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Abstract. Let M be a complete immersed minimal hypersurface in a hyperbolic space. In this

paper we establish conditions on the first eigenvalue of the stability and super stability operators

and the Ld norm of the length of the second fundamental form of M to imply that M is totally

geodesic. Similar results for minimal submanifolds in a hyperbolic space are also proven.

1. Introduction and the main results

The famous Bernstein theorem [4] states that the only complete minimal
graphs in R

3, are planes. The works of Fleming [20], De Giorgi [14], Almgren [1] and
Simons [33] tell us that the Bernstein Theorem is valid for complete minimal graphs
in R

n+1 provided that n ≤ 7. Moreover, the dimension restriction is necessary as
indicated by the counterexamples of Bombieri, De Giorgi and Giusti [5]. Because
of the stability of entire minimal graphs, one naturally hopes to know if a complete
stable minimal hypersurface in R

n+1, n ≤ 7 is a hyperplane. It has been shown
independently by do Carmo and Peng [16], Fischer-Colbrie and Schoen [19] that
a complete stable minimal surface in R3 must be a plane. Recall that a minimal
submanifold in a Riemannian manifold is stable if the second variation of its volume
is always nonnegative for any normal variation with compact support. For the higher
dimensional case, the above question is still open. However, do Carmo and Peng [17]
have shown that if M is a stable complete minimal hypersurface in R

n+1 and

lim
R→+∞

1

R2q+2

ˆ

Bp(R)

|A|2 = 0, q <

√

2

n
,(1.1)

then M is a hyperplane. Here, Bp(R) denotes the geodesic ball of radius R centered at
p ∈ M and A is the second fundamental form of M . Many interesting generalizations
of the above theorems have been obtained in recent years (cf. [11, 15, 18–23, 28–33,
35–37] etc.). Another important result in this direction is due to Cao, Shen and Zhu
[8] which says that a complete stable minimal hypersurface in R

n+1 has only one end.
On the other hand, Shen and Zhu [31] have shown that if Mn, n ≥ 3 is a complete
stable minimal hypersurface in R

n+1 with finite total curvature, that is,
ˆ

M

|A|n < +∞,
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then Mn is a hyperplane. We remark that this Shen–Zhu’s theorem also follows
from the above Cao–Shen–Zhu’s theorem and a theorem of Anderson [2] stating that
a complete minimal hypersurface in R

n+1, n ≥ 3, with finite total curvature and
one end is a hyperplane. Wang [35] has generalized Shen–Zhu’s theorem to minimal
submanifolds of Rm.

Let (M, ds2) be a complete non-compact Riemannian manifold. Let µ : M → R

be a continuous function and ∆ the Laplacian operator acting on functions of M .
We set Lµ = ∆+µ and we denote by λ1(Lµ,M) the first eigenvalue of Lµ which can
be defined as follows:

(1.2) λ1(Lµ,M) = inf
f∈C∞

0
(M),f 6=0

´

M
(|∇f |2 − µf 2)
´

M
f 2

,

where |∇f | denotes the magnitude of the gradient of f taken with respect to ds2.
When µ = 0, we usually call λ1(L0,M) the first eigenvalue of M and we denote it by
λ1(M). It is well known that (cf. [9, 10, 26, 27])

(1.3) λ1(H
n) =

(n− 1)2

4
.

If M is an n-dimensional complete minimal submanifold in H
m, then we have

(cf. [13])

λ1(M) ≥ (n− 1)2

4
,

which is equivalent to say that

(1.4)

ˆ

M

|∇f |2 ≥ (n− 1)2

4

ˆ

M

f 2, ∀ f ∈ C∞
0 (M).

If M is a complete minimal hypersurface of H
n+1, the stability operator of M is

L|A|2−n and M is said to be stable if λ1(L|A|2−n,M) ≥ 0, where A is the second
fundamental form of M (cf. [25]). It is easy to see from (1.2) and (1.3) that the first
eigenvalue of the the stability operator of a complete totally geodesic hypersurface

of Hn+1 is (n−1)2

4
+ n.

Recently Neto, Wang and Xia [29] obtained the following result.

