U Yemw du.

QCR
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Notice that the sets E(Q) are pairwise disjoint and E(Q) C @Q; therefore, from
the very definition of M+, we have the pointwise bound ZQeR XE(Q)(w_l/(p_l))g <
M (w™®P=Dy )P on R and hence (2.11) follows. Consequently, (2.12) is also true
and this is precisely the desired weighted bound (1.4). OJ

Remark 2.4. The inequality (2.4) is sharp. Indeed, otherwise we would be able
to improve the constant in the estimate (1.4) which, as we will see in Section 3 below,
is impossible.

3. An example

Throughout this section, ¢ > 1 and 1 < p < oo are fixed parameters, and our goal
here is to prove that for each ¢ > 0 there is an A, weight w with [w]4, < ¢ such that
(1.5) holds true. We may exclude the trivial case ¢ = 1 from our considerations: the
resulting constant in (1.5) is p/(p — 1), which is optimal in the unweighted setting.
Thus, from now on, we assume that c is strictly bigger than 1.

It is convenient to split the reasoning into a few parts.

Step 1. Auxiliary geometrical facts and parameters. Pick ¢ € (1,¢). There are
two lines passing through the point K = (1,¢&"(®~V) which are tangent to the curve
wvP~! = ¢; pick the line ¢ which has smaller slope (equivalently: the w-coordinate
of the tangency point is smaller than 1). This line intersects the curve wvP~! = 1
at two points: pick the point L with bigger w-coordinate and denote this coordinate
by d(¢). Furthermore, the line ¢ intersects the curve wv?~! = ¢ at two points: one of
them is K, while the second, denoted by M, is of the form (1 — 4, (¢(1 — §))/0=7)).
See Figure 2 below.

v

(1, c/G0)

; (p) y—
((]._ d ) I

-1

Figure 2. The crucial parameters and their geometric interpretation: K = (1,&Y/®=1) L =
(d(é), (d(é))l/(lfp)) and M = (1 —6,(¢(1 — 5))1/(17]0)).

Let us record here two important facts. First, the points K, L, M are colinear:
some simple algebra allows to transform this observation into the equality

(3.1) (ed(€)) /P (d(e) — 146 — (d(&) — 1)(1 - §)/17P) =,

which will be useful later. Second, it follows immediately from the geometric inter-
pretation of d(p, c) and d(¢) that

(3.2) d(¢) < d(p,c) <p,
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and d(¢) can be made arbitrarily close to d(p, ¢) by picking ¢ sufficiently close to c.

Finally, we introduce a parameter r, which is assumed to be a negative number
satisfying r > —1/p — 1/(p(d(p,c) — 1)). By the left estimate in (3.2), we see that
for all ¢ we have r > —1/p — 1/(p(d(¢) — 1)), which combined with the right bound
in (3.2) implies

(3.3) 1+ 1(d(@) — 1) > 0.

Step 2. Construction. Now, recall the following technical fact, which can be
found in [4].

Lemma 3.1. For every QQ € T and every 5 € (0,1) there is a subfamily F(Q) C
T consisting of pairwise disjoint subsets of () such that

pl U R)= D ulR)=p8uQ).

ReF(Q) ReF(Q)

We use this fact inductively, to construct an appropriate family Ag D A; D A; D
... of sets. Namely, we start with Ay = X. Suppose we have successfully constructed
A, which is a union of pairwise almost disjoint elements of T, called the atoms of A,
(this condition is satisfied for n = 0: we have Ay = X € T). Then, for each atom Q
of A,,, we apply the above lemma with 5 = d(¢)/(d(¢)+¢) and get a subfamily F(Q).
Put 4,11 = U UQ,eF(Q) (), the first union taken over all atoms @ of A,,. Directly
from the definition, this set is a union of the family { F(Q): @ an atom of A, }, which
consists of pairwise disjoint elements of 7. We call these elements the atoms of A,, 14
and conclude the description of the induction step.

As an immediate consequence of the above construction, we see that if @) is an
atom of A,,, then for any n > m we have

M(QﬂAn):M(Q)< d(e) — 1 )n_m

10 -1+9
and hence
(3.4) QN (A \ Ani1)) = 1(Q) (%) m’

Now, introduce the weight w on X by the formula

w = Z XAn\An+1d(5)(1 — 6)n
n=0

and let f : X — R be given by

F=D Xanann (L+7(d@) = 1) (1 —ro)",

n=0
where r is the number fixed at the previous step.