Theorem A. Let M be an n(≥ 2)-dimensional complete immersed minimal

hypersurface in H
n+1 and let A be the second fundamental form of M . Suppose that

there exists a number q ∈ (0,
√

2/n) such that

(1.5) lim
R→∞

´

Bp(R)
|A|2

R2q+2
= 0.

i) If n ≥ 6 and if

(1.6) λ1(L|A|2−n,M) > 2n− (2− nq2)(n− 1)2

4n(1 + q)2
,

then M is totally geodesic.

ii) If n ≤ 4, then

(1.7) λ1(L|A|2−n,M) ≤ 2n− (2− nq2)n

2 + 2nq + n
.

iii) If n = 5, q ∈ (0, 1/5) and if

(1.8) λ1(L|A|2−5,M) > 5 +
25(q + 1)2

10q + 7
,
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then M is totally geodesic.

iv) If n = 5 and if q ∈ [1/5,
√

2/5), then

(1.9) λ1(L|A|2−5,M) ≤ 5 +
25(q + 1)2

10q + 7
.

The first result in the present paper is the following

Theorem 1.1. Let M be an n(≥ 2, 6= 3)-dimensional complete immersed mini-

mal hypersurface in H
n+1 and A the second fundamental form of M.

i) If

λ1(L|A|2−n,M) > 2n− (8− n(d− 2)2)(n− 1)2

4nd2
(1.10)

and

(1.11) lim
R→+∞

1

R2

ˆ

Bp(R)

|A|d = 0,

for some constant d satisfying

(1.12) d ∈















(

0, 1
2

)

, for n = 2,
(

n−1
n
, (n−1)(n−2)

n

)

, for n = 4 or 5,
(

2− 2
√

2
n
, 2 + 2

√

2
n

)

, for n ≥ 6,

then M is totally geodesic.

ii) When n = 2, if M is stable and if there exists a constant d ∈
(

0, 4
17

)

such

that (1.11) is satisfied, then M is totally geodesic.

Remark 1.1. One can check that d satisfies (1.12) if and only if the constant

on the right hand side of (1.10) is less than (n−1)2

4
+ n. Thus Theorem 1.1 is a gap

phenomenon for minimal hypersurfaces in a hyperbolic space. Both Theorem A and
Theorem 1.1 provide conditions on the growth of the norm of the second fundamental
form and on the first eigenvalue of the stability operator of a complete n-dimensional
minimal hypersurface in a hyperbolic space to imply that it is totally geodesic, where,
the dimension n is no less than 6 in the first result and in the second one, it is no
less than 2 and not equal to 3.

Remark 1.2. The method in the proof of Theorem 1.1 does not work for the
three dimensional case. We believe that a similar result also holds for 3-dimensional
minimal hypersurfaces in H4.

Remark 1.3. With do Carmo–Peng and Fischer-Colbrie–Schoen’s theorem in
mind, it is interesting to know if the condition (1.11) in item ii) of Theorem 1.1 is
necessary.

Let Mn be an n-dimensional stable minimal submanifold in Rn+p. When p = 1,
the stability of M is equivalent to the condition that

ˆ

M

(| ∇f |2 −|A|2f 2) ≥ 0, ∀ f ∈ C∞
0 (M).

In higher codimensional case, Spruck (cf. [34]) proved that for a variation vector
field E = φν, the second variation of Vol(Mt) satisfies

d2Vol(Mt)

dt2

∣

∣

∣

∣

t=0

≥
ˆ

M

(|∇φ|2 − |A|2φ2),
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where ν is the unit normal vector field and φ ∈ W 1,2
0 (M). Motivated by this, Wang

[13] introduced the concept of super stability:

Definition 1.1. Let M be an n-dimensional complete minimal immersed sub-
manifold in Rn+p. M is super stable if

(1.13)

ˆ

M

(|∇f |2 − |A|2f 2) ≥ 0, ∀ f ∈ C∞
0 (M).

In the same direction, some authors developed the concept of super stability for
submanifolds of Hn+p. In [30], Seo introduced the following

Definition 1.2. Let M be an n-dimensional complete minimal immersed sub-
manifold in Hn+p. The super index of M is defined to be the limit of the indices of an
increasing sequence of exhausting compact domains in M . The index of a compact
domain D is the number of negative eigenvalues of the eigenvalue problem

(1.14)

{

(△+ |A|2 − n)f + λf = 0 on D,

f |∂D= 0.

We say that M is super stable if it has super index zero, which means that

(1.15)

ˆ

M

(|∇f |2 − (|A|2 − n)f 2) ≥ 0, ∀ f ∈ C∞
0 (M).

When M has codimension one, the concept “super stability” is the same as the
usual definition of “stability” and the “super index” of M equals to the index of it.

For minimal submanifolds of lower dimensions of a hyperbolic space, we have

Theorem 1.2. Let M be an n-dimensional complete immersed minimal sub-

manifold in H
n+p, 2 ≤ n ≤ 5.

i) When n 6= 3, if

(1.16) λ1(L|A|2−n,M) >
5

3
n +

(3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
,

and (1.11) is satisfied, where

(1.17) d ∈















(

0, 1
2

)

, when n = 2,
(

3
4
, 3
2

)

, when n = 4,
(

4
3
− 2

3

√

2
5
, 4
3
+ 2

3

√

2
5

)

, when n = 5,

then M is totally geodesic.

ii) When n = 3, if

(1.18) lim
R→+∞

1

R2

ˆ

Bp(R)

|A|2/3 = 0,

then

(1.19) λ1(L|A|2−n,M) ≤ 4.

Theorem 1.3. Let M be an n-dimensional complete immersed minimal sub-

manifold in H
n+p, 2 ≤ n ≤ 5.

i) When n 6= 3, if

(1.20) λ1(L|A|2−n,M) >
5

3
n+

(3n(k − 1)2 − 8n(k − 1) + 8(n− 2))(n− 1)2

12n(k − 1)2
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and

(1.21) lim
R→+∞

1

Rk

ˆ

Bp(R)

|A| = 0,

where

(1.22) k ∈















(

1, 3
2

)

, when n = 2,
(

7
4
, 5
2

)

, when n = 4,
(

7
3
− 2

3

√

2
5
, 7
3
+ 2

3

√

2
5

)

, when n = 5,

then M is totally geodesic.

ii) When n = 3, if

(1.23) lim
R→+∞

1

R5/3

ˆ

Bp(R)

|A| = 0,

then

(1.24) λ1(L|A|2−n,M) ≤ 4.

The next results give estimates for the first eigenvalue of the super stability
operator of minimal submanifolds of dimension no larger than 3 in a hyperbolic
space.

Theorem 1.4. Let M be an n-dimensional complete immersed minimal sub-

manifold in H
n+p, n = 2 or 3. Suppose that there exists a constant d in the interval

(1.25)

[

2, 2 +
2

3

(

√

12

n
− 2− 1

))

,

such that (1.11) is satisfied. Then

(1.26) λ1(L|A|2−n,M) ≤ 5

3
n+

(3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
.

Theorem 1.5. Let M be an n-dimensional complete immersed minimal sub-

manifold in H
n+p, n = 2 or 3. Suppose that there exists a constant

(1.27) k ∈
[

3, 3 +
2

3

(

√

12

n
− 2− 1

))

,

such that (1.21) is satisfied. Then

(1.28) λ1(L|A|2−n,M) ≤ 5

3
n+

(3n(k − 1)2 − 8n(k − 1) + 8(n− 2))(n− 1)2

12n(k − 1)2
.

Remark 1.4. The method of the proofs is classic and has been used in many
of the articles in the bibliography. The article by Bérard [3] is a pioneer reference
for the generalized Simons’ equation satisfied by the second fundamental form of an
immersion in a Riemannian manifold. Simons’ inequalities here can be deduced from
that article of Bérard.

Remark 1.5. An interesting problem suggested by the referee is to understand
the relation between the assumption on the total curvature and the volume entropy
of the hypersurface M . For some ideas, one can see the pioneer articles [6, 7] and
the more recent [24] and references therein. In particular [24, Theorem 6.1].
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2. Proofs of the results

Proof of Theorem 1.1. Since M is a minimal hypersurface of Hn+1, we have the
following Simons’ formula (cf. [12, 36, 37]):

(2.1)
1

2
△|A|2 = |∇A|2 − |A|4 − n|A|2.

Using equation (2.1) and the Lemma 2.1 in [36] we obtain that

(2.2) |A|△|A|+ |A|4 + n|A|2 ≥ 2

n
|∇|A||2.

Let α be a fixed positive constant. It follows from (2.2) that

|A|α△|A|α = |A|α(α∇|A|α−1∇|A|+ α|A|α−1△|A|)

=
(α− 1)

α
α2|A|2(α−1)|∇|A||2 + α|A|2α−2|A|△|A|

=
(α− 1)

α
|∇|A|α|2 + α|A|2(α−1)|A|△|A|

≥ (α− 1)

α
|∇|A|α|2 + 2α

n
|A|2α−2|∇|A||2 − α|A|2α+2 − αn|A|2α

=
(α− 1)

α
|∇|A|α|2 + 2

nα
|∇|A|α|2 − α|A|2α+2 − αn|A|2α,

which gives

(2.3) |A|α△|A|α ≥
(

1− n− 2

αn

)

|∇|A|α|2 − α|A|2α+2 − αn|A|2α.