Step 3. Verification of Muckenhoupt’s condition. First we will check that w is
an A, weight satisfying [w]a, < c. To this end, we use (3.4) to obtain that for each
atom () of A,, we have

35 Wo=3 (780 115) 0= 8d0): gots = -0

n=m
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and
o > die)y—1 \" " IR )
Vp-1)y  _ _alg) -1 _ syn/(=p) g(a\1/0-p) O
(w )Q nzzm (d(é) —1+ 5) (1=9) 4(@) d(e)—1+6

_ d(e)/0rg m/(1—p d(¢) —1 1/(1—p -
_m(l_(g) /( ).(1_m(1_5) /( ))

_ MD(1 = gym/a-p),

where in the last passage we have exploited (3.1). Suppose that R is an arbitrary
element of 7. Then there is an integer m such that R C A,, ; and R € A,,. We
have

1

1
W)p = —— wd,u+—/ wdp
8= 75 fn P T S,
1

O N S
:m/R\Amd(C)““” et ) /wm -

By (3.5), applied to each atom @ of A,, contained in R, we get

/ wdji = p(RO A)(1 = )"
RNA,,

and hence, setting n := u(R N A,,)/u(R), we rewrite the preceding equality in the
form

(Wyp= (1 =n)d(@)(1 - )" +n(l -
A similar calculation shows that
(w—l/(p—1)>R =(1- n)d(é)l/(l‘p)(l — 5)(m—1)/(1—p) + ncl/(p‘l)(l — 5)m/(1—p)
and therefore
() rlu™ 07D

p—1
= (s1=0)+ =@ (v1 - 900+ (1 = ya@e )
This number does not exceed c. To see this, rewrite the right-hand side in the form

(nMy + (1 = 1) Ly) (nM, + (1 — n)Lv)’H,

where M,,, M, and L,,, L, are the coordinates of the points M and L (see Figure 2).
As 7 ranges from 0 to 1, the point nM + (1 — 1)L runs over the line segment ML
which is entirely contained in {(w,v): wvP~! < c}. Since R was arbitrary, we obtain
the desired A, condition: [w]s, < c.

Step 4. Completion of the proof. In the same manner as above, one verifies that
if () is an atom of A,,, then

[ d@—-1 \"" i 5

- e A 1= ro)"(1 4 r(d(@) — 1))~ =
No=3 (7827s) Q=@ - 1) 5o
(the ratio of the geometric series, equal to (d(¢) — 1)(1 —rd)/(d(¢) — 1+ 0)), is less
than 1: this is equivalent to (3.3)). Consequently, we see that Myf > (1 — rd)™
on A,, and hence, by the definition of f, we obtain M+f > (1 +r(d(¢c) —1))"'f on
A\ Apa1- The latter bound does not depend on m, so we can rewrite it uniformly
as

(L—=rs)™

n=m

Mrf>14+7rd@E)—1)"'f onX.
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Now if we choose r sufficiently close to —1/p—1/(p(d(p,c)—1)) and then ¢ sufficiently
close to ¢, then the number (1 + r(d(¢) — 1))™' can be made arbitrarily close to
p/(p — d(p,c)), the constant in (1.4). Thus, it is enough to show that for such
choices, the function f belongs to LP(w). To this end, we compute that

1oy Zd ML r(d(E) = D)) =gy (dé)@:i 5) G S

and the ratio of this geometric series is equal to (1—0)(1—70)P(d(¢)—1)/(d(¢)—1+90).
Now recall that we have taken r close to (but larger than) —1/p —1/(p(d(p,c) —1));
hence 1 + pr + 1/(d(p,c) — 1) > 0. If we make ¢ sufficiently close to ¢ (then &
approaches 0: see Figure 2), we see that the ratio is

1
1—5<1+pr+m)+0(5)<1.

This establishes the desired sharpness.

4. On the special function corresponding to (2.4)

Now we will sketch an informal reasoning which has led us to the discovery of
the best constant in (2.4) and the formula for the special function corresponding to
this estimate. Let 1 < p < oo and ¢ > 1 be fixed. Suppose that the underlying
probability space (X, u) is the interval [0, 1] with Lebesgue’s measure, and equip it
with the tree of dyadic subintervals. Suppose we are interested in the least constant
k(p, c) such that whenever R is a dyadic subinterval of [0,1] and w is a weight on
[0, 1] satisfying [w]a, = ¢, then

(4.1) / (MT( —1/(r— 1)XR))pde < x(p, C)/w—l/(p—l) du.
R

R

To this end, let us introduce the corresponding abstract Bellman function B: D, . —
R (where, as above, D, . = {(u,v,w) € (0,00)*: 1 < wvP~! < ¢}), given by

B(u,w,v) = Sup{|;| / (max{M(w_l/(”_l)),u})pwdx},

where M stands for the dyadic maximal operator restricted to R and the supremum is
taken over all A, weights w on R such that [w]4, < ¢, (w)p =wand (w™ /P D)z = v.
At the first glance, the function B depends also on the interval R, however, this is
not the case. Indeed, for any two dyadic intervals R; and Ry, an affine mapping
of one interval onto another puts the A, weights in one-to-one correspondence, and
such a change of the variable preserves the averages and the A, characteristics. On
the other hand, considering different domains R is crucial for the understanding of
properties of B.