Let q be a non-negative constant and f ∈ C∞
0 (M). Multiplying (2.3) by |A|2αqf 2

and then integrating on M we obtain
(

1− n− 2

αn

)
ˆ

M

|∇|A|α|2|A|2αqf 2

≤ α

ˆ

M

|A|2(q+1)αf 2|A|2 + αn

ˆ

M

|A|2(q+1)αf 2 +

ˆ

M

|A|(2q+1)αf 2△|A|α.
(2.4)

For any ǫ > 0, it follows from integration by parts and Young’s inequality that
(

2(q + 1)− n− 2

αn
− ǫ

)
ˆ

M

|∇|A|α|2|A|2αqf 2

≤ α

ˆ

M

|A|2(q+1)αf 2|A|2 + αn

ˆ

M

|A|2(q+1)αf 2 +
1

ǫ

ˆ

M

|A|2(q+1)α|∇f |2.
(2.5)

One gets from the definition of λ1(L|A|2−n,M) that
ˆ

M

|∇f |2 ≥
ˆ

M

|A|2f 2 − n

ˆ

M

f 2 + λ1

ˆ

M

f 2, ∀ f ∈ C∞
0 (M).

Setting θ = λ1 − n, we get

(2.6)

ˆ

M

|∇f |2 ≥
ˆ

M

|A|2f 2 + θ

ˆ

M

f 2, ∀ f ∈ C∞
0 (M).

Letting γ = (n−1)2

4
, we have from (1.4) that

(2.7)

ˆ

M

|∇f |2 ≥ γ

ˆ

M

f 2, ∀ f ∈ C∞
0 (M).
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Fixing an x ∈ [0, 1], one deduces from (2.6) and (2.7) that

(2.8) x

ˆ

M

|A|2f 2 + (θx+ (1− x)γ)

ˆ

M

f 2 ≤
ˆ

M

|∇f |2.

Plugging f |A|(q+1)α in (2.8) and using Young’s inequality we obtain

x

ˆ

M

|A|2(q+1)α+2f 2 + (θx+ (1− x)γ)

ˆ

M

|A|2(q+1)αf 2

≤
(

1 +
(q + 1)α

ǫ

)
ˆ

M

|A|2(q+1)α|∇f |2

+
(q + 1)

α
(ǫ+ (q + 1)α)

ˆ

M

|∇|A|α|2|A|2qαf 2.

(2.9)

Supposing
(

2(q + 1)− n−2
nα

− ǫ
)

> 0, we can multiply (2.5) by (q+1)
α

(ǫ+(q+1)α) and

(2.9) by
(

2(q + 1)− n−2
nα

− ǫ
)

, respectively, and combine the two resulted expressions
to get

(

2(q + 1)− n− 2

nα
− ǫ

)

·
(

x

ˆ

M

|A|2(q+1)α+2f 2 + (θx+ (1− x)γ)

ˆ

M

|A|2(q+1)αf 2

)

≤
(

2(q + 1)− n− 2

nα
− ǫ

)(

1 +
(q + 1)α

ǫ

)
ˆ

M

|A|2(q+1)α|∇f |2

+ (q + 1)(ǫ+ (q + 1)α)

ˆ

M

|A|2(q+1)α+2f 2

+ (q + 1)(ǫ+ (q + 1)α)n

ˆ

M

|A|2(q+1)αf 2

+
(q + 1)

αǫ
(ǫ+ (q + 1)α)

ˆ

M

|A|2(q+1)α|∇f |2.

(2.10)

Now we prove item i) of Theorem 1.1. Let

d := 2(q + 1)α.(2.11)

Setting

(2.12) β = n− (8− n(d− 2)2)(n− 1)2

4nd2
,

we know from (1.5) and θ = λ1 − n that there exists a constant ρ > 0 such that

(2.13) θ ≥ β + ρ.