Directly from the definition of B and the validity of (4.1) (with some a priori
unknown constant k(p, c)), we have

(4.2) B(v,w,v) < /i(p, c)v for all u, w, v.

To see this, note that M (w=/P~1) f ~1/e-1)dy = v; thus for u = v, we
have max { M (w™ D) u} = M(w _1/(” 1)) and (4.2) follows. Furthermore,

1 —1/(p—1) b pi/
|R‘/R(max{./\/l(w ),u}) wdz >u 7 Rwdx
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which implies
(4.3) B(u,w,v) > vw for all u, w, v.
Similarly, since M (w=t/®=Y) > |—}1%‘ [ w™/®7V dz = v, we obtain
(4.4) B(u,w,v) = B(max{u, v}, w,v)

for all u, w, v. The final property is the following concavity-type condition. Pick
(u,w,v) € D,. such that u > v and the positive numbers wy, vy satisfying 1 <
wiv{’t_l < ¢ and such that

w_ + Wy v+ vy
W=———" v=—"
2 2
Furthermore, pick a weight w_ on I_ = [0,1/2) and a weight wy on I, = [1/2,1)

such that [wy] < ¢, (wy);, = wy and (wf/(p_l))li = v (it is not difficult to show
that such weights exist). Then splice w_ and w, into one weight on [0, 1) given by
the formula w = w_x;_ +wyx7,. Then (w)p1) =w, (w™/®=V); ) = v and hence

B(u,w,v) > / (max {M(w_l/(p_l)),u})pwdzz
[0,1)

— /01/2 (max{M(w:l/(p_l)),u})pwdx+/1

/2
Note that in the first of the three above integrals the maximal operator M on [0, 1)
is considered, while in the last two integrals we may assume that M are maximal
operators localized to the intervals [0,1/2) and [1/2,1), respectively. This is due to
the assumption u > v. Therefore, taking the supremum over all weights wy as above,
we get

1

(max {M(wil/(p_l)), u})pwdx.

(4.5) B(u,w,v) > % (B(w,w_,v_) +B(u,wy,vy))

for all u, w,v, wy vy as above. There is also a structural, homogeneity-type prop-
erty which B possesses. Namely, a weight w satisfies [w]a, < ¢, (w)p1) = w and
(w=/P=1y = v if and only if for all A > 0 the weight @ = Aw satisfies [@]4, < ¢,
(0)[o,1) = Aw and (W~ Y/®=D); 1) = A~V/=Vy. Combining this fact with the definition
of B gives

(4.6) B\ VP Dy A, A7V P Dy) = \TVE-DB(y, v, v)

for all A > 0 and all u, w, v.

The important observation in the reverse direction is the following. Namely, if we
take some constant k(p, c) and manage to construct some function B which satisfies
the conditions (4.2), (4.3), (4.4) and (4.5), then the desired estimate (4.1) holds true
(with the constant k(p,c) we have just picked). This can be easily shown by the
same reasoning as in the proof of (2.4) in Section 2, the conditions (4.4) and (4.5)
imply the monotonicity property of the sequence ( fol B(uy, Wy, v,,) dz

n>0
To find such a function B, we will make several guesses. Roughly speaking, we

will take a look at the conditions (4.2), (4.3), (4.4) and (4.5) and assume that the
inequalities they provide actually become equalities at some extremal instances. First
look at the condition (4.5). This property means that for a fixed u, the function B,
considered as a function of w and v (satisfying 1 < wvPl < cand v < u), is concave.



902 Adam Osekowski

There is a natural guess, which is fortunately successful. Namely, one assumes that
B is actually linear with respect to these two variables. In other words, we write

B(u,w,v) = a1(u0)w + az(u)v + as(u),

for some unknown functions a;, as, az. Now, employing the homogeneity condition
(4.6), we get that ai(u) = au’, az(u) = f and as(u) = yu for some real constants
a, B, 7. Now the property (4.3) implies @ > 1: indeed, apply the inequality to
v =w Y/®1 and let w — co. Next, take u = v, w =ws < ev'? and vy = v+,
where ¢ is a small number (so that 1 < wovh ' < ¢), eventually sent to 0. Then
(4.4) and (4.5) imply %—f(v, w,v) < 0, or pau?~'w + v < 0. Since « is positive, this
assumption gets most restrictive for the limit case w = cv'™ = cu!™? and becomes
pac + v < 0. We assume that we actually have equality here: so,

B(u,w,v) = auPw + fv — pacu.