Since d ∈
(

2− 2
√

2
n
, 2 + 2

√

2
n

)

, we can find an ǫ > 0 satisfying

(2.14)
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− n−2
nα

− ǫ
+ ǫ < 1

and

(2.15) ρ+





1
(q+1)(ǫ+(q+1)α)

2(q+1)−n−2

nα
−ǫ

+ ǫ
− 1−

2
n
− ((q + 1)α− 1)2

((q + 1)α)2



 γ > 0.
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Taking

(2.16) x =
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− n−2
nα

− ǫ
+ ǫ

in (2.10) and dividing by

(

2(q + 1)− n− 2

nα
− ǫ

)

, one obtains that

ǫ

ˆ

M

|A|2(q+1)α+2f 2 + (θx+ (1− x)γ − nx+ nǫ)

ˆ

M

|A|2(q+1)αf 2

≤ C

ˆ

M

|A|2(q+1)α|∇f |2,
(2.17)

for some positive constant C depending only on n, q, α and ǫ. It follows from (2.13),
(2.15) and (2.16) that

γ + x(θ − γ)− nx = x

((

1

x
− 1

)

γ + θ − n

)

≥ x









1
(q+1)(ǫ+(q+1)α)

2(q+1)−n−2

nα
−ǫ

+ ǫ
− 1



 γ −
(

2
n
− ((q + 1)α− 1)2

)

(n− 1)2

4((q + 1)α)2
+ ρ





= x



ρ+





1
(q+1)(ǫ+(q+1)α)

2(q+1)−n−2

nα
−ǫ

+ ǫ
− 1−

2
n
− ((q + 1)α− 1)2

((q + 1)α)2



 γ



 ≥ 0.

Thus, we can find an ǫ > 0 and a positive constant C2 depending only on n, q, α and
ǫ such that

(2.18)

ˆ

M

|A|d+2f 2 ≤ C2

ˆ

M

|A|d|∇f |2, ∀ f ∈ C∞
0 (M).

Since the first eigenvalue of the stability operator of a complete totally geodesic
hypersurface is equal to

(n− 1)2

4
+ n,

Item i) in Theorem 1.1 makes sense if

(2.19)
(n− 1)2

4
+ n > 2n− (8− n(d− 2)2)(n− 1)2

4nd2
.

So we know that (2.19) is valid if and only if

(2.20) d ∈
{(

0, 1
2

)

, for n = 2,
(

n−1
n
, (n−1)(n−2)

n

)

, for n > 2

If n < 6 and if d satisfies (2.20), it is easy to see that

d ∈
(

2− 2

√

2

n
, 2 + 2

√

2

n

)

.

If n ≥ 6, we have
(

2− 2

√

2

n
, 2 + 2

√

2

n

)

⊂
(

n− 1

n
,
(n− 1)(n− 2)

n

)

.

So the condition (1.12) implies that (2.14) and (2.19) are justified.
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Let f be a smooth function on [0,∞) such that f ≥ 0, f = 1 on [0, R] and f = 0
in [2R,+∞) with |f ′| ≤ 2

R
. Considering f ◦ r, where r is the distance function from

the point p, we have from (2.18) that
ˆ

Bp(R)

|A|d+2 ≤ 4C2

R2

ˆ

Bp(2R)

|A|d.

Letting R −→ ∞ and using (1.11), we conclude |A| = 0 in M , that is, M is totally
geodesic.

As for item ii) of Theorem 1.1, we also set d = 2(q + 1)α. Since d ∈
(

0, 4
17

)

, one
can find an ǫ > 0 such that

(2.21) 0 <
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− ǫ
+ ǫ <

1

17
.

Taking n = 2 and substituting

x =
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− ǫ
+ ǫ

in (2.10) and dividing by (2(q + 1)− ǫ) we get

ǫ

ˆ

M

|A|2(q+1)α+2f 2 + (θx+ (1− x)γ − 2x+ 2ǫ)

ˆ

M

|A|2(q+1)αf 2

≤ C1

ˆ

M

|A|2(q+1)α|∇f |2,

for some positive constant C1 depending only on n, q, α and ǫ. Since M is stable,
we have λ1 ≥ 0. Using (2.21) and remembering that θ := λ1 − 2 we have

θx+ (1− x)γ − 2x = x

((

1

x
− 1

)

γ + θ − 2

)

= x

((

1

x
− 1

)

γ + λ1 − 4

)

≥ x

((

1

x
− 1

)

γ − 4

)

≥ 0,

Thus, we can find an ǫ > 0 and a positive constant C2 depending only on q, α and ǫ
such that

ˆ

M

|A|d+2f 2 ≤ C2

ˆ

M

|A|d|∇f |2, ∀ f ∈ C∞
0 (M).

The remaining proof now follows exactly as in the final part of the proof of item i). �

Proof of Theorem 1.2. Since M is a minimal submanifold of Hn+p, we have the
following Simons type inequality (cf. [36, 37]):

(2.22) |A|△|A|+ 3

2
|A|4 + n|A|2 ≥ 2

n
|∇|A||2

Let α > 0. Using the same calculations as in deriving (2.2) we obtain

(2.23) |A|α|△|A|α ≥
(

1− n− 2

αn

)

|∇|A|α|2 − 3

2
α|A|2α+2 − αn|A|2α.
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Let q be a non-negative constant and f ∈ C∞
0 (M). Multiplying (2.23) by |A|2αqf 2

and integrating on M , using integration by parts and Young’s inequality we obtain
(

2(q + 1)− n− 2

αn
− ǫ

)
ˆ

M

|∇|A|α|2|A|2αqf 2

≤ 3

2
α

ˆ

M

|A|2(q+1)α+2f 2 + αn

ˆ

M

|A|2(q+1)αf 2 +
1

ǫ

ˆ

M

|A|2(q+1)α|∇f |2.
(2.24)

Since (1.4) is true for minimal submanifolds in H
n+p, we can use the inequality

(2.9). Suppose that

2(q + 1)− n− 2

αn
− ǫ > 0.

Multiplying (2.24) by (q+1)
α

(ǫ+(q+1)α) and (2.9) by
(

2(q + 1)− n−2
αn

− ǫ
)

and joining
the two inequalities we get

(

2(q + 1)− n− 2

nα
− ǫ

)(

x

ˆ

M

|A|2(q+1)α+2f 2+(θx+(1− x)γ)

ˆ

M

|A|2(q+1)αf 2

)

≤
(

2(q + 1)− n− 2

nα
− ǫ

)(

1 +
(q + 1)α

ǫ

)
ˆ

M

|A|2(q+1)α|∇f |2

+
3

2
(q + 1)(ǫ+ (q + 1)α)

ˆ

M

|A|2(q+1)α+2f 2

+ (q + 1)(ǫ+ (q + 1)α)n

ˆ

M

|A|2(q+1)αf 2

+
(q + 1)

αǫ
(ǫ+ (q + 1)α)

ˆ

M

|A|2(q+1)α|∇f |2.

(2.25)

We define again
d := 2(q + 1)α.

Now we consider two cases.

Case i): n 6= 3. Setting

(2.26) β =
2

3
n− (3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
, θ = λ1 − n,

we know from (1.16) that there exists a constant ρ > 0 such that θ ≥ β + ρ. Since

d ∈
(

4

3
− 2

3

√

12

n
− 2,

4

3
+

2

3

√

12

n
− 2

)

,

we can find an ǫ > 0 satisfying

(2.27)
3
2
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− n−2
nα

− ǫ
+ ǫ < 1,

and




1
3

2
(q+1)(ǫ+(q+1)α)

2(q+1)−n−2

nα
−ǫ

+ ǫ
− 1 +

12n((q + 1)α)2 − 16n(q + 1)α + 8(n− 2)

12n((q + 1)α)2



γ + ρ

> 0.

(2.28)

Supposing

2(q + 1)− n− 2

nα
− ǫ > 0
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and substituting x =
3
2
(q + 1)(ǫ+ (q + 1)α)

2(q + 1)− n−2
nα

− ǫ
+ ǫ in (2.25) we have

ǫ

ˆ

M

|A|2(q+1)α+2f 2 +

(

θx+ (1− x)γ − 2

3
nx+

2

3
nǫ

)
ˆ

M

|A|2(q+1)αf 2

≤ C

ˆ

M

|A|2(q+1)α|∇f |2,
(2.29)

for some positive constant C depending only on n, q, α and ǫ. It follows from (2.26)–
(2.28) that θx + (1 − x)γ − 2

3
nx ≥ 0. Thus, we can find an ǫ > 0 and a a positive

constant C2 depending only on n, q, α and ǫ such that (2.30) becomes
ˆ

M

|A|d+2f 2 ≤ C2

ˆ

M

|A|d|∇f |2, ∀ f ∈ C∞
0 (M).

Observe that the first eigenvalue of the super stability operator of a complete totally
geodesic submanifold Hn in Hn+p is

(n− 1)2

4
+ n.

Therefore Theorem 1.2 makes sense if

(2.30)
(n− 1)2

4
+ n >

5

3
n+

(3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
.

We can see that this is true if and only if

(2.31) d ∈
{(

0, 1
2

)

, for n = 2,
(

n−1
n
, (n−1)(n−2)

n

)

, for n > 2.