Now, let us return to the requirement (4.3). If 5 > 0, as we temporarily assume, and
we vary v, then this requirement becomes most restrictive for v = w=%/®=1_ In this
case, the inequality reads

(o — 1)uPw + Bu/~P) — pacu > 0.
The left-hand side, considered as a function of w attains its minimal value at the

point

(4.7) W=

Y

3 (»-1)/p
(p—Dur(a—1)

and this minimal value is equal to

pla— 1)1 1r

-

Assuming that this value is 0, we get the formula for j:
(e p—1)
 (a—1)Ve-D

and the formula (4.7) for extremal w becomes

— pac.

«

4.8 =cu'?. :
(4.8) W= cu w1

Finally, we turn our attention to (4.2): it reads
(ac)P/ =D (p — 1)
(@ —1)1/eD

Plugging w = cvP~! makes the left-hand side the largest possible (with respect to all
the choices of the variable w) and the estimate becomes

(@ — )V/e—D)

Now we maximize the left-hand side with respect to a and assume that k(p,c) is
equal to this extremal value. A simple analysis shows that the maximum is attained

at a satisfying
1/(p—1)
Cl/(p_l) <—Oé ) < — @ ) =p— 1.
a—1 a—1

awv? + v — pacu < K(p, ¢)v.

c(l —pla+

< k(p, c).
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Substituting d = «/(a — 1) we recover (1.3); then the maximal value is precisely
(cd(p,c))P/®*=V) and the function B coincides with that studied in Section 2.

Let us comment on the (almost) extremal weights in (2.4), i.e., those weights
for which the equality is almost attained. These weights have appeared explicitly
in Section 3, but the interesting point here is that they can be extracted from the
function B constructed above. Our reasoning will be a little informal: our purpose
is to indicate the idea behind the construction of the extremal weights (the formal
analysis of which have been conducted separately above). Let us begin by the trivial
observation that the weight w is extremal if all the intermediate inequalities appearing
in the proof of (2.4) are actually (almost) equalities. This gives us the following three
(informal) conditions:

1° We have B(vo,wo,vo) = (cd(p, c))?/? Yy, (see the first inequality in (2.10)

for m =0 and R = X).

2° We have B(Uoo, Weo, Voo ) = U Woo (see the first inequality in (2.9)).

3° The sequences (uy)n>0, (Wn)n>0 and (v,)n>o have the property that the se-

quence ([ B(w,, W, vy,) d'“)n>0 is (almost) constant.

We will construct the sequences (uy,)n>0, (Wn)n>0, (Vn)n>0 and obtain the desired
weight w as the pointwise limit w,,. We start with 1°: it follows from the above
analysis that this condition holds if wov(’)’_l = ¢; so, for instance, let us take wy = 1,
ug = vy = /@Y on X. On the other hand, the condition 2° means that the
triple (Woo; Woo, Voo) = (M (w™V/P=D) 1y w1=P)) must take values in the set S =
{(u,w,v) : w=v'"P = cdu'P}: see (4.8) and recall that a/(a—1) = d. Tt is important
to understand the geometry of this set. Namely, if we take the point (cu!™,u) lying
on the curve wv?~! = ¢, and draw the tangent line through this point. As we already
know, this tangent intersects the curve wv?~! = 1 at two points, one of which is P, =
(cdu'~P, (cd)/=Phu): the key observation is that (u, P,) belongs to the set S. This
suggests the following construction: take a small positive § and consider the halfline
starting from L; = (1 — 6, ((1 — §)¢c)"/=P)) and passing through (1, c/0=P)). This
halfline intersects the curve wv?~! = 1 at some point R, close to (d(p, ), d(p, c)"/~P)).
Then define functions u;, w; and vy by the requirement that (wy,vy) takes values in
the set {Ly, R} (and u; = max{vg,vy}). On the set A; where the value R, is taken,
take w = w; and finish construction. To continue on the compliment of this set,
consider the halfline starting from Lo = ((1 — )2, ((1 — 0)2%¢)"/*=P)) and passing
through (1 —6, (1 —0)c)/(=P)). This halfline intersects the curve wvP~! = 1 at some
point Ry. Define uy, wy and vo on X'\ A; by the requirement that (we, vo) takes values
in the set {Lg, Ry} (and u; = max{vg,vy,vo}). On the set Ay C X \ A; where the
value Ry is taken, take w = wy and finish construction. On the set X \ (A; U Ay),
consider the halfline starting from Ls = ((1 — 6)3, (1 — 6)3¢)"/~P) and so on. It is
easy to see that the weight w obtained satisfies 1°, and almost satisfies 2° and 3°.
Sometimes the tree is not rich enough for the above construction: having successfully
constructed the weight w on the set Ay, we may need several steps for the pair (w,, v,)
to reach the set {Lyy1, Rg+1}; but the remaining argumentation remains unchanged.
See Section 3.
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