On the other hand, if n = 5, we have
(

4

3
− 2

3

√

12

n
− 2,

4

3
+

2

3

√

12

n
− 2

)

=

(

4

3
− 2

3

√

2

5
,
4

3
+

2

3

√

2

5

)

and
(

4

3
− 2

3

√

2

5
,
4

3
+

2

3

√

2

5

)

⊂
(

4

5
,
12

5

)

=

(

n− 1

n
,
(n− 1)(n− 2)

n

)

.

When n = 2 or 4, if d satisfies (2.32), then

d ∈
(

4

3
− 2

3

√

12

n
− 2,

4

3
+

2

3

√

12

n
− 2

)

.

Therefore (2.27) and (2.30) hold. As in the proof of Theorem 1.1 we get
ˆ

M

|A|d+2f 2 ≤ C2

ˆ

M

|A|d|∇f |2, ∀ f ∈ C∞
0 (M),

and we can conclude that M is totally geodesic.

Case ii): n = 3. Suppose that λ1(L|A|2−3,M) > 4. Replacing n = 3 in (1.16) and
observing

4 =
5

3
· 3 +

(

3 · 3
(

2
3

)2 − 8 · 3 · 2
3
+ 8(3− 2)

)

(3− 1)2

12 · 3 ·
(

2
3

)2
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and
2

3
∈
(

4

3
− 2

3

√
2,

4

3
+

2

3

√
2

)

,

we can repeat the above proof by taking n = 3 and d = 2
3

to conclude that M
is totally geodesic, which, implies that λ1(L|A|2−3,M) = 4. This is a contradiction.
Thus, we have λ1(L|A|2−3,M) ≤ 4. �

Proof of Theorem 1.3. Setting k = d+ 1, by hypothesis we have

λ1(L|A|2−n,M) >
5

3
n+

(3n(k − 1)2 − 8n(k − 1) + 8(n− 2))(n− 1)2

12n(k − 1)2

=
5

3
n+

(3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
.

Case i): n 6= 3. As in the proof of the Theorem 1.2 we can obtain the following
inequality

ˆ

M

|A|d+2f 2 ≤ C

ˆ

M

|A|d|∇f |2,

where C is a positive constant. Plugging f
d+1

2 in the above expression and using
Hölder’s inequality we get

ˆ

M

|A|d+2f d+1 ≤ c3

ˆ

M

|A|df d−1|∇f |2

≤ c3

(
ˆ

M

|A|d+2f d+1

)
d−1

d+1
(
ˆ

M

|A||∇f |d+1

)
2

d+1

.

(2.32)

Let f be a smooth function on [0,∞) such that f ≥ 0, f = 1 on [0, R] and f = 0
in [2R,+∞) with |f ′| ≤ 2

R
. Then considering f ◦ r, where r is the distance from p

(2.32) becomes

(2.33)

(

ˆ

Bp(R)

|A|d+2

)
2

d+1

≤ c4

(

1

Rd+1

ˆ

Bp(R)

|A|
)

2

d+1

.

As k = d + 1, we have by taking R −→ ∞ that |A| = 0 on M , that is, M is totally
geodesic.

Case ii): n = 3. Suppose that λ1(L|A|2−3,M) > 4. We can repeat the above
arguments by taking n = 3 and k = 5

3
to conclude that M is totally geodesic, which

implies λ1(L|A|2−3,M) = 4. This is a contradiction. Thus we have λ1(L|A|2−3,M) ≤
4. �

Proof of Theorem 1.4. Suppose that

λ1(L|A|2−n) >
5

3
n+

(3nd2 − 8nd+ 8(n− 2))(n− 1)2

12nd2
.(2.34)

Let q be a non-negative constant and f ∈ C∞
0 (M). Multiplying (2.22) by (1 +

q)f 2|A|2q, integrating the resulted equation on M and using the divergence theorem
we obtain

(

2

n
+ 2q + 1

)
ˆ

M

|∇|A||2|A|2qf 2 ≤ 3

2

ˆ

M

|A|2q+4f 2 + n

ˆ

M

|A|2q+2f 2

− 2

ˆ

M

|A|2q+1f〈∇f,∇|A|〉.
(2.35)
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Again from the equations (1.2) and (1.4), we can find an x ∈ [0, 1] such that

x

ˆ

M

|A|2f 2 + (θx+ (1− x)γ)

ˆ

M

f 2 ≤
ˆ

M

|∇f |2,

where θ = λ1 − n. Plugging f |A|q+1 in the above equation we have

x

ˆ

M

|A|2q+4f 2 + (θx+ (1− x)γ)

ˆ

M

|A|2q+2f 2

≤
ˆ

M

|A|2q+2|∇f |2 + (1 + q)2
ˆ

M

|A|2qf 2|∇|A||2

+ 2(q + 1)

ˆ

M

|A|2q+1f〈∇f,∇|A|〉.

(2.36)

Multiplying (2.35) by (q + 1) and summing with (2.36) we get

(1 + q)

(

2

n
+ q

)
ˆ

M

|∇|A||2|A|2qf 2 + x

ˆ

M

|A|2q+4f 2

+ (θx+ (1− x)γ)

ˆ

M

|A|2q+2f 2

≤
ˆ

M

|A|2q+2|∇f |2 + 3

2
(1 + q)

ˆ

M

|A|2q+4f 2 + n(q + 1)

ˆ

M

|A|2q+2f 2.

(2.37)

Multiplying (2.36) by
2

n
+q

1+q+ǫ
and summing with (2.37) we obtain by using Young’s

inequality that
(

1 +
2
n
+ q

1 + q + ǫ

)(

x

ˆ

M

|A|2q+4f 2 + (θx+ (1− x)γ)

ˆ

M

|A|2q+2f 2

)

≤
(

1 +
2
n
+ q

ǫ

)
ˆ

M

|A|2q+2|∇f |2 + 3

2
(1 + q)

ˆ

M

|A|2q+4f 2

+ n(q + 1)

ˆ

M

|A|2q+2f 2.

(2.38)

Setting

(2.39) β =
2

3
n+

(3nq2 + 2nq + n− 4)(n− 1)2

12n(q + 1)2
,

by (2.34) and θ = λ1 − n, we know that exists a constant ρ > 0 such that

θ ≥ β + ρ.

Setting d := 2q + 2, we have by hypothesis that q < 1
3

(√

12
n
− 2− 1

)

. Since n = 2

or 3, we can then find an ǫ > 0 satisfying

(2.40)
3
2
(q + 1)(q + 1 + ǫ)
2
n
+ 2q + 1 + ǫ

+ ǫ < 1

and

(2.41) ρ+





1
3

2
(q+1)(q+1+ǫ)
2

n
+2q+1+ǫ

+ ǫ
− 1 +

3
2
q2 + 1

2
+ q − 2

n
3
2
(q + 1)2



 γ > 0.
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Thus, dividing by
(

1 +
2

n
+q

1+q+ǫ

)

and substituting

(2.42) x =
3
2
(q + 1)(q + 1 + ǫ)
2
n
+ 2q + 1 + ǫ

+ ǫ

in (2.38), we get

ǫ

ˆ

M

|A|2q+4f 2 +

(

θx+ (1− x)γ − 2

3
nx+

2

3
nǫ

)
ˆ

M

|A|2q+2f 2

≤ C

ˆ

M

|A|2(q+1)α|∇f |2,
(2.43)

for some positive constant C depending only on n, q and ǫ. It follows from the
definition of θ and (2.40)–(2.42) that θx+(1−x)γ− 2

3
nx > 0. Consequently, we can

find an ǫ > 0 and a positive constant C2 depending only on n, q and ǫ such that
ˆ

M

|A|d+2f 2 ≤ C2

ˆ

M

|A|d|∇f |2, ∀ f ∈ C∞
0 (M),

where d := 2q + 2. Proceeding as in the proof of Theorem 1.1, we can conclude that
M is totally geodesic. Therefore if, n = 2 then λ1(L|A|2−2,M) = 9

4
, and if n = 3 then

λ1(L|A|2−3,M) = 4, which together with (2.34), gives us a contradiction. �

Proof of Theorem 1.5. Suppose that

(2.44) λ1(L|A|2−n) >
5

3
n+

(3n(k − 1)2 − 8n(k − 1) + 8(n− 2)(n− 1)2

12n(k − 1)2
.

By using the same arguments as in the proof of Theorem 1.4 we obtain again
ˆ

M

|A|d+2f 2 ≤ c

ˆ

M

|A|d|∇f |2.

Plugging f
d+1

2 in the above inequality one gets

(2.45)

(

ˆ

Bp(R)

|A|d+2

)
2

d+1

≤ c5

(

1

Rd+1

ˆ

Bp(R)

|A|
)

2

d+1

.

Since k = d+1, making R → +∞ we conclude that |A| = 0 on M , that is, M totally
geodesic. Therefore, we have that if n = 2 then λ1(L|A|2−2,M) = 9

4
, and if n = 3

then λ1(L|A|2−3,M) = 4, which together with (2.44), gives us a contradiction. �
